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 Computational treatment of biological self-organisation 

 Biological self-organisation requires emergence of boundaries, namely Markov blankets 

 Hierarchical self-organisation entails emergence of Markov blankets at multiple scale 
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Abstract  

Biological self-organisation can be regarded as a process of spontaneous pattern formation; namely, the 

emergence of structures that distinguish themselves from their environment. This process can occur at 

nested spatial scales: from the microscopic (e.g., the emergence of cells) to the macroscopic (e.g. the 

emergence of organisms). In this paper, we pursue the idea that Markov blankets – that separate the 

internal states of a structure from external states – can self-assemble at successively higher levels of 

organisation. Using simulations, based on the principle of variational free energy minimisation, we show 

that hierarchical self-organisation emerges when the microscopic elements of an ensemble have prior (e.g., 

genetic) beliefs that they participate in a macroscopic Markov blanket: i.e., they can only influence – or be 

influenced by – a subset of other elements. Furthermore, the emergent structures look very much like 

those found in nature (e.g., cells or organelles), when influences are mediated by short range signalling. 

These simulations are offered as a proof of concept that hierarchical self-organisation of Markov blankets 

(into Markov blankets) can explain the self-evidencing, autopoietic behaviour of biological systems.  

Introduction 
There is growing interest in the role of Markov blankets and associated partitions in understanding self-

organisation– and the accompanying self-evidencing that arises from Bayesian mechanics (Friston, 2019). A 

key aspect of this self-organisation is the hierarchical decomposition of Markov blankets of Markov 

blankets. This notion has emerged in the literature at several levels; ranging from conceptual analyses in 

the context of ethology and evolution (Allen, 2018; Clark, 2017; Friston, Levin et al., 2015; Kirchhoff et al., 

2018; Pellet and Elisseeff, 2008; Ramstead et al., 2018), through to the emergence of multicellular 

organisms (Kuchling et al., 2019) to the implicit renormalisation group that furnishes a particular 

perspective on (quantum, statistical and classical) mechanics (Friston, 2019; Friston et al., 2014). 
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However, despite the potential importance of these conceptual and mathematical analyses, no one has yet 

provided a proof of principle that Markov blankets of Markov blankets can emerge using numerical 

analyses. In this paper, we report such a proof of principle by illustrating the emergence of blankets of 

blankets under the unitary principle of (variational) free energy minimisation. We frame this in terms of 

self- organisation or pattern formation in cells, to emphasise the simplicity and biological plausibility of the 

underlying dynamics – although this framing is more by analogy than any detailed consideration of inter-

and intracellular communication. Our primary aim was to show that hierarchal compositions of Markov 

blankets of Markov blankets can emerge from gradient flows on variational free energy, under an 

appropriate generative model.  

In brief, the notion of a Markov blanket allows one to define any system or structure in a way that 

distinguishes it from the environment or milieu in which it resides. The Markov blanket plays the role of a 

statistical boundary that allows one to talk about a system per se (Alcocer-Cuarón et al., 2014; Schrödinger, 

1944). Such structures can be described at multiple scales, from macromolecules such as ribonucleic acids, 

through organelles to organs and organisms and even beyond. A Markov blanket is a set of states that 

separates the internal or intrinsic states of a structure from extrinsic or external states. Importantly, when 

interactions between states are spatially dependent, as is the case for states pertaining to the physical 

description of biological organisms, this separation can be spatial in nature. Consequently, in this setting, a 

Markov blanket describes a spatial boundary. Moreover, this boundary comprises sensory and active 

states, as is the case for biological systems, like membrane receptors and the cytoskeleton underneath 

them. In other words, a (biological) physical boundary is a Markov blanket (with sensory and active states), 

where dependencies between states are determined by location in space. And obvious example here would 

be the membranes that surround organelles and cells. The crucial aspect of a Markov blanket is that it 

provides a formal definition of what it means for the internal states of a structure to exist in a way that is 

conditionally independent of its external states. This definition precludes a (spatially dependent) direct 

coupling between internal and external states, such that they only influence each other vicariously through 

the Markov blanket (Friston 2013). 

Markov blankets play a central role in several disciplines. For example, in Bayesian statistics and machine 

learning, they organise the architecture of message passing in neuronal networks and, indeed, the way we 

implement many statistical tests (Pellet and Elisseeff, 2008). In control theory, they underlie the circular 

interactions between system and environment (Baltieri and Buckley, 2018). In theoretical biology, they are 

the cornerstone of variational approaches to self-organisation under the free energy principle. These 

variational treatments have been applied at many levels; ranging from variational ethology and evolution 

(Ramstead, Badcock et al. 2017, Constant, Ramstead et al. 2018), through to self organisation, and adaptive 

behaviour in neuroscience  (Friston 2010, Limanowski and Blankenburg 2013), down to morphogenesis and 

pattern formation at the cellular level (Kiebel and Friston 2011, Friston, Levin et al. 2015), and up to mental 

manipulation and imagination (Hohwy, 2016; Yufik and Friston, 2016). In this sense, the Markov blanket is a 

scale free concept that underwrites the dynamics of all self-organising systems, at some level.  

Markov blankets are not necessarily spatially extensive membranes; they are just a set of states that 

separates internal and external states. For example, the brain's Markov blanket might include all its sensory 

receptors and neuromuscular junctions. At the cellular level, Markov blankets can be associated with 

membranes that surround cells and intracellular organelles, or to the surface of membrane-less organelles 

where a liquid-liquid phase separation takes place (Mitrea and Kriwacki, 2016). Notably, any spatially 

dependent interactions between system and environment can exist only in virtue of the permissive role of 

a statistical boundary; that is, a Markov blanket. However, this does not constrain such interactions within 

the physical boundary, such in the case of channels allowing ions to cross the cellular membranes or the 

production of heat by warm-blooded animals (Virgo, 2011; Virgo et al., 2011). 
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Previous work has already addressed the inextricable link between Markov blankets and living organisms. 

In particular, any biological self-organising system can be viewed as generating and maintaining Markov 

blankets at multiple scales (Friston, 2013). Consequently, morphogenesis at any particular level of 

description becomes the process of constructing a Markov blanket with a particular structure, as 

exemplified by the organisation of an ensemble of undifferentiated cells into a differentiated target 

morphology (Friston, Levin et al., 2015; Kuchling et al., 2019). In a companion paper, we have articulated 

the implications that the emergence of nested Markov blankets have for our understanding and 

interpretation of an organism’s dynamics, with the important consideration that Markov blankets do not 

have to be co-extensive with the biophysical boundaries of an organism (Kirchhoff et al., 2018). These 

arguments are in turn tightly connected with considerations about a system’s cognitive domain that 

exuberates spatial boundaries, analogously to the cognitive domain of a ‘glinder’ (a set of On states 

surrounded by Off states) in the Game of Life (Beer, 2014). In the present paper, we ask how an ensemble 

of constitutive parts, endowed with Markov blankets, could self-organise to create a Markov blanket at a 

higher scale; namely, a Markov blanket of Markov blankets. In particular, we focus on the minimal set of 

prior beliefs, a hierarchically organised system must express, and how these beliefs at different scales are 

linked. 

Our basic conclusion is that a single principle is sufficient to explain the emergence of hierarchical 

structure; namely the variational free energy principle. This does not imply that hierarchical organisation is 

an emergent feature of any coupled random dynamical systems; rather, with the right sort of generative 

model, an ensemble of Markov blankets (e.g., cells) can self-assemble a Markov blanket around the 

ensemble (e.g., an organ). A generative model here refers to a probabilistic model of how external states 

influence the Markov blanket that is implicit in the dynamics of internal states. In the current setting, 

having the right sort of generative model can be regarded as having the right sort of prior (probabilistic) 

beliefs that are endowed by evolution. In what follows, we will use simulations to provide a numerical 

proof of principle that minimising variational free energy (under a suitable generative model) leads to 

hierarchical self-organisation. Throughout the paper “free energy” will refer to variational free energy. 

While this is closely related to the thermodynamic concept of free energy (see (Friston 2019) for details), 

variational free energy is an informational quantity that provides an upper bound on surprise (a.k.a., 

surprisal or the negative log probability of sensory data). 

This paper is organised as follows: first, we review the concept of a Markov blanket in biological systems 

and draw the link between statistical independence and physical boundaries. By doing so, we provide an 

intuition on the chief role that Markov blankets have in self-organisation within the free energy principle. 

We then consider the implications of the existence of a Markov blanket for the behaviour of random 

dynamical systems obeying the variational free energy minimisation principle. A technical treatment of 

Markov blankets in the emergence  of physical structures and associated (quantum, stochastic, and 

classical) mechanics can be found in (Friston 2019). This section emphasises the autopoietic nature of 

systems that (Maturana, 1974), through the dynamics of their internal and active states, resist a natural 

tendency to disorder. In the final sections, we describe simulations of self-organisation at two levels: these 

furnish a proof of concept for self-organisation into Markov blankets and the hierarchical formation of 

blankets of blankets, respectively. We conclude with a discussion of how this treatment relates to other 

characterisations of biological self organisation. 

Markov blankets and variational treatments of self organisation 
Biological systems generally segregate themselves from their environment to form boundaries, which 

define the distinction between what is internal to the system and what is external (Alcocer-Cuarón et al., 

2014; Kauffman, 1993; Kelso, 1995; Nicolis and Prigogine, 1977; Schrödinger, 1944). In this paper, these 
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boundaries are formalised in terms of Markov blankets; namely, statistical boundaries that separate 

internal and external states (e.g., a cellular membrane separating intracellular and extracellular dynamics). 

In particular, spatial boundaries are an instantiation of the statistical independencies, when physical state 

interactions are spatially dependent, as is often the case for biological systems. This separation is a 

fundamental property of self-organising systems, because their very existence implies the presence of a 

boundary that distinguishes inside (i.e., self) from the outside (i.e., environment).  

Living systems maintain the integrity of their boundaries (i.e. Markov blankets), in the face of an ever-

changing environment. This means that life has evolved mechanisms for the generation, maintenance, and 

repair of Markov blankets. A system endowed with such mechanisms connotes an autopoietic organisation 

that autonomously assembles its own components; in particular its boundaries, (Maturana, 1974; Varela et 

al., 1974). This autonomy does not imply isolation from the environment, which – on a thermodynamic 

account – is  needed to provide energy (Whitesides, 2002). Therefore, living organisms are operationally 

closed, while presenting as thermodynamically open. The interaction between system and environment is 

then mediated by the boundary. Notably, this coupling is non-trivial, in that the organism must actively 

realise an ‘informational control’ of the environment (i.e., possess a teleology), by filtering, canalising and 

categorising signals that carry information about their external causes (Auletta, 2010). This implies that the 

system does not merely respond to sensory states, but reacts to them to infer some (useful) information 

about the world. At the same time, the boundaries must contain machinery that allows the system to act 

on external states. In short, definitive borders are essential for living systems, as any dynamics that 

happens within and between systems can only take place in virtue of their existence (Friston, 2013).  

Living organisms are complex systems, denoted by non-linear interactions between multiple hierarchically 

arranged and nested components (Hilgetag et al., 2000; Kauffman, 1995, 1993; Kirchhoff et al., 2018). As 

such, characterising how they self-organise requires not only an understanding of how single components 

couple to each other, but also how microscopic and macroscopic levels interact. This invokes the notion of 

top-down influences on the low level dynamics (Ellis et al., 2012) and vice versa.  

Self-organisation has been addressed extensively in theoretical biology using tools from statistical 

thermodynamics and information theory to explain how biological systems resist a natural tendency to 

disorder. This holdout is an apparent violation of the second law of thermodynamics, or at least standard 

descriptions of it (Evans and Searles, 2002; Seifert, 2012). A more recent line of work within this framework 

(Friston 2013) sees living organisms as placing an upper (free energy) bound on their self-information (i.e., 

negative log likelihood of sensed states). This imperative is motivated by the fact that biological systems 

have to maintain sensory states within physiological bounds. This means the Shannon entropy (i.e., 

dispersion) of sensory states is necessarily bounded. Shannon entropy is the path or time average of self-

information; also known as surprisal or surprise. In short, self-organisation can be regarded as synonymous 

with systems that place an upper bound on their self-information or surprise. In this variational formulation 

of self-organisation – that emphasises its inferential aspect – living organisms are understood as placing a 

(free energy) bound on surprise. 

These arguments rest upon ergodicity assumptions (implicit in the fact that the sorts of systems we are 

interested in have characteristic measures that persist over time). Ergodicity implies that, over a sufficiently 

long period, the time spent in a particular location of state-space is equal to the probability that the system 

will be found at that location when sampled at random (Friston, 2013). If this probability measure is finite, 

it means that any system will revisit all its states (or their neighbourhoods) time and time again. It is this 
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peculiar behaviour that underwrites self-organisation; namely, the existence of an attracting set of states 

that endow living systems with characteristic states that they visit time and time again. 

The existence of an attracting set means that one can interpret the long-term average of surprise as the 

entropy of the systems sensory states. Crucially, because surprise is (negative) Bayesian model evidence, 

minimising free energy – defined as an upper bound on surprise – is the same as maximising a lower bound 

on the evidence for an implicit model of how sensory states are generated. In other words, the system can 

be regarded as a (generative) model of its environment (Conant and Ashby, 1970), and will look as if it is 

gathering evidence for its own existence. This has been called self-evidencing (Hohwy, 2016). It follows that 

– by minimising free energy – biological systems place an upper bound to the entropy of their sensations by 

inferring their causes; this is also known as active inference (Friston et al., 2010), and is closely related to 

formulations of the perception-action cycle in the life sciences, like embodied cognition (Clark, 2009), 

artificial intelligence (Ay et al., 2008), and cognitive neuroscience (Fuster, 2004). In short, self-organisation 

entails the bounding of self-information that can be cast as self-evidencing. 

In what follows, we use mathematical and numerical analyses that build upon a free energy formulation of 

pattern formation (Friston, Levin et al., 2015). We start with subsystems whose dynamics possess a Markov 

blanket as an attracting set. We then integrate the system until it self-organises into a stable configuration. 

Subsequently, we extend the simulation to consider hierarchical systems; namely, configurations of 

configurations (i.e., blankets of blankets) that could, in principle, be extended indefinitely1. These 

simulations were used to test the following hypothesis: if the maintenance of Markov blankets can be cast 

as self-evidencing, then self-organisation should be an emergent property (Kirchhoff, Parr et al. 2018) of 

subsystems that ‘believe’2 they participate in – or are enclosed by – a Markov blanket. Because Markov 

blankets are defined by conditional independencies, the requisite beliefs can be specified simply, in terms 

of communication or signalling between subsystems. In other words, it should be possible to reproduce 

hierarchical self-organisation by equipping subsystems with beliefs about how they influence – and are 

influenced by – other subsystems. The next section considers the formal basis of our simulations, based 

upon random dynamical systems and their probability density dynamics. 

The Markov blanket partition 
This section associates random dynamical systems with living organisms, where the states of a system 

stand for its internal states (e.g., intracellular states), its blanket states (e.g., receptors on a cell membrane 

and the actin filaments of the cytoskeleton) and external states (e.g., extracellular milieu). The systems 

under consideration are complex (i.e., non-linear and hierarchical) and organise independently of any 

applied or external gradient: we will see that such systems exhibit a process of pattern generation that lead 

to definitive boundaries (i.e. Markov blankets), defining internal states and their relationship with external 

states. 

The notion of a Markov blanket was originally proposed in the context of Bayesian networks or graphs 

(Pearl, 1988), where it refers to the parents of the set of states (that influence it), its children (that are 

influenced by it), and the children’s parents. The Markov blanket defines the conditional independencies 

                                                             
1 We thoroughly explore the implications of hierarchical organisation of Markov blankets for description of living organisms in the 

more philosophically motivated paper by Kirchhoff et al. (Kirchhoff et al., 2018). On the other hand, from an evolutionary 
perspective, these arguments encourage new questions and interpretations, like the identity of the very first prior or major 
evolutionary transitions of priors in unicellular and multicellular organisms (see discussion).  
2 This term is used as a synonym of prior expectations in the context of Bayesian inference.  
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between a set of states   (the system) and a second set of states   (the environment). This concept can be 

translated into a biological setting: for example, the intracellular milieu of a cell represents the internal 

states and the plasmalemma corresponds to the Markov blanket, through which communication between 

intracellular and extracellular states is mediated (Auletta, 2013; Friston, 2013). Crucially, the Markov 

blanket can be decomposed into sensory   and active   states, which are and are not children of the 

external states, respectively. Thus, the existence of a Markov blanket     induces a partition of states in 

           ; external states act on sensory states, which influence, but are not influenced by 

internal states. Internal states couple back through active states, which influence but are not influenced by 

external states (Table 1). This partition ensures a statistical separation between internal and external states 

in the sense they are independent, when conditioned on the Markov blanket.  

How this statistical concept can be translated into a biological setting, and why is its presence so 

important? We start by considering a system in which long-range (e.g., electromagnetic) interactions are 

possible, and states’ identity rests upon their coupling. Here, every state interacts with all others, 

irrespective of its spatial position; every state is therefore indistinguishable from the remainder, because 

the fully interconnected nature of the system precludes any statistical separation of one state from another 

(Figure 1a). To engender statistical structure (i.e., an identity), coupling has to be limited via interactions 

restricted in space. One possible scenario displays two sets of states located far enough for them to be 

statistically independent: the state of one set does not influence the other and vice versa (Figure 1b). 

However, in this case interactions between sets are also precluded. When considering biological systems 

and their environment, this scenario becomes unrealistic, given the definition of biological organisms as 

open systems (Whitesides, 2002). Therefore, two sets of states can be associated in a meaningful way to a 

biological organism’s intrinsic (i.e. internal) and extrinsic (i.e. external) states only when a Markov blanket 

exists, which defines conditional or spatial independencies (i.e. identities) and interactions between the 

two states. Notably, it is the restriction in space of interactions that justifies the association between 

statistical and spatial independence, thus between Markov blankets and spatial boundaries. This is the 

minimal thus most general description of a biological self-organising organism possible (Figure 1c). Notably, 

interactions occurs in virtue of the partition of the blanket states into sensory and active states, mediating 

the vicarious influence of external on internal states and the influence of internal on external states, 

respectively. 

 

Figure 1 System comprising interacting states. In (A) spatially-independent coupling among states is 
mediated by long-range interactions. In the first (left) panel all states influence each other, and are 
therefore indistinguishable. In (B) only short-range interactions are allowed; thus coupling among states is 
spatially dependent. However, two sets of states exist only in virtue of their spatial separation: i.e., they are 
effectively independent. In (C), internal (red) and external (blue) states can be distinguished in virtue of the 
separation mediated by a third set; namely, the Markov blanket, composed of sensory (yellow) and active 
(orange) states. External states can influence internal states only by acting on sensory states. On the other 
hand, internal states couple back to external states through active states. Note that in this scenario, active 
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states are shielded from external states by sensory states – and sensory states are shielded from internal 
states by active states. This is the simplest dependency structure leading to a Markov blanket. 

In reality, segregation emerges in the presence of coupling. In other words, a subsystem differentiates itself 

from the environment, but remains (statistically or energetically) coupled to it. This is possible when two 

sets of states are conditionally independent not just because of their spatial separation, but in virtue of a 

third set; namely, blanket states (Figure 1c). These blanket states comprise sensory and active states, 

mediating the vicarious influence of external on internal states and the influence of internal on external 

states, respectively. This concludes our description of a minimal partition that enables a meaningful 

separation of internal and external states. 

How can the concept of Markov blanket expand when considering the hierarchical structure of biological 

systems? Let us group internal and blanket states into a single (macroscopic vector) state. If this 

macroscopic state participates in some meaningful structure, a macroscopic Markov blanket has to emerge, 

whose sensory and active states – and the internal states insulated within – will each be composed of 

microscopic Markov blankets. Hence, the formation of Markov blankets at any level of hierarchical 

organisation is intimately linked to the maintenance of Markov blankets ‘all the way down’ (Figure 2). On 

this view, self-organisation is a recursive process of boundary formation that spans all levels of hierarchical 

organisation. Later, we provide a proof of concept for this argument by simulating the hierarchical self-

organisation of Markov blankets. 

 

Figure 2 Markov blanket of Markov blankets. We now broaden the perspective, and consider each Markov 

blanket (and internal states) as a macroscopic state. Again, given short-range interactions, the only way for 

a system to exist at this macroscopic level is to be separated from its environment by a Markov blanket. The 

hierarchical nature of this system is induced by (macroscopic) Markov blankets of (microscopic) 

Markov blankets, each of them insulating its respective internal states.  

In summary, self-organisation has to feature the emergence of boundaries that define an internal state 

space, separating it from external states, while allowing for vicarious coupling. It follows that hierarchical 

self-organisation requires the emergence of Markov blankets of Markov blankets. In the next section, we 

turn to the nature of the dynamics that underwrite this emergence. 

Table 1. Definition of the tuple                 or self-evidencing. 

A sample space   from which random fluctuations     are drawn 
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External states         
  
→     – states of the world (e.g. extracellular milieu) that depend on 

themselves and active states 

Sensory states         
  
→     – states of sensors (e.g. receptor activity) but depend upon 

external and active states 

Active states         
  
→     – states of action on the world (e.g. exocytosis of signalling 

molecules) that depend upon sensory and internal states 

Internal states         
  
→      – the internal states of a system (e.g. genetic transcription) 

that depend on themselves and sensory states 

Generative model  (       | ) – a probability density function over external, sensory, active and 
internal states for a system denoted by   

Variational density  ( | ) – a probability density function over external states parameterised by 
internal states 

 

Dynamical systems, self-organisation and self-evidencing 
We will be dealing with random dynamical systems expressed as Langevin equations of the following form:  

 ̇   ( )   

 ( )  

[
 
 
 
 
  (     )

  (     )

  (     )

  (     ) ]
 
 
 
 

}
 
 

 
 

          (1) 

      

This describes the dynamics of a system with a Markov blanket in terms of the flow  ( ) of its states and 

random fluctuations  . The flow of external    , sensory    , active      and internal states     

in the second equality, conforms to the dependencies implied by a Markov blanket (see Table 1). External 

states can only be influenced by internal states through their Markov blanket, and are therefore called 

hidden states, because they are hidden behind the Markov blanket. In the specific setting of biological 

systems, the partition in equation (1) relies on the spatial location of states, and identifies sensory and 

active states as components of spatial boundaries. 

An alternative formulation of Equation (1) is in terms of a Lagrangian, which allows us to describe the 

system’s dynamics in terms of a gradient flow using the Helmholtz decomposition. This rests upon ergodic 

assumptions implied by the existence of an attracting set, called a pullback or random global attractor. 

Following (Crauel et al., 1999; Crauel and Flandoli, 1994; Friston, 2013), one can express the flow of states 

in terms of a divergence-free component and a curl-free descent on a Lagrangian  ( ) that corresponds to 

the self-information or surprise associated with any state. This rests upon ergodic assumptions implying the 

existence of an attracting set (conditioned of the model) in the state-space, called a pullback or random 

attractor (Crauel et al., 1999; Crauel and Flandoli, 1994), and an associated probability density, the ergodic 

density. 

 ( )  (   )  ( )

 ( )      ( | )
}           (2) 
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Here, diffusion tensor Γ is half the covariance of the random fluctuations, and   is an antisymmetric matrix 

that satisfies  ( )    ( ) . The equality  ( | )      (  ( )) is the solution of the Fokker-Planck 

equation describing the density dynamics (Friston and Ao, 2012) (Frank, 2004), where   denotes a 

particular system or model (see Variational Free energy section). This ergodic or nonequilibrium steady-

state density is the probability density at which its rate of change is zero. Equation (2) means the states of a 

system   at nonequilibrium steady-state are performing a gradient ascent on the ergodic density. This is 

revealing, because it shows that the system’s flow counters the dispersive effects of random fluctuations – 

by flowing towards the attracting states. 

 ( )  (   )      ( | )         (3) 

     

This gradient flow formulation also applies to the flow of internal and active states 

  (     )  (   )       (     | ) 

  (     )  (   )       (     | ) 
}       (4) 

      

These equations are the homologues of (2) for the internal and active states, whose flow performs a 

gradient ascent on the ergodic density over the internal states and their Markov blanket (note that this 

density does not involve the external states, in virtue of the dependencies in Equation 1). In short, the 

internal and blanket states that constitute a subsystem are autopoietic, because their (nonequilibrium 

steady-state or ergodic) probability density is maintained by the flow of the subsystem’s internal and active 

states. In the context of spatially dependent interactions, the flows partition expressed in Equation (4), 

afforded by the Markov blanket formalism, relies on the spatial separation of states by a spatial boundary.

  

The variational free energy formulation 
The flow of the states therefore describes a gradient ascent on the ergodic density. Analogously, in the 

setting of the stochastic thermodynamics, the system will minimise its thermodynamic free energy (Seifert, 

2012). The link between thermodynamic and variational free energy rests upon associating the amplitude 

of random fluctuations on the motion of states with temperature – and equipping them with particular 

units through the use of Boltzmann's constant (Friston, 2019; Seifert, 2012; Sekimoto, 1998). This means 

that the changes in variational free energy inherent in belief updating can be linked directly to changes in 

thermodynamic free energy in a way that is consistent with the Jarzynski equality (Jarzynski, 1997) and 

Landauer's principle (Bennett, 2003; R Landauer, 1961). Please see (Friston, 2019) for a fuller discussion and 

(England, 2013; Parrondo et al., 2015) for a related perspective. Although the ergodic density exists, it is not 

evaluated explicitly by the system, because this would require access to external states that are hidden 

behind the Markov blanket. However, it is possible to use an alternative formulation that furnishes a 

description of the flow in terms of a gradient descent on a variational free energy associated with a 

generative model of the system in question (Friston, Levin et al., 2015): 

  (     )  (     )   

  (     )  (     )   
 

 (     )    〈 ( )〉   ⟨ ( )| ⟩

}        (5) 

Here, the flow of internal and active states has been expressed as a gradient descent on variational free 

energy, which is a function of states that are available to the system. This follows because free energy 
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depends on a variational density  ( | ) over external states that is parameterised by internal states, and a 

generative model  (       | ), which is the system itself, where   denotes the particular system 

(Friston, Levin et al., 2015).  

Under this formulation of density dynamics, internal states will appear to infer external states: the third 

equality expresses free energy as the self-information (i.e., negative log evidence for the model) expected 

under the variational density minus the entropy of the variational density. This means that internal and 

active states maximise the joint probability density – expected under the variational density – over states 

conditioned on the system or model in question. Moreover, internal states will reduce free energy by 

parameterising a variational density over external states with maximum entropy; in accordance with 

Jaynes’ principle of maximum entropy (MacKay, 2003). Although not our focus here, when variational free 

energy is minimised, the variational density becomes the posterior density over hidden or external states, 

given blanket states. In this sense, the internal states encode posterior ‘beliefs’ about external states; 

despite never seeing them directly. 

Crucially, the free energy formulation allows us to prescribe the ergodic density in terms of a generative 

model. In other words, we can write down a generative model and derive the dynamics according to 

Equation (5) as a gradient descent on the free energy equivalent of surprise. In what follows, we will 

simulate self-organisation by specifying a model about the causes of sensory states – and by specifying the 

environmental dynamics generating those sensations. This means we need to write down the generative 

model  (       | ) of the system in terms of the dynamics   (     ) and   (     ) of the environment 

and how sensory states are generated. Interestingly, the generative process and model do not have to be 

isomorphic: the generative model has only to approximate the generative process to minimise free energy 

(Baltieri and Buckley, 2018). The generative model is usually expressed in terms of random differential 

equations and nonlinear functions with a hierarchical form. In this paper, we will omit these dynamics for 

simplicity, and specify the relationship between external and sensory states through the following (static) 

nonlinear functions: 

   ( )( ( ))   ( )

 ( )   ( )( ( ))   ( )

 

}         (6) 

  

Under Gaussian assumptions about random fluctuations ω, Equation (5) prescribes the likelihood and priors 

defining the generative model or Lagrangian: 

 (   | )   ( | ( )) ( ( )| ( )) 

 ( | ( ))   ( ( )( ( ))  ( ))

 ( ( )| ( ))   ( ( )( ( ))  ( ))

 }
 
 

 
 

       (7) 

Here,  ( ) corresponds to the precision or inverse variance of the random fluctuations. This allows us to 

completely specify the generative model in terms of beliefs about how sensations are generated and priors 

about hidden states. The key question we address in the next section is: what are the right priors that 

enable the emergence of Markov blankets at a higher macroscopic level – that would enable us to interpret 

the ensuing macroscopic dynamics in terms of the self-evidencing above. 

In the simulations of subsequent sections, we integrate Equation (5) using the Matlab routine 
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spm_ADEM.m in the SPM open source academic software. This generalised Bayesian filtering scheme uses 

the Laplace assumption; i.e., the assumption that the variational density has a Gaussian form. The use of a 

Bayesian filtering scheme follows because the variational density  ( | ) over external states approximates 

the posterior density  ( |     ): please see Friston (2014; 2010) for details. In summary, one can use 

standard Bayesian filtering to simulate self-organisation. This allows one to specify the form of the ergodic 

or nonequilibrium steady-state density in terms of the priors of a generative model. The question now is: 

what sort of priors leads to hierarchical self-organisation? 

  

Self-organisation of an ensemble 
In what follows, we present two sets of simulations. The first considers the self-organisation of an 

ensemble of synthetic cells, where each cell possesses its own Markov blanket. The second simulation 

considers ensembles of ensembles to illustrate hierarchical self-organisation; namely, the self-assembly of 

Markov blankets of Markov blankets. Crucially, these simulations use simple generative models, embodying 

the prior ‘belief’ that each member can play the role of an internal, active or sensory state within the 

ensemble. In other words, Markov blankets at one level of organisation possess prior beliefs there is a 

Markov blanket partition at the level above. However, each cell has no prior belief about its particular role 

in the higher level Markov blanket – or the form and composition of this blanket. These elementary priors 

are easy to specify because each role just depends upon the influences each member of the ensemble can 

or cannot exert on the others. This means, the only hidden state each member needs to infer is which role 

it plays at the higher level. We will see that this minimal set of prior beliefs (and subsequent self-

evidencing) results in the formation of Markov blankets within the ensemble. The ensuing self-similar 

organisation can, in principle, be extended to any number of hierarchical levels. We illustrate this kind of 

hierarchical self organisation using 16 cells, each with their own Markov blanket, that organise into a 

cellular group or assembly, with its own Markov blanket. We then consider an ensemble of ensembles that 

organises itself into a little organ encompassed in another Markov blanket. 

The first simulation illustrates the self-organisation of an ensemble. Each cell interacts with other cells; in a 

process that eventually leads to a stable configuration with a boundary separating internal cells from their 

external milieu. This simulation draws on previous work that interest morphogenesis (Friston, Levin et al., 

2015). In this setting, self-organisation was simulated by minimising the variational free energy of each cell 

until they attained a prescribed morphology. This morphology was achieved through spatially dependent 

(e.g. chemical) signalling – so that every cell sensed every other cell in a way that was consistent with their 

generative models. The morphology was inscribed in beliefs common to all cells, about cell identity, 

sensation and secretion. Each cell was interpreted as a Markov blanket surrounding internal states: the 

action (active states) of a cell was the cause (i.e., external states) of the sensations (i.e., sensory states) of 

the remaining cells. At the beginning of pattern-formation, cells were undifferentiated, because they were 

uncertain about their identity in the target morphology. As self-organisation unfolded, each cell inferred a 

unique identity, location and what they should sense at that location. When every cell was in the right 

place, these inferences were fulfilled; thereby minimising the free energy (i.e., self information or surprise) 

of every cell. 

In more detail, this inference – in analogy to intracellular cascade signalling and epigenetic mechanisms – 

was driven by the minimisation of free energy. By generating identity-dependent predictions (e.g. genetic 

and epigenetic expression) about sensations, every cell moved around and produced extracellular signals 
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until its predictions were confirmed. Predictions about sensations caused by other cells (e.g. extracellular 

signalling) and its own action (e.g. secretion and position) were constrained by prior beliefs about the role 

of each cell in the target morphology. These prior beliefs were the same for every cell (c.f., pluripotential or 

stem cells). In other words, based on its identity, each cell had particular expectations about its sensory 

states. Because sensations were caused by other cells, surprise could only be minimised when every 

member of the ensemble had inferred a unique role within the ensemble. In short, priors established a 

point attractor for the ensemble dynamics, in terms of a free energy minimum, leading to differentiation 

and self organisation to a target morphology.  

In the present work, we use the same strategy: we simulate self-organisation of an ensemble of cells, 

coupled through spatially decaying (e.g. chemical) signals. However, here, there is no target morphology – 

only the prior that every cell will play the role of an internal, sensory, or active cell, depending upon what it 

senses. In other words, the priors embody the conditional independencies implied by the existence of a 

Markov blanket; in the form of intracellular and extracellular signalling between three cell types. As the 

external states of each cell are the active states of other cells, the system organises in a pattern that 

enables each cell to predict signals from its companions as precisely as possible.  

From the perspective of the ensemble there are no external states. This is an important point, as self-

organisation is by definition autodidactic: it does not require coupling with an external environment. The 

ensuing process leads to a spatial pattern, wherein components of the system are organised in a 

predictable fashion with respect to each other. Such a pattern is inscribed in the (e.g., genetically encoded) 

prior expectations about the sorts of signalling a cell should expect to participate in. More precisely, priors 

are over parameters that specify the form of the generative model, which shapes the free energy 

landscape, thus defining the attracting states towards which the dynamics of the ensemble converge 

(Friston, Levin et al., 2015).  

 

We now describe our simulation setup. The system comprised sixteen pluripotential cells, which can 

become one of three types of cells at the next hierarchical level; namely, internal, active and sensory cells. 

Each cell type secretes a unique extracellular signal and communicates according to the conditional 

independencies required by a Markov blanket (see Table 2). The external states of each cell comprised its 

location     
  and the chemical signals     

  released. This can be expressed as: 

Table 2. Prior beliefs characterising dependencies and independencies 

   

   

(
 
 
 
     
 
 
 
     
 
 
 
)  

 

 

 
Prior probability matrix    over sensed intracellular signals   . Each 

cell secretes one of three types of signal. 

    

   

(
 
 
 
     
 
 
 
     
 
 
 
)

 
 
 

 

  
Prior probability matrix    over sensed extracellular signals   . 
Sensory states ( )  can interact with active states ( ); active states can 
interact with internal ( ) and sensory states; sensory states can 
interact with active states; every cell exchanges of signals with cells of 
the same type. 
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  [
  
  
]  *

  
  
+           (8) 

           

Active states    and    (e.g., endoskeleton and secretory apparatus respectively) have an immediate effect 

on external states; hence the identity mapping. This simplifying assumption means we are ignoring time 

lags (and attenuation), and implies that there is no environment, other than elements of the ensemble 

contributing to the external states. Its sensory states are the sensed intracellular (produced by itself) and 

extracellular (produced by other cells) signals. The latter is a function of distance, assuming signal 

concentration decreases exponentially over space. This can be expressed as: 

  *
  
  
+  [

  
 (     )

]             (9) 

          

Here, the sensory noise   had a high precision (inverse variance) of     (  ). The sensed extracellular 

signals are returned by the function  (     ), which models the spatial decay of signals, where the 

extracellular sensations of the ith cell are given by 

     ( 
    )  ∑     ( |  

    
 |)    

 
        (10) 

        

Here, j indexes all cells other than the ith cell. Each cell generates predictions based on the same generative 

model, which specifies the mapping from hidden states – namely, the type of the cell    – to sensations. 

The type is then the only hidden state that the cells must infer. This inference is parameterised as an 

expected probability by their internal states   . Based on beliefs about its type, each cell then generates 

predictions about intracellular and extracellular sensations:  

 (  )  *
  
  
+   (  )

 (  )  
    (  )

∑     (  ) 

}          (11) 

           

Here,    and    are prior beliefs about secretion and sensation given the type of cell (see Table 2), 

generating sensory predictions, according to the generative model  (  ) (see Equation 6), while  (  ) is a 

soft-max function that returns expectations about the cells type. The resulting dynamics of internal and 

active states of each cell  can be expressed as follows: 

  ( ̃  ̃  ̃)  (     )      ̃    ̃ ̃   
( ) ̃   ( ) ̃

  ( ̃  ̃  ̃)  (     )  ̃     ̃  ̃   
( ) ̃

 

 ̇      ̃    
( )
  ̃

 ̇     
( )  ̃

  *
  
  
+  [

       ( )

       ( )
]

}
 
 
 
 

 
 
 
 

     (12) 
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Here      ( ) is called a prediction error, and  ( ) is the precision of a Gaussian prior over internal 

states that parameterise posterior beliefs about external states. The ~ notation denotes generalised 

coordinates of motion: see (Friston, Stephan et al. 2010). The appearance of the precision-weighted 

prediction errors in this equation arises from the Laplace assumption alluded to earlier. Because variational 

free energy is expressed in terms of log probabilities, the Laplace assumption licenses a locally quadratic 

approximation to the variational free energy. As such, a second order Taylor series expansion around the 

posterior mode is sufficient to characterise this functional. Because the gradient of variational free energy 

evaluated at the posterior mode is zero (by definition), the linear term of this expansion vanishes. The 

result is that free energy may be expressed as a function that is quadratic in the distance between each 

variable and its posterior mode (i.e., quadratic in prediction errors). The gradient of the free energy is then 

simply expressed as a precision-weighted prediction error. Equation (12) shows that internal and active 

states minimise (variational) free energy. Thus, internal and active states perform  a descent to minimise 

prediction errors (Friston, 2010). Under these equations of motion, cells infer their identity based on 

sensations, while secreting according to their role as the ensemble evolves. At the same time, cells move to 

a position, where extracellular inputs can be best predicted.  

Equation (12) also evidences how surprise of observations given a particular model is reflected in the free 

energy. The term ‘surprise’ (a.k.a. surprisal) is used here in the information theoretic sense that quantifies 

how improbable a given event is (Tribus, 1961). Surprisal is a negative log probability (where the probability 

in question is the marginal likelihood of sensory states under the generative model). It is this quantity that 

is upper bounded by the free energy. Under the quadratic approximation to surprise (and variational free 

energy) employed in this paper, surprise scales with the squared difference between the expected and 

observed sensory state. This lets us associate surprise with a squared prediction error. As shown in 

Equation (12), free energy is also a function of weighted squared prediction errors. As such, a surprising 

sensory state, when there is a mismatch between expected and observed data, leads to a large, precise, 

prediction error (ε) and an increase in free energy. 

The results of an exemplar simulation are shown in Figure 3. Self-organisation leads the ensemble to 

assume a cell-like morphology, with internal cells in the middle, encircled by active cells, surrounded in turn 

by sensory cells. Because there are no prior beliefs either about the location or about the number of cells 

per type, these results constitute an emergent property, resulting from the spatial dependency of 

interactions among agents. In other words, the number of cells of each type is not pre-specified or part of 

the generative model – it is an emergent property. Furthermore, the arrangement of differentiated cells is 

not prescribed by each cell’s prior beliefs – the arrangement is an emergent property that is consistent with 

intercellular signalling. This is interesting in the sense that the only arrangements that are consistent with a 

cell’s beliefs about participating in a Markov blanket are exactly the arrangements that are consistent with 

a Markov blanket of cells: see also (Cademartiri et al., 2012). 

Although the results reported in Figure 3 are sensitive to the priors that constitute each cell’s generative 

model (please see discussion), they do not depend sensitively upon the initial states of each cell. In 

particular, random fluctuations in the initial positions and states of the cell do not affect the self 

organisation illustrated in Figure 3. Exactly the same arrangement can be reproduced quantitatively with 

different initial randomisations. On the other hand, small changes to the priors, such as the spatial decay of 

extracellular signals – or the motility of cells – do affect the final configuration. For example, the number of 

internal cells can be greater than one and the final positions of the cells vary with different priors. 

Interested readers can repeat these simulations using different initial randomisations and prior settings, 

using open source code (please see Additional Material). 
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Figure 3. Self-organisation at the first level. This figure illustrates four snapshots at different times during 

the simulation of the (final stage of) self-organisation of an ensemble comprising sixteen ’cells’, whose 

internal and active equations of motion describe a gradient descent on prediction error, relative to sensory 

states expected by each member of the ensemble. Every member is endowed with the same prior (genetic) 

beliefs about what they should signal and sense, depending upon their type (which has to be inferred on the 

basis of what they sense). These priors ultimately prescribe a point attractor for the dynamics of the 

ensemble. Each cell can then infer (via intracellular dynamics) its type and behave (via extracellular 

signalling) accordingly, while moving (via chemotaxis) to a location that fulfils its predictions about its 

extracellular signals. The emergent morphology of the ensemble is a cell of cells, with an internal (red) cell in 

the centre, surrounded by a membrane of active (green) cells in the middle, and sensory (blue) cells on the 

periphery. This is the spatial pattern that best fulfils the prior beliefs of all the constituent cells. Note that 

the cells are initially pluripotent and only acquire (i.e., infer) their (colour-coded) role in the Markov blanket, 

in virtue of their position and signalling with other cells as they self-organise (see for an example the 

internal state at time 40 and 70). This means the number of sensory, active and internal cells is not encoded 

in each cell’s prior; rather, it is an emergent property of self-organisation under the simple prior that each 

cell must be a particular type of cell. Furthermore, if a cell infers that it is a particular type, then it becomes 

that type – because its inference is mediated by intracellular signalling that classifies a cell as one type or 

another. 

The simulation presented above illustrates the role of Markov blankets in a simple but plausible world 

where only local interactions are permitted, in which prior beliefs (e.g., a genetic code) have learned that, 

in order to exist, a living system has to self-generate boundaries that separate it from – and mediate the 

coupling with – its environment. As in real biological systems, the constituents of an ensemble interact with 

each other, leading to signal cascades. This signalling rests on inference (e.g., intracellular dynamics) about 

the role each cell should play, where action (e.g., chemotactic signalling) realises that role. Cells then 

differentiate, based upon their prior beliefs (e.g., genetic code). In essence, the ensemble reaches a steady 

state characterised by an internal milieu, which exists – in virtue of assembling its own Markov blanket – as 

integral part of the system. One could imagine that genes specify Markovian affordances to produce 

hierarchical structures; such as organs, tissues, organisms and so on. On this view, self-organisation is then 

a recursive process that engenders, at every level, the emergence of Markov blankets. We now pursue this 

using an extended simulation set up. 

Self-organisation: ensemble of ensembles 
The second simulation considers ensembles of organelles, each comprising an ensembles of 16 cells, to 

illustrate hierarchical self-organisation; namely, the self-assembly of Markov blankets of Markov blankets 

and the requisite coupling between levels. To investigate the autonomous organisation of (256) cells at two 
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levels, every cell is equipped with the same (genetic beliefs or) priors about their local and global identity, 

that is, they share beliefs about possible roles at both the ensemble (local) and ensemble of ensemble 

(global) level. Practically, each cell now had two sets of hidden states – and prior beliefs – pertaining to 

their role at the local (i.e., microscopic) and global (i.e., macroscopic) level. Crucially, these priors are the 

same as used in the previous simulation; namely, they prescribe conditional independencies that are 

mandated by a Markov blanket at each level: 

*
  
  
+  [

  
 

  
 
]  [

  
 

  
 ]          (13) 

      

Here, the superscripts denote the local (ensemble) and global (ensemble of ensemble) level. The only 

additional piece of information required in this simulation is how the two levels couple to each other. For 

computational expediency, we model the microscopic dynamics (cells within an ensemble) of only one 

ensemble of sixteen cells, whereas for the remaining (fifteen) ensembles, we assume that the average 

behaviour conforms to the local dynamics of the simulated ensemble. This is a mean field approximation in 

the sense that we discount local fluctuations within each ensemble and assume only their average 

behaviour is ‘seen’ by any single ensemble. This allows us to simulate the coupling of sixteen cells of the 

fully simulated ensemble with other fifteen ensemble means (without simulating the other 15 ensembles 

explicitly). Notice that the allocation of cells to ensembles does not imply an allocation to a particular type 

of ensemble. The ensembles self-allocate as the Markov blanket emerges at the higher level. In summary, 

this simulation illustrates how sixteen cells self-organise in an ensemble that in turn self-organises with 

other fifteen identical ensembles, while describing the coupling between the local and global level. 

In particular, for the fully simulated thk  ensemble, the global to local extracellular coupling means that it 

only senses the average of all other global signals, while the local to global coupling means that the average 

over its   active states informs the dynamics of the remaining ensembles: 
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where      . The first and second equalities in (13) refer to the extracellular sensing of cells and the 

intracellular sensation of the ensemble, respectively. In terms of local to global coupling, as they are part of 

the same ensemble, these predictions will be congruent with each other and cells will therefore act in 

concert at the global level: 
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Here,   
 

 is the expectation about global coupling for each cell in the ensemble.  

In summary, sixteen cells locally self-organise in an ensemble, guided by the (local) priors, while interacting 

with the remaining fifteen ensembles. Exemplar simulation results are shown in Figure 4, which illustrates 

hierarchical self-organisation and pattern formation of Markov blankets within Markov blankets. The lower 

panels of Figure 4 show the evolution of each cell’s expectations (i.e., differentiation) at the local (left), and 

global (middle) level. The lower right panel shows the expectations of the cells of the sixth ensemble about 
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their role at the global level. The sixth ensemble is an active ensemble at the global level (colour-coded by 

green), and this global identity appears to constrain the expectations of every cell at the local level.  

 

Figure 4. This figure shows the (final) results of self-organisation of an ensemble of cells, where each 
constituent of the ensemble is itself a local ensemble. In this example, 16 local ensembles, each composed of 
16 cells, self-organise in a global ensemble. Panel A shows the evolution of the hierarchical system captured 
at three different moments. The colour of central circles reflects the inferred cells within each local 
ensembles; the peripheral circles indicate specialisation of local ensembles within the global ensemble. 
(colours: internal – red, active – green, sensory – blue). Note that there are no external states because the 
external states comprise the Markov blankets of other ensembles. The key thing to observe here is that 
(slow) self-organisation of local ensembles in a global Markov blanket, starting at time 1, relies on their very 
existence, that is, on (fast) self-organisation of cells composing each ensemble. At any temporal and spatial 
scale, the emergence of a Markov blanket reflects the particular independency structure, where internal 
cells do not influence sensory (i.e. surface) cells, in virtue of their separation by active cells. This separation 
induces conditional independence, because of the limited range of intracellular signals (that fall off with a 
Gaussian function of distance). Panel B shows the same results in an alternative format; namely, the 
evolution of expectations about type (i.e., differentiation) of cells within an exemplar local ensemble (left; 
local expectation), and of the local ensemble within the global ensemble (middle; global expectation). 
Notably, the identity of the local ensemble is the result (i.e. the average) of its constituent cell’s beliefs 
about their role at the higher level. This means that a local ensemble organises in concert with the other in a 
global ensemble because its cellular components have communal beliefs about their role (as a local 
ensemble) in the global one. These cellular beliefs about global identity are represented in the left 
illustration of Pannel B. Here, the exemplar ensemble becomes an active state. This means that a local 
ensemble organises in concert with the others in a global ensemble because its cellular components have 
communal beliefs about their role (as a local ensemble) at the global level. These cellular ‘beliefs’ about 
global identity are represented in the left illustration of Panel B. Here, the exemplar ensemble becomes an 
active state. This means that all its constituents will come to infer that they participate as an active state at 
the global level (left; local about global). Note the differentiation on both a local and global level; while local 
expectations about the cells’ role at the global level converge to the same type. Panel C displays the 
decrease in free energy of the hierarchical system as self-organisation takes place. 
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A first interesting aspect of these simulation results is the rapidity with which the cells infer their type and 

implicitly differentiate into internal or blanket cells. This was a generic feature of the simulations, 

suggesting that the priors that lead to hierarchical self-organisation require a fairly rapid specialisation to 

enable self-assembly a global attractor. This reflects the circular causality or positive feedback loop 

between microscopic and macroscopic (Markov blanket) dynamics that underlies this kind of self-

organisation. In other words, cells move and secrete chemicals accordingly to their inferred role in the 

Markov blanket partition; simultaneously, inference becomes more accurate as cells approach their final 

configuration. In the setting of hierarchical self-organisation, inference at the within ensemble (local) level 

is characteristically faster than at the between ensemble (global) level. This reflects a ubiquitous separation 

of temporal scales that characterises hierarchical self-organisation (Jung et al., 2015; Kiebel et al., 2008; 

Perdikis et al., 2011). A second noteworthy point is the spatial structure emerging in these exemplar 

simulations: when interactions are spatially dependent, active states – which can influence but are not 

influenced by external states – are enclosed by sensory states, in a similar way as the cytoskeleton resides 

within cellular boundaries, or muscles within the epithelium. Analogously, sensory states, that can 

influence but are not influenced by internal states, are segregated from the latter. Notice finally that as 

cells must possess a Markov blanket to distinguish each other at one level of description, at the level above 

there will be other ensembles (not shown) from which the simulated one will have to differentiate itself – 

by means of a Markov blanket.  

In the example shown in Figure 4, local expectations (lower left panel) converge quickly, with a discernible 

differentiation after the first time step. Conversely, local expectations about the global type take much 

longer to converge, with the degree of uncertainty in some cells that only resolves at the final time step 

(see cell 12 in the lower right panel). This example may reflect the separation of timescales formalised in 

synergetics, and in particular by the slaving principle, which deals with self-organisation and pattern 

formation in open systems far from thermodynamic equilibrium (Carr, 1981; Ginzburg, 1955; Haken, 1978; 

Tschacher and Haken, 2007). In this setting, slow macroscopic patterns of activity are said to enslave fast 

microscopic patterns, while the macroscopic patterns (known as order parameters) are constituted by the 

microscopic patterns; hence circular causality. 

Discussion 
In this paper, we have presented a variational treatment of hierarchical self-organisation. Given local 

interactions, carefully crafted prior (genetic) beliefs about conditional dependencies and independencies 

endow a system with a point attractor comprising internal states and their Markov blanket. Moreover, 

applying the same priors at any hierarchical level leads to the emergence of Markov blankets within 

superordinate Markov blankets. A key feature of the simulations – used in this paper – is the absence of 

any explicit target morphology within the prior (e.g., genetic) beliefs of the system’s denizens. This is an 

emergent property, which appears to have a top-down effect on the blankets below. The subsequent 

emergence of a cell-like structure is interesting because it speaks to characteristic spatial boundaries found 

in most biological systems; namely, cellular membranes. The isomorphism between a statistical and spatial 

boundary rests on spatially dependent interactions among internal and external states. In other words, the 

states of a system can include its generalised motion in physical space, such that the blanket states acquire 

the attribute of a spatial location (and velocity). In turn, this means that spatial boundaries can be identified 

with statistical boundaries, under conditional dependencies of the flow internal and active states on 

external states. As noted above, these normally involve short range statistical couplings or, in physical 

terms, forces or chemical gradients (Ao, 2009; Seifert, 2012). Crucially, this sort of hierarchical self-
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organisation is a recursive process that can repeat itself at higher levels of description. Interestingly, this 

perspective enables to identify ensembles that are or are not self-organising: in this optic, the distinction 

between a culture of cells and a multicellular organism resides in the emergence of a Markov blanket at the 

ensemble level. Another consequence of this recursive aspect is the absence of a privileged point of view, 

when describing hierarchical self-organisation: the dynamics at every level play the role of macroscopic 

states at the level below, and the role of microscopic states at the level above. An apparent example is 

morphogenesis, during which chemotaxis and development of a system’s components occurs within a 

global configuration established by morphogen gradients controlling gene expression (Balaskas et al., 2012; 

Chang et al., 2002). Notably, in our simulations, morphogen gradients could be interpreted as the 

expression of beliefs about the possible role at the ensemble level that each cell or element at the level 

below must have. Actuation of these beliefs (morphogenesis) then occurs through an inference process 

(differentiation), and realisation of the corresponding positional predictions (chemotaxis); for an example 

that uses exactly the notion of a Markov blanket and chemotactic signalling, please see (Kuchling et al., 

2019). At a subcellular scale, the same logic applies, so that self-organisation of microscopic organelles like 

the cellular membrane and vesicular structures is constrained by beliefs about their role at the cellular 

level. On the same note, the dialectic between hierarchical layers formalised above accounts for the 

dynamics of multi-agent, complex systems, ranging from cultural ensembles (Ramstead et al., 2018) to 

complex urban environments (Hadfi and Ito, 2016). 

Here we associate biochemical structures, gradient flows and kinetics with Bayesian priors and belief 

propagation or updating – as opposed to propositional or representational beliefs. The only thing that 

licenses the use of the word ‘belief’ is that the macromolecular and cellular kinetics at hand were cast as a 

gradient flow on variational free energy. This means that one can interpret the resulting dynamics in terms 

of Bayesian belief updating (Winn and Bishop, 2005). However, this is an ‘as if’ interpretation; in the same 

sense that the folding of a macromolecule to minimise its thermodynamic free energy in computational 

chemistry – e.g., (Lammert et al., 2012) – looks ‘as if’ it is trying to minimise (thermodynamic) free energy. 

The advantage of being able to formulate this kind of self-organisation in terms of gradient flows on 

variational (as opposed to thermodynamic) free energy is that variational free energy is a functional of a 

generative model. This means that one can prescribe the desired endpoint of self-organisation in terms of 

priors (Friston et al., 2014). One might ask; where do priors come from? Here, we assume that they are a 

product of natural selection (i.e., Bayesian model selection) and are therefore entailed in genetics and 

epigenetics (Campbell, 2016; Frank, 2012; Ramstead et al., 2018). We do not try to provide a detailed 

account of the ensuing gradient flows in terms of molecular biology; e.g., (Tabata and Takei, 2004). 

However, one can imagine hypotheses based on variational free energy gradient flows can be tied to intra-

and inter-cellular signalling; e.g., (Cervera et al., 2019; Friston, Levin et al., 2015; Kuchling et al., 2019). 

Interestingly, exactly the same challenge arises in the neurosciences, where the equivalent gradient flows 

become neuronal dynamics – and the accompanying challenges become understanding neurophysiology 

and neuronal microcircuitry in terms of variational message passing; e.g., (Friston et al., 2017). 

It is interesting to ask how the priors that underwrite this kind of self-organisation are updated in terms of 

cell biology. The usual response to this is to consider hierarchal processes of free energy minimisation in 

terms of Bayesian model selection (Allen, 2018; Campbell, 2016; Frank, 2004; Ramstead et al., 2018). This 

leads naturally to a link between natural selection and Bayesian model selection based upon the evidence 

bounds afforded by variational free energy. On this reading, natural selection becomes a form of structure 

learning (a.k.a. Bayesian model selection) based upon the model evidence associated with a particular 

phenotype. In short, the (marginal) likelihood of a particular phenotypic structure – in an evolutionary 
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setting – is optimised in terms of its prevalence in a population. Because this structure is a model of the 

external milieu, it entails particular priors. If these priors are fit for purpose in terms of minimising 

variational free energy then they will be selected. For example, under some mild assumptions, the 

replicator equation can be cast as a Bayesian filter; exactly along the lines of the above argument: see 

(Frank, 2012; Geisler and Diehl, 2003; Ramírez and Marshall, 2017) for further discussion. 

In our simulations, and more generally, we have made some mild assumptions about the external or 

environmental states that contextualise self-organisation at the highest scale considered. This speaks to an 

important conceptual point; namely, that a partitioning of systemic states into Markov blankets at any scale 

is always contextualised by the scale above. In other words, there must be a permissive context in which 

self-organisation unfolds at, generally, faster timescales in the level below (Schwabl, 2002; Jeffery et al., 

2019). Strictly speaking, this implies an infinite regress; in the sense that we can only talk about Markov 

blankets at one scale of self-organisation by assuming some attracting set at a higher scale. Indeed, this 

recursion can be formalised in terms of the renormalisation group that emerges from grouping and course 

graining (i.e., reduction) operators on the Markov blankets (Friston, 2019). The renormalisation group 

formulation implies that the time constants of self-organisation at larger scales necessarily increases, when 

moving from one scale to the next.  

Practically, this means that one can assume that the external states that encompass the formation of 

Markov blankets at the highest scale under consideration are changing slowly in relation to lower scales. 

The picture that emerges here is that the same basic (Bayesian or variational) mechanics emerge in a scale-

free fashion at different levels; from the quantum through to the level of molecular biology; from the scale 

of cells through to organs, from phenotypes through to species; all the way up to a cosmological scale. 

Although this might sound fanciful, this perspective has some currency in relation to the differences 

between quantum, statistical and classical mechanics. These differences rests largely upon the suppression 

of random fluctuations as one progresses from the small to the large. We have chosen to illustrate coupling 

between just two levels; namely, the mesoscopic level of cells and cell assembly in biology. 

One might ask why we have focused on the free energy principle, as opposed to other formal descriptions 

of self-organisation (Haken, 1978; Kauffman, 1993; Kelso, 1995; Nicolis and Prigogine, 1977); for example, 

phase transitions in spin models (Vatansever and Fytas, 2018), attractor landscapes in random Boolean 

networks (Gershenson, 2012) or Turing style pattern formation via reaction diffusion systems (Halatek et 

al., 2018). Our motivation for casting self-organisation as a variational principle was threefold: first, the free 

energy principle provides an integrative formalism that should apply to all the above. In other words, it 

regards pattern formation and self organisation – as manifest in reaction diffusion systems and other 

nonequilibrium steady-state dynamics – as realisations of the same principle. This is self-organisation to a 

random attractor (Crauel and Flandoli, 1994; Friston and Ao, 2012). When this attracting set possesses a 

Markov blanket the free energy principle must apply (Friston 2013). This means that one can interpret any 

form of self-organisation – to an attracting set – in terms of a gradient flow on variational free energy and, 

implicitly, self-evidencing (Hohwy 2016, Ramstead, Badcock et al. 2017). This is important because most 

existing approaches to the dynamics of self-organisation try to reverse engineer an energy functional (or 

Lyapunov function), given some dynamics or equations of motion. The free energy principle allows one to 

invert the problem and write down the dynamics as a gradient flow on a free energy functional that is 

specified in terms of a generative model (Friston, Sengupta et al. 2014). Crucially, the prior beliefs of this 

generative model determine the attracting set. By explicitly writing down a Markov blanket in these priors, 

we obtain a system whose organisation is the most general and essential possible, implicitly in any self-

organising system behaving accordingly to the free energy principle. Finally, using the notion of random 

dynamical systems (Arnold and Crauel, 1991; Crauel and Flandoli, 1994), the free energy principle allows 
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one to articulate questions about (and simulate) self-organisation at multiple scales. Here, we have focused 

on the link between just two scales; however, by induction, the conclusions from this paper could be 

generalised to multiple levels – at least in principle. This hierarchical aspect would be challenging to 

simulate using conventional approaches to pattern formation. 

As noted in the introduction, our aim was to provide a numerical analysis of the minimal conditions under 

which hierarchical self-organisation emerges – and show that the minimisation of variational free energy 

provides a sufficient account, under the right sort of generative model. Crucially, this does not mean that 

any free energy minimising ensemble will show this kind of hierarchical self organisation. Our agenda was 

not to suggest all systems self-organise hierarchically; rather, we wanted to explain the existence of the 

hierarchical structures seen in biology, in terms of variational principles.  

Practically, the behaviour illustrated in the above simulations depends sensitively on priors in the 

generative model and initial conditions. In more details, setting prior beliefs that specify an attractor in 

state space (endowed with a Markov blanket) is not trivial, and growth in the size of the system further 

complicates the task. This is reminiscent of the emergence – at later evolutionary stages – of bigger or 

more complex organisms. Furthermore, these simulations show the final stage of self-organisation, where 

the system finds itself in the vicinity of the attractor; initialising the system too far from this attracting point 

(e.g., by adding extra perturbation to location) can prevent the system from elaborating a bounded 

structure (i.e. existing). This, in turn, speaks to the difference between these (minimal and general) 

simulations and the complexity of (specific) biological systems, endowed with a plethora of control and 

feedback mechanisms, which underwrite robustness to perturbations. This sensitivity to prior parameters 

and initial states leads to some interesting questions. For example, questions about the rate at which the 

structures stabilises – and how this depends upon the parameters (c.f., rate spatial decay constants) that 

constitute each cell’s priors. How do the initial values (e.g., position) affect self-organisation? These 

questions raise an interesting issue: is there anything special about a hierarchical structure that would 

explain its prevalence in biotic systems. One speculation here might be that a hierarchical (self-similar) 

architecture of Markov blankets might be a free energy minimising solution on a longer time scale, such as 

evolution. This should be possible to address via simulated (pharmacological) lesion experiments that block 

the formation of higher-order Markov blankets. One can then measure the free energy with and without 

hierarchical self-organisation and consider the implications for natural selection. In variational 

formulations, natural selection is treated as a form of Bayesian model selection, based upon model 

evidence or variational free energy (Campbell, 2016; Frank, 2012). We hope to pursue this in subsequent 

work. 

Conclusion 
This work suggests that Markov blankets are a fundamental characteristic of biological systems. Their 

presence is necessary for life – as they underwrite an existential separation of the system from its 

environment, while preserving its interactions. The hierarchical organisation of complex systems – like 

living organisms – implies that the self-similar organisation of Markov blankets may be evident at any level 

of biological structure. From the point of view of dynamical systems, Markov blankets are attractors, 

attracting fast microscopic dynamics, while underwriting the emergence of macroscopic (order) 

parameters. This circular causality nicely captures the self-organisation of biological systems, which evolve 

autonomously with a morphology (Markov blanket) that is necessarily predisposed to a selective coupling 

with external states. The natural place – where these attractors might be specified – is the genetic code. 

Clearly, this is rather speculative; however, it is possible that the astonishing diversity of flora and fauna we 

witness might reflect the fact that, in a world where signals are spatially dependent, Markov blankets are 

synonymous with existence. 
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Additional information 

Simulations: The simulations reported in this paper can be reproduced using the open access academic 

software SPM (http://www.fil.ion.ucl.ac.uk/spm/software/). The key routines are DEM_cells.m and 

DEM_cells_cells.m that illustrate self-organisation of a single ensemble and ensemble of ensembles 

respectively. 

DEM_cells.m: This demo illustrates self-organisation in an ensemble of (sixteen) cells using the same 

principles described in DEM_morphogenesis, but using a simpler generative model. Overall, the dynamics 

of these simulations show how one can prescribe a point attractor for each constituent of an ensemble that 

endows the ensemble with a point attractor to which it converges. In this example, we consider the special 

case where the point attractor is itself a Markov blanket. In other words, cells come to acquire 

dependencies, in terms of intracellular signalling, that conform to a simple Markov blanket with intrinsic or 

internal cells, surrounded by active cells that are, in turn, surrounded by sensory cells. This organisation 

rests upon intracellular signals and active inference using generalised (second-order) variational filtering. In 

brief, the hidden causes driving action (migration and signalling) are expectations about cell type. These 

expectations are optimised using sensory signals; namely, the signals generated by other cells. By equipping 

each cell with prior beliefs about what it would sense if it was a particular cell type (i.e., internal, active or 

sensory), they act (i.e., move and signal) to behave and infer their role in an ensemble of cells that itself has 

a Markov blanket. In a DEM_cells_cells.m, we use this first-order scheme to simulate the hierarchical 

emergence of Markov blankets; i.e., ensembles of cells that can be one of three types at the local level; 

independently of their time at the global level. 

DEM_cells_cells.m: This demo is a hierarchical extension of DEM_cells.m, where we have 16 ensembles 

comprising 16 cells. Each cell has a generative model (i.e., prior beliefs) about its possible local and global 

cell types (i.e., internal, active or sensory). Given posterior beliefs about what sort of self it is at the local 

and global level, it can then predict the local and global intracellular signals it would expect to receive. The 

ensemble of ensembles then converges to a point attractor; where the ensemble has a Markov blanket and 

each element of the ensemble comprises a cell – that is itself a Markov blanket. The focus of this simulation 

is how the local level couples to the global level and vice versa. For simplicity (and computational 

expediency) we only model one ensemble at the local level and assume that the remaining ensembles 

conform to the same (local) dynamics. This is effectively a mean field approximation, where expectations of 

a cell in the first ensemble about its global type are coupled to the corresponding expectations and the 

ensemble level, and vice versa. The results of this simulation are provided in the form of a movie and 

graphs. 
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