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a b s t r a c t 

Scaling analysis exploiting timescale separation has been one of the most important techniques in the 

quantitative analysis of nonlinear dynamical systems in mathematical and theoretical biology. In the case 

of enzyme catalyzed reactions, it is often overlooked that the characteristic timescales used for the scal- 

ing the rate equations are not ideal for determining when concentrations and reaction rates reach their 

maximum values. In this work, we first illustrate this point by considering the classic example of the 

single-enzyme, single-substrate Michaelis–Menten reaction mechanism. We then extend this analysis to 

a more complicated reaction mechanism, the auxiliary enzyme reaction, in which a substrate is converted 

to product in two sequential enzyme-catalyzed reactions. In this case, depending on the ordering of the 

relevant timescales, several dynamic regimes can emerge. In addition to the characteristic timescales for 

these regimes, we derive matching timescales that determine (approximately) when the transitions from 

transient to quasi-steady-state kinetics occurs. The approach presented here is applicable to a wide range 

of singular perturbation problems in nonlinear dynamical systems. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Nonlinear differential equations are used to model the dynami-

cal behavior of natural phenomena in science. As the natural phe-

nomena become more complex, the dynamics are influenced by

multiple timescales, which create technical problems in the math-

ematical analysis and numerical computation of models ( Lin and

Segel, 1988 ). 

The 21st century has been dominated by advances in the bi-

ological and biomedical sciences. As a result, examples of com-

plex dynamical systems have become ubiquitous in theoretical and

mathematical biology. Despite their complexity, all major levels of

biological organization have one common dynamical denominator:

chemical reactions are continuously taking place in living systems.

Most of these reactions involve enzymes. Arguably, if biology is to

be understood as a dynamical process, enzyme catalyzed reactions

need to be investigated quantitatively ( Gallagher, 2004 ). 

The quantitative description of any enzyme catalyzed chemical

reaction is often decomposed into two categories: thermodynam-

ics and kinetics. The former tells us if a particular reaction is fa-

vorable, while latter describes the timescales over which reactions
∗ Corresponding author at: Molecular & Integrative Physiology, 1137 E. Catherine 
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ccur. From the point of view of the experimental scientist, chem-

cal kinetics focuses on the measurement of concentrations as a

unction of time with the goal of characterizing reaction properties

 Espenson, 1995 ). Regardless of whether a kinetic model is linear

r nonlinear, stochastic or deterministic, the effectiveness of the

odel is only as good as the timescales it predicts ( Shoffner and

chnell, 2017 ): timescales provide not only an estimation of the

ffective duration of the reaction, but are also critical in character-

zing reaction mechanisms. This topic is not unfamiliar to Philip K.

aini, who has worked in a number of diverse areas of mathemat-

cal biology, including enzyme kinetics ( Burke et al., 1993, 1990;

renzen and Maini, 1988; Schnell and Maini, 20 0 0, 20 02, 20 03 ). 

Philip K. Maini mentored one of us, Santiago Schnell, through

he rigorous theory of timescale analysis in chemical kinetics that

ies at the intersection of chemistry and geometric singular pertur-

ation theory (GSPT). In fact, GSPT is widely applicable not only to

hemical kinetics, but to a plethora of important biological models

 Bertram and Rubin, 2017 ). Largely, GSPT is the study of dynamical

ystems of the form 

˙ 
 = f (x, y ) , (1a)

 ̇

 y = g(x, y ) , (1b)

here ε � 1, and “·” denotes differentiation with respect to time.

hese systems are often referred to as slow/fast systems, since

https://doi.org/10.1016/j.jtbi.2019.01.005
http://www.ScienceDirect.com
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hanges in the variable x occur over timescales that are large com-

ared to the timescales over which the variable y changes. For ex-

mple, if time is rescaled as t ε = t/ε, then the evolution of (1) be-

omes 

 

′ = ε f (x, y ) , (2a) 

 

′ = g(x, y ) , (2b) 

ith 

′ denoting differentiation with respect to t ε . Over the t ε-

imescale, the variable x barely changes, while the variable y can

hange significantly. In contrast, the change in variable x is non-

rivial over the t -timescale and, due to the presence of slow man-

folds ( Roussel and Fraser, 1990 ), the change in the variable y can

e shown to be explicitly dependent on change in x . Thus, the dy-

amics of (1) is dependent on two different timescales: the fast

imescale, t ε , and the slow timescale, t . Each timescale defines a

nique dynamical regime: the initial, “t ε-regime”, over which x is

ssentially constant and y changes rapidly, and the “t -regime”, in

hich x changes significantly and the change in y is dependent on

he change in x . 

GSPT has a rich relationship with chemical kinetics, particu-

arly regarding the application of matched asymptotics . Matched

symptotics is a common mathematical approach aimed at finding

n accurate approximation to the solution of an equation, or sys-

em of equations (see Kuehn, 2015 , for an excellent discussion on

atched asymptotics). Usually, the study of matched asymptotics

s linked to singular perturbation problems that arise as a con-

equence of underlying disparate spatial layers, such as boundary

ayers that form in pattern formation during embryonic develop-

ent (see Maini et al., 2012 ). The specific aim of matched asymp-

otics is to generate a composite solution , which is constructed by

luing together local solutions (solutions that are asymptotically

alid on different regimes) to comprise a solution that is uniformly

alid ( Holmes, 2013 ). Of principal interest in chemical kinetics, for

hich there typically exist multiple disparate timescales, is to de-

ermine the timescales that contribute to the composite solution. 

In this work, we begin by introducing the characteristic

imescale, which is a well-defined timescale from dynamical sys-

ems theory. We show that the established “fast timescale” of the

ingle-enzyme, single-substrate, Michaelis–Menten (MM) reaction 

echanism is in fact a characteristic timescale, and we demon-

trate that characteristic timescales do provide a correct “parti-

ioning” of time into the different slow and fast sub-domains from

hich the composite solution should be constructed. However, we

lso show that characteristic timescales are not suitable for deter-

ining when a transition from one dynamical regime to another

ynamical regime occurs. This means that characteristic timescales

annot tell us when concentrations of certain chemical species

each their peak values, or when the rate of product generation

eaches its maximum value. Thus, there is a need for an addi-

ional timescale, which we refer to as a matching timescale , that

rovides a temporal boundary between specific dynamic (kinetic)

egimes. Its derivation follows directly from the theory of GSPT and

atched asymptotics, and we demonstrate that appropriate match-

ng timescales can be constructed from physical knowledge of the

haracteristic timescales. Specifically, through the application of

ikhonov–Fenichel Theory ( Fenichel, 1971; Tikhonov, 1952 ), we de-

ive the correct matching timescale for the MM reaction mecha-

ism, and show that it can be explicitly obtained from the fast

nd slow characteristic timescales. We also categorize the corre-

ponding slow timescale of the MM reaction mechanism as either

 characteristic, depletion, or completion timescale. 

Most chemical reactions that consist of two disparate

imescales are well-understood. However, much of the mod-

rn GSPT analyzes problems comprising more than two timescales
 Letson et al., 2017; Nan et al., 2015; Vo et al., 2013 ), and it is time

o push enzyme kinetics in this direction. Thus, in this work, we

nalyze the kinetics of the auxiliary enzyme reaction mechanism

 Eilertsen and Schnell, 2018 ) 

 1 + E 1 

k 1 

�
k −1 

C 1 

k 2 

→ E 1 + S 2 , 

 2 + E 2 

k 3 

�
k −3 

C 2 

k 4 

→ E 2 + P, 

nder the assumption that the auxiliary enzyme, E 2 , is in excess

ith respect to E 1 . We show that there are four timescales in a cer-

ain parameter regime of this reaction, and we illustrate that dif-

erent orderings of the timescales must be considered in order to

stablish a complete description of the kinetics. The relevant char-

cteristic timescales that approximate the duration of each regime

re derived through geometric analysis of the phase-plane. Lastly,

omposite solutions and matching timescales are obtained. 

. The characteristic timescale 

Consider a general, autonomous dynamical system of the form

˙ 
 = f (x ) , (3) 

nd suppose f ( x ) has a fixed point, x ∗, such that f (x ∗) = 0 .

he characteristic timescale is the reciprocal of the exponential

rowth/decay constant of the linearized equation in a small neigh-

orhood surrounding x ∗. That is, if δ is a small perturbation, then 

f ( x ∗ + δ) � δ
df 

dx 
| x = x ∗ ≡ δ f ′ ( x ∗) , (4) 

nd therefore 

˙ � f ′ (x ∗) δ. (5) 

ince linearized evolution of the perturbation grows or decays ac-

ording to 

= δ(0) exp 

[
f ′ (x ∗) t 

]
, (6) 

he characteristic timescale, t χ , is the time required for the pertur-

ation to significantly grow or decay: 

 χ = 

1 

| f ′ (x ∗) | . (7) 

or a linear, exponential decay differential equation of the form 

˙ 
 = −γ x, x (0) = x 0 , (8)

he characteristic timescale is 1/ γ , and corresponds to the exact

mount of time it takes the initial condition to decay to 

 (t χ ) = (1 − � ) x 0 , � = 

exp (1) − 1 

exp (1) 
, (9)

hich is roughly 0.37 x 0 . In addition, for a linear equation of the

orm 

˙ 
 = −γ x + A, x (0) = 0 , (10)

here A is a constant, the characteristic timescale, 1/ γ , is the exact

mount of time it takes x to grow to 

 (t χ ) = � 
A 

γ
≡ �x max , (11)

r roughly 0.63 x max . 
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Fig. 1. The validity of t c 1 for the Michaelis-Menten reaction mechanism (12) . The 

solid black curve is the numerically-computed solution to (13a) –(13b) . The dashed 

vertical curve is corresponds to t c 1 = [ k 1 (K M 1 + s 0 1 )] −1 . The dotted horizontal line 

corresponds to �c 1 /c max 
1 = � . The initial concentrations and rate constants used in 

the numerical simulation are: k 1 = 0 . 1 , k 2 = 10 , k −1 = 1 , e 0 1 = 1 and s 0 1 = 100 (units 

have been omitted). Time has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + 

exp (1)] . 
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3. The slow and fast timescales of the Michaelis–Menten 

reaction mechanism: An exercise in the power and limitations 

of characteristic timescales 

We continue by reviewing the pertinent characteristic

timescales for the well-studied single-enzyme, single-substrate

reaction mechanism (12) , in which an enzyme, E 1 , binds to a

substrate, S 1 (forming an intermediate enzyme-substrate complex,

C 1 ), and catalyzes the conversion of S 1 into product, P : 

S 1 + E 1 

k 1 

�
k −1 

C 1 

k 2 

→ E 1 + P. (12)

The kinetics of the reaction depend not only in the rate constants,

k 1 and k −1 , and the catalytic constant k 2 , but also on the initial

concentrations of S 1 and E 1 . Specifically, the reduced mass action

equations that govern the kinetics of (12) are 

˙ s 1 = −k 1 (e 0 1 − c 1 ) s 1 + k −1 c 1 , (13a)

˙ c 1 = k 1 (e 0 1 − c 1 ) s 1 − (k −1 + k 2 ) c 1 . (13b)

In this system, s 1 denotes the concentration of S 1 , c 1 denotes

the concentration of C 1 , and s 0 
1 

and e 0 
1 

are, respectively, the initial

substrate and enzyme concentrations. The mass action Eqs. (13a) –

(13b) can be approximated with the differential-algebraic equa-

tion, 

˙ s 1 = − e 0 1 k 2 k 1 

k −1 + k 2 + k 1 s 1 
s 1 , (14a)

c 1 = 

k 1 e 
0 
1 

k −1 + k 2 + k 1 s 1 
s 1 , (14b)

by assuming the quasi-steady-state approximation (QSSA). 

Despite a significant body of literature dedicated to the devel-

opment of methods and techniques for estimating timescales in

chemical kinetics ( Palsson, 1987; Palsson and Lightfoot, 1984; Pals-

son et al., 1985; Rice, 1960; Segel, 1988; Segel and Slemrod, 1989;

Shoffner and Schnell, 2017 ), timescale estimation remains ad hoc

in most applications, and we will later see that this work is no

exception. We will study and review (12) in regimes where the

QSSA is valid. Historically, the most common method employed

to study the validity of the QSSA is scaling combined with singu-

lar perturbation analysis. Early studies ( Heineken et al., 1967 ) of

the validity of the QSSA suggested that the initial enzyme con-

centration must be small in comparison to the initial substrate

concentration: ε̄ ≡ e 0 
1 
/s 0 

1 
� 1 . One of the first authors to recog-

nize that ε̄ � 1 was an incomplete condition for the validity of

the QSSA was Bernhard Palsson ( Palsson, 1987; Palsson and Light-

foot, 1984 ). Palsson made two important discoveries: (1) he recog-

nized that the QSSA was still applicable when e 0 
1 

≈ s 0 
1 

as long as

e 0 
1 

� (k −1 + k 2 ) /k 1 ; (2) he noted that the QSSA is still valid when

e 0 
1 

≈ s 0 
1 

≈ (k −1 + k 2 ) /k 1 as long as κ1 ≡ k −1 /k 2 	 1 . About a year

later, Segel (1988) , who understood that there was subtle differ-

ence between non-dimensionalization and scaling, correctly esti-

mated the disparate timescales of complex formation and substrate

depletion. In short, the earlier studies failed to determine nec-

essary conditions for the validity of the QSSA because, although

time had been properly non-dimensionalized in previous analyses,

it had not been appropriately scaled . Thus, history tells us that it is

difficult, if not impossible, to determine necessary conditions for

the validity of reduction techniques (like the QSSA) when slow

and fast timescales are unknown. We will review Segel’s analysis

in the forthcoming subsections. In addition, we will show that the

timescales derived by Segel can be used to approximate the match-

ing timescale, which gives a better estimation of the time it takes

for the reaction to reach quasi-steady-state (QSS). 
.1. The characteristic initial fast transient of the reaction 

It is well-established that, under the reactant stationary as-

umption (RSA, Hanson and Schnell, 2008; Schnell, 2014 ), the dy-

amics of (12) initialize with a brief initial transient during which

he intermediate complex concentration, c 1 , accumulates rapidly

owards its maximum while the substrate s 1 remains effectively

nchanged from the initial substrate concentration s 0 
1 
. The RSA en-

ures s 1 ≈ s 0 
1 

during the initial transient of the reaction. Under the

SA, Eq. (13b) is approximately 

˙ 
 1 � k 1 (e 0 1 − c 1 ) s 

0 
1 − (k −1 + k 2 ) c 1 , (15)

hich admits the solution 

 1 � c max 
1 

[
1 − exp (−k 1 (K M 1 

+ s 0 1 ) t) 
]
, c max 

1 = 

e 0 1 s 
0 
1 

K M 1 
+ s 0 

1 

. (16)

n the above equation, K M 1 
= (k −1 + k 2 ) /k 1 is the Michaelis con-

tant. The characteristic timescale of the intermediate complex that

rises from (16) is t c 1 : 

 c 1 = 

1 

k 1 (K M 1 
+ s 0 

1 
) 
. (17)

echnical justification for t c 1 was originally obtained by

egel (1988) and Segel and Slemrod (1989) . Through scaling

nalysis, they introduced the dimensionless parameters 

1 ≡
s 0 1 

K M 1 

, κ1 ≡ k −1 /k 2 , β1 ≡
1 

1 + σ1 

< 1 , α1 ≡
κ1 

1 + κ1 

< 1 , 

(18)

llowing Eqs. (13a) –(13b) to be rescaled into their dimensionless

orm 

d ̂  s 1 

dτ
= ε 1 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, ε 1 = 

e 0 1 

K M 1 
+ s 0 

1 
d ̂  c 1 

dτ
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 , 

(19)

here τ = t/t c 1 , ̂  s 1 = s 1 /s 0 
1 

and ˆ c 1 = c 1 /c max 
1 

. It is clear from

19) that if ε1 � 1, then s 1 � s 0 
1 

when t ≤ t c 1 . Formally, the quali-

er ε1 � 1 is the condition for the RSA, and t c 1 is the characteristic

imescale of the initial fast transient (see Fig. 1 ). 
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Fig. 2. The graphical illustration of the characteristic timescale for the 

Michaelis–Menten reaction mechanism (12) . When σ 1 � 1, the timescale t s 1 is the 

characteristic time of the substrate species. The solid black curve is the numerical 

solution to the mass action Eqs. (13a) –(13b) and the vertical dashed/dotted line cor- 

responds to t = t s 1 . The dotted horizontal line corresponds to the scaled character- 

istic value (1 − � ) s 0 1 . The constants (without units) used in the numerical simulation 

are: e 0 1 = 1 , k 1 = 0 . 01 , k 2 = 10 , k −1 = 1 and s 0 1 = 100 . Time has been mapped to the 

t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] . 

Fig. 3. The graphical illustrations of the completion timescale for the 

Michaelis–Menten reaction mechanism (12) . When σ 1 	 1, the reaction is essen- 

tially complete when t = t s 1 . The solid black curve is the numerical solution to 

the mass action Eqs. (13a) –Eqs. (13b) and the vertical dashed/dotted line corre- 

sponds to t = t s 1 . The constants (without units) used in the numerical simulation 

are: e 0 1 = 1 , k 1 = 10 , k 2 = 10 , k −1 = 1 and s 0 1 = 100 . Time has been mapped to the 

t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] . 
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.2. The slow timescale of the MM reaction: From characteristic to 

ompletion 

In contrast to the brief timescale over which c 1 accumulates

i.e, t c 1 ), s 1 changes over a much longer timescale. The timescale

ver which there is appreciable change in s 1 is the slow timescale

f the reaction or the substrate depletion timescale. As a direct re-

ult of singular perturbation theory, the depletion of s 1 is approxi-

ately 

˙ 
 1 � − V 1 

K M 1 
+ s 1 

s 1 (20) 

fter the initial fast transient (i.e. for t > t c 1 ). The above expres-

ion, obtained from the QSSA, is known as the MM equation (see,

chnell, 2014; Schnell and Maini, 2003 , for reviews), and V 1 = k 2 e 
0 
1 

s the limiting rate of the reaction. The slow timescale, t s 1 , is given

y 

 s 1 = 

s 0 1 

max | ̇ s 1 | = 

K M 1 
+ s 0 1 

V 1 

. (21) 

he technical justification of (21) is acquired through scaling anal-

sis. By writing the dimensionless form (13a) –(13b) with respect

o T = t/t s 1 yields 

d ̂  s 1 

dT 
= (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

 2 

d ̂  c 1 

dT 
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 . (22) 

he dimensionless parameter, ε2 , is the ratio of fast and slow

imescales: ε 2 = t c 1 /t s 1 . 

While mathematicians typically refer to t s 1 as the slow

imescale, the chemical interpretation of t s 1 depends on the initial

pecific concentration, σ 1 . First, the MM Eq. (20) admits a closed-

orm solution with s 1 (t = 0) = s 0 
1 

 1 = K M 1 
W [ σ1 exp (σ1 − η1 t) ] , η1 = 

V 1 

K M 1 

, (23)

here W [ · ] is the Lambert- W function ( Corless et al., 1996; Schnell

nd Mendoza, 1997 ), and the closed-form solution is known as the

chnell–Mendoza equation ( Clark et al., 2011; Feng et al., 2014;

urugan, 2018; Son et al., 2015 ). If σ 1 � 1, then (23) is asymptotic

o 

 1 � s 0 1 exp ( −η1 t ) , (24) 

rom which we obtain: 

 1 (t s 1 ) � (1 − � ) s 0 1 . (25)

hus, if the initial substrate concentration is much less than the

ichaelis constant, K M 1 
, then the slow timescale, t s 1 , is a charac-

eristic timescale for the substrate species (see Fig. 2 ). 

The calculus of the Lambert- W function determines the rele-

ant chemical interpretation of t s 1 as σ 1 increases. When t = t s 1 ,

he substrate concentration is, based on the RSA, K M 1 
W [ (1 − � ) σ1 ] .

urthermore, 

 [ u ] � u, when 1 � u, (26) 

nd we see from (26) that as the argument “u ” gets large, the dis-

ance from u to W [ u ] gets greater. Since 

 1 (t s 1 ) = K M 1 
W [(1 − � ) σ1 )] , (27)

t follows from (26) that 

 [(1 − � ) σ1 ] � (1 − � ) σ1 (28)

s σ 1 gets large. Thus, for large σ 1 , it holds that 

 1 (t s 1 ) � (1 − � ) s 0 1 , (29)
n which case we categorize t s 1 as a completion timescale , since it

s proportional to the total length of the reaction (see Fig. 3 ). 

In the intermediate range, when neither σ 1 � 1 or σ 1 	 1

olds, t s 1 is still the appropriate timescale over which a significant

eduction in substrate concentration occurs, and in this case we re-

er to the slow timescale as the depletion timescale , since it is too

ong to be a characteristic timescale, but too short to be a comple-

ion timescale. 

.3. The QSSA versus the RSA 

How did Segel’s work reconcile the work of

eineken et al. (1967) with the observations made by

alsson (1987) ? In a nutshell, Segel and Slemrod (1989) found that

ver the fast timescale the mass action equations scale as 

˙ ˆ 
 1 = ε 1 f ( ̂  s 1 , ̂  c 1 ) , (30a) 

˙ ˆ 
 1 = g( ̂  s 1 , ̂  c 1 ) , (30b) 



32 J. Eilertsen, W. Stroberg and S. Schnell / Journal of Theoretical Biology 481 (2019) 28–43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A graphical comparison of the composite and numerical solutions for 

the time course of the Michaelis–Menten reaction (12) . The solid black curve is 

the numerical solution to (13a) –(13b) . The unfilled circles mark the composite solu- 

tion (33) . The initial concentrations and rate constants used in the numerical sim- 

ulation are: k 1 = 1 , k 2 = 1 , k −1 = 1 , e 0 1 = 1 and s 0 1 = 100 (units have been omitted). 

All approximations have been scaled by their numerically–obtained maximum val- 

ues, and time has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] . 
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and on the slow timescale as 

ˆ s ′ 1 = 

˜ f ( ̂  s 1 , ̂  c 1 ) , (31a)

ε 2 ̂  c ′ 1 = 

˜ g ( ̂  s 1 , ̂  c 1 ) , (31b)

where f, g denote the right hand sides of (19) , and 

˜ f , ̃  g denotes

the right hand sides of (22) . If ε1 � 1, then the depletion of sub-

strate over the fast timescale is negligible. However, if ε1 ≈ 1, but

ε2 � 1, then the QSSA is still valid after an initial transient. The dis-

tinguishing feature in the case when ε 2 � ε 1 ∼ 1 is that the deple-

tion of s 1 over the initial transient is noticeable ( Segel and Slem-

rod, 1989 ). 

It is straightforward to the show that ε 2 < ε 1 . Consequently, the

condition for the validity of the RSA, ε1 � 1, ensures the validity

of the QSSA on the slow timescale. Moreover, since ε1 � 1 guaran-

tees that the depletion of s 1 minimal over t c 1 , the qualifier ε1 � 1

ensures the validity of the QSSA for the entire dynamics of the re-

action (12) ( Hanson and Schnell, 2008 ). 

3.4. Matched asymptotics: The composite solution for the time course 

of the reaction 

Expressing the asymptotic solution to (13a) –(13b) as, { 

s 1 � s 0 1 , 

t ≤ t c 1 
c 1 � c max 

1 [ 1 − exp (−t/t c 1 ) ] , 
(32a)

⎧ ⎪ ⎨ 

⎪ ⎩ 

s 1 � K M 1 
W [ σ1 exp (σ1 − η1 t) ] , 

t > t c 1 

c 1 � 

e 0 1 

K M 1 
+ s 1 

s 1 , 

(32b)

serves well to convey the fact that the dynamics of the reaction

changes depending on where a particular time point falls in re-

lation to t c 1 , and these equations provide us with the correct in-

ner and outer solutions that approximate the kinetics under the

RSA. However, it is well-understood that Eqs. (32a) –Eqs. (32b) are

misleading: there is a large transition regime surrounding t c 1 and,

within this transition regime, the outer solution (32b) does not ac-

curately approximate the true solution. Note that the presence of

a transition regime does not suggest that t c 1 is an inappropriate

timescale. In fact, the timescales derived in the previous section

are the appropriate timescales that categorize the fast and slow

regimes of the reaction. To see why, and to mitigate the effect of

the transition region, we construct the composite solution for the

intermediate complex, c io 
1 

: 

c io 1 = 

e 0 1 

K M 1 
+ s 1 

s 1 − c max 
1 exp (−t/t c 1 ) . (33)

The composite solution provides a uniform asymptotic solution

that is valid for all time. Furthermore, the accuracy of (33) in-

dicates that t c 1 and t s 1 quantify the appropriate temporal length

scales of the initial fast transient and quasi-steady-state regime

(see Fig. 4 ). 

3.5. The characteristic timescale is not a matching timescale 

From a theoretical point of view, the composite solution has lit-

tle advantage over the numerical solution in terms of estimating

when the transition to the quasi-steady-state phase occurs. We will

refer to the time at which the transition to QSS occurs as a match-

ing timescale , and a rough candidate for a matching timescale is t c 1 .

The caveat with utilizing t c as a matching timescale is that t c is

1 1 
 characteristic timescale, and hence will only provide characteris-

ic (as opposed to limiting) values of the concentrations within a

iven regime. To clearly illustrate why t c 1 fails to be an adequate

atching timescale requires a phase–plane analysis of the mass ac-

ion Eqs. (13a) –Eqs. (13b) . After the initial buildup of the interme-

iate, c 1 , the phase–plane trajectory is asymptotic to a slow mani-

old, M ε . The slow manifold is invariant, and is at a O(ε 2 ) -distance

rom the c 1 -nullcline, M 0 : 

 0 = 

{ 

(s 1 , c 1 ) : c 1 −
e 0 1 

K M 1 
+ s 1 

s 1 = 0 

} 

. (34)

he outer solution, (32b) , is valid once the trajectory is extremely

lose to the slow manifold, which implies c 1 should be near its

aximum value at the onset of outer solution validity. The com-

lex reaches its maximum value once the trajectory reaches M 0 .

owever, when t = t c 1 , the concentration of the complex is far

nough away from its maximum value to render the outer solu-

ion invalid: 

 1 (t c 1 ) ≈ �c max 
1 < c max 

1 . (35)

hus, c 1 (t c 1 ) 
∈ M 0 , and therefore the trajectory is not quite close

nough to M ε to justify (32b) as an asymptotic solution (see

ig. 2 ). 

A more accurate estimate of the actual time it takes c 1 to reach

ts maximum concentration (we will denote this timescale as t ∗c 1 )
an be obtained by either: (i) solving the mass action equations

xactly or, (ii) by means of an asymptotic approximation. Employ-

ng strategy (i) is difficult due to the nonlinearity of the equations;

trategy (ii) tends to be more straightforward to implement. If we

tilize (ii), we immediately meet an obvious conundrum if we try

o estimate t ∗c 1 directly from (32a) or (32b) : (32a) predicts that it

ill take an infinite amount of time for c 1 to reach c max 
1 

, while

32b) predicts t ∗c 1 = 0 . To work around this, we look for an asymp-

otic estimate to t ∗c 1 . Starting with the inner solution, 

 1 (τ ) = c max 
1 [ 1 − exp (−τ ) ] (36)

e rewrite (36) in terms of the slow timescale, T = t/t s 1 : 

 1 (T ) = c max 
1 [ 1 − exp (−T /ε 2 ) ] . (37)

y inspection of (37) , we see that c 1 should be in an O(ε 2 ) -
eighborhood of the slow manifold when 

 = ε 2 | ln ε 2 | . (38)
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Fig. 5. The validity of t ∗c 1 and a graphical representation of its comparison with 

t c 1 for the Michaelis–Menten reaction mechanism (12) . The solid black curve 

is the numerically-computed solution to (13a) –(13b) . The left-most dashed verti- 

cal curve is corresponds to t c 1 , and the middle dashed vertical curve corresponds 

to the estimated value t ∗c 1 = −t c 1 ln ε 2 . The dashed vertical line corresponds to the 

numerically-computed t ∗c 2 , which is labeled as t ∗,num 
c 1 

in the figure. Notice that t ∗. 
c 1 

provides a much better estimate of the time it takes c 1 to reach its maximum than 

t c 1 . The initial concentrations and rate constants used in the numerical simulation 

are: k 1 = 0 . 1 , k 2 = 10 , k −1 = 1 , e 0 1 = 1 and s 0 1 = 100 (units have been omitted). Time 

has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] . Note that the mass 

action equations have only been integrated from t = 0 to t ≈ t ∗c 1 for clarity. 
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ext, since T = t/t s 1 , we solve for t in (38) to obtain an asymptotic

stimate on t ∗c 1 : 

 

∗
c 1 

� −t c 1 ln ε 2 . (39)

he timescale (39) is the matching timescale, although various au-

hors refer to any timescale of order ε |ln ε | as simply a slow time

 Kuehn, 2015 ). While not exact, the approximation (39) provides a

seful estimate of the time to transition from transient to quasi-

teady-state kinetics for the single-enzyme, single-substrate MM

eaction mechanism (see Fig. 5 ). 

As a final remark, we note that the asymptotic approximation

39) is not without a more rigorous justification. So far, we have

een able to estimate matching timescales by directly calculating

hem from the “inner” or transient solution; the direct method

s possible because we have closed-form solutions comprised of

xponential functions. However, for a generic fast/slow dynamical

ystem of the form 

˙ 
 = f (x, y ) , (40a) 

 ̇

 y = g(x, y ) , (40b) 

he equation ˙ y = g(x 0 , y ) may not be linear, and a closed-

orm solution may not be available. However, it is a well-

nown fact, stated in both textbooks ( Kuehn, 2015 ) and literature

 Klonowski, 1983 ), that the time necessary for the fast-variable to

each QSS is generally O(ε | ln ε | ) . This result is due to the work of

ikhonov (1952) , who studied the convergence of the solution to

he perturbed system (40a) –(40b) to the solution of the degener-

te system, (41a) –(41b) : 

˙ 
 = f (x, y ) , (41a) 

 = g(x, y ) . (41b) 

The work of Tikhonov is summarized as follows: First, (41b) de-

nes a corresponding slow manifold of the form y = h (x ) , where

(x, h (x )) = 0 . Next, let D be the domain over which h : D → R 

n is

ontinuous. If g and f are sufficiently smooth, then the following

heorem provides a more general technical justification for (39) : 
heorem 1. Convergence towards the slow manifold: Suppose the

ystem (40a) –(40b) has an associated slow manifold, M 0 = { (x, y ) :

 = h (x ) & x ∈ D } , that is uniformly asymptotically stable. If f, g and

heir first two derivatives are uniformly bounded in a neighborhood

N” of M 0 , then there are positive constants ε0 , b 0 , b 1 , 
, and

 such that for any initial condition ( x 0 , y 0 ) ∈ N such that || y 0 −
 (x 0 ) || ≤ b 0 , and any ε such that 0 < ε < ε0 , the bound 

| y (t) − h (x (t)) || ≤ M|| y 0 − h (x 0 ) || exp [ −
t/ε ] + b 1 ε, (42)

olds provided x ( t ) ∈ D. 

Notice the slow manifold utilized in the theorem is not de-

ned to be invariant . In fact, M 0 is the nullcline associated

ith the fast variable, y , and is formally referred to as the

ritical manifold . The non-invariant slow manifold employed in

heorem (1) arises from the original form of the theorem intro-

uced by Tikhonov (1952) . The specific form of Theorem (1) is

aken directly from Berglund and Gentz (2006) , but originally

ntroduced by Gradšte ̆ın (1953) . Fenichel (1979) later extended

low/fast theory by demonstrating that there exists an invariant

low manifold that is present in the phase-space of the system

hen ε is sufficiently small but non-zero. 

What the bound specifically tells us is that if t = ε | ln ε | , then

| y (t) − h (x (t)) || ≤ M|| y 0 − h (x 0 ) || ε 
 + b 1 ε, (43)

nd thus the phase-plane trajectory should be at a distance that

s O(ε) from M 0 once t = ε| ln ε| (see Berglund and Gentz, 2006 ,

or details). In a fast/slow system of the form (40a) –(40b) , the

mall parameter ε is proportional to the ratio of the fast and slow

imescales. Moreover, the system (40a) –(40b) is assumed to be di-

ensionless. Thus, if we apply Theorem (1) to 

d ̂  s 1 

dT 
= (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

 2 

d ̂  c 1 

dT 
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 , (44) 

hen the phase–plane trajectory should be O(ε 2 ) from the c 1 -

ullcline when T = ε 2 | ln ε 2 | . Consequently, since T = t/t s 1 , we ob-

ain 

 = t s 1 · ε 2 | ln ε 2 | = −t c 1 ln ε 2 ≈ t ∗c 1 (45)

s the asymptotic time required for c 1 to reach its maximum value.

The calculation of the matching timescale is more than just

n exercise: there is chemical utility in computing t ∗c 1 . Specifi-

ally, it indicates approximately when the rate of product forma-

ion reaches its maximum quasi-steady-state production: 

ax ˙ p � 

˙ p (t ∗c 1 ) . (46) 

hus, the matching timescale is a very good indication of how long

t takes before the product formation rate reaches its maximum

alue, and when the reaction can be assumed to be in a quasi-

teady-state phase. 

. The auxiliary enzyme reaction mechanism 

We now consider the more complicated case of the auxil-

ary enzyme reaction mechanism ( Eilertsen and Schnell, 2018 ).

he mechanism is composed of two reactions: a primary reaction

47) that produces a substrate, S 2 , that is synthesized in a catalytic

tep: 

 1 + S 1 

k 1 

�
k −1 

C 1 

k 2 

→ E 1 + S 2 , (47) 
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Fig. 6. The phase–plane portrait of the mass action trajectory for the auxiliary 

reaction mechanism (47) –(48) . The solid black curve is the numerically-computed 

solution to (4 9a) –(4 9d) . The initial concentrations and rate constants used in the 

numerical simulation are: k 1 = 1 , k 2 = 1 , k −1 = 1 , e 0 1 = 1 , e 0 2 = 100 , k −3 = 1 , k 3 = 1 , 

k 4 = 2 and s 0 1 = 100 (units have been omitted). s 2 and c 2 have been scaled by their 

numerically obtained maximum values. 
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and a secondary reaction, (48) , where S 2 binds with the auxiliary

enzyme “E 2 ” and releases the final product, P : 

E 2 + S 2 

k 3 

�
k −3 

C 2 

k 4 

→ E 2 + P. (48)

The complete set of mass action equations that model the kinetics

of the complete reaction mechanism (47) –(48) are 

˙ s 1 = −k 1 (e 0 1 − c 1 ) s 1 + k −1 c 1 , (49a)

˙ c 1 = k 1 (e 0 1 − c 1 ) s 1 − (k −1 + k 2 ) c 1 , (49b)

˙ s 2 = −k 3 (e 0 2 − c 2 ) s 2 + k −3 c 2 + k 2 c 1 , (49c)

˙ c 2 = k 3 (e 0 2 − c 2 ) s 2 − (k −3 + k 4 ) c 2 , (49d)

where s 1 and s 2 denote the respective concentrations of the sub-

strates S 1 and S 2 , c 1 and c 2 denote the concentrations of the com-

plexes C 1 and C 2 , and e 0 
1 

and e 0 
2 

denote the initial concentrations

of the primary and auxiliary enzymes, E 1 and E 2 . k 3 and k −3 are

rate constants, and k 4 is the catalytic constant of the secondary re-

action. We define the initial conditions for the secondary reaction

as (s 2 , c 2 )(t = 0) = (0 , 0) . 

In forthcoming analysis, we will assume that the primary re-

action obeys the RSA (i.e., ε1 � 1). Additionally, we will make the

assumption that k 2 � k 4 , and that the initial auxiliary enzyme con-

centration is larger than e 0 
1 

(i.e., e 0 
1 

= 1 , e 0 
2 

	 1 ). We also compute

matching timescales that yield a reliable estimate of the time it

takes s 2 and c 2 to reach QSS. Moreover, a new timescale called

the lag time will be introduced. The lag time corresponds to the

time it takes ˙ p to reach its maximum value, and we will show that

it corresponds to a specific matching timescale. Thus, not only do

matching timescales provide estimates for the time it takes a spe-

cific species to reach QSS, they also, in the context of auxiliary re-

actions, provide an approximation of the time it takes before the

complete reaction begins generating product at a maximal rate. 

4.1. The study of phase–plane geometry of the auxiliary enzyme 

reaction mechanisms permit a heuristic estimation of characteristic 

timescales 

Perhaps the most intuitive way to derive the relevant charac-

teristic timescales of (47) –(48) is to get a qualitative understand-

ing of what a typical phase-plane trajectory looks like in the c 2 –s 2 
plane. Numerical simulations suggest that the phase–plane trajec-

tory is almost “triangular” in certain parameter ranges (see Fig. 6 )

and, based on the appearance of the phase–plane trajectory, there

seems to be at least three distinct timescales: 

• The scale on which the trajectory travels from (a) to (b). We

will denote this timescale as t s 2 . 
• The scale on which the trajectory travels from (b) to (c). We

will denote this timescale as t c 2 . 
• The scale on which the trajectory travels from (c) back to (a).

We will denote this timescale as t p . 

The logical step that follows will be to make some initial a pri-

ori assumptions about the ordering of all the timescales involved in

the reaction. For the sake of simplicity, let us initially assume that

 c 1 � t s 2 , t c 2 � t s 1 , and that the completion timescale for the sec-

ondary reaction is identically t s 1 . This implies that the secondary

reaction completes at roughly the same time as the primary reac-

tion, and that t p ≈ t s . Thus, we have eliminated one timescale ( t p )
1 
y imposing the assumption that the secondary reaction is as fast

s the primary reaction. 

The next step will be to exploit the presence and geometry

f any manifolds (not necessarily invariant) that exist within the

hase-plane of the secondary reaction. Notice that the intersection

f the s 2 -nullcline and c 2 -nullcline is time-dependent since the s 2 -

ullcline moves as c 1 varies in time. Geometrically, the intersection

f the nullclines is described by a moving fixed point, x ∗, 

 s 2 ∩ N c 2 ≡ x ∗, (50)

here N s 2 denotes the s 2 -nullcline and N c 2 denotes the c 2 -

ullcline. Algebraically, the coordinates of x ∗, (s ∗2 , c 
∗
2 ) , are 

 

∗
2 = 

K M 2 
k 2 c 1 (t) 

V 2 − k 2 c 1 (t) 
, c ∗2 = 

k 2 c 1 (t) 

k 4 
, (51)

here K M 2 
denotes the Michaelis constant of the secondary reac-

ion 

 M 2 
≡ k −3 + k 4 

k 3 
, (52)

nd V 2 denotes the limiting rate of the secondary reaction: V 2 ≡
 4 e 

0 
2 
. Moreover, if the second reaction is as fast as the primary re-

ction, then the phase-plane geometry suggests that the trajectory

hould not only catch the fixed point x ∗, but will also approxi-

ately adhere to x ∗ as it descends to the origin. If the trajectory

dheres to x ∗, then 

˙ p = 

V 2 

K M 2 
k 2 c 1 

V 2 − k 2 c 1 

K M 2 
+ 

K M 2 
k 2 c 1 

V 2 − k 2 c 1 

= k 2 c 1 , (53)

nd the product formation rate of the secondary reaction has

eached its limiting value. Notice that by assuming that the sec-

ndary reaction is fast enough to virtually adhere to x ∗ implies

 2 > k 2 c 
max 
1 

. Thus, this assumption admits an automatic partition

f parameter space, and we will only consider regions of parame-

er space within which V 2 > k 2 c 
max 
1 

= k 2 ε 1 s 
0 
1 

holds. 

Since the position of the s 2 -nullcline depends on the concentra-

ion c 1 , we want to estimate how c 1 varies over the course of the

eaction. Since we are assuming that the primary reaction follows

he RSA, the phase-plane trajectory will closely follow a slow man-

fold when t ≥ t ∗c 1 . If we know the shape of the slow manifold, then

e can get a rough idea of how c varies throughout the reaction.
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Fig. 7. The s 2 –c 2 phase-plane trajectory (with nullclines) for the auxiliary re- 

action mechanism (47) –(48) . The thick black curve is the numerically-integrated 

solutions to the mass action Eqs. (49a) –Eqs. (49d) . The broken red curve is the c 2 - 

nullcline, and the broken blue curve is the fixed s 2 -nullcline ( N max 
s 2 

, given by (56) ). 

The phase–plane trajectory initially moves towards N max 
s 2 

, then moves up N max 
s 2 

be- 

fore moving back down the c 2 -nullcline. The constants (without units) used in the 

numerical simulation are: e 0 1 = 1 , s 0 1 = 10 0 0 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 2 , 

e 0 2 = 100 and k −1 = 1 . Curves were scaled by their numerically obtained maximum 

values. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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α  
o do this, we will look at the dimensionless equations 

d ̂  s 1 

dT 
= (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

 2 

d ̂  c 1 

dT 
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 . (54) 

he zeroth order asymptotic approximation to the slow manifold

s the ˆ c 1 -nullcline: 

ˆ 
 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 = 0 . (55)

otice that β1 → 0 as σ 1 → ∞ ; thus, as σ 1 → ∞ , the trajectory that

ollows the slow manifold will be asymptotic to the curve ˆ c 1 = 1

or most of the reaction. Hence, when σ 1 	 1, the concentration of

he intermediate complex remains near its maximum value, c max 
1 

,

or the majority of the reaction, and the s 2 -nullcline will be effec-

ively stationary after the initial buildup of c 1 . Under the assump-

ion that t c 1 is the shortest timescale, the initial transient behavior

f c 2 will occur while the s 2 -nullcline remains fixed. Thus, we look

t the phase–plane trajectory with the s 2 -nullcline (with fixed c 1 )

t its stationary value (see Fig. 7 ). Let us denote this manifold as

 

max 
s 2 

: 

 

max 
s 2 

≡
{ 

(s 2 , c 2 ) ∈ R 

2 : c 2 −
k 3 e 

0 
2 s 2 − k 2 c 

max 
1 

k 3 s 2 + k −3 

= 0 

} 

. (56)

Next, we want to exploit the phase-plane geometry in order

o estimate critical timescales. We will first estimate t s 2 by noting

hat the phase–plane trajectory essentially lies along the s 2 –axis

or t ≤ t s 2 . This suggests that 

˙ 
 2 ≈ −k 3 s 2 + k 2 c 1 , t ≤ t s 2 (57)

s a reasonable approximation to (49c) . If the initial fast transient

f the primary reaction is negligibly short, i.e., t c 1 � t s 2 , then it is

easonable to assume 

˙ 
 2 ≈ −k 3 s 2 + k 2 c 

max 
1 , t ≤ t s 2 . (58)

ince (58) is linear, its exact solution 

 2 ≈ s λ2 [ 1 − exp (−t/t s 2 ) ] (59) 

rovides two critical estimates: the characteristic timescale, t s 2 ,

nd an approximate maximum value of s 2 on the t s 2 timescale: 

 s 2 ≡
1 

k 3 e 
0 
, s 2 ≤ s λ2 ≡

k 2 c 
max 
1 

k 3 e 
0 

. (60)

2 2 
he prediction that s 2 < s max 
2 

for t ≤ t s 2 (obtained from the linear

quation) is in qualitative agreement with the phase-plane trajec-

ory of the numerically-integrated equations ( Fig. 7 ). 

Next, to estimate t c 2 , we note that since the phase–plane tra-

ectory lies close to N 

max 
s 2 

along its ascension to c max 
2 

, the growth

f the intermediate complex is approximately 

˙ 
 2 ≈ −k 4 c 2 + k 2 c 

max 
1 , t s 2 ≤ t ≤ t c 2 , (61)

hich admits an analytical solution: 

 2 ≈ c max 
2 [ 1 − exp (−k 4 t) ] . (62) 

rajectories that follow the s 2 -nullcline closely are said to be in

apid equilibrium ( Nguyen and Fraser, 1989; Roussel and Fraser,

991 ) or a reverse quasi-steady-state ( Schnell and Maini, 20 0 0 ).

his is in contrast to trajectories that follow the c 2 -nullcline,

hich are said to be in a quasi-steady-state phase ( Eilertsen and

chnell, 2018 ). From (62) , we have two observations: (i) k −1 
4 

is a

easonable estimate of t c 2 , and (ii) this linearized solution predicts

 2 will approach c max 
2 

, which is in qualitative agreement with the

hase–plane trajectory. 

As a concluding remark of this subsection, we note that there

re four timescales, t c 1 , t s 2 , t c 2 and t s 1 , that influence the over-

ll dynamics of the coupled reaction. Only two timescales are

eeded to characterize the dynamics of the single-enzyme, single-

ubstrate MM reaction mechanism. Thus, only the ordering of two

imescales, t c 1 and t s 1 , needs to be considered. In the case of the

oupled reaction, there are multiple orderings that need to be con-

idered in order to fully comprehend the dynamics. In the immedi-

te subsections that follow, we will analyze the dynamics with re-

pect to the orderings: t c 1 � t s 2 � t c 2 � t s 1 and t s 2 , t c 2 � t c 1 � t s 1 .

oth analyses of these orderings will be made under the assump-

ion that e 0 
2 

is large with respect to e 0 
1 
. 

.2. Scaling analysis: t c 1 � t s 2 � t c 2 � t s 2 

Although we now have estimates for the timescales t s 2 and t c 2 ,

t is important to remember that these timescales were obtained

nder the assumption that c 1 is the fastest variable (i.e., c 1 reaches

ts maximum before any other variable). We must now: (i) deter-

ine the appropriate conditions under which approximate adhe-

ion to x ∗ is possible, and (ii) determine the onset of validity for

53) . We begin by scaling the mass action equations. Introducing

he additional scaled concentrations 

ˆ 
 2 = s 2 /s max 

2 , ˆ c 2 = c 2 /c max 
2 (63)

nto Eqs. (49c) –Eqs. (49d) admits the dimensionless form: 

d ̂  s 1 

dT 
= (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, (64a) 

 2 

d ̂  c 1 

dT 
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 (64b) 

1 

d ̂  s 2 

dT 
= − ˆ s 2 + (1 − β2 ) ̂  s 2 ̂  s 2 + β2 α2 ̂  c 2 + r S μ1 ̂  c 1 , (64c) 

2 

d ̂  c 2 

dT 
= (1 + κ2 )(1 + σ2 ) 

[
( ̂  s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
. (64d) 

The dimensionless parameters κ2 , σ 2 , and r S , introduced in

6 4a) –(6 4d) , are 

2 ≡
κ2 

1 + κ2 

, β2 ≡
1 

1 + σ2 

, κ2 ≡
k −3 

k 4 
, σ2 ≡

s max 
2 

K M 2 

, r S ≡
s 0 1 

s max 
2 

.

(65) 
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The remaining parameters, μ1 and μ2 , are the ratios of the

secondary reaction timescales to the primary reaction substrate

timescale: 

μ1 ≡
t s 2 
t s 1 

, μ2 ≡
t c 2 
t s 1 

. (66)

It follows from (66) that if { ε2 , μ1 , μ2 } � 1, then the dynamics of

(4 9a) –(4 9d) consist of one slow variable, s 1 , and three fast vari-

ables: c 1 , s 2 and c 2 . The designation of s 1 as a slow variable and

c 1 , s 2 and c 2 as fast variables implies that after an initial fast tran-

sient, the phase–plane trajectory is asymptotic to the intersecting

nullclines: 

s 2 � 

K M 1 

V 2 − k 2 c 1 
k 2 c 1 , (67a)

c 2 � 

k 2 c 1 

k 4 
. (67b)

After the initial fast transient of the primary reaction, k 2 c 1 is

asymptotic to 

k 2 c 1 � 

V 1 

K M 1 
+ s 1 

s 1 ≡ − ˙ s ε 1 , (68)

and thus c 1 , s 2 and c 2 are, in the asymptotic limit, explicitly de-

pendent on s 1 only. 

The above approximations, (67a) –(67b) , confirm the hypothesis

that the phase-plane trajectory follows the intersection of the s 2 -

and c 2 -nullclines as long as the secondary reaction is fast (i.e., μ1 ,

μ2 � 1). The additional assumption made in the derivation of t s 2 
and t c 2 was that t c 1 is the shortest timescale, and that there is no

significant formation of s 2 or c 2 for 0 ≤ t ≤ t c 1 . To assess the va-

lidity of this assumption, we rescale (4 9c) –(4 9d) with respect to

τ = t/t c 1 : 

d ̂  s 1 

dτ
= ε 1 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, (69a)

d ̂  c 1 

dτ
= 

[
ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 

]
(69b)

d ̂  s 2 

dτ
= λ1 

[
− ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 

]
+ r S ε 2 ̂  c 1 , (69c)

d ̂  c 2 

dτ
= λ2 (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
. (69d)

The parameters that emerge from scaling, λ1 and λ2 , are the

ratios we need in order to calculate the time that transpires before

(67a) –(67b) become valid approximations: 

λ1 = 

t c 1 
t s 2 

, λ2 = 

t c 1 
t c 2 

. (70)

It is straightforward to show that the term “r S ε2 ” in (69c) is

bounded above, 

r S ε 2 < λ1 , (71)

and therefore s 2 is slow on t c 1 when λ1 � 1. In addition, (69d) im-

plies that λ2 (1 + κ2 )(1 + σ2 ) � 1 if c 2 is to be slow over t c 1 . While

it is certainly true that λ2 (1 + κ2 )(1 + σ2 ) � 1 is sufficient for c 2 
to be slow, it is not necessary, given that s 2 � 0 for t ≤ t c 1 . 

Piecing together the results obtained from the scaling analysis,

we obtain 

s 1 � s 0 1 , (72a)

c 1 � c max 
1 [ 1 − exp (−t/t c 1 ) ] , (72b)
 2 � 0 , (72c)

 2 � 0 , (72d)

or t � t c 1 . 

Moving forward, the next “fastest” timescale in our imposed

rdering is t s 2 . We note that in addition to c 2 scaling as a slow

ariable over t c 1 , the phase-plane trajectory indicates that c 2 will

lso be slow over t s 2 . Thus, we rescale the complete set of mass

ction equations with respect to T̄ = t/t s 2 , ̃  s 2 = s 2 /s λ
2 

and ˜ c 2 =
 2 /e 0 

2 
s λ2 / (K M 2 

+ s λ2 ): 

d ̂  s 1 

d ̄T 
= μ1 (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

(73a)

 1 

d ̂  c 1 

d ̄T 
= μ1 (1 + κ1 )(1 + σ1 ) 

[
ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 

]
(73b)

d ̃  s 2 

d ̄T 
= −˜ s 2 + (1 − ˜ β2 ) ̃  c 2 ̃  s 2 + 

˜ β2 α2 ̃  c 2 + 

ˆ c 1 , (73c)

d ̃  c 2 

d ̄T 
= ν(1 + κ2 )(1 + ˜ σ2 ) 

[
˜ s 2 − (1 − ˜ β2 ) ̃  c 2 ̃  s 2 − ˜ β2 ̃  c 2 

]
. (73d)

In (73c) , the dimensionless parameters ˜ σ2 and 

˜ β2 are given by:

˜ 2 ≡
s λ2 

K M 2 

, ˜ β2 = 

1 

1 + ˜ σ2 

(74)

onsequently, the production of s 2 will be significant on t s 2 . From

73d) , we see that if ν(1 + κ2 )(1 + ˜ σ2 ) � 1 , where ν = 

t s 2 
t c 2 

, then c 2

ill be a slow variable with respect to the t c 1 timescale. In fact, it

s worth pointing out that 

 

ν(1 + κ2 )(1 + σ2 ) ] 
−1 = 

e 0 2 

K M 2 
+ s max 

2 

≡ ε, (75)

hich is the analogue of ε1 for the secondary reaction. Thus, the

caling analysis indicates that c 2 will be a slow variable over t s 2 if

	 1, which suggests e 0 
2 

should be large in comparison to K M 2 
+

 

max 
2 

. 

Next, we see from (73b) that 

ε 1 μ
−1 
1 

(1 + κ1 )(1 + σ1 ) 
= 

t c 1 
t s 2 

, (76)

nd thus c 1 will be in QSS on the t s 2 timescale as long as t c 1 � t s 2 .

From Eq. (73a) , it is clear that if μ1 (1 + κ1 )(1 + σ1 ) � 1 , then

 1 will be a slow variable over the t s 2 timescale. However, this con-

ition is sufficient but not necessary; since c 1 is in QSS, we have:

˙ 
 1 � − V 1 

K M 1 
+ s 1 

s 1 . (77)

f we then rescale (77) with respect to T̄ , we obtain: 

d ̂  s 1 

d ̄T 
� −μ1 

ˆ s 1 (1 + σ1 ) 

1 + σ1 ̂  s 1 
≥ −μ1 . (78)

hus, given (78) , we see that if μ1 � 1 is both necessary and suffi-

ient for s 1 to be a slow variable with respect t s 2 when c 1 is in QSS.

ssuming this condition is met, and the RSA holds, we obtain 

 1 � s 0 1 , (79a)

 1 � c max 
1 , (79b)
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Fig. 8. A graphical illustration of the accuracy of the composite solutions for 

the auxiliary reaction mechanism (47) –(48) . The solid black curve is the numer- 

ical solution to (49c) , and the unfilled circles mark the composite solution (84a) . 

The constants (without units) used in the numerical simulation are: e 0 1 = 1 , s 0 1 = 

10 0 0 , e 0 2 = 10 0 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 2 and k −1 = 1 . Time has been 

mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] . The substrate concentration 

has been scaled by its maximum value. 
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 2 � s λ2 [ 1 − exp (−t/t s 2 ) ] , (79c) 

 2 � 0 , (79d) 

or t c 1 � t � t s 2 . 

The remaining dimensionless timescale necessary for the com-

letion of the scaling analysis is τ̄ = t/t c 2 . Rescaling yields 

d ̂  s 1 

d ̄τ
= μ2 (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

(80a) 

� 

d ̂  c 1 

d ̄τ
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 , (80b) 

ν
d ̂  s 2 

d ̄τ
= − ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 + r S μ1 ̂  c 1 , (80c) 

d ̂  c 2 

d ̄τ
= (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
, (80d) 

here � = t c 1 /t c 2 . Again, if ϖ� 1, then c 1 is in QSS, in which case

d ̂  s 1 

d ̄τ
� −μ2 

ˆ s 1 (1 + σ1 ) 

1 + σ1 ̂  s 1 
≥ −μ2 , (81) 

nd s 1 is a slow variable with respect to t c 2 . 

Next, if ν � 1, then s 2 is in QSS on the t c 2 timescale, which im-

lies 

 2 � 

k −3 c 2 + k 2 c 
max 
1 

k 3 (e 0 
2 

− c 2 ) 
, ∴ s λ2 ≤ s 2 ≤ s max 

2 . (82)

hus, the scaling analysis indicates that 

 1 � s 0 1 , (83a) 

 1 � c max 
1 , (83b) 

 2 � 

k −3 c 2 + k 2 c 
max 
1 

k 3 (e 0 
2 

− c 2 ) 
, (83c) 

 2 � c max 
2 [ 1 − exp (−t/t c 2 ) ] , (83d) 

or t s 2 � t � t c 2 , and the results of the complete scaling analysis

llow us to formally construct the composite solutions for s 2 and

 2 : 

 

io 
2 = −s λ2 [ exp (−t/t s 2 ) ] + 

k −3 c 
io 
2 + k 2 c 

max 
1 

k 3 (e 0 
2 

− c io 
2 
) 

− K M 2 

V 2 + 

˙ s ε 
1 

˙ s ε 1 − s max 
2 , 

(84a) 

 

io 
2 = −c max 

2 [ exp (−t/t c 2 ) ] − ˙ s ε 1 /k 4 . (84b) 

Together, (84a) and (84b) provide a uniform asymptotic expan-

ion that is valid for all time (see Fig. 8 ). 

.3. The lag time appears when there are multiple layers and 

ultiple matching timescales 

In the previous subsection, we derived inner (initial fast tran-

ient) and outer (quasi-steady-state phase) solutions that are valid

hen t c 1 � t s 2 � t c 2 � t s 1 . Formally, the ordering, t c 1 � t s 2 � t c 2 �
 s 1 , categorizes t c 1 as a super-fast timescale, t s 2 as a fast timescale,

 c as a slow timescale, and t s as a super-slow timescale. From a

2 1 
heoretical perspective, there is utility in estimating the time it

akes for s 2 and c 2 to reach x ∗, at which time the rate of prod-

ct formation, ˙ p , is at its maximum value. Let t ∗s 2 denote the ac-

ual time it takes s 2 to reach s ∗
2 
, and let t ∗c 2 denote the actual time

t takes s 2 and c 2 to reach x ∗. Since t s 2 and t c 2 are characteris-

ic timescales, utilizing them as matching timescales is problematic

ince the transition regimes, t s 2 ≤ t ≤ t ∗s 2 and t c 2 ≤ t ≤ t ∗c 2 , can be

uite large. Thus, what we seek are reliable estimates for t ∗s 2 and

 

∗
c 2 

. To construct these estimates, we will utilize the approximation

echniques introduced in Section 3. Starting with t ∗c 2 , the inner so-

ution for the formation of c 2 is 

 2 � c max 
2 [ 1 − exp (−t/t c 2 ) ] . (85) 

lthough t c 2 is a slow timescale, it is fast with respect to t s 1 . Thus,

ewriting (85) with respect to T yields 

 2 � c max 
2 [ 1 − exp (−T /μ2 ) ] , (86) 

nd we see that T = μ2 | ln μ2 | provides an estimate for t ∗c 2 : 

 

∗
c 2 

≈ −t c 2 ln μ2 . (87) 

he estimate given in (87) is the approximate time it takes for ˙ p

o reach it maximum with respect to the timescale ordering t c 1 �
 s 2 � t c 2 � t s 1 (see Fig. 9 ). Formally, the matching timescale t ∗c 2 is

he lag time, or the time during which the second reaction “lags”

ehind the first reaction. 

Next we estimate the matching timescale t ∗s 2 , which is roughly

he time it takes for s 2 to reach QSS. The inner solution 

 2 � s λ2 [ 1 − exp (−t/t s 2 ) ] , (88) 

an be expressed in terms of its corresponding slow timescale τ̄ :

 2 � s λ2 [ 1 − exp (−τ̄ /ν) ] . (89) 

mploying a direct method yields 

 

∗
s 2 

≈ −t s 2 ln ν, (90) 

hich we take as our approximation to the matching timescale t ∗s 2 .
In addition to the estimate (90) obtained by the direct method,

e can employ scaling and justify both (90) and (87) by invok-

ng Theorem 1 . The scaled mass action Eqs. (6 4a) –(6 4d) , can be

ystematically reduced on the super-slow timescale (i.e., T = t/t s 1 ).

ince ε2 and μ1 are, respectively, the smallest parameters with re-

pect to the ordering t c 1 � t s 2 � t c 2 � t s 1 , we can write 

d ̂  s 1 

dT 
= − ˆ s 1 (σ1 + 1) 

1 + σ ˆ s 
+ O(ε 2 ) , (91a) 
1 1 
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Fig. 9. The timescale t c 2 is characteristic of the time it takes c 2 to reach c max 
2 , 

and the timescale t ∗c 2 is the approximate time it takes c 2 to reach c max 
2 , respec- 

tively, in the auxiliary reaction mechanism (47) –(48) . The thick black curve is the 

numerically-integrated solutions to the mass action Eqs. (4 9a) –(4 9d) . The leftmost 

dashed vertical line corresponds to t c 2 , and the rightmost dashed vertical line cor- 

responds to t ∗c 2 = −t c 2 ln t c 2 /t s 1 . The lower dotted horizontal line corresponds to the 

scaled characteristic value �c max 
2 , and the upper dotted horizontal line corresponds 

to c max 
2 . The constants (without units) used in the numerical simulation are: e 0 1 = 1 , 

s 0 1 = 10 0 0 , e 0 2 = 10 0 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 2 and k −1 = 1 . Time has 

been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] , and c 2 has been numer- 

ically scaled by its maximum value. Note that the mass action equations have only 

been integrated from t = 0 to t ≈ t ∗c 2 for clarity. 
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Fig. 10. The timescale t s 2 is characteristic of the time it takes s 2 to reach s λ2 , 

and the timescale t ∗s 2 is the approximate time it takes s 2 to reach s λ2 , respec- 

tively, in the auxiliary reaction mechanism (47) –(48) . The thick black curve is 

the numerically-integrated solution to the mass action Eqs. (4 9a) –(4 9d) . The left- 

most dashed vertical line corresponds to t s 2 , and the rightmost dashed vertical line 

corresponds to t ∗s 2 = −t s 2 ln t s 2 /t c 2 . The lower dotted horizontal line corresponds to 

the scaled characteristic value �s λ2 , and the upper dashed/dotted vertical line cor- 

responds to s λ2 . The constants (without units) used in the numerical simulation 

are: e 0 1 = 1 , s 0 1 = 10 0 0 , e 0 2 = 10 0 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 2 and k −1 = 1 . 

Time has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] , and s 2 has 

been numerically-scaled by its maximum value. For clarity, the mass action equa- 

tions have been integrated from t = 0 to t ≈ t ∗s 2 . 
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μ2 

d ̂  c 2 

dT 
= 

ˆ s 1 (σ1 + 1) 

1 + σ1 ̂  s 1 
− ˆ c 2 + O(ε 2 , μ1 ) , (91b)

which are the scaled, leading-order asymptotic equations on the

T -timescale. Applying Theorem 1 to (91a) –(91b) suggests that c 2 
should approximately reach QSS when T ≈μ2 |ln μ2 |. 

Alternatively, by looking carefully at the scaling obtained with

respect to τ̄ , the leading order dynamics are given by: 

ν
d ̂  s 2 

d ̄τ
= 

[
− ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 

]
+ r S μ1 [ 1 + O(μ2 , ε 1 ) ] , 

(92a)

d ̂  c 2 

d ̄τ
= (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
. (92b)

Pursuant to Theorem 1 , (92a) –(92b) indicate s 2 should reach

QSS when τ̄ ≈ ν| ln ν| ; consequently, we take 

 

∗
s 2 

≈ −t s 2 ln ν, (93)

as the asymptotic estimate (i.e., the matching timescale) of the

time it takes for s 2 to reach QSS (see Fig. 10 ). 

4.4. Scaling analysis: t s 2 , t c 2 � t c 1 � t s 1 

In the most extreme case, when both t s 2 and t c 2 are much less

than t c 1 in magnitude, scaling analysis indicates that both s 2 and

c 2 are fast variables over both the τ and T timescales: 

d ̂  s 1 

dτ
= ε 1 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, (94a)

d ̂  c 1 

dτ
= 

[
ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 

]
, (94b)

λ−1 
1 

d ̂  s 2 = 

[
− ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 

]
+ r S μ1 ̂  c 1 , (94c)
dτ
 

−1 
2 

d ̂  c 2 

dτ
= (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
. (94d)

Recall that λ1 ≡ t c 1 /t s 2 and λ2 ≡ t c 1 /t c 2 , and that λ−1 
1 

and λ−1 
2 

ill be small when t s 2 and t c 2 are super-fast timescales, t c 1 is a fast

imescale, and t s 1 is a slow timescale. Consequently, both s 2 and c 2 
re given in terms of c 1 

 2 � 

K M 2 
k 2 c 1 

V 2 − k 2 c 1 
, (95a)

 2 � 

k 2 c 1 

k 4 
, (95b)

or t ≥ 0. Since the secondary reaction is asymptotically determined

y c 1 when t s 2 , t c 2 � t c 1 � t s 1 , the production rate will reach a

aximum when t ≈ t ∗c 1 (see Fig. 11 ). Thus, the matching timescale

 

∗
c 1 

is synonymous with time it takes for ˙ p to reach its maximum

alue. 

. Alternative orderings of timescale for the auxiliary enzyme 

eaction 

The previous sections and subsections dealt primarily with the

rdering t c 1 � t s 2 � t c 2 � t s 1 . It is natural to ask what happens

hen this ordering starts to change, and in this section we will

riefly anal yze the dynamics of (48) in regimes where the order-

ng, t c 1 � t s 2 � t c 2 � t s 1 , is no longer preserved. 

.1. Scaling analysis for t c 1 � t c 2 � t s 2 � t s 1 : A three versus four 

imescale perspective 

The first ordering we consider is that in which t c 1 is a super-

ast timescale, t c 2 is a fast timescale, t s 2 is a slow timescale, and

 s 1 is super-slow timescale: t c 1 � t c 2 � t s 2 � t s 1 . We will start the

nalysis by observing the scaling with respect to τ̄ : 

d ̂  s 1 

d ̄τ
= μ2 (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

(96a)
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Fig. 11. When t c 2 , t s 2 � t c 1 , the timescale t c 1 is characteristic of the time it takes 

˙ p to reach its maximum, and the timescale t ∗c 1 is the approximate time it takes 

c 2 to reach its maximum, respectively, in the auxiliary reaction mechanism (47) –

(48) . The thick black curve is the numerically-integrated solution to the mass ac- 

tion Eqs. (4 9a) –(4 9d) . The leftmost dashed vertical line corresponds to t c 1 , and the 

rightmost dashed vertical line corresponds to t ∗c 1 = −t c 1 ln t c 1 /t s 1 . The lower dotted 

horizontal line corresponds to the scaled characteristic value �s λ2 . The constants 

(without units) used in the numerical simulation are: e 0 1 = 1 , s 0 1 = 100 , e 0 2 = 100 , 

k 1 = 0 . 01 , k 2 = 1 , k 3 = 10 , k −3 = 1 , k 4 = 100 and k −1 = 1 . Time has been mapped 

to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] , and c 2 has been numerically scaled 

by its maximum value. 
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Fig. 12. No significant change in the concentration of s 2 or c 2 occurs over the 

timescale t c 2 in the auxiliary reaction mechanism (47) –(48) when t c 1 � t c 2 �
t s 2 � t s 1 . The thick black curve is the numerically-integrated solutions to the mass 

action Eqs. (4 9a) –(4 9d) . The dashed vertical line corresponds to t c 2 Note that there 

is no significant increase in the concentration of the intermediate complex over 

the t c 2 timescale. The constants (without units) used in the numerical simulation 

are: e 0 1 = 1 , s 0 1 = 10 0 0 , e 0 2 = 1 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 100 and k −1 = 1 . 

Time has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] , and c 2 has 

been scaled its maximum value. 
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d ̂  c 1 

d ̄τ
= 

[
ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 

]
, (96b) 

d ̂  s 2 

d ̄τ
= ν−1 

[
− ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 

]
+ r S μ2 ̂  c 1 , (96c) 

d ̂  c 2 

d ̄τ
= (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
. (96d) 

If ν−1 � 1 , then we immediately see that 

d ̂  s 2 

d ̄τ
� r S μ2 ̂  c 1 + O(ν−1 ) . (97)

ext, because we have assumed in our ordering that t c 1 � t c 2 ,

q. (97) can be reduced further by noting that ˆ c 1 � 1 : 

d ̂  s 2 

d ̄τ
� r S μ2 . (98) 

f we can then find a bound on r S μ2 by showing that r S μ2 ≤ K and

 ∼ ν−1 , then it follows that s 2 is a slow variable with respect to

¯ . Expanding r S λ2 yields 

 S μ2 = 

s 0 1 

s max 
2 

t c 2 
t s 1 

= 

e 0 2 

K M 2 

− ε 1 
k 2 s 

0 
1 

K M 2 
k 4 

≥ 0 , (99)

hich implies 

 S μ2 ≤
e 0 2 

K M 2 

≡ K ≤ ν−1 . (100) 

hus, based on the scaling analysis, we take s 2 � 0 for t ≤ t c 2 . The

mmediate consequence is that c 2 � 0 for t ≤ t c 2 , since complex

annot form without the presence of substrate. Thus, no signifi-

ant change in the concentration of s 2 or c 2 occurs for t ≤ t c 2 when

 c 1 � t c 2 � t s 2 � t s 1 (see Fig. 12 ). 

Next, we scale with respect to the slow timescale, T̄ : 

d ̂  s 1 

d ̄T 
= μ1 (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

(101a) 
 1 

d ̂  c 1 

d ̄T 
= μ1 (1 + κ1 )(1 + σ1 ) 

[
ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 

]
(101b) 

d ̂  s 2 

d ̄T 
= − ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 + r S μ1 ̂  c 1 , (101c) 

ε
d ̂  c 2 

d ̄T 
= 

ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 . (101d) 

The term r S μ1 is O(1) , and ˆ c 2 can be approximated as being in

SS since ε � 1 when t c 2 � t s 2 . Putting these observations together

ields the dimensional equation 

˙ 
 2 � − V 2 

K M 2 
+ s 2 

s 2 + k 2 c 
max 
1 , t � t s 2 , (102)

hich admits an exact solution in the form of a Lambert-W func-

ion 

 2 � s max 
2 (1 + ψ W 

[
−ψ 

−1 exp (−ψ 

−1 − � · t) 
]
) , t � t s 2 , (103)

here ψ ≡ V 2 / (k 2 c 
max 
1 

) and � ≡ (V 2 − k 2 c 
max 
1 

) 2 / (V 2 K M 2 
) . From

103) , we have a new timescale, t 
χ
s 2 

: 

 

χ
s 2 

≡ K M 2 
+ s max 

2 

V 2 

. (104) 

Since no significant change in the concentration of any chem-

cal species occurs over t c 2 , the kinetic analysis in this regime

an be effectively carried out with three timescales: t c 1 , t 
χ
s 2 

, t s 1 
 Eilertsen and Schnell, 2018 ). Additionally, it is also worth noting

hat rescaling the mass action equations with respect to T χ = t /t 
χ
s 2 

ields, 

d ̂  s 1 

dT χ
= 

t 
χ
s 2 

t s 1 
(1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, 

(105a) 

t c 1 

t 
χ
s 2 

d ̂  c 1 

dT χ
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 , (105b) 

d ̂  s 2 

dT χ
= (1 + κ2 )(1 + σ2 ) 

[
− ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 

]
+ 

ˆ c 1 , 

(105c) 
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Fig. 13. The validity of t 
χ
s 2 

and t 
χ, ∗
s 2 

in the auxiliary reaction mechanism (47) –

(48) when ε � 1. The thick black curve is the numerically-integrated solution to the 

mass action Eq. (4 9a) –(4 9d) , and the unfilled circles mark the inner solution given 

by (103) . The leftmost dashed vertical line corresponds to t 
χ
s 2 

, and the rightmost 

dashed vertical line corresponds to t 
χ, ∗
s 2 

= −t 
χ
s 2 

ln t 
χ
s 2 

/t s 1 . The lower dotted horizontal 

line corresponds to y = �s max 
2 , and the upper dotted horizontal line corresponds to 

y = s max 
2 . The constants (without units) used in the numerical simulation are: e 0 1 = 

1 , s 0 1 = 10 0 0 , e 0 2 = 1 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 100 and k −1 = 1 . Time 

has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] , and s 2 has been 

numerically scaled by its maximum value. Note that the mass action equations have 

only been integrated from t = 0 to t ≈ t 
χ, ∗
s 2 

for clarity. 
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Fig. 14. The lag time in the auxiliary reaction mechanism (47) –(48) when t s 2 �
t c 1 � t c 2 � t s 1 . The thick black curve is the numerically-integrated solution to the 

mass action Eqs. (4 9a) –(4 9d) , and the unfilled circles mark the inner solution given 

by (103) . The leftmost dashed vertical line corresponds to t c 2 , and the rightmost 

dashed vertical line corresponds to t ∗c 2 = −t c 2 ln t c 2 /t s 1 . The lower dotted horizontal 

line corresponds to y = � ; The constants (without units) used in the numerical sim- 

ulation are: e 0 1 = 1 , s 0 1 = 10 0 0 , e 0 2 = 1 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 100 and 

k −1 = 1 . Time has been mapped to the t ∞ scale: t ∞ (t) = 1 − 1 / ln [ t + exp (1)] , and 

c 2 has been numericallyscaled by its maximum value. 
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ε
d ̂  c 2 

dT χ
= (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
, (105d)

and the term in front of ˆ c 1 in (105c) is equal to 1. It follows that

(105c) is, to leading order, given by 

d ̂  s 2 

dT χ
� − ˆ s 2 (1 + σ2 ) 

1 + σ2 ̂  s 2 
+ 1 . (106)

Furthermore, rescaling the mass action equations with respect to T

yields 

d ̂  s 1 

dT 
= (1 + κ1 )(1 + σ1 ) 

[
− ˆ s 1 + (1 − β1 ) ̂  c 1 ̂  s 1 + β1 α1 ̂  c 1 

]
, (107a)

ε 2 
d ̂  c 1 

dT 
= 

ˆ s 1 − (1 − β1 ) ̂  c 1 ̂  s 1 − β1 ̂  c 1 , (107b)

t 
χ
s 2 

t s 1 

d ̂  s 2 

dT 
= (1 + κ2 )(1 + σ2 ) 

[
− ˆ s 2 + (1 − β2 ) ̂  c 2 ̂  s 2 + β2 α2 ̂  c 2 

]
+ 

ˆ c 1 , 

(107c)

μ2 

d ̂  c 2 

dT 
= (1 + κ2 )(1 + σ2 ) 

[
ˆ s 2 − (1 − β2 ) ̂  c 2 ̂  s 2 − β2 ̂  c 2 

]
, (107d)

from which it directly follows (see Fig. 13 ) that the time it takes

for ˙ p to reach its maximum is given by 

 

χ, ∗
s 2 

≈ −t 
χ
s 2 

ln 

t 
χ
s 2 

t s 1 
. (108)

The timescale (108) is the matching timescale for s 2 . It is a very

good estimate of the time it takes s 2 to reach QSS, and corresponds

to the time it takes the phase-plane trajectory to reach x ∗ when

ε � 1 ( Eilertsen and Schnell, 2018 ). 

5.2. Scaling analysis: t c 2 � t c 1 � t s 2 � t s 1 

In the previous subsection we showed that t c 2 was a “hidden”

timescale: no significant accumulation of s and c occurs over
2 2 
t  
 c 2 when t c 1 � t c 2 � t s 2 � t s 1 . In this subsection we examine was

hat happens when t c 2 � t c 1 . First, note that 

lim 

 4 →∞ 

t 
χ
s 2 

= t s 2 , (109)

nd second, 

lim 

 4 →∞ 

c max 
2 = 0 , and lim 

k 4 →∞ 

s max 
2 = s λ2 . (110)

inally, since 

 

[
−ψ 

−1 exp (−ψ 

−1 − � · t) 
]

� −ψ 

−1 exp (−ψ 

−1 − � · t) , 

ψ 

−1 � 1 , (111)

e can combine (109), (110) and (111) to yield 

 2 ≈ s λ2 [ 1 − exp (−t/t s 2 ) ] , for t � t s 2 . (112)

rom a geometrical point of view, the c 2 -nullcline gets pressed

gainst the s 2 -axis in the phase-plane as k 4 → ∞ , and c max 
2 

is al-

ost negligible in magnitude. Thus, when k 4 	 k 3 e 
0 
2 
, the mass ac-

ion kinetics can essentially be approximated by (112) , since t s 2 ≈
 

χ
s 2 

and s max 
2 

≈ s λ
2 

as t c 2 → 0 . Consequently, t s 2 is approximately

haracteristic of the time it takes s 2 to reach s max 
2 

in regimes where

 c 2 is a super-fast timescale and t c 2 � t c 1 � t 
χ
s 2 

� t s 1 . 

.3. Scaling analysis: t s 2 � t c 1 � t c 2 � t s 1 

Another case is when t s 2 is a super-fast timescale. Under this

cenerio, the scaled equations indicate that s 2 is in QSS for the

uration of the reaction. Geometrically, s 2 will closely follow the

 2 -nullcline as it moves in the s 2 –c 2 phase–plane. In this case c 2 is

symptotic to 

˙ 
 2 � −k 4 c 2 + k 2 c 1 , t ≥ 0 , (113)

nd thus t c 2 remains characteristic of the time is takes c 2 to reach

ts maximum value, and the matching timescale t ∗c 2 provides an es-

imate for the time it takes for ˙ p to reach its maximum value (see

ig. 14 ). 

.4. Scaling analysis: t c 1 � t c 2 ≈ t s 2 � t s 1 

Up until this point, we have been able to derive characteristic

imescales that quantify the temporal order of magnitude of a spe-

ific trajectory’s rapid approach to QSS. Our success in the deriva-

ion of characteristic timescales resides in the fact that, so far, we
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Fig. 15. Phase–plane dynamics of the auxiliary reaction mechanism (47) –(48) 

when t c 1 � t c 2 ≈ t s 2 � t s 1 . The thick black curve is the numerically-integrated so- 

lution to the mass action Eqs. (4 9a) –(4 9d) , the dashed/dotted red curve is the c 2 - 

nullcline and the dashed/dotted blue curve is the stationary s 2 -nullcline. Notice that 

the trajectory does not follow a path that lies close to either nullcline in the ap- 

proach to x ∗ . The constants (without units) used in the numerical simulation are: 

e 0 1 = 1 , s 0 1 = 10 0 0 , e 0 2 = 10 , k 1 = 1 , k 2 = 1 , k 3 = 10 , k −3 = 1 , k 4 = 100 and k −1 = 1 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 16. The lag time in the auxiliary reaction mechanism (47) –(48) when 

t c 1 � t c 2 = t s 2 � t s 1 . This is a close-up of Fig. 15 near x ∗ . The thick black curve 

is the numerically-integrated solution to the mass action Eqs. (4 9a) –(4 9d) , the 

dashed/dotted red curve is the c 2 -nullcline and the dashed/dotted blue curve is the 

stationary s 2 -nullcline. The solid black circle marks the trajectory when t = t ∗s 2 = 

−t s 2 ln t s 2 /t s 1 . Notice that Tikhonov’s Theorem still provides a reasonable estimate of 

the lag time, which is synonymous with the matching timescale corresponding to 

either s 2 or c 2 . The constants (without units) used in the numerical simulation are: 

e 0 1 = 1 , s 0 1 = 10 0 0 , e 0 2 = 10 , k 1 = 1 , k 2 = 1 , k 3 = 10 , k −3 = 1 , k 4 = 100 and k −1 = 1 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 17. The trajectory follows the s 2 -nullcline in the phase–plane of the aux- 

iliary reaction mechanism (47) –(48) when t 
χ
s 2 

/t s 1 � 1 . The thick black curve 

is the numerically-integrated solution to the mass action Eqs. (4 9a) –(4 9d) , the 

dashed/dotted red curve is the c 2 -nullcline and the dashed/dotted blue curve is 

a snapshot of s 2 -nullcline when t ≈ 1 . 1 · t s 1 . The green dot is the intersection of 

the nullclines; the black dot is the corresponding snapshot of the numerical so- 

lution to (4 9a) –(4 9d) . In this simulation, t 
χ
s 2 

/t s 1 ≈ 0 . 001 < μ2 ≈ 0 . 1 ; consequently, 

the trajectory follows the s 2 -nullcline but fails to closely follow x ∗ (see Movie 1 

in Supplementary Materials). The constants (without units) used in the numerical 

simulation are: e 0 1 = 1 , s 0 1 = 100 , e 0 2 = 100 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , k 4 = 0 . 1 

and k −1 = 1 . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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c  

n  

v  
ave only considered regimes in which trajectories are asymptotic

anifolds (i.e., the s 2 -nullcline or the c 2 -nullcline) in their ap-

roach to x ∗. However, their are many such trajectories that are

ot asymptotic to a particular manifold in the approach to x ∗. For

xample, if t c 1 � t c 2 ≈ t s 2 � t s 1 , then it is obvious from both the

caling analysis and the phase-plane dynamics that the trajectory

ill not follow closely to either nullcline in its approach to x ∗ (see

ig. 15 ). It is not obvious in this case how to go about determining

he lag time. However, Theorem 1 suggests that either matching

imescale t ∗c 2 or t ∗s 2 should yield a reasonable approximation to the

ag time. Thus, even though the transient solution is unknown, the

caling analysis still provides a good estimate of the time it takes

or the secondary reaction to “catch” the primary reaction and for

˙ p to reach its maximum value (see Fig. 16 ). 
. The region of validity of the timescale estimations 

We conclude our analysis by noting that the conditions max { ε2 ,

1 , μ2 } � 1 do not provide a universal set of qualifiers to ensure

hat the phase-plane trajectory approximately adheres to x ∗ after

 brief fast transient. To establish criteria that determines a re-

ion in parameter space within which our analysis is valid, we first

emark that an absolutely necessary condition for the validity of

ur timescale analysis is V 2 	 k 2 c 
max 
1 

. Second, if V 2 	 k 2 c 
max 
1 

holds,

hen 0 < t s 2 < t 
χ
s 2 

since 

 

χ
s 2 

= t s 2 (1 + κ2 ) 
[
1 + θ + O(θ2 ) 

]
, θ ≡ k 2 c 

max 
1 

V 2 

. (114)

onsequently, we take 

 < min { t χs 2 /t s 1 , t c 2 /t s 1 } , (115a) 

max { t χs 2 /t s 1 , t c 2 /t s 1 } � 1 , (115b) 

s our qualifying set of conditions that must hold in order for the

rajectory to closely follow x ∗. This implies that the natural scaling

o employ is given by (107c) –(107d) , and gives a universal set of

arameters from which to analyze the phase-plane dynamics. For

xample, if t 
χ
s 2 

� t s 1 but μ2 ∼ 1, then we do not expect the trajec-

ory to closely follow x ∗. However, we see from the scaled equa-

ions that s 2 should deplete in a QSS over the t s 1 timescale as long

s t 
χ
s 2 

� t s 1 . Thus, the trajectory s 2 “sticks” to the s 2 -nullcline, but

ags behind x ∗ since μ2 ∼ 1 (see Fig. 17 ). On the other hand, when

he phase-plane trajectory does closely follow x ∗, the scaling given

y (107c) –(107d) tells us the component that contributes most to

he error in our approximation (see Fig. 18 ). 

. Discussion 

Enzyme catalyzed reactions typically exhibit multiple dynami-

al regimes; each regime marks a domain over which certain ki-

etic behavior and approximate rate laws can be assumed to be

alid. The approximate rate laws are derived assuming timescale
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Fig. 18. The component-wise error when the indicator reaction is fast in the 

auxiliary reaction mechanism (47) –(48) . The thick black curve is the numerically- 

integrated solution to the mass action Eqs. (4 9a) –(4 9d) , the dashed/dotted red 

curve is the c 2 -nullcline and the dashed/dotted blue curve is a snapshot of s 2 - 

nullcline when t ≈ 1 . 1 · t s 1 . The black dot is the corresponding snapshot of the nu- 

merical solution to (4 9a) –(4 9d) . In this simulation, t 
χ
s 2 

/t s 1 ≈ 0 . 0 0 01 < μ2 ≈ 0 . 0 05 ; 

consequently, the trajectory sits “just behind” and slightly above x ∗ (green dot) 

since the trajectory will be closer to the s 2 -nullcline than the c 2 -nullcline (see 

Movie 2 in Supplementary Materials). The constants (without units) used in the nu- 

merical simulation are: e 0 1 = 1 , s 0 1 = 100 , e 0 2 = 100 , k 1 = 1 , k 2 = 1 , k 3 = 1 , k −3 = 1 , 

k 4 = 2 and k −1 = 1 . (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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separations. The primary contribution of this paper is to cat-

egorize specific types of timescales, particularly with regard to

matched asymptotics in enzyme catalyzed reactions. In short, we

have shown that in each kinetic regime of a reaction there really

exist two distinct timescales that must be considered: character-

istic and matching. Characteristic timescales arise naturally when

the initial fast transient of a reaction can be approximated with a

linear equation. This happens often in enzyme catalyzed models,

since the differential equation governing the fast variable becomes

linear when the slow variable is held constant. As such, the char-

acteristic timescale should be utilized in scaling analysis, since it

determines the relevant length scale of its corresponding regime.

However, its limitation resides in the fact that it does not pro-

vide a good approximation to the time it takes a reaction to reach

QSS. The matching timescale provides a reliable estimate to reach

QSS, and determines the temporal boundary of the corresponding

regime. 

In this work, the fast and slow timescales of the single-enzyme,

single-substrate MM reaction mechanism (12) have been revisited.

Under the RSA, the established fast timescale, t c 1 , of the MM reac-

tion mechanism is a characteristic timescale: it provides the tem-

poral order of magnitude needed for the concentration of complex

to accumulate to approximately 63% of its threshold value. This is

the appropriate timescale to utilize in the scaling analysis. How-

ever, since t c 1 does not provide a good estimate of when the com-

plex concentration reaches its maximum value, it fails to define an

appropriate matching timescale. The matching timescale delimits

the approximate time point in the course of the reaction when the

transition from initial fast transient to quasi-steady-state kinetics

occurs. By utilizing Tikhonov/Fenichel theory, we have shown that

the appropriate matching timescale for the MM reaction mecha-

nism is t ∗c 1 : 

 

∗
c 1 

= −t c 1 ln 

t c 1 
t s 1 

. 

In this paper, we consider the auxiliary enzyme reaction mech-

anism (47) –(48) as a multiple timescale case study. This reaction

was initially analyzed with the assumption that the auxiliary en-

zyme concentration is high, and that the primary reaction obeys
he RSA. We demonstrated that when the secondary reaction has

ufficient speed, the overall kinetics and reaction mechanism is

etermined by the ratios of four timescales: t c 1 , t s 2 , t c 2 and t s 1 .

ix different orderings of these timescales were considered: (i)

 c 1 � t s 2 � t c 2 � t s 1 , (ii) t c 1 � t c 2 � t s 2 � t s 1 , (iii) { t c 2 , t s 2 } � t c 1 �
 s 1 , (iv) t c 2 � t c 1 � t s 2 � t s 1 , (v) t s 2 � t c 1 � t c 2 � t s 1 , and (vi) t c 1 �
 s 2 = t c 2 � t s 1 . The lag time, which is roughly the time it takes

or the rate of product generation to reach its maximum value,

as calculated for each specific ordering. As we have shown, the

ag time corresponds to a specific matching timescale; specifically,

e have demonstrated that the lag time is synonymous with the

atching timescale that corresponds to the slow variable when the

uxiliary reaction is composed of super-fast, fast, slow and super-

low variables. 

The estimation of timescales is perhaps the most challenging

omponent of chemical kinetics. The subtle difference between

haracteristic and matching timescales is often neglected in appli-

ations of GSPT. This work provides a useful case study in the in-

erpretation of timescales in enzyme-catalyzed reactions, and the

pproaches used should be readily applicable to a wide range of

ingular perturbation problems in mathematical biology. 

On a final note, we wish to emphasize that we carried out this

nalysis by restricting the parameters pertinent to the primary re-

ction to lie in a regime in which the RSA and QSSA are appli-

able. This is of course not necessary, and the total quasi-steady-

tate approximation (tQSSA) could have been employed ( Bersani

t al., 2015; Bersani and Dell’Acqua, 2012; Borghans et al., 1996;

chnell and Maini, 20 02; Tzafriri, 20 03 ). The tQSSA is lumping

ethod that is generally considered to be valid over a much

arger parameter range than the QSSA. It has been applied to

omplex enzyme catalyzed reactions that exhibit both reversibil-

ty ( Tzafriri and Edelman, 2004 ) and competition ( Pedersen et al.,

006 ). From a timescale perspective, the tQSSA has an advantage

t reduces the total number of timescales in the system by lump-

ng two chemical species into one by defining the total substrate

 T = c 1 + s 1 . The disadvantage of this approach is that the lump-

ng of variables inevitably leads to a lower dimensionality system

ith a potentially different dynamical behavior. So far, the validity

nd applicability of the tQSSA in the case of both the auxiliary re-

ction and coupled zymogen activation reactions ( Eilertsen et al.,

018 ) remains open, and we certainly encourage exploration and

esearch in this direction. 
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