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a b s t r a c t 

The anti-tumor activity of the immune system is increasingly recognized as critical for the mounting of a 

prolonged and effective response to cancer growth and invasion, and for preventing recurrence following 

resection or treatment. As the knowledge of tumor-immune cell interactions has advanced, experimental 

investigation has been complemented by mathematical modeling with the goal to quantify and predict 

these interactions. This succinct review offers an overview of recent tumor-immune continuum modeling 

approaches, highlighting spatial models. The focus is on work published in the past decade, incorpo- 

rating one or more immune cell types and evaluating immune cell effects on tumor progression. Due to 

their relevance to cancer, the following immune cells and their combinations are described: macrophages, 

Cytotoxic T Lymphocytes, Natural Killer cells, dendritic cells, T regulatory cells, and CD4 + T helper cells. 

Although important insight has been gained from a mathematical modeling perspective, the development 

of models incorporating patient-specific data remains an important goal yet to be realized for potential 

clinical benefit. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Immune system cell types 

The human immune system has two main components that in-

eract with each other to defend organisms from pathogens: the

nnate and the adaptive components. The innate response pro-

ides a general defense mechanism that can be quickly mounted.

ells that belong to this response include macrophages, Natural

iller (NK) cells, and neutrophil leukocytes. Monocytes circulate

n the peripheral blood and are recruited to tissues following in-

ection or injury, where they differentiate into either pro- or anti-

nflammatory macrophages, based on cues in the local microenvi-

onment. NK cells are regulators of the immune response and have

he capability to target stressed or cancerous cells. Neutrophils cir-

ulate in the blood and migrate through tissue to destroy bacteria

nd other pathogens. 

The adaptive response takes longer (up to 7 days) to mount a

efense, but unlike the innate response, its targeting is highly cus-

omized to particular pathogens. The adaptive response maintains

 memory of pathogens encountered, for quick re-activation of the

efense if needed in the future. Cells of the adaptive component
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ouisville, KY 40292, USA. 

E-mail address: hbfrie01@louisville.edu (H.B. Frieboes). 

1

 

c  

s  

ttps://doi.org/10.1016/j.jtbi.2019.03.002 

022-5193/© 2019 Elsevier Ltd. All rights reserved. 
nclude B lymphocytes, T lymphocytes, and dendritic cells (DCs).

uring the course of fighting an infection, B lymphocytes produce

ntibodies specialized to a particular pathogen, while T lympho-

ytes develop into specialized cells, including Cytotoxic T Lympho-

ytes, T regulatory cells, T helper cells, and T memory cells. Den-

ritic Cells are antigen-presenting cells that initiate the adaptive

esponse, traveling to secondary lymphoid organs upon exposure

nd uptake of pathogens to activate naïve T cells. 

Cytotoxic T Lymphocytes (CTLs), also known as CD8 + T Cells

r Killer T Cells, express a unique antigen-binding molecule (T-

ell Receptor) enabling them to kill any cell not recognized as

elonging to the host organism. Their activity is tightly regulated

y other immune cells. CD4 + T cells are commonly classified into

 regulatory cells (Tregs) and T helper (Th) cells. Tregs regulate

he Th cells, thus controlling the immune response. The Th cells

ontrol adaptive immunity against pathogens and cancer by acti-

ating other effector immune cells. The Th cells are activated on

he surface of antigen-presenting cells, and in turn they activate

acrophages to destroy ingested microbes, B cells to secrete anti-

odies, and CTLs to kill infected target cells. 

.2. Immune system surveillance 

Tumor progression to malignancy depends critically upon es-

ape from immunosurveillance, the process by which the immune

ystem detects and eliminates cancerous cells. Prior to malignancy

https://doi.org/10.1016/j.jtbi.2019.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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and metastasis, precancerous tumors may remain in a dormant

state for years ( Aguirre-Ghiso, 2007 ). Dormancy may not neces-

sarily result from a lack of sufficiently stacked tumorigenic adap-

tations required for rapid replication, i.e., the persistence of safe-

guards that prevent unchecked growth. Dormancy may also result

from a balance of oncotic growth kept in check by immunosurveil-

lance. Through various mechanisms, both the innate and adaptive

immune systems counteract growth by inducing apoptosis and/or

cell cycle arrest ( Dunn et al., 2004; Mittal et al., 2014 ). Natural

Killer cells, Cytotoxic T Lymphocytes, CD4 + T helper cells, and B

Lymphocytes regularly survey and prevent propagation of mutated

cells ( Nicholson, 2016 ). It is when the balance of growth and tar-

geting is upset by evolutionary pressures in favor of tumors capa-

ble of immune evasion or immunoediting that malignancy may oc-

cur. In effect, the immune system’s ability to prevent development

of tumors can also create tumors undetectable by it. 

1.3. Mathematical modeling 

Mathematical modeling of cancer has traditionally been clas-

sified as continuum, discrete, or a (hybrid) combination of both,

based on the physical representation of the relevant biological

components, and has been extensively reviewed in the past decade

( Alfonso et al., 2017; Anderson and Maini, 2018; Baldock et al.,

2013; Byrne, 2010; Chaplain, 2011; Cristini et al., 2008; Deisboeck

et al., 2011; Edelman et al., 2010; Enderling and Chaplain, 2014;

Frieboes et al., 2011; Hatzikirou et al., 2012; Kreeger and Lauf-

fenburger, 2010; Michor et al., 2011; Osborne et al., 2010; Palla-

dini et al., 2010; Rejniak and McCawley, 2010; Szyma ́nska et al.,

2018; Vineis et al., 2010; Wang et al., 2015a,b ). Whereas contin-

uum formulations allow for more efficient representation of tissue-

scale phenomena, discrete models are well-suited for representing

individual cells and their interactions. Systems with only time as

the independent variable typically present with ordinary differen-

tial equation (ODE) formulations, while those that include multiple

spatial dimensions yield partial differential equation (PDE) systems

of equations. 

Models can also be classified in terms of their scale of inter-

est, as to whether they represent phenomena at molecular, cellular,

tissue/organ, or patient scales. Although tumor-immune dynamics

occur at various scales, models have traditionally focused on one

of these scales due to the complexities involved. In particular, a

prey-predator approach is commonly used to describe numerous

biological processes and is suited for representing the actions of

individual cells ( d’Onofrio et al., 2010; Letellier et al., 2013; Rocha

et al., 2018; Singh et al., 2017 ). For example, a cell-by-cell approach

may be useful for strategies in which Natural Killer cells or Cy-

totoxic T Lymphocytes “prey” on tumor cells. A strategy to rep-

resent multiple scales also taking into account the microenviron-

ment is to represent the tumor itself as a semi-homogeneous ag-

gregate of cells with strata of oxygenation controlling rate of prolif-

eration ( Owen and Sherratt, 1998 ). This allows intra-tumor dynam-

ics such as development of hypoxic regions to be modeled. Blend-

ing of multiple scales can be computationally intensive, and has

not yet been widely adopted ( Rejniak and Anderson, 2011 ). 

Recent comprehensive reviews have included evaluation of

modeling the cancer-immune response to therapy ( de Pillis

et al., 2014 ), an assessment of tumor-immune non-spatial models

( Eftimie et al., 2011 ), and an overview of multiscale agent-based

and hybrid modeling of the tumor immune microenvironment and

cancer immune response ( Norton et al., 2019 ). This review en-

compasses continuum models developed in the last decade, high-

lighting spatial models, and focusing on the interactions of par-

ticular immune cell types with tumors and their microenviron-

ment. In addition to tumor-immune cell dynamics, some models

have explored the effects of immunotherapy, chemotherapy, and
heir combinations on tumor progression; some of these models

re mentioned for illustrative purposes. 

. Modeling of tumor-immune cell interactions 

.1. Macrophages 

Macrophages are the majority immune cell type in the tumor

icroenvironment ( Nielsen and Schmid, 2017 ), and can have sig-

ificant effects on tumor growth ( Chanmee et al., 2014; Guo et al.,

013; Guo et al., 2014; Tripathi et al., 2014 ) and treatment re-

ponse ( De Palma and Lewis, 2013; Squadrito and De Palma, 2011 ).

acrophage phenotype and lineage vary ( Italiani and Boraschi,

014; Laoui et al., 2011 ), producing both tumorigenic and tumorici-

al effects ( Chanmee et al., 2014 ) ( Roca et al., 2009 ), influenced by

ytokines secreted by the tumor-associated tissue and stroma. The

henotype may be sorted into a spectrum, with the M1 inhibiting

umor growth by migrating to the tumor site and secreting cyto-

oxic compounds such as NO, and the M2 promoting cancer via

ecruitment to the tumor site and release of growth-promoting cy-

okines ( Yao et al., 2018; Yuan et al., 2015 ). The phenotypes are

uid, with macrophage activation and M1 and M2 functions shared

o various degrees depending on environmental cues. 

In early work, Owen and Sherratt (1998, 1999 ) presented math-

matical models to evaluate the effects of macrophage presence,

nflux, and ability to selectively kill tumor cells in avascular tu-

ors. Subsequent modeling evaluated the ability of macrophages

ngineered to target tumor cells ( Byrne et al., 2004 ) or deliver

rug ( Owen et al., 2004 ), finding that such approaches are non-

ntuitively sensitive to tumor and therapy parameters. These find-

ngs were further explored in Webb et al. (2007) , showing that

ffective targeting of hypoxic tumor cells by macrophages would

enefit from limited-diffusivity or non-cell-cycle dependent drugs. 

The effects of macrophage repolarization on tumor growth

ere recently evaluated by den Breems and Eftimie (2016) . M1

acrophage density x M 1 is described as: 

d x M1 

dt 
= ( a s x Ts + a m 1 x T h 1 ) x M1 

(
1 − x M1 + x M2 

βM 

)
−δm 1 x M1 − k 12 x M1 x M2 + k 21 x M1 x M2 , 

here x M 2 is the density of M2 macrophages, x Ts is the density

f immunogenic tumor cells recognized by immune cells, a s is the

ctivation rate of x M 1 in the presence of x Ts tumor-specific antigens,

 m 1 is the activation rate of x M 1 in the presence of x Th 1 type-I cy-

okines, x Th 1 is the density of Th1 helper cells, βM 

is the carrying

apacity of M1 and M2 cells, δm 1 is the death rate of x M 1 cells, k 12 

s the rate at which x M 1 become x M 2 , and k 21 is the rate at which

 M 2 become x M 1 . M2 macrophage density x M 2 is described as: 

d x M2 

dt 
= ( a n x T n + a m 2 x T h 2 ) x M2 

(
1 − x M1 + x M2 

βM 

)
−δm 2 x M2 + k 12 x M1 x M2 − k 21 x M1 x M2 , 

here x Tn is the density of non-immunogenic tumor cells, a n is ac-

ivation rate of x M 2 mediated by cytokines and growth factors pro-

uced by x Tn , x Th 2 is the density of Th2 helper cells, a m 2 is the acti-

ation rate of x M 2 by type-II immune response cytokines produced

y x Th 2 , and δm2 is the death rate of x M2 cells. This study showed

hat type-II immune responses, characterized by large numbers of

2 and Th2 cells, are associated with tumor growth, and that the

ates describing macrophage repolarization from M1 to M2 (and

iceversa) determine the delay in tumor growth and the tumor

ize. 

Clinically, a larger population of macrophages at a tu-

or lesion site is generally associated with poor patient out-

omes, with a high M2/M1 ratio generally correlated with poor
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rognosis ( Lan et al., 2013 ). The effects of macrophages on triple-

egative cancer were evaluated in an agent-based model in

orton et al. (2018) , finding that although overall tumor growth

s generally promoted by macrophages, excessive infiltration may

ot necessarily lead to substantial growth and could even promote

umor regression. 

In Mahlbacher et al. (2018) , M1, M2, and Tie2 expressing (TEM)

acrophage variants were integrated into a spatio-temporal model

f tumor growth representing a metastatic lesion in a highly vas-

ularized organ such as the liver. TEMs are a macrophage subtype

rising from a monocyte precursor distinct from the M1 and M2

ubtypes. Their phenotype is similar to the M2, but unlike M2s,

hey are also critical for the support and maturation of neovascu-

ar sprouts ( De Palma et al., 2005 ), and must be present for the

umor to progress ( De Palma et al., 2005 ). Behaviors simulated by

he model (described in further detail below) included M1 release

f cytotoxic nitric oxide, M2 release of growth-promoting factors,

nd TEM facilitation of angiogenesis via Angiopoietin-2 and pro-

otion of monocyte differentiation to M2 via IL-10. The results

howed that M2 presence led to larger tumor growth regardless

f TEM effects, im plying that TEM ablation as an immunothera-

eutic strategy may fail to restrain growth when the M2 repre-

ents a sizeable population. As TEM pro-tumor effects are less pro-

ounced and on a longer time scale than M1-driven tumor inhibi-

ion, a more nuanced approach to influence monocyte differentia-

ion taking into account the tumor state (e.g., under chemotherapy)

ay be desirable. The results highlighted the dynamic interaction

f macrophages within a growing tumor, and evaluated the feasi-

ility of a mathematical framework that could longer term help to

ptimize cancer immunotherapy. 

A cornerstone of current cancer treatment is chemotherapy. In

ddition to cytotoxic effects on tumor cells, the effects on sur-

ounding tissues and the immune system are still being elucidated.

ome effects are synergistic; chemotherapy may cause cancerous

ells to be more visible to the immune system, or upregulate the

mmune response directly or indirectly ( Bracci et al., 2014 ). How-

ver, chemotherapy may also induce release of factors from nearby

ells to promote tumor growth ( Sun et al., 2012 ). Dosage and tim-

ng may have a variety of effects on immunosurveillance and tu-

oral resistance, suggesting a nuanced approach that also consid-

rs the effects of chemotherapy on the immune system to achieve

etter patient outcomes ( Kareva et al., 2015 ). 

Potential tumorigenic effects of macrophages, modeling the ef-

ect of macrophage presence and response to standard chemother-

py, and the role of the chemical tumor environment on tumor

rowth were examined in Chen et al. (2014) . The tumor cell den-

ity c is modeled as follows: 

∂c 

∂t 
+ 

1 

r 2 
∂ 

∂r 

(
r 2 cv 

)
= λc ( w, C ROS ) c 

(
1 − c 

c ∗

)
−μc1 ( w ) c − μc2 c, 0 < r < R ( t ) , 

here r is tumor radius, v is radial velocity, λc is proliferation rate,

 is oxygen level, C ROS is intracellular concentration of reactive

xygen species, μc 1 is necrosis rate, and μc 2 is apoptosis rate, as-

umed constant for non-treated tumors. In chemotherapy-treated

umors, the apoptosis term changes: 

˜ μc2 = θ4 μc2 η( w ) 

( w ) = 

w 0 

w 

, 

here θ is the fraction of the volume occupied by cells and w 0 is

he threshold for normoxia. Macrophages contribute to the chem-

cal environment by expression of hypoxia inducible factors (HIF)

hich in turn influence levels of intracellular glutathione, a regu-
ator of redox activity. The macrophage density m is modeled as: 

∂m 

∂t 
+ 

1 

r 2 
∂ 

∂r 

(
r 2 m v 

)
= − 1 

r 2 
∂ 

∂r 

(
r 2 k p m 

∂ p 

∂r 

)
, 0 < r < L. 

A system of ordinary and partial differential equations was

sed to describe the dynamics of intracellular glutathione as

ell as oxygen levels and pH. The modeling results suggest that

acrophage HIF expression may contribute to tumor cell drug re-

istance via glutathione. Simulation results agreed with experi-

ental observations of mouse mammary tumors in vivo , and the

odel was used to propose treatments by varying tissue oxy-

en, acidity, fast reducing rate (redox), and intracellular glutathione

oncentration. 

In addition to being one the most prevalent immune cells in

umors, macrophages are natural phagocytic cells, which seek the

ypoxic interior of tumor lesions in a natural healing response.

his behavior makes them an attractive target for active drug deliv-

ry into tumor tissue. The hypoxia-seeking and tumor infiltration

roperties of macrophages were explored in Owen et al. (2011) ,

nding that the combination of conventional and macrophage-

ased therapies could be synergistic. Macrophages were geneti-

ally modified to express an enzyme that activates the prodrug

yclophosphamide and were also loaded with magnetic nanopar-

icles. A magnetic field was applied to the tumor lesion, acting

n the nanoparticles in the macrophages, and significantly en-

ancing their migration to the tumor interior. The probability of

acrophage extravasation at location x from a vessel under the

agnetic field is modeled as follows: 

Pr mac 
extra ( x, t ) = �t2 πR ( x , t ) L ( x , t ) M blood ( x , t ) 

V ( x , t ) 

A v + V ( x , t ) 

×( αm 

+ βm 

| v mag · n ( x, t ) | ) 
 blood ( x , t ) = k M 

H ( x , t ) 

H in 

e −k mac ( t−T mac ) , 

here R ( x , t ) is vessel radius, L ( x , t ) is length of the vessel seg-

ent, M blood is macrophage level in the vessel after a single

acrophage injection, V ( x , t ) is VEGF concentration at site x , A v 

s VEGF concentration at half of its max, αm 

is baseline extravasa-

ion rate, βm 

is increase in extravasation due to magnetic effects,

 mag is macrophage velocity due to the magnetic field, H ( x , t ) is

ematocrit in the vessel, and H in is the reference inflow of hema-

ocrit. These mechanics were integrated in a complex multiscale

odel building on work in Owen et al. (2009 ), in which vascular

rowth, drug, oxygen, and VEGF diffusion, tissue growth, and cell

ovement are modeled at different timescales. 

Recent work by Leonard et al. (2017, 2016 ) considered

acrophages as both immune actors and vehicles for chemothera-

eutic compound delivery. This model simulates macrophages as

escribed in Mahlbacher et al. (2018) , in which the tumor tis-

ue itself is divided into hypoxic, necrotic and proliferating re-

ions based on oxygen availability ( Macklin et al., 2009; Wu

t al., 2013 ) coupled with a dynamically evolving vascular sys-

em ( McDougall et al., 2006 ). In Leonard et al. (2017, 2016 ), ex-

eriments were performed with macrophages uptaking a silicon-

ased multistage vector (MSV) loaded with the chemotherapeutic

gent albumin-bound paclitaxel (nab-PTX). Drug and macrophage

ffects were evaluated in the tumor model calibrated to the in

itro experimental data. In the model, monocytes extravasate from

he vasculature and migrate semi-stochastically along chemokine

radients secreted from the hypoxic and normoxic tissue regions.

ontact with M1- or M2-favoring chemokines causes differentia-

ion to macrophages, upon which they take an active role in the

odel ( Mahlbacher et al., 2018 ). The tumor boundary velocity v c 
s a function of the change in overall tumor tissue proliferation
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rate λp is defined as ( Macklin et al., 2009 ): 

∇ · v c = λp . 

The proliferation rate is dependent on oxygen availability,

macrophage effects, and drug effects detailed below. Due to the

short diffusion distance of NO, the anti-tumor activity λM 1 of M1

macrophages relies on an immediate-range effect λNO at the loca-

tion of each macrophage (1 M 1 ): 

λM1 = λNO 1 M1 . 

λM 2 is the proliferation-stimulating effect of M2, dependent on

the effect λF and the diffusion of secreted growth factor F . The

effect of λM 2 is additive with the native tumor proliferation rate

λM 

: 

d λM2 

dt 
= λF F ( 1 − ( λM 

+ λM2 ) ) . 

The overall tumor proliferation rate λp is defined according to

oxygen concentration σ : normoxic proliferating tumor region �P ,

quiescent hypoxic tumor region �H , and necrotic tumor region

�N : 

λp = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

non tumoral : 0 

�P : ( λM 

+ λM2 ) σ
(
1 −λ̄e f fect s 

)
−( λA + λM1 ) 

�H : λM2 σ − ( λA + λM1 ) 
�N : −G N 

. 

The drug effect λ̄e f f ect at concentration s acts only on the pro-

liferating tissue due to the cell-cycle targeting mechanism of nab-

PTX. The tumor tissue native apoptosis rate is λA , and the rate of

volume reduction in the necrotic region is G N . 

The study in Leonard et al. (2016) found that a single dose

could dampen and delay lesion growth, but that a repeated reg-

imen may be indicated for remission. These results agreed with

experiments of breast cancer metastasis to the liver in a mouse

model. Additionally, the model simulated the MSV-nab-PTX treat-

ment acting synergistically with macrophage polarization to the

M1 tumor-growth inhibiting phenotype, as observed in in vitro ex-

periments ( Leonard et al., 2017 ) in which M2 were repolarized to

the M1 phenotype by their uptake of nab-PTX. 

Interestingly, it was found that the presence of M2 in addition

to M1 might lead to a stronger tumor drug response than when

only M1 were active, due to the M2 macrophages favoring tumor

tissue proliferation and thus increasing tumor sensitivity to the

cell-cycling action of nab-PTX. 

2.2. Cytotoxic T Lymphocytes 

Cytotoxic T Lymphocytes (CTLs) have been a leading focus of

onco-immunology in recent years ( Fremd et al., 2013 ), being well

known for antitumor activity by inducing apoptosis in an infected

or cancerous cell with high specificity ( Maher and Davies, 2004 ).

Thus, CTLs are a frequent cell type represented in tumor-immune

interaction models. Kirschner and Panetta (1998) was one of the

first theoretical studies to investigate the role that CTLs may have

on tumor growth and regression. The interactions between popu-

lations of effector cells E , tumor cells T , and IL-2 I L are modeled as

follows: 

dE 

dt 
= cT − μ2 E + 

p 1 E I L 
g 1 + I L 

+ s 1 , E ( 0 ) = E 0 

dT 

dt 
= r 2 ( T ) T − aET 

g 2 + T 
, T ( 0 ) = T 0 

d I L 
dt 

= 

p 2 ET 

g 3 + T 
− μ3 I L + s 2 , I L ( 0 ) = I Lo , 

where E is the effector cell population, c is the tumor’s antigenic-

ity, s is an external source of effector cells, T is the tumor cell
1 
opulation, 1/ μ2 is the effector cells’ natural lifespan, r 2 ( T ) is the

umor growth term, a is the immune response strength, I L is the

oncentration of IL-2 at a single tumor-site, μ3 is the IL-2 degra-

ation, and s 2 is external input of IL-2. An in-depth review of this

odel was presented in Eftimie et al. (2011) . 

Many models have implemented a prey-predator approach,

odeling immune cells as the predator population and tumor cells

s the prey population. The Kuznetsov model is a classical repre-

entation of this approach ( Kuznetsov et al., 1994 ): 

dE 

dt 
= s + 

pET 

g + T 
− mET − dE 

dT 

dt 
= aT ( 1 − bT ) − nET , 

here E is effector cells that enter the system with constant rate

 , are recruited at rate pET 
g+ T , and are killed or inactivated by tumor

ells T at rate m . Tumor cells grow at a logistic rate aT ( 1 − bT )

ith carrying capacity 1 
b 

, and are killed by effector cells at rate n .

he non-dimensionalized Kuznetsov model is given as: 

dx 

dt 
= σ + 

ρxy 

η + y 
− μxy − δx 

dy 

dt 
= αy ( i − βy ) − xy 

x = 

E 

E 0 
, y = 

T 

T 0 
, σ = 

s 

n E 0 T 0 
, ρ = 

ρ

n T 0 
, η = 

g 

T 0 
, 

μ = 

m 

n 

, δ = 

d 

n T 0 
, α = 

a 

n T 0 
, β = b T 0 , t̄ = n T 0 t. 

Khajanchi and Banerjee (2014) incorporated a discrete time de-

ay τ into the Kuznetsov model to simulate the interval in which

he effector cells (such as CTLs) are recruited to the area but not

et acting against the tum 

dx 

dt 
= σ + 

ρx ( t − τ ) y ( t − τ ) 

η + y ( t − τ ) 
− μxy − δx 

dy 

dt 
= αy ( 1 − βy ) − xy . 

Through this model, the established behavior of “sneaking

hrough,” in which larger tumors are eliminated but smaller ones

emain and grow, is observed. Further, the results show that the

resence of stable limit cycles means that the immune system and

he tumor undergo oscillations. For tumors with low antigenicity

hese cycles may be relatively long, with the tumors in a dormant

tate for most of the time. 

Kiran and Lakshminarayanan (2013) , basing their model on the

uznetsov model, applied multi-objective optimization and post-

areto-optimality analysis to model the immune interaction with

hemotherapy against a growing tumor: 

dE 

dt 
= s + 

pET 

g + T 
− mET − d 1 E + s 1 − J ( M ) E 

J ( M ) = K l 

(
1 − e −M 

)
H 1 ( M − M max ) 

dT 

dt 
= aT ( 1 − bT ) − nET − L ( T , M ) 

 ( T , M ) = k ( M − M th ) H ( M − M th ) T 

dM 

dt 
= u − γ M, 

here E is the number of effector cells, T is the number of tu-

or cells, M is the concentration of doxorubicin (Dox). H is the

eaviside function, s is effector cell natural flow rate to the tumor,

 1 is the input rate of externally administered effector cells. and

 and g are Michaelis–Menten parameters pertaining to accumu-

ation of effector cells due to stimulation by cytokines released by

ffector cells in contact with tumor cells. Effect cell degradation
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ue to their interaction with tumor cells and their natural lifetime

s given by mET and d 1 E , respectively. Additionally, a is maximal

umor growth rate, 1/ b is the tumor carrying capacity, u is the

ate of Dox input and γ is the rate of Dox decay. The study found

hat the combination of both chemotherapy and immunotherapy

o be more effective than either individually. Further, there exists

 threshold of immunotherapeutic interventions that yields maxi-

um tumor response; more than four interventions may not yield

urther benefit. 

Moghtadaei et al. (2013) implemented a discretized version

f the Kuznetsov model, with the simulation results illustrating

he chaotic dynamics and periodic oscillations that characterize

he case of long term tumor relapse. The performance of the

uznetsov model in representing effector and tumor cell interac-

ions in early-stage cancer was compared to agent-based modeling

n Figueredo et al. (2013) . 

Kaur and Ahmad (2014) built upon the prey-predator model

f El-Gohary (2008) by introducing Michaelis–Menten dynamics to

he stimulation of resting CTL cells in the presence of tumor cells.

ccordingly, the equation governing the rate of change of hunting

ells, dR 
dt 

, has an additional Michaelis–Menten term added: 

dt 

dt 
= q + r 1 T 

(
1 − T 

k 1 

)
− α1 T H 

dh 

dt 
= βHR − d 1 H − α2 HT 

dR 

dt 
= r 2 R 

(
1 − R 

k 2 

)
− βHR − d 2 R + 

ρT R 

T + η
, 

here T is the tumor cell concentration, H is concentration of

unting CTL cells, and R is resting CTLs. The carrying capacities k

revent unbounded population growth. β is the rate of conversion

rom R to H, ρ is the proliferation rate of R , and η is the Michaeles–

enten K M 

equivalent. Apoptotic or natural cell death rates are d 1 
nd d 2 , α1 is the rate of tumor cell death by H , and α2 provides the

ncommon dynamic of H death by tumor cells. The results showed

hat the addition of the Michaelis–Menten function achieved sta-

ility in the system with increased rate of growth of inactive rest-

ng CTL cells. 

Building on work by Gatenby (1995) and instituting discrete

nd continuum time variations, Gurcan et al. (2014) presented

he following model with Lotka–Volterra-like prey-predator inter-

ctions: 

dx 

dt 
= r 1 x ( t ) 

(
1 − x ( t ) 

k 1 

)
− α1 x ( t ) y [ [ t ] ] ) + α2 x ( t ) y [ [ t − 1 ] ] ) 

dy 

dt 
= r 2 x ( t ) 

(
1 − y ( t ) 

k 2 

)
− α1 x ( t ) y [ [ t ] ] ) + α2 y ( t ) x [ [ t − 1 ] ] ) 

− d 1 y ( t ) , 

here t is the integer portion of t ∈ [0, ∞ ). r 1 is growth rate of tu-

or cells, α1 is their decay rate due to competition between tumor

nd CTL cells, population density of tumor cells is x ( t ), the carrying

apacity of the tumor cells population is k 1 , y ( t ) is the population

ensity of CTLs, r 2 their growth rate, k 2 their carrying capacity, α2 

heir decay rate due to competition between tumor and CTL cells,

nd d 1 their death rate. It was found that r 2 and α1 , or the CTL

rowth rate and tumor cell decay rate, were the most effective pa-

ameters in achieving tumor stability or remission. 

Other studies that analyze CTLs as the primary immune effector

ells include ( Chakrabarty and Banerjee, 2010; Maher and Davies,

004 ), and more recently ( Serre et al., 2016; Wilkie and Hahnfeldt,

013 ). In particular, Serre et al. (2016) presented a discrete-time

harmacodynamics model of the combination of radiotherapy with

nhibitors of the PD1–PDL1 axis or the CTLA4 pathway. The abil-

ty to forecast pharmacodynamics endpoints was retrospectively

alidated by checking that the model could describe data from
xperimental studies that investigated the combination of immune

heckpoint inhibitors with radiotherapy. 

Two approaches were presented in Wilkie and Hahn-

eldt (2013) to study the observed decline in CTL predation

fficacy due to cancer dormancy time. The first approach takes

nto account the observed decay trend for the CTL predation

trength in a model of cancer-immune interactions to predict

he resulting dynamics and possible escape from dormancy. The

econd approach selectively prunes a heterogeneous cancer cell

opulation to transform a mostly sensitive population into a

ostly resistant population, while still maintaining the dormant

tate. The cancer cell C and immune cell I populations are assumed

o vary in time but not in space: 

dC 

dt 
= αC 

(
1 − C 

K 

)
− a 0 CI , C(0) = C 0 , 

here α is the proliferation rate and K is the carrying capacity of

he cancer population. Assuming that the only recruitment of im-

une cells occurs through cancer-initiated increases in the carry-

ng capacity, the immune population is assumed to follow: 

dI 

dt 
= γ I 

(
1 − I 

I e + μCI 

)
, I(0) = I e , 

here γ is the proliferation rate and I e + μCI is the recruitment

ue to cancer-immune interactions. These basic equations were

hen modified to account for the emergence of immuno-resistant

ancer cell populations R with proliferation rate β: 

dC 

dt 
= αC 

(
1 − C + R 

K 

)
− a 0 CI , C(0) = C 0 

dR 

dt 
= βR 

(
1 − C + R 

K 

)
− b 0 RI , R (0) = R 0 

dI 

dt 
= γ I 

(
1 − I 

I e + μ(C + 0 . 001 R ) I 

)
, I(0) = I e . 

The results suggest that delaying cancer growth via the targeted

emoval of immune-sensitive subpopulations may actually induce

he immune response to advance the cancer to a more aggressive

tate. 

A model evaluating purely CTL effects in the microenvironment

as presented in Ramos et al. (2013) . In this mesoscopic model,

he role of a gradient of factors released from the tumor that are

ble to attract CTLs to the area is evaluated. The tumor grows ac-

ording to nutrient availability, ( → 

i 

)
= γ∞ 

[
1 − e 

−�p 

( → 

i 

)]
here p ( i ) is local nutrient concentration absorbed with affinity �.

f nutrient content is sufficient, the tumor grows with cancerous

ells c( � i ) replacing a fraction fi,j of healthy cells h ( � i ) : 

f i, j = h 

(
�
 i 
)

+ 

[
r M 

c 
(
�
 i 
)

− h 

(
�
 i 
)]

�
[
r M 

c 
(
�
 i 
)

− h 

(
�
 i 
)]

, 

here � is the Heaviside unit step function and r M 

is a constant. 

A chemical messenger m ( � r , t ) arising from the tumor cells at

ate K , diffusing at rate αm 

, binding lymphocytes l( � r , t ) at rate G,

nd decaying at rate τm 

is modeled as: 

∂m ( � r , t ) 

∂t 
= −m ( � r , t ) 

τm 

+ αm 

∇ 

2 m ( � r , t ) − Gm ( � r , t ) l ( � r , t ) + Kc ( � r , t ) . 

Lymphocytes move according to messenger m ( � r , t ) concentra-

ion with migration αl and decay with rate of τ l as follows: 

∂ l ( � r , t ) 

∂t 
= − l ( � r , t ) 

τl 

+ αl ∇ 

2 l ( � r , t ) − ∇ · [ l ( � r , t ) ∇m ( � r , t ) ] . 

The attacking of cancer cells c( � r , t ) by lymphocytes is described

s: 

∂c ( � r , t ) 

∂t 
= −bl ( � r , t ) c ( � r , t ) , 
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where b is a constant describing the ability of the CTL to kill, and

is not reduced by multiple interactions with tumor cells. The re-

sults suggest that killing cancer cells may not be a sufficient ther-

apeutic strategy to prevent recurrence. Efficient killing of cancer

cells should be complemented by treatments that either enhance

containment of active tumor regions by clustering of CTLs or oth-

erwise inhibit cancer cell migration. 

A model wherein CTLs undergo immunoediting by tumor cells

was presented in Al-Tameemi et al. (2012) . The system included

the situation in which tumor cells that survive an initial encounter

with immune cells are more likely to survive subsequent attacks,

thus modeling an approximation of the development of cancer cell

resistance. The model further evaluated the spatiotemporal effects

on the CTL and tumor cell populations. The tumor cells that have

not yet encountered CTLs, referred to as “naïve” cells, are repre-

sented as follows: 

∂ T 0 
∂t 

= D T 0 ∇ 

2 T 0 + r 1 T 0 

( 

1 − β1 

N ∑ 

j=0 

T j 

) 

− k + 0 E T 0 

+ 

(
k − + k ( 1 − θ0 ) ( 1 − p 0 ) 

)
C 0 , 

where T 0 are the naïve tumor cells, D T 0 
∇ 

2 T 0 describes the cells’

random motion, D T being the diffusion coefficient, r 1 is the base-

line exponential growth of the tumor, β1 is the inverse of the

tumor carrying capacity in the absence of immune reactions, C 0 
are the of CTL-tumor cell complexes, k + 

0 
is the formation rate of

C 0 , E is the spatiotemporal dynamics of the CTL, k − is the C 0 
unbinding rate, k is the rate of lethally hit tumor or CTL cells,

θ0 is the probability of transition of tumor cells to the T 0 state,

and p 0 is the death probability of naïve tumor cells. In combina-

tion, r 1 T 0 ( 1 − β1 

∑ N 
j=0 T j ) describes the cells’ logistic growth and

k + 
0 

E T 0 + ( k − + k ( 1 − θ0 )( 1 − p 0 ) ) C 0 describes the local kinetics. Af-

ter encountering CTLs, the tumor cells become “non-naïve” and de-

velop resistance to future encounters; the cells’ spatiotemporal dy-

namics change as follows: 

∂ T i 
∂t 

= D i ∇ 

2 T i + r 1 T i 

( 

1 − β1 

N ∑ 

j=0 

T j 

) 

− k + 
i 

E T i 

+ 

(
k − + k ( 1 − θi ) ( 1 − p i ) 

)
C i + k θi −1 ( 1 − p i −1 ) C i −1 , 

where T i are the non-naïve tumor cells, i = 1,…, N , and r 1 is the

baseline exponential tumor growth rate, D i ∇ 

2 T i describes the cells’

random motion, r 1 T i ( 1 − β1 

∑ N 
j=0 T j ) describes the logistic growth,

and ( k − + k ( 1 − θi )( 1 − p i ) ) C i + k θi −1 ( 1 − p i −1 ) C i −1 describes the

non-naive cells’ local kinetics. Spatiotemporal dynamics E of the

CTLs themselves are modeled including both random and chemo-

tactic motion as well as negative movement in response to a re-

pellant ρ by non-naïve tumor cells: 

∂E 

∂t 
= D E ∇ 

2 E − χ(α) ∇ . ( E∇α) + A (ρ) . ( E∇ρ) + sh (x ) 

+ 

f 
∑ N 

j=0 q j C j 

g + 

∑ N 
j=0 T j 

− d 1 E − E 

( 

N ∑ 

j=0 

k + 
j 
T j 

) 

+ 

( 

N ∑ 

j=0 

k −T j 

) 

+ 

( 

N ∑ 

j=0 

k p j C j 

) 

where D E is the diffusion coefficient driving random motility, χ
is the chemotaxis coefficient, α is the chemoattractant, q j is the

rate constant, sh ( x ) is the CTL external reflux of CTLs, d 1 is the

CTL baseline death rate, and f and g are constants. In combination,

A ( ρ).( E ∇ρ) represents chemorepulsion, 
f 
∑ N 

j=0 q j C j 

g+ ∑ N 
j=0 T j 

represents pro-

liferation, and the last three summation terms represent the local

kinetics. The results showed that the process of cancer cell immu-

noevasion may result from interactions between CTLs and tumor
ells, in which lymphocyte-tumor cell complexes are formed. Thus,

umor cells that survive the formation of these complexes can de-

elop an increased probability of surviving further attacks by CTLs,

ounter-acting immunotherapies aiming to maintain a tumor in a

ormant state. 

Other models that evaluate CTL-tumor interactions include

rascoli et al. (2014) , which investigated oscillatory and unbounded

radicative growth patterns in an avascular tumor in a hybrid

artial differential and agent based model, and ( Rozova and Bra-

us, 2016 ), which accounted for negative chemotherapy effects

n both tumor cells and CTLs. The infiltration of CTLs into

mall, avascular multicellular tumor spheroids was modeled in

atzavinos et al. (2004) . Recruitment of CTLs to the site of

elanoma lesion in mice was examined with an agent-based

odel in Pappalardo et al. (2011) . In this case, antibody treatment

pregulates the C137 receptor of tumoral endothelial cells, enhanc-

ng CTL migration to the area and achieving tumor elimination.

ome models have explored the interaction of tumor and effector

mmune cells in the context of chaos ( Itik and Banks, 2010 ) and

oise ( Bose and Trimper, 2011 ). 

The synergistic effects of radiotherapy and cytotoxic T cells

ere examined in Chappell et al. (2015) with a system of four

ain variables: S (tumor volume), T (density of T cells in tumor

nd microenvironment, I (concentration of the immune agent), and

 (radioactivity): 

dS 

dt 
= f 1 (S) − f 2 (S, T , C) 

dT 

dt 
= f 3 (S, T , I, C) − f 4 (S, T , C) 

dI 

dt 
= f 5 (S, I) 

dC 

dt 
= f 6 (S, C) , 

here the various f 1 …f 6 functions respectively denote tumor logis-

ic growth, tumor death, T cell activation. T cell death and inacti-

ation, immunotherapy decrease, and radiotherapy decrease. The

odel was able to reproduce the in vivo observations of tumor

olume and activated T cell number by Deng et al. (2014) , with

he simulation results showing that tumor clearance is achieved

ith both irradiation and presence of T cells, but not with each

lone. Additionally, the prevalence of activated T cells capable of

illing cancer cells is higher with radiation therapy, suggesting a

ombined approach to treatment. 

.3. Cytotoxic T Lymphocytes and Natural Killer cells 

Identifying infected or cancerous cells with abnormal or absent

urface presentations, Natural Killer cells (NKs) eliminate cancer-

us cells as part of the innate immune response. In many cancer

atients, NKs are found to be deficient or abnormal, with curtailed

ytokine release profiles and antitumor activities ( Guillerey et al.,

016 ). Models in Kiran and Lakshminarayanan (2013) and de Pil-

is et al. (2009) considered the effects of both chemotherapy and

doptive cell transfer of CTLs. They were modeled in de Pillis

t al. (2009) as follows: 

dT 

dt 
= aT ( 1 − bT ) − cNT − DT − K T 

(
1 − e −δT M 

)
T 

dN 

dt 
= f 

(
e 

f 
C − N 

)
− pN T + 

p N N I 

g N + I 
− K N 

(
1 − e −δN M 

)
N 

dL 

dt 
= 

θmL 

θ + I 
+ j 

T 

K + T 
L − qLT + ( r 1 N + r 2 C ) T − μL 2 CI 

κ + I 

− K L 

(
1 − e −δL M 

)
L + 

p I LI 

g I + I 
+ υL ( t ) 
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dC 

dt 
= β

(
α

β
− C 

)
− K C 

(
1 − e −δC M 

)
C 

dM 

dt 
= −γ M + υM 

( t ) 

dI 

dt 
= −μ1 I + φC + 

ωLI 

ζ + I 
+ υI ( t ) , 

here T is the tumor cell population, N is the concentration of

K cells, L is the CTL concentration, C is the concentration of

ther lymphocytes, M is the concentration of chemotherapeutic

rug (here doxorubicin), I is the concentration of IL-2, υL is con-

entration per time of CTLs injected, υM 

is the concentration per

ime of drug injected, and υI is the rate and concentration per time

f IL-2 administered. 

The first term on the right hand side in the equation for T rep-

esents logistic growth, the second is NK-induced tumor death, the

hird is CTL-induced tumor death, and the fourth is drug-induced

umor death. Here, D = d ( L/T ) l 

s + ( L/T ) l 
, where d and l are immune sys-

em strength and immune system scaling coefficients, respectively,

nd s is the value of ( L /T) l required for half-maximal CTL toxicity.

n the equation for N, eC is production of NK cells from circulating

ymphocytes and fN is NK turnover, the second term is NK death

y exhaustion of tumor-killing resources, the third term is the IL-

 stimulatory effect on NK cells, and the fourth term is NK cells

eath due to drug toxicity. In the equation for L , the first term is

TL turnover, the second is CTL stimulation by tumor debris from

TL-induced death, the third CTL death by exhaustion of tumor-

illing resources, the fourth includes CTL stimulation by tumor de-

ris from NK-induced death and activation of naïve CTL cells, the

fth is breakdown of surplus CTL in the presence of IL-2, the sixth

s death of CTL cells due to drug toxicity, and the seventh is the

timulatory effect of IL-2 on CTLs. In the equation for C , the first

erm includes lymphocyte creation and turnover, and the second

epresents lymphocyte death due to drug toxicity. In the equation

or M , the first term encapsulates drug elimination and excretion.

n the equation for I, the first term is IL-2 decay, the second is IL-2

roduction by naïve CTL and T helper cells, and the third term is

L-2 production by activated CTL cells. 

The model parameters were carefully calibrated to patient-

pecific data. The immune recruitment is presented in Michaelis–

enten form, which is useful in providing a saturation ef-

ect regarding increasing presence of immune effector cells

 Kirschner and Panetta, 1998 ). The effectiveness of immune ther-

py in conjunction with chemotherapy and IL-2 administration was

hown to be heavily reliant on CTL tumor-targeting ability. This

odel was later updated in de Pillis et al. (2014) to incorporate

ariations of immune vaccine and chemotherapy treatments. 

In a model based on de Pillis and Radunskaya, (2003) ,

ahasa et al. (2016) took the novel step of incorporating into the

umor cell population immune resistance against NKs and CTLs,

ighlighting the importance of an inadequate NK population in fa-

ilitating tumor escape. The interaction between NK cells N , acti-

ated CTLs L , naïve tumor cells T 0 , and wild-type tumor cells that

scaped surveillance by (i) NK cells T 1 
N 

, ( ii ) activated CTLs T 1 
L 

, or

 iii ) both NK and activated CTLs T 1 
NL 

, is given by: 

dN 

dt 
= s − μ1 N + ( p N α

−
N C N − α+ 

N N T 0 ) + 

(
πN α

−
L C 

N 
NL − α+ 

L NT 1 L 

)
dL 

dt 
= 

[
r 1 C L / (g+ T 0 ) + r 2 C 

L 
NL / 

(
g+ T 1 N 

)]
+ 

(
q L β

−
L C L −μ2 L −β+ 

L L T 
0 
)

+ 

(
ς L β

−
N C 

L 
NL − β+ 

N LT 1 N 

)
d T 0 

dt 
= a T 0 (1 − b T 0 ) − α+ 

N N T 0 − β+ 
L L T 

0 

dT 1 N = aT 1 N (1 − bT 1 N ) + p T α
−
N C N − β+ 

N LT 1 N 
dt 
dT 1 L 

dt 
= aT 1 L (1 − bT 1 L ) + q T β

−
L C L − α+ 

L NT 1 L 

dT 1 NL 

dt 
= aT 1 NL (1 − bT 1 NL ) + ς T β

−
N C 

L 
NL + πT α

−
L C 

N 
NL , 

here C N , C L , C N NL , and C L NL respectively represent the complex

ormed by NK and naïve tumor cells, CTL and naïve tumor cells,

K and wild-type tumor cells that escaped surveillance from active

TLs, and CTL and wild-type tumor cells that escaped surveillance

rom NK. 

In the equation for N , the first term on the right hand side rep-

esents the source of NK cells, the second term is NK natural death,

he third represents the local interaction between NK and naïve tu-

or cells, and the fourth is the local interaction between NK and

ild-type tumor cells. In the equation for L , the first term is CTL

ecruitment, the second is activated CTL natural death, the third

epresents binding and detachment of activated CTL from naïve tu-

or cells, and the fourth is the binding and detachment of acti-

ated CTL from wild-type tumor cells that escaped NK cell surveil-

ance. In the equations for the naïve and wild-type tumor cells, the

rst term represents logistic growth. For naïve tumor cells T 0 , the

econd term represents interactions with NK cells and the third

erm denotes interactions with activated CTLs. For the three wild-

ype tumor cell equations, the second terms represents tumor cells

hat have escaped surveillance by NK, activated CTL, or both types

f cells, respectively, while the third terms represent the local in-

eractions with these respective immune cells. 

The model results indicate that increasing the number of NK

ells might be crucial to enhance NK-mediated immune surveil-

ance. Further, the results show that the immune system alone may

e incapable of thwarting tumor growth, while the development

f tumor immunoresistance may be an unavoidable outcome of

umor-immune surveillance. 

The antitumor effects of IL-21, focusing on NK, and CTL immu-

ity, were evaluated in ( Cappuccio et al., 2006 ): 

˙ 
 = input − μ1 u, 

here input is proportional to the total number of genetically en-

ineered tumor cells n , u is the concentration of IL-21 and μ1 is

he clearance rate. 

˙ x = r 1 x 

(
1 − x 

h 1 ( u ) 

)

h 1 ( u ) = 

p 1 u + p 2 
u + q 1 

, 

here x is the NK population within the spleen, r 1 the growth rate

f the NK population, h 1 is the carrying capacity the NK cells, p 1 
s the minimum value of x , and p 2 and q 1 are varying parameters

or the carrying capacity following x 0 = 

p 2 
q 1 

. 

˙ y = r 2 y 

(
1 − y 

h 2 ( m ) 

)

 2 ( m ) = h 2 ( 0 ) + 

σm 

1 + 

m 

D 

˙ m = au − μ2 m, 

here y is the tumor-specific CD8 + T subset in the lymph nodes, r 2 
he growth rate of the CD8 + T population, h 2 the carrying capacity

f CD8 + T cells, σ relates the growth of the carrying capacity to

he memory factor, m is an IL-21 dose-dependent product, a is m’s

roportionality constant, and μ2 is the reciprocal of the duration

f the CD8 + T response. 

˙ p = 

b 1 u 

b 2 + u 

− μ3 p 

˙ n = g ( n ) − k 1 pxn − k 2 pyn, 
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where p is a general protein, b 1 and b 2 are variables of the func-

tion, and μ3 is the natural degradation of the protein p, n is tu-

mor mass, g describes the tumor dynamics, k 1 is the cytotoxic,

protein mediated, antitumor interaction between tumor and NK

cells, and k 2 is the interaction between tumor and CD8 + T cells.

The simulation results were compared to data from fibrosarcoma

and melanoma tumors grown in mice. It was found that the ef-

fectiveness of IL-21 therapy to achieve tumor reduction was highly

dependent on antigenicity and size of the tumor lesion. This sys-

tem was later expanded and examined in the context of a phar-

macokinetic/pharmacodynamic model validated by murine data

( Elishmereni et al., 2011 ). 

The interactions of CTLs and NK cells with a tumor growing in

avascular conditions were studied with a two-dimensional stochas-

tic agent-based model in Pourhasanzade et al. (2017) . The effects of

hypoxia were modeled including mutant and non-mutant prolifer-

ative cancer cells. The simulations illustrate the effect of the mi-

croenvironment on tumor growth and on the immune system, and

the potential of the model to evaluate these effects under various

immune and tumor conditions. 

A model that examined NK cells alone, and the effect of an-

tibody therapy is Hoffman et al. (2018) . Antibodies bind to can-

cer cells, marking them for killing by NK cells. The multi-timescale

model evaluated the rate of antibody binding to cancer cells, and

the rate of tumor cell kill by activated NKs, taking the novel step of

making the rate of cell kill dependent on the amount of antibody

bound to cancer cells: 

dA 

dt 
= −k on ( ρT S − RS ) A + k offRS , A ( 0 ) = A 0 

dR 

dt 
= k on ( ρT − R ) A − k offR, R ( 0 ) = R 0 

dS 

dt 
= − f ( R ) C, S ( 0 ) = T 0 

dC 

dt 
= βon ( N 0 − C ) ( S − C ) − βon C − f ( R ) C, C ( 0 ) = 0 , 

where antibodies A bind reversibly with rate k on to unbound tumor

receptors and dissociate from them with rate k off, R is the number

of antibody-receptor complexes per cancer cell, S is total concen-

tration of cancer cells, and C are cellular conjugates of NK and tu-

mor cells, binding with rate βon and dissociating with rate βoff.

The total concentration of target receptors is proportional with

constant ρT to the total concentration of cancer cells. NK cells kill

the cancer cells to which they bind with rate f (R ) = f ∗K R/ (R + R K ) ,

where f ∗K is the maximum rate of killing and R K is the value of R

for which the killing rate is half-maximal. The simulations reveal

that the system evolves in a fast timescale, during which antibod-

ies bind to tumor cell surface receptors and complexes of NK cells

with cancer cells are formed, and also in a slower timescale, during

which the tumor cells are killed by the NK cells. 

2.4. Cytotoxic T Lymphocytes and dendritic cells 

Dendritic cells are antigen-presenting cells, serving as a bridge

between the innate and adaptive immune systems by assisting in

the activation, differentiation and maturation of CTLs. It has been

observed that their maturation and response may be hindered and

altered by factors released from tumor cells ( Markov et al., 2016 ). 

de Pillis et al. (2013a ) expanded upon prior work modeling

interactions of dendritic cells with activated and memory CTLs

( Ludewig et al., 2004 ). The model represents the spleen, the blood,

and the tumor as separate compartments. The effect of additional

doses of DCs and activated CTLs on a logistic-growth tumor was

fit to experimental murine data. The model accounts for the traf-

ficking of immune cells between the three compartments. In par-

ticular, the equations of the model regarding interactions between
ctivated CTLs (E a tumor ) , tumor-infiltrating DCs ( D tumor ), and tumor

ells T in the tumor compartment are as follows: 

dE a tumor 

dt 
= μBT E (T ) E a blood − a E a T E 

a 
tumor − cE a tumor T 

dT 

dt 
= rT 

(
1 − T 

k 

)
− DT 

d D tumor 

dt 
= 

mT 

q + T 
− ( μT B + a D ) D tumor + νtumor (t) , 

here μ are flow rates between compartments, E a 
blood 

are activated

TLs in the blood compartment, a E a T is death rate of activated

TLs, c is rate of inactivation of CTLs by tumor cells, r is tumor

rowth rate, m is maximum DC recruitment rate to tumor site, q is

alue of T required for half-maximal DC recruitment, μTB is rate of

ransfer of DCs from tumor to blood, a D is DC natural death rate,

nd νtumor ( t ) allows to inject DCs intratumorally to compare treat-

ent protocols. The term D describes the ratio: 

 = d 
( E a tumor ) 

l 

s + 

(
E a tumor 

)l 
, 

here d represents maximum fractional tumor kill by CTLs and s

s the value of ( E a tumor /T ) l required for half-maximal activated CTL

oxicity. The simulation results analyzing intratumoral 

DC injections to intravenous DC injections of various dosages

nd schedules fell within the experimental measurements obtained

ith mice implanted with melanoma tumors and treated with DC

njections ( Lee et al., 2007 ). Overall, the results of the model imply

hat more effective immunotherapy treatment protocols could be

chieved by modifying the injection location and schedule. 

Macfarlane et al. (2018) presented a spatially structured model

f tumor-immune competition taking into account the difference

n movement between activated and inactive immune cells. The

odel is able to capture the shift in movement that occurs with

TLs and DCs as they become activated by tumor antigens. Both

TL and DC cell movement becomes more restricted than in a pre-

ctivation state ( Boissonnas et al., 2007; Engelhardt et al., 2012 ).

nactive immune cells are modeled with a Lévy walk mechanism,

here cells move in just one direction over a span of time, thus

overing a large area. The number of time steps s that inacti-

ated cells move in that singular direction is given by the Lévy-

istribution: 

 ( s ) = s −( α+1 ) , 

here α is the walk exponent, as described in Harris et al. (2012) .

he movement of activated cells is modeled via Brownian motion.

o confirm that using a Lévy walk and a change to Brownian mo-

ion upon activation is a sensible approach for modeling the move-

ent of immune cells, the simulations qualitatively replicated the

xperimental data of Boissonnas et al. (2007) . The study found that

n increase in the number of DCs may lead to overcrowding and

hus longer tumor removal times. A crucial parameter in tumor re-

oval was found to be the ratio between the killing rate of tumor

ells by CTLs and the tumor cell proliferation rate. The simulations

urther showed that an increase in activation rates of either CTLs

r DCs had little effect on tumor removal. 

.5. T Regulatory cells 

T Regulatory cells (Tregs) modulate the immune response, help-

ng to prevent potential autoimmune action by other lymphocytes

uch as CTLs ( Kondelkova et al., 2010 ). They are generally recruited

nd upregulated to the tumor site, and provide negative feedback

n immune system activation, preventing autoimmune disease and

aintaining immune homeostasis. Higher numbers of Tregs both
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n the tumor microenvironment and the vasculature are associated

ith poorer patient outcomes. 

Building on and incorporating the model in de Pillis et al.

2009, 2013b ) examined the effect of Tregs in combination with

TLs, NKs, and CD4 + cells in the context of treatment with the

yrosine kinase inhibitor sunitinib, which has shown better tumor

esponse than treatment with IL-2. The tumor cell population T is

odeled as: 

dT 

dt 
= aT ( 1 − bT ) − c e −λT R NT − DT , 

here the first term represents logistic tumor growth, the sec-

nd term incorporates Treg-inhibited NK tumor cell kill, and the

hird term includes D = d ( L/T ) l 

s + ( L/T ) l 
, which describes tumor cell kill

y CTLs. 

NK cells N with baseline production eC from circulating lym-

hocytes, natural cell death fN , inactivation pNT of NK cells by tu-

or cells, and IL-2 induced NK cell proliferation 

p N NI 
g N + I , are repre-

ented as: 

dN 

dt 
= f 

(
e 

f 
C − N 

)
− pN T + 

p N N I 

g N + I 
. 

The CTL population L is described by: 

dL 

dt 
= −mL − qLT + ( r 1 N + r 2 C ) T + 

p I LI 

g I + I 
− z L 2 RI 

κ + I 
+ j 

T 

κ + T 
L, 

ith CTL turnover of mL , cytolytic potential qLT , CTL recruitment

y debris of tumor cells lysed by NK r 1 NT , recognition of tumor

resence proportional to the number of encounters between circu-

ating CTLs and tumor cells r 2 CT , CTL activation via IL-2 
p I LI 
g I + I , break-

own of surplus CTLs in the presence of Tregs and IL-2 z L 2 RI 
κ+ I , and

ccumulation of effector cells via CTL stimulation j T 
κ+ T L . The Treg

opulation R is modeled as: 

dR 

dt 
= u 

(
w 

u 

C − R 

)
+ 

p R RI 

g R + I 
− H R 

(
1 − e −λR S 

)
R, 

ith production wC , turnover uR , IL-2-induced proliferation 

p R RI 
g R + I ,

nd inhibition by sunitinib H R ( 1 − e −λR S ) R . Production of lympho-

ytes C in bone marrow with rate α and turnover βC is: 

dC 

dt 
= β

(
α

β
− C 

)
. 

L-2 concentration is represented by I : 

dI 

dt 
= −μ1 I + φC + 

ωLI 

ζ + I 
, 

ith natural decay −μ1 I, IL-2 production φC by Treg and naïve

TLs, and IL-2 production 

ωLI 
ζ+ I by activated CTLs. Sunitinib concen-

ration S is calculated as: 

dS 

dt 
= −ηS + υS ( t ) , 

ith secretion and elimination −ηS, and dosing υS (t) . 

The simulation results reflected clinical outcomes to suni-

inib treatment, including improved tumor control for sunitinib

reatments following standard protocols, greater response rate

or sunitinib treatments at double the standard dose, and im-

roved responses to sunitinib treatment when the patient’s im-

une strength scaling and the immune system strength coeffi-

ients parameters were low, implying a slightly stronger natural

mmune response. 

.6. CD4 + T Helper cells 

CD4 + T Helper cells are critical to the activation of Cytotoxic

 Lymphocytes, recruitment of macrophages, and the release of in-

erleukins. They have been incorporated into models examining the
ffects of IL-2 and IL-21 on cancer growth and remission ( de Pillis

nd Radunskaya, 2014; Dong et al., 2014; Nwabugwu et al., 2013 ).

n particular, de Pillis and Radunskaya (2014) extensively explored

 variety of immunotherapy treatments based on previous work

odeling these tumor-immune interactions. In Dong et al. (2014) ,

hree populations of cells were represented, focusing on interac-

ions between tumor, CTL, and T helper cells: 

dT 

dt 
= aT ( 1 − bT ) − nET 

dE 

dt 
= k 1 TE − d 1 E + pEH 

dH 

dt 
= s 2 + k 2 TH − d 2 H, 

here T is the population of tumor cells, E is the population of

ffector (CTL) cells, H is the population of T helper cells, a is the

aximal growth rate of T, b is the inverse of the carrying capac-

ty to the tumors biological environment, n is the rate tumor cells

re lost by effector cell interaction, k 1 is the effector cell stimu-

ation rate by disintegrated tumor cell debris, d 1 is the inverse of

he natural lifetime of effector cells, p is the activation rate of ef-

ector cells by T helper cells, s 2 is the birth rate of T helper cells

n bone marrow, k 2 is T helper cell stimulation rate by the pres-

nce of tumor antigens, and d 2 is the inverse of natural lifespan of

 helper cells. The study showed that T helper cells have a crucial

ole in the long term periodic oscillation behaviors observed with

umor-immune system interactions. 

A comprehensive model was presented by Robertson-

essi et al. (2015) , in which T helper cells, T regulatory cells

Tregs), CTLs, and dendritic cells (DCs), along with interleukins and

heir effects on tumor cells, are modeled together with combina-

ions of chemo- and immunotherapy. The model is based primarily

n Robertson-Tessi et al. (2012) , for which the evolution of tumor

ells T is described as follows: 

˙ T = 

T ((
1 
γ1 

)p + 

(
T 1 −m 

γ

)p 
) 1 

p 

− r 0 T 
∗(

1 + k 2 
T ∗
E 

) · 1 (
1 + k 3 

R 
E 

)(
1 + 

S 
S 1 

) , 

1 = γ ( T 1 ) 
m −1 

 

∗ = 

T (
1 + 

(
T 1 −n 

k 1 

)p 
) 1 

p 

here the first term on the right hand side ( T equation) repre-

ents tumor growth and the second term specifies the tumor cell

ill by CTLs, accounting for death in the absence of suppressive ef-

ects (first fraction) and the suppressive effects of TGF- β and Tregs

n the tumor cell death (second fraction). Accordingly, E is the ef-

ector (CTL) cells, R is the Treg cells, γ is the growth coefficient,

1 is the exponential growth coefficient, m is the power law expo-

ent, p sets the smoothness of transition between tumor growth

odes, r 0 is the rate at which effector cells kill tumor cells, T ∗ is

he number of tumor cells accesible by the immune system, and S

s the suppression of cell activity. Dendritic cells evolution is mod-

led according to the following: 

˙ 
 = 

a T ∗(
1 + 

I 
I 1 

)(
1 + 

R 
R 1 

) − λU 

1 + 

U 
M H 

− δU U 

˙ D = 

λU 

a + 

U 
M H 

− δD D, 

here U is the number of unlicensed dendritic cells and D is the

umber of licensed dendritic cells. The first term on the right

and side ( U equation) represents dendritic cell maturation via en-

ounter with tumor antigens, which is inhibited by IL-10 ( I ) and

reg cells ( R ), the second term represents the licensing of dendritic
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cells via encounters with T helper cells M H , and the third term is

cell death with rate δU . The tumor antigenicity is a . 

The three types of T cells in the model (CTLs, T helper cells,

and Tregs) are initially activated with a high proliferation rate, and

then they mature to fully functional cells. The effector (CTL) cells

E are modeled as follows: 

˙ A E = 

α1 M E 

1 + k 4 
M 

D 

− δA A E 

˙ E = 

α2 A E C (
1 + 

S 
S 2 

)
( C 1 + C ) 

− δE E, 

where the first term on the right hand side (equation for A E , mod-

eling the CTL activation), represents CTL activation via interaction

with the mature licensed dendritic cells, and the second term rep-

resents CTL de-activation. The proliferative cytokine IL-2 is C . 

The activation of T helper cells H is modeled similarly to the

effector cells: 

˙ A H = 

α3 M H 

1 + k 4 
M 

( U+ D ) 
− δA A H 

˙ H = 

α4 A H C (
1 + 

S 
S 2 

)
( C 1 + C ) 

− α7 HS 

S 3 + S 
− δH H, 

where the activation can occur via both unlicensed and licensed

dendritic cells. Further, T helper cells can convert into Tregs if TGF-

β is present, as represented by the second term in the equation for

H . Treg cells R and their activation A R are modeled with a similar

set of equations, in which the Treg proliferation is not suppressed

by TGF- β: 

˙ A R = 

α5 M R 

1 + k 4 
M 

D 

− δA A R 

˙ R = 

α6 A R C 

( C 1 + C ) 
+ 

α7 HS 

S 3 + S 
− δR R. 

Modeling the complex interplay of the tumor cells with these

immune cells yielded insights into treatments, such as the role of

IL-2 as an adjunct therapy with adoptive T cell transfer ( Robertson-

essi et al., 2015 ). The inclusion of the immune response is pre-

dicted to significantly expand the region of tumor control for both

cytotoxic and cytostatic chemotherapies. Opportunities for person-

alized medicine are suggested based on the type of immunother-

apy, schedule of administration, and tumor characteristics. Impor-

tantly, it was shown that there exists an optimal antigenicity that

maximizes the immune system response for a given tumor growth

rate, and that increased antigenicity may decrease the tumor re-

sponse ( Robertson-Tessi et al., 2012 ). 

According to Nwabugwu et al. (2013) CD4 + T helper cells play

a vital role in tumor senescence, especially in the absence of CD8 +
T killer cells. Without this check on tumor growth, malignancy

and relapse become more likely in individuals in which the CD4 +
cell population is depleted. The model examined the CD4 + depen-

dent macrophage response to senescent tumor cells, using a pre-

viously developed multi-state tumor model, This model was com-

bined with the model of Robertson-Tessi et al. (2012) , which was

modified to include T helper cell-dependent macrophage recruit-

ment. The model predicted that a lack of T helper cells in immuno-

compromised individuals would soon led to tumor relapse. 

2.7. Generalization of immune cell types 

Given the plurality of immune cell types and associated cy-

tokines involved in tumor growth, the incorporation of each cell

type and cytokine would be ideal, yet it may be computationally

costly from a practical standpoint. An alternative approach is to
rovide an approximation of the major immune system compo-

ents, generalizing them into tumoricidal and tumorigenic compo-

ents. 

In Wilkie and Hahnfeldt (2017) , the cancer population C is as-

umed to follow logistic growth, limited by a carrying capacity

 C : 

d C 

d t 
= 

μ

α
( 1 + �) C 

(
1 −

(
C 

K C 

)α
)

, C ( 0 ) = C 0 , 

here μ
α is the unregulated growth rate, μ is the intrinsic growth

ate, α is the reciprocal of how strongly the carrying capacity regu-

ates the population. The predation � of the cancer population by

he immune system is: 

= −θ

(
I β

φC β + I β
+ ε lo g 10 ( 1 + I ) 

)
. 

The saturation kinetics of strong cytotoxic actions I β

φC β+ I β is as

escribed in de Pillis et al. (2005) , while ε lo g 10 ( 1 + I ) permits a

radual increase to this saturation based on a significant increase

n the immune presence. The immune population I is governed by

ogistic growth: 

dI 

dt 
= λ(I + rC) 

(
1 − I 

K I 

)
, I(0) = I 0 , 

here λ is unregulated growth rate, r is the cancer-induced re-

ruitment parameter, and K I is the carrying capacity. 

The model is able to represent the complexity of tumor-

mmune responses, with some interactions initially appearing to

ssist tumorigenesis but longer term helping to establish dor-

ancy. Consequently, treatments that stabilize the antitumor in-

ammatory environment and near term stimulate tumor growth

ay be preferable to those focused on immediate tumor regres-

ion. These results are consistent with Leonard et al. (2017) , which

ound that short-term pro-tumor immune activity may sensitize

he tumor tissue to drug treatment. 

As one of the trademarks of cancer is the downregulation of

he immune system to facilitate tumor escape, investigations into

hy this occurs and what trends may encourage upregulation have

een subjects of modeling interest. A succinct 4-equation model

as presented by Wilkie et al. (2016) , wherein net tumor growth,

redation by generalized immune effector cells, tumorigenic ef-

ects of immune cells, and cell sensitivity to environmental sig-

als for apoptosis, proliferation, or quiescence were examined. The

et growth and predation by generalized immune effector cells are

he same as those described in Wilkie and Hahnfeldt (2017) . An

quation allowing the cancer to modify its own carrying capacity

s added: 

d K C 

dt 
= pC ( t ) − q K C ( t ) C ( t ) 

2 
3 , 

here K C is the carrying capacity for the cancer population, p is

he growth stimulation constant, and q is the inhibition constant.

everal outcomes were obtained via this model, including tumor

ormancy and escape. The model assumes that cell populations are

omogeneous and therefore does not consider spatial differences. 

Alternately to generalizing immune cell types or modeling

nly a single immune cell type, as focusing on a single im-

une cell type may have limited utility and biological relevance,

ome models strike a balance, incorporating several immune cell

ypes with common stimuli or actions. For example, NK, CTL,

nd macrophages have a direct cell-mediated role in killing can-

er cells ( Kolev et al., 2005 ) and thus may be grouped as effec-

or cells for simplicity, while CD4 + and B cells have a more ad-

unct role in secreting cytokines and influencing the behaviors of

mmune, cancerous, and normal cells, and thus can be broadly
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rouped as secretory cells. López et al. (2014) used the model from

e Pillis et al. (2005) to consider different cell populations for in-

ate and specific immune responses, disregarding tumor-host in-

erplay. 

The immune response is integrated into a single effector cell

opulation E , which combines the equations for both CTL and NK

ells. Neglecting the recruitment and lysis of NK, which are more

neffective than CTLs in fighting tumor cells, the simplified model

ecomes: 

˙ E = σ − d 3 E + g 
D 

2 (E, T ) T 2 

h + D 

2 (E, T ) T 2 
E − a 31 T E 

D (E, T ) = d 
(E/T ) 

λ

s + (E/T ) 
λ
, 

here σ is the constant input of E, d 3 is the inactivation rate of ef-

ector cells, T is the tumor cell population, and a 31 is related to the

mmune-tumor competition. Tumor T and host H cell populations

re represented by: 

˙ T = r 1 T 

(
1 − T 

K 1 

)
− a 12 HT − D (E, T ) T 

˙ 
 = r 2 H 

(
1 − H 

K 2 

)
− a 21 T H , 

here r 1 and r 2 are the tumor and host cells’ growth rates, respec-

ively, a 1 2 and a 21 represent the competition of host cells and tu-

or cells, and viceversa, respectively, and K 1 and K 2 are the tumor

ost cells carrying capacity, respectively. The dynamical properties

f the model were evaluated, providing for the capability to ex-

lain theoretical and experimental data of tumor progression. The

imulation results of chemotherapy were in good agreement with

revious experiments in mice ( Hiramoto and Ghanta, 1974 ). 

. Discussion 

The models reviewed herein strive to provide a means to an-

lyze the complex interactions between tumor and immune cells,

ith the results showing that specific insights into these interac-

ions are attainable via mathematical modeling. Yet the immune

esponse in the cancer microenvironment is a highly complex and

ynamic process that may extend beyond the practical reach of any

ingle model. In addition to immune system components, there is

till much tumor biology that is poorly understood, e.g., the debate

egarding the concept of tumor dormancy as a steady or transient

henomenon ( Wilkie and Hahnfeldt, 2017 ). Additionally, cancerous

ells themselves display much variation in phenotype and geno-

ype ( Marusyk and Polyak, 2010 ), which has not yet been thor-

ughly modeled in a tissue-scale system. Other components of the

umor microenvironment require further investigation. It is known

hat macrophages affect and encourage the growth of tumoral vas-

ulature ( De Palma et al., 2005 ) but recent research suggests that

rregular tumoral vasculature may in turn affect the immune re-

ponse. For example, endothelial cells may act to block the recruit-

ent and entry of T cells to the tumor site ( Schaaf et al., 2018 ).

urther, as more is understood about immunotherapy, its inter-

ctions with established treatment modalities, e.g., chemotherapy,

ould be of clinical interest. Applying modeling to fine-tune meth-

ds of combining chemotherapy, and its benefit of years of clinical

pplication, with novel immunotherapies could be of practical ap-

lication. 

In the past ten years, the advent of –omic data has offered

he potential to revolutionize the field of medicine. In particular

or onco-immunotherapy, next generation sequencing (NGS) tech-

ology has enabled determining the genomic, transcriptomic, and

etabolomic landscapes for immune, tumor and stromal cells. A

ajor challenge is that the large size of these data and the com-

lexity of its analysis preclude a simple process. Machine learning
echniques including deep learning are being applied to help with

his challenge, yet such techniques struggle to provide patient-

pecific conclusions ( Grapov et al., 2018 ). Another challenge is that

t may be clinically impractical to collect these data from individual

umors. Diagnostic evaluation of cancer patients typically includes

maging along with tissue biopsy if feasible. The biopsied tissue

s histologically evaluated for confirmation of disease and staging.

ew of these tissues are then further evaluated to obtain –omics

nformation, although there have been efforts towards personalized

edicine ( Kakimi et al., 2017 ). Nevertheless, expanded interdisci-

linary collaborations between modelers and clinicians may enable

he development of models that could incorporate these data. 

The challenge of collecting clinical information for mathemat-

cal model purposes represents an enormous barrier to the prac-

ical application of these models. Although this challenge has al-

ays been present for biological modeling in general, it is partic-

larly acute when it comes to models of onco-immunology and

nco-immunotherapy. The models reviewed here for the most part

ave limited input from clinically relevant data. One reason is the

omplexity of the information spanning tumor, immune, and or-

an systems across molecular, cellular, and tissue scales. Assuming

hat such information were available, it would still be difficult to

nclude the information in terms of meaningful parameter values.

odels would need to be constructed based on the availability of

arameter values and their meaningful interpretation, which is a

on-trivial task. Based on the types of data, a data-driven approach

o the modeling may be suitable. Combinations of model systems

ay not necessarily yield the best answer, as what is needed are

ew ways of abstracting system information in order to obtain rel-

vant results. 

If patient-specific tumor system data were clinically collectable

nd models were constructed that could evaluate such data for

rognostic value and for exploration of hypothetical treatments

e.g., chemotherapy, immunotherapy, and combinations thereof), 

he next challenge is to deliver meaningful predictions in a timely

anner to clinicians. This challenge may be the most difficult of

ll, since the field of medicine is by nature conservative and slow

o adopt new technologies, as it rightfully strives to maintain the

elfare of patients as a top priority. The standard for a model to be

alidated for prognostic information is therefore high, as it should

e. It will take years of work, including large amounts of patient

ata collection and analysis, to establish model prognostic credi-

ility. Collaborations between modelers and clinicians will need to

e nurtured long term in order to achieve this goal. 

In spite of these challenges, the continued advance of biological

nowledge of tumor-immune cell interactions has provided and is

xpected to continue offering opportunities for the application of

athematics towards model development. Coupled with the ever-

xpanding capabilities of computational tools, this advance sug-

ests a hopeful future for the practical application of models of

umor-immune dynamics, with the ultimate goal of improving can-

er patient outcomes. 
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