
 

Accepted Manuscript

Mathematical Analysis of the Transmission Dynamics of the Liver
Fluke, Opisthorchis viverrini

Christine Bürli, Helmut Harbrecht, Peter Odermatt,
Somphou Sayasone, Nakul Chitnis

PII: S0022-5193(17)30527-1
DOI: 10.1016/j.jtbi.2017.11.020
Reference: YJTBI 9276

To appear in: Journal of Theoretical Biology

Received date: 22 December 2016
Revised date: 10 November 2017
Accepted date: 28 November 2017

Please cite this article as: Christine Bürli, Helmut Harbrecht, Peter Odermatt, Somphou Sayasone,
Nakul Chitnis, Mathematical Analysis of the Transmission Dynamics of the Liver Fluke, Opisthorchis
viverrini, Journal of Theoretical Biology (2017), doi: 10.1016/j.jtbi.2017.11.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jtbi.2017.11.020
https://doi.org/10.1016/j.jtbi.2017.11.020


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Humans, snails and fish are a maintenance-hosts and without them trans-
mission of O. viverrini cannot be sustained.

• Cats and dogs are non-maintenance hosts; they cannot sustain transmis-
sion in absence of humans as a definitive host.

• The most effective control interventions are targeting death rates of par-
asites in humans through regular treatment, the transmission rate from
humans to snails through improved sanitation and from fish to humans
through safe fish production.
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Abstract

We develop and analyse two population-based models of the transmission dy-
namics of the worm parasite Opisthorchis viverrini. The life cycle of O. viverrini
includes humans, cats and dogs as definitive hosts; and snails and fish as inter-
mediate hosts. The first model has only one definitive host (humans) while the
second model has two additional hosts: the reservoir hosts, cats and dogs. We
define reproduction numbers and endemic equilibrium points for the two mod-
els. We use prevalence data for the five hosts from two islands in Lao People’s
Democratic Republic to estimate distributions of parameter values. We use
these distributions to compute the sensitivity index and the partial rank corre-
lation coefficient of the basic reproduction number and the endemic equilibrium
point to the parameters. We calculate distributions of the host-specific type-
reproduction number to show that humans are necessary to maintain transmis-
sion and can sustain transmission without additional reservoir hosts. Therefore
interventions targeting humans could be sufficient to interrupt transmission of
O. viverrini.

Keywords: Opisthorchis viverrini, mathematical modelling, simulation
2000 MSC: 92D30

1. Introduction

Food-borne trematodiases are some of the most neglected of the so-called
neglected tropical diseases. They are caused by digenetic trematodes, which
live in the biliary duct of their host animal [1]. The disease opisthorchiasis is
caused by the worm parasites Opisthorchis viverrini, O. felineus and Clonorchis5

sinensis. The liver fluke O. viverrini is endemic in Asia, mainly in Thailand,
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Lao People’s Democratic Republic (Lao PDR) and Cambodia [2]. Worldwide
9–10 million people are infected with this liver fluke [2, 3] and 67.3 million are
at risk of infection. Transmission is found in areas where humans have the habit
of eating raw, pickled or undercooked fish [4].10

Figure 1 shows the life cycle of O. viverrini (and correspondingly of O. fe-
lineus and C. sinensis). The first intermediate hosts of O. viverrini are snails
of the genus Bithynia [5]. Freshwater snails ingest eggs, where they hatch to
become miracidia. After approximately two months, infected snails release cer-
cariae. The free-swimming cercariae penetrate through the skin of the second15

intermediate hosts, Cyprinidae fish [6], and become fully infective metacercariae
after 21 days [1].

The definitive hosts of O. viverrini, humans and other mammals like cats and
dogs, get infected through the consumption of undercooked fish infected with
metacercariae. A dish with raw fish can contain hundreds of viable O. viverrini20

metacercariae [7]. The immature worm of O. viverrini migrates from the duo-
denum into the biliary tract. After one month the worm matures into an adult
worm and mates within the lumen of the bile ducts and gall bladder. The eggs
of the worm travel through the bile ducts, enter the lumen and pass out with
the faeces [8]. The daily output of infected humans ranges between 3,000 and25

36,000 eggs per gram of stool. The life span of the worms in humans is around
ten years. The whole life cycle of O. viverrini has a duration of four months
[2, 6].

Infection with worms leads to many liver diseases including cholangitis, ob-

Dogs
Cats

Humans

Eggs

SnailsCercariaeFish

Figure 1: Schematic of the life cycle of O. viverrini
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structive jaundice, hepatomegaly, biliary periductal fibrosis, cholecystitis, and30

cholelithiasis. Treatment of worms usually consists of three doses of praziquan-
tel, which is cheap, safe and effective in killing worms. However, treatment of
any subsequent liver disease is expensive and difficult. Chronic infection with
O. viverrini can also lead to the bile duct cancer, cholangiocarcinoma [8]. This
kind of cancer is rare but with a poor prognosis [9].35

There are no published papers in mathematical modelling of O. viverrini,
but there is one on modelling the related parasite C. sinensis. Song et al. devel-
oped a catalytic model to estimate equilibrium transmission rates [10]. However,
catalytic models are based on linear ordinary differential equations (ODEs) with
constant coefficients, so they cannot capture the nonlinear dynamics of trans-40

mission.
There are also many publications on modelling schistosomiasis, a similar

disease with only one intermediate host, the snail. Schistosome parasites in-
fect the human as cercariae in the free-swimming stage, whereas O. viverrini
cercariae infect fish [11]. The first model of schistosmiasis was by Hairston in45

1965. He used life-tables to calculate the net reproductive rate of the parasite,
modelling female and male worms separately [12]. In the same year, Macdon-
ald developed a dynamic model with the probability of pairing worms and the
proportion of hosts with paired worms [13]. Goffmann and Warren adopted the
Kermack-McKendrick susceptible-infectious-recovered (SIR) model to humans50

and snails, including the free swimming miracidia and cercariae [14]. N̊asell
and Hirsch developed a stochastic model of the intensity of infection [11]. An-
derson and May developed an ODE model with the mean worm burden in
the human host. They split the snails into three groups: susceptible, latent
and shedding [15]. Habbema simulated a stochastic model of the intensity and55

prevalence in individual humans [16]. We base our model on Anderson and
May by tracking the mean worm burden instead of the prevalence of infection
in humans, because infectivity to snails and human morbidity depend on the
intensity of infection. Similar to previous schistosomiasis models for snails, we
use susceptible-infectious models for snails and fish.60

To create a basis for the mathematical modelling of food-borne trematodes
with population-based models, we develop two different models. We first de-
velop a simple model that only includes infection in fish, snails and humans.
We then develop a second model that also includes infection in cats and dogs.
These models allow us to better understand the role of domestic pets in the65

transmission dynamics of O. viverrini.
For these models, we define the equilibrium points, the basic reproduction

number and the host-specific type-reproduction numbers. We derive these def-
initions by explicit calculations using Mathematica 10.0.2. We then use data
from Lao People’s Democratic Republic to estimate reasonable distributions for70

the parameter values of the models. We conduct sensitivity analysis using these
distributions on the equilibrium points and the reproduction numbers for both
models to determine weak points in the parasite’s life cycle and the role of each
mammalian host in maintaining transmission. We perform all the numerical
computations in Matlab R2017a.75
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2. Basic transmission model

In the basic transmission model we assume that only fish, snails and humans
are involved in the life cycle of O. viverrini, ignoring the reservoir hosts: cats
and dogs. We model the mean worm burden in human and the prevalences
of infected snails and fish. The deterministic population-based ordinary dif-80

ferential equation (ODE) model represents the base transmission dynamics of
O. viverrini. It is given by

dwh
dt

= βhfNf if − µphwh, (1a)

dis
dt

= βshNhwh(1− is)− µsis, (1b)

dif
dt

= βfsNsis(1− if )− µf if , (1c)

with the state variables shown in Table 1 and the parameters shown in Table 2.

Variable Description
wh Mean worm burden per human host
wd Mean worm burden per dog host
wc Mean worm burden per cat host
is Proportion of infectious snails
if Proportion of infectious fish

Table 1: State variables of the opisthrochiasis models

The mean worm burden per human host wh increases with the consumption
of infected fish. This includes the number of fish, the proportion of infectious85

fish and the transmission rate of parasites to humans per fish, βhfNf if , and
decreases with the death of parasites, µphwh. The proportion of infectious snails
is, depends on the total adult worm population and the eggs they produce that
enter the aquatic environment, βshNhwh(1− is). Snails are infected until they
die at a total rate, µsis. The proportion of infectious fish has similar dynamics.90

Their rate of infection depends on the number of infectious snails and the snails’
rate of releasing cerceriae, βfsNsis(1− if ). The fish remain infected until they
die at a total rate, µf if .

This model ignores the intensity of infection in fish, as well as the distribution
of intensity in humans. We assume that all humans are the same and are equally95

likely to be infected by the parasite, and that all infected fish and snails are
equal with regards to within- and between-species transmission, so we assume
no assortative mixing. We also ignore density-dependent effects in hosts such
as acquired immunity and Allee effects.

2.1. Existence and uniqueness of the solution100

The system with the equations (1) is well-posed and epidemiologically rel-
evant in the strip S ⊂ R3. The strip S is defined by the boundaries of the
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solutions of the system (wh, is, if ),

S =

[
0,
Nfβhf
µph

]
× [0, 1]

2
.

The right hand side of the ODE system (1) is continuous with continuous partial
derivatives in S. We assume that an initial condition exists in the strip S. We105

can then show that a solution of the system cannot leave this strip S:
(i) If wh = 0, then

dwh
dt

= βhfNf if − µph · 0 ≥ 0,

and, if wh =
Nfβhf

µph
, then

dwh
dt

= βhfNf if − µph ·
Nfβhf
µph

≤ 0.

(ii) If is = 0, then

dis
dt

= βshNhwh · 1− µs · 0 ≥ 0,

and, if is = 1, then110

dis
dt

= βshNhwh · 0− µs · 1 ≤ 0.

(iii) If if = 0, then

dif
dt

= βfsNsis · 1− µfs · 0 ≥ 0,

and, if if = 1, then

dif
dt

= βfsNsis · 0− µfs · 0 ≤ 0.

It finally follows with the Picard-Lindelöf theorem that a unique solution
exists for the ODE system (1) in the strip S.

2.2. Equilibrium points115

Definition 1 (Disease free equilibrium point). The disease free equilibrium,
also called trivial equilibrium point, is the steady state solution with no disease
in the population.

Definition 2 (Endemic equilibrium point). The endemic equilibrium point
is the steady state solution with all state variables positive, where the disease120

persists in the population.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Setting the derivatives equal to zero, the equilibrium points are given as the
solution of

0 = βhfNf i
∗
f − µphw∗h,

0 = βshNhw
∗
h(1− i∗s)− µsi∗s,

0 = βfsNsi
∗
s(1− i∗f )− µf i∗f .

The system has two solutions, the disease free and the endemic equilibrium
point. The disease free equilibrium point is characterized by EBM0 = (w∗h, i

∗
s, i
∗
f ) =125

(0, 0, 0). The endemic equilibrium point EBMe = (w∗h, i
∗
s, i
∗
f ) corresponds to

w∗h =
βhfβshβfsNsNhNf − µphµsµf

βshNhµph(βfsNs + µf )
, (2a)

i∗s =
βhfβshβfsNsNhNf − µphµsµf
βfsNs(βhfβshNhNf + µphµs)

, (2b)

i∗f =
βhfβshβfsNsNhNf − µphµsµf
βhfβshNhNf (βfsNs + µf )

, (2c)

which is in the interior of S if βhfβshβfsNsNhNf > µphµsµf .

2.3. Basic reproduction number

Definition 3 (Basic reproduction number). The basic reproduction num-
ber R0 is the average number of new cases of an infection (or number of parasite130

offspring) caused by one typical infected individual (or one parasite), from one
generation to the next, in a population with no pre-existing infections.

To determine R0, we define the next-generation matrix (NGM) K. This
matrix relates the numbers of newly infected individuals or number of adult
parasites in consecutive generations. R0 is then defined as the dominant eigen-135

value of K.
The linearised infection subsystem describes the production of newly infected

individuals and changes in the states of already infected individuals. To derive
the next-generation matrix K, we decompose the matrix, which describes the
linearised model, into two matrices, T and Σ. T describes transmission: the140

production of new infections; and Σ describes transition: the changes in state.
K is defined as the product of −T and Σ−1 and R0 is the spectral radius, ρ, of
K. Therefore, R0 = ρ(−TΣ−1).

The interpretation of the (i,j)-th entry of Σ−1 is the expected time that an
individual, who presently has the infected state j, will spend in the infected145

state i. The (i,j)-th entry of T is the rate at which an individual in the infected
state j produces individuals with the infected state i. Therefore, the (i,j)-th
entry of the NGM K is the expected number of the infected offspring with the
state i who are infected by an individual currently in infected state j [17].

7
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The transmission matrix is150

T =




0 0 βhfNf
βshNh 0 0

0 βfsNs 0


 ,

and the transition matrix is

Σ =



−µph 0 0

0 −µs 0
0 0 −µf


 .

The next-generation matrix of the basic model is therefore

K = −TΣ−1 =




0 0
βhfNf

µf
βshNh

µph
0 0

0
βfsNs

µs
0


 .

The eigenvalues of the next-generation matrix K are

λ1 = 3

√
βhfβshβfsNhNsNf

µphµsµf
,

λ2 = −(−1)
1
3 3

√
βhfβshβfsNhNsNf

µphµsµf
,

λ3 = (−1)
2
3 3

√
βhfβshβfsNhNsNf

µphµsµf
.

All eigenvalues have the same modulus, so the (not strictly) dominant eigenvalue
is λ1, the only real and positive eigenvalue of K. Hence, it follows that155

R0 = 3

√
βhfβshβfsNhNsNf

µphµsµf
. (3)

The ecological definition of the basic reproduction number is the number
of offspring adult worms produced by a single adult worm in its life time, in
the absence of density-dependence. This number corresponds to the cube of R0

defined in (3) to include all life stages of the parasite.

2.4. Stability of the equilibrium points160

The basic reproduction number provides a threshold condition for the sta-
bility of the disease free equilibrium point. If R0 < 1, then the disease free
equilibrium point is locally asymptotically stable, and if R0 > 1 it is unstable.
We conjecture that the disease free equilibrium point is globally asymptotically
stable if R0 ≤ 1 because we do not expect any non-equilibrium asymptotic165

dynamics but we do not have a proof for this.
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The endemic equilibrium exists if and only if βhfβshβfsNhNsNf > µphµsµf ,
that is R0 > 1. To investigate the local stability of the endemic equilibrium
point, we use the Routh-Horwitz Criterion (Proposition 1 in the Appendix) to
determine the signs of the real parts of the eigenvalues of the Jacobian matrix.170

The Jacobian matrix of the basic model at the endemic equilibrium point is

J =




−µph 0 βhfNf
βshNh(1− i∗s) −(βshNhw

∗
h + µs) 0

0 βfsNs(1− i∗f ) −(βfsNsi
∗
s + µf )




=:



−j1,1 0 j1,3
j2,1 −j2,2 0
0 j3,2 −j3,3


 ,

for w∗h, i∗s and i∗f , defined in (2). The eigenvalues of the Jacobian matrix are
calculated by setting the characteristic polynomial p(λ) = det(J− λE) to zero.
This leads to the equation

λ3 + λ2(j1,1 + j2,2 + j3,3) + λ(j1,1j2,2 + j1,1j3,3 + j2,2j3,3)

+ j1,1j2,2j3,3 − j1,3j2,1j3,2 !
= 0.

We can determine the ai of the Routh-Horwitz criterion in Proposition 1 for175

i = 0, 1, 2, 3:

a0 = 1,

a1 = j1,1 + j2,2 + j3,3,

a2 = j1,1j2,2 + j1,1j3,3 + j2,2j3,3,

a3 = j1,1j2,2ij3,3 − j1,3j2,1j3,2.

With all the ai’s at hand, we can calculate the Tk’s for k = 0, 1, 2 and see if
they are positive or negative:

T0 = a0 = 1 > 0,

T1 = a1 > 0,

T2 = det

[
a1 a0
a3 a2

]
> 0⇔ βhfβshβfsNhNsNf > µphµsµf ⇔ R0 > 1.

From the Routh-Hurwitz criterion it follows that the roots of the characteris-
tic polynomial p(λ) have negative real parts and thus the eigenvalues of J. This180

means that the endemic equilibrium is locally asymptotically stable whenever
R0 > 1.

3. Model with reservoir hosts

In the second transmission model we add cats and dogs as reservoir hosts to
the basic transmission model. We extend the basic model (1) by including two185
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additional variables: the mean number of adult parasites per hosts in dogs (wd)
and cats (wc). This leads to

dwh
dt

= βhfNf if − µphwh, (4a)

dwd
dt

= βdfNf if − µpdwd, (4b)

dwc
dt

= βcfNf if − µpcwc, (4c)

dis
dt

= (βshNhwh + βsdNdwd + βscNcwc)(1− is)− µsis, (4d)

dif
dt

= βfsNsis(1− if )− µf if . (4e)

The additional state variables are given in Table 1 and the additional parameters
are given in Table 2.

3.1. Existence and uniqueness of the solution190

The existence and the uniqueness of the solution (wh, wd, wc, is, if ) of the
ODE system (4) follows in complete analogy to Section 2.1 in the strip S ⊂ R5

given by

D =

[
0,
Nfβhf
µph

]
×
[
0,
Nfβdf
µpd

]
×
[
0,
Nfβcf
µpc

]
× [0, 1]

2
.

3.2. Equilibrium points

For the model with reservoir hosts (4) we solve the following system195

0 = βhfNf i
∗
f − µphw∗h,

0 = βdfNf i
∗
f − µpdw∗d,

0 = βcfNf i
∗
f − µpcw∗c ,

0 = (βshNhw
∗
h + βsdNdw

∗
d + βscNcw

∗
c )(1− i∗s)− µsi∗s,

0 = βfsNsi
∗
s(1− i∗f )− µf i∗f ,

to determine the equilibrium points. We see that ERM0 = (w∗h, w
∗
d, w

∗
c , i
∗
s, i
∗
f ) =

(0, 0, 0, 0, 0) is the disease free equilibrium point and show the existence of at
most one endemic equilibrium point. We calculated an analytic expression for
this endemic equilibrium but do not present it here because of its length.

3.3. Basic reproduction number200

To define the reproduction number of the model with reservoir hosts (4),
we use the same method as for the basic model before. Hence, we obtain the

10
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transmission matrix

T =




0 0 0 0 βhfNf
0 0 0 0 βdfNf
0 0 0 0 βcfNf

βshNh βsdNd βscNc 0 0
0 0 0 βfsNs 0




and the transition matrix

Σ =




−µph 0 0 0 0
0 −µpd 0 0 0
0 0 −µpc 0 0
0 0 0 −µs 0
0 0 0 0 −µf



.

The next-generation matrix is thus defined as205

K = −TΣ−1 =




0 0 0 0
βhfNf

µf

0 0 0 0
βdfNf

µf

0 0 0 0
βcfNf

µf
βshNh

µph

βsdNd

µpd

βscNc

µpc
0 0

0 0 0
βfsNs

µs
0



.

The eigenvalues of the next-generation matrix K are the roots of the character-
istic polynomial:

det(K− λE) =

−λ5 + λ2
βfsNs
µs

(
βcfNf
µf

βscNc
µpc

+
βsdNd
µpd

βdfNf
µf

+
βhfNf
µf

βshNh
µph

)
!
= 0

Straightforward calculation yields:

λ1 = λ2 = 0,

λ3 = 3

√
βfsNs
µs

3

√
βcfNf
µf

βscNc
µpc

+
βsdNd
µpd

βdfNf
µf

+
βhfNf
µf

βshNh
µph

,

λ4 = −(−1)
1
3

3

√
βfsNs
µs

3

√
βcfNf
µf

βscNc
µpc

+
βsdNd
µpd

βdfNf
µf

+
βhfNf
µf

βshNh
µph

,

λ5 = (−1)
2
3

3

√
βsfNs
µs

3

√
βcfNf
µf

βscNc
µpc

+
βdfNf
µf

βsdNd
µpd

+
βhfNf
µf

βshNh
µph

.

11
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Since λ4 and λ5 are complex numbers, λ3 is the dominant real eigenvalue of K,
and the reproduction number is210

R0 = 3

√
βfsNs
µs

3

√
βcfNf
µf

βscNc
µpc

+
βsdNd
µpd

βdfNf
µf

+
βhfNf
µf

βshNh
µph

.

The endemic equilibrium point exists if and only if R0 > 1. We expect that
is locally asymptotically stable for R0 > 1 but did not prove this.

3.4. Type reproduction numbers

To determine the role of cats and dogs in maintaining transmission, we
analyse host-specific type-reproduction numbers. They are given by the spectral215

radii of the next-generation matrices with leaving out one or more host types
[18]. Ui is the host-specific and Qj is the host excluded reproduction number,
which are defined as

Ui = ρ(Ki),

Qj = ρ(I−Kj),

where Ki is the next-generation matrix of only including host i. In this multi-
host population with n types of hosts, the reservoir community is defined as220

the minimum set of hosts with U > 1. A maintenance host is the minimum
of m (m ≤ n) different hosts which satisfy U > 1 and Q < 1 [19]. With
the type reproduction number, we can define the reservoir community and
subdivide the hosts into maintenance and non-maintenance hosts. Transmis-
sion is not possible without snails and fish, so we always include them in the225

model while determining the role of the three mammalian hosts, that means
i ∈ {humans (h),dogs (d), cats (c)}.

The different next-generation matrices and their spectral radii are given by

Uh(= Qd,c) = ρ(Kh) = ρ







0 0 0 0
βhfNf

µf

0 0 0 0 0
0 0 0 0 0

βshNh

µph
0 0 0 0

0 0 0
βfsNs

µs
0







= 3

√
NfNhNsβhfβshβfs

µfµphµs
,
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Population with an endemic infectious disease: R0 > 1

Reservoir community (U > 1)

Maintenance host (U > 1 and Q < 1)
Non-Maintenance host

Figure 2: Definition of reservoir, maintenance, and non-maintenance hosts in a population
with an endemic infectious disease, figure based on [19, Figure 3]

Ud(= Qh,c) = ρ(Kd) = ρ







0 0 0 0 0

0 0 0 0
βdfNf

µf

0 0 0 0 0

0 βsdNd

µpd
0 0 0

0 0 0
βfsNs

µs
0







= 3

√
NfNsNdβdfβfsβsd

µfµpdµs
,

230

Uc(= Qh,d) = ρ(Kc) = ρ







0 0 0 0 0
0 0 0 0 0

0 0 0 0
βcfNf

µf

0 0 βscNc

µpc
0 0

0 0 0
βfsNs

µs
0







= 3

√
NfNsNcβcfβfsβsc

µfµpcµs
,
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Qh(= Ud,c) = ρ(Kd,c) = ρ







0 0 0 0 0

0 0 0 0
βdfNf

µf

0 0 0 0
βcfNf

µf

0 βsdNd

µpd

βscNc

µpc
0 0

0 0 0
βfsNs

µs
0







= 3

√
Nsβfs
µs

(
NfNdβdfβsd

µfµpd
+
NfNcβcfβsc

µfµpc

)
,

Qc(= Uh,d) = ρ(Kh,d) = ρ







0 0 0 0
βhfNf

µf

0 0 0 0
βdfNf

µf

0 0 0 0 0
βshNh

µph

βsdNd

µpd
0 0 0

0 0 0
βfsNs

µs
0







= 3

√
Nsβfs
µs

(
NfNhβhfβsh

µfµph
+
NfNdβdfβsd

µfµpd

)
,

and

Qd(= Uh,c) = ρ(Kh,c) = ρ







0 0 0 0
βhfNf

µf

0 0 0 0 0

0 0 0 0
βcfNf

µf
βshNh

µph
0 βscNc

µpc
0 0

0 0 0
βfsNs

µs
0







= 3

√
Nsβfs
µs

(
NfNhβhfβsh

µfµph
+
NfNcβcfβsc

µfµpc

)
.

4. Sensitivity analysis

Sensitivity analysis describes what happens to some dependent variables235

when one or more independent parameters are changed [20]. Thus, we can see
the influence of the different parameter to the basic reproduction number, the
host-specific type-reproduction number and the endemic equilibrium point.

4.1. Data and parameter values

Data on prevalence of infection in cats, dogs, snails, and fish; and on intensity240

of infection in humans was collected from two islands Don Khon and Don Som,
Champasack province, Lao People’s Democratic Republic (Lao PDR), from Oc-
tober 2011 to August 2012. The data was collected in a cross-sectional study for
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a pilot community experiment of an integrated intervention package to control
schistosomiasis. In the absence of time-series longitudinal data, we assume that245

this data represents an equilibrium solution, which we use to estimate the un-
known parameters. The number of hosts tested and found positive is shown in
Table 3 [21]. Additional data on the number of worm eggs per gram of human
stool is not shown here.

We assume triangular distributions as prior distributions for the model pa-250

rameters and estimate ranges and modes from the data in Table 3, literature,
and expert opinions, as shown in Tables 4 and 5. We assume that the mean
life span of parasite in humans (µph) is 10 years, mean life span of a snail (µs)
is 1 year and of a fish (µf ) is 2.5 years [22]. We assume that parasites in cats
(µpc) and dogs (µpd) die after 4 years, which is the average life span of cats and255

dogs in the area. We use the population sizes of humans from the study in Lao
PDR [21]. From discussions with local village chiefs, we assume that there are
half as many dogs as humans and a third as many cats as humans. We further
expect that there are a lot more snails than fish. We calculate the modes of
the transmission parameters (β) by assuming βsh = βsd = βsc and solving the260

system of equations (4) of the endemic equilibrium point for the data given in
Table 3 (after converting the mean worm burden in humans, cats, and dogs to
prevalence as described in Section 4.2. For the basic model (1), we multiply
βsh from the reservoir model by three to account for increased transmission
from humans in the absence of reservoir hosts. We estimate wide ranges for the265

transmission parameters and the population sizes of snails and fish because we
have little data on these values.

4.2. Sample construction and maximum likelihood estimation

We use a Bayesian sampling resampling approach to better estimate param-
eter distributions. We first draw 100,000 sample sets of parameter values, for270

both the basic and the reservoir hosts models, from the prior triangular dis-
tributions with modes and ranges described in Tables 4 and 5. We filter out
samples that correspond to values of R0 < 1. In the basic model 92,758 (93%)
parameter sets correspond to R0 > 1 and in the reservoir hosts model 84,548
(85%) correspond to R0 > 1.275

For the resampling, we calculate probabilities from the likelihood that the
solution of the equations is at the equilibrium point corresponding to the data in
Table 5 (and the eggs per gram in each human tested). We define the likelihood
function L of the model with reservoir hosts (4) as

L = LhLdLcLsLf ,

and of the basic model (1) as280

L = LhLsLf ,
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where

Lh =
nh!

ph!(nh − ph)!
(i∗h)

ph (1− i∗h)(nh−ph),

Ld =
nd!

pd!(nd − pd)!
(i∗d)

pd (1− i∗d)(nd−pd),

Lc =
nc!

pc!(nc − pc)!
(i∗c)

pc (1− i∗c)(nc−pc),

Ls =
ns!

ps!(ns − ps)!
(i∗s)

ps (1− i∗s)(ns−ps),

Lf =
nf !

pf !(nf − pf )!

(
i∗f
)pf (1− i∗f )(nf−pf ),

assuming that the equilibrium prevalences i∗h, i∗d, i
∗
c , i
∗
s, and i∗f are binomially

distributed. For the three mammalian hosts we need to convert the mean worm
burden at the endemic equilibrium into prevalence of infection. For humans
we have data on both prevalence and intensity of infection (eggs per gram in285

stool for each human). We use the pre-calculated relationship from literature,
y = x2 +2x to convert the eggs per gram in stool, y, into mean worm burden, x,
[23]. We assume a negative binomial distribution for the number of worms per
person, leading to the relation between mean number of eggs per person (M)
and the prevalence (P ) [24],290

P = 1−
(

1 +
M

k

)−k
. (5)

We assume that cats and dogs have the same relationship between mean worm
burden and eggs per gram in stool and the same distribution for the number of
worms per host as humans. The prevalence of infection in humans is P = 0.6066
(calculated from Table 3) and the mean number of eggs per person is M =
1108.2, so from equation (5), k = 0.10020566. It follows that the prevalences in295

cats and dogs are

i∗c = 1−
(

1 +
(w∗c )

2

k

)−k
,

i∗d = 1−
(

1 +
(w∗d)

2

k

)−k
.

We resample 2,000 sets of parameter values with probability proportional to the
likelihood function with replacement1 [25, 26].

1MatlabR2017a: bootstrp
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To optimize all the infection rates (β), we maximize2 the logarithm of the
likelihood function starting from the resampled parameter set with the highest300

likelihood [27, 28]. The maximum likelihood estimates are shown in Table 6.
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(a) Basic model
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(b) Model with reservoir hosts

Figure 3: Distributions of the basic reproduction number R0 of the basic (1) and the model
with reservoir hosts (4) calculated for the resampled parameter distributions from Section 4.2.

4.3. Threshold conditions

The basic reproduction numberR0 calculated for each of these 2,000 samples
is shown in Figure 3. Note that values ofR0 < 1 are excluded because we assume
the existence of the endemic equilibrium point. For this equilibrium point, we305

numerically show that all eigenvalues of the Jacobian matrix have negative real
parts so it is locally asymptotically stable.

We calculate the distributions of the type reproduction numbers from the
resampled distributions of the parameter values (Figure 4). Humans, snails,
and fish belong to the reservoir community because their host-specific type-310

reproduction number is likely bigger than 1 (U > 1) and their host excluded
type-reproduction number is likely smaller than 1 (Q < 1). Humans, snails,
and fish are also maintenance-hosts, because they are the minimum set which
satisfies U > 1. The host specific type-reproduction number of cats and dogs is
smaller than 1 (Ud, Uc < 1), so they are non-maintenance hosts.315

The host-specific type-reproduction numbers, calculated with the parameter
values in Table 6 from the maximum likelihood estimation, are

Uh = 1.0935, Qh = 0.4016,

Ud = 0.2548, Qd = 1.1067,

Uc = 0.3640, Qc = 1.0981.

2MatlabR2017a: fminsearch
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4.4. Local sensitivity analysis

The local sensitivity index is the ratio of the relative change in the variable
and the relative change in the variable. Hence, we define the normalized forward320

sensitivity index of a variable u and the parameter p as, see [29],

Υu
p :=

du

dp
× p

u
. (6)

We first use the formula in (6) to calculate the sensitivity index of R0 in the
basic model (1) with respect to βhf :

ΥR0

βhf
=

dR0

dβhf
× βhf
R0

=
1

3β
2
3

hf

3

√
βshβfsNhNsNf

µphµsµf
× βhf

3

√
βhfβshβfsNhNsNf

µphµsµf

=
1

3
.

The calculation is similar for the sensitivity indices of R0 with respect to
βsh,βfs,Nh,Ns and Nf . For the sensitivity indices of R0 with respect to µph,325

µs and µf we have, for example,

ΥR0
µph

=
dR0

dµph
× µph
R0

= − 1

3µ
4
3

ph

3

√
βhfβshβfsNhNsNf

µsµf
× µph

3

√
βhfβshβfsNhNsNf

µphµsµf

= −1

3
.

Therefore if, for example, βhf increases by 100%, then R0 increases by 33%.
If µph increases by 100%, then R0 decreases by 33%. Since the sensitivity index
of R0 is independent of any other parameters, it is valid locally and globally.
Due to the same absolute value of the sensitivity index, all parameters are330

equally important for R0.
The sensitivity index of the state variables at the endemic equilibrium of the

basic model is for example

dw∗h
dβhf

× βhf
w∗h

=
βshβfsNhNfNs

βshNhµph(βfsNs + µf )
× βhf

βshNhµph(βfsNs + µf )

βhfβshβfsNhNfNs − µphµsµf
=

βhfβshβfsNhNfNs
βhfβshβfsNhNfNs − µphµsµf

.

Figure 6 (a) shows the sensitivity index of w∗h for the parameter values from
Table 4. The local sensitivity analysis for the model with reservoirs host (4) is335

performed as described in formula (6). The results for R0 are shown in Figure 5
(b) and the results for w∗h are shown in Figure 6 (b).
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4.5. Global sensitivity analysis and numerical simulation

We use partial rank correlation coefficients (PRCC) to analyse the sensitiv-
ity globally and to compare the influence of the parameters on R0 and on the340

endemic equilibrium point. To calculate the PRCC, we used the Matlab imple-
mentation of the PRCC function developed in [30]3. The function was run on
the 2,000 samples from Section 4.2.

Figures 5 (c) and (d) show, from the top to the bottom, the influence of the
change in the parameter on R0 and Figures 6 (c) and (d) show the influence345

on w∗h in the basic model (1) and in the model with reservoir hosts (4). The
closer the absolute value is to one, the more influence the parameter has on the
output.

In the basic model (1), the death rate of snails (µs) has the most global
influence on R0, followed by the death rate of parasites in humans (µph) and the350

death rate of fish (µf ). However there is little difference between the parameter
values, so the basic model is not able to differentiate between the sensitivity of
the parameters on R0. For the model with reservoir hosts (4), the death rates
of snails and fish (µs, µf ), followed by death rate of parasites in humans (µph)
have the most global influence on R0.355

The death rate of parasites in humans (µph) has the most global influence on
the mean worm burden of humans at the endemic equilibrium point w∗h in both
models, followed by the fish to human transmission rate (βhf ) and the number
of fish (Nf ).

In Figure 7 we show two dimensional sensitivity analysis of R0 (of both360

models) to the population sizes of the five hosts with all other parameters as in
Table 6. Figure 7 (a) shows the dependence of R0 of the basic model (1) when
the numbers of snails (Ns) and fish (Nf ) are varied. R0 depends more strongly
on the population size of snails than of fish. The sensitivity of R0 for the model
with reservoir hosts (4) is presented in Figures 7 (b)–(d). Figure 7 (b) shows365

the variation of R0 to the number of snails (Ns) and fish (Nf ). Similar to the
basic model, R0 increases faster with more snails faster than with more fish.
In Figure 7 (c), we see that R0 increases faster with the number of dogs (Nd)
than with the number of cats (Nc). Figure 7 (d) shows that when the numbers
of humans (Nh) and cats (Nc) are varied, R0 increases more rapidly with the370

number of cats.
We show numerical simulations of the basic model (1) and of the model with

reservoir hosts (4) in Figure 8. For both models the parameter values are given
in Table 6 and the initial conditions are wh = 1, wd = 1, wc = 1, is = 0 and
if = 0. We use the Dormand-Prince method 4 to integrate over the time interval375

[0, 70000], which corresponds to a time period of 190 years.

3http://malthus.micro.med.umich.edu/lab/usanalysis.html (24.10.2016)
4MatlabR2017a: ode45
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5. Discussion

We analysed two population-based models of transmission dynamics of the
O. viverrini. The basic model (1) includes the intermediate hosts snails and
fish, and humans as definitive hosts. We extended this model to a model with380

reservoir hosts (4) by including cats and dogs as additional definitive hosts. We
proved that the models are mathematically and epidemiologically well-posed.
We obtained an explicit expression for the basic reproduction number R0. We
defined the disease-free and the endemic equilibrium points, showed the crite-
rion for the existence of these points points, and investigated their stability with385

respect to R0. We used Bayesian sampling-resampling with data from two is-
lands in Lao PDR to construct distributions for the parameter values. We finally
simulated the mean worm burden in the definitive hosts and the prevalence in
the intermediate hosts over time.

The host-specific type-reproduction number defines the number of new in-390

fection from one infected individual when certain types of hosts are excluded
from the model. It helps to identify the reservoir community and their main-
tenance hosts. We showed that humans, snails, and fish are maintenance-hosts
because they can sustain transmission on their own. Furthermore, transmission
is not possible if any of these species is removed from the cycle, so they are also395

reservoir hosts. This implies that it is possible to interrupt transmission with
interventions that only target humans and ignore cats and dogs. For example,
improving sanitation to an high enough level would be sufficient to eliminate
opisthorchis transmission in Lao PDR.

The basic model could not differentiate between the sensitivity of the param-400

eters on the basic reproduction number, R0. Sensitivity analysis of the model
with reservoir hosts showed that R0 depends mostly on the death rate of para-
sites in humans (µph), of snails (µs), and of fish (µf ), and the population sizes of
snails (Ns) and fish (Nf ). Increasing the death rate of parasites in humans (µph)
is possible through regular treatment of humans with praziquantel. Increasing405

the death rates of snails (µs) and fish (µf ) is more difficult, but reducing the
number of snails is possible through snail control. Improved sanitation (which
lowers βsh) and safe fish production (which lowers βhf ) have a moderate effect
on reducing R0.

There are some differences in the sensitivity indices of the equilibrium mean410

worm burden in humans (w∗h) between the basic and the model with reservoir
hosts and between the local and global analysis (Figure 6). However, the death
rate of parasites in humans (µph), the transmission rate from fish to humans
(βfs) and the number of fish (Nf ) most often have a high sensitivity index. This
suggests that regular treatment of humans and safe fish production are the most415

effective intervention in reducing the parasite burden in humans. Sensitivity
analysis of the model with reservoir hosts (4) showed that the cats have more
influence on the worm burden in humans than dogs.

In both models, we ignored seasonality, the age of humans, the dynamics
of infection in fish and the latent period in snails and fish. Transmission of O.420

viverrini follows a seasonal pattern because of increases in the number of snails
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and fish in the rainy season. This implies that interventions could be more
effective if targeted in the right season. Additionally it may also be possible
that in the rainy season, cats or dogs could sustain transmission.

The results of the sensitivity analysis depend on the data we used to fit425

the models. This data was collected in 2011–2012 from a cross-sectional survey
in two islands so, in the absence of any time-series data, we made the parsi-
monious assumption that the system was at an endemic equilibrium and that
the coverage of any interventions (such as improved sanitation) was constant,
with their effects included in the model parameters. Although there may have430

been intermittent mass drug administration campaigns in the past, a consistent
nationwide schistosomiasis elimination program, with annual mass drug admin-
istration (with praziquantel which also kills O. viverrini worms) combined with
improved access to sanitation and safe water, was only started later in 2015.

In the models, we assumed all humans are the same and ignored the fact that435

babies are born without infection and children have a lower worm burden than
adults. Since humans accumulate parasites over their life times, heterogeneity
in the distribution of worms in humans may lead to sustained transmission
even at lower mean worm burdens. At high parasite density there are likely to
be effects of density-dependence such as competition and immune regulation,440

but we ignore these effects in our simple model. A more complete analysis
of heterogeneity in human exposure, density-dependent effects at high parasite
densities, and the impact of high density infections on morbidity and mortality
would likely require an individual-based model, that includes the intensity of
infection in each human. Additionally, detailed data on the densities of worms445

in humans would be necessary to parameterise such a model.
O. viverrini is a hermaphrodite — it has both male and female reproductive

organs — so any two worms in one definitive host can reproduce and Allee effects
at low worm densities are less relevant for this species [31] (although they could
also be included in an individual-based model). Assortative mixing between450

species is unlikely because cats and dogs are domestic pets so all definitive
hosts live in the same households, eat the same fish, and are likely the infect
the same fish..

The infection rate from fish to the definitive hosts (βhf , βdf , βcf ) depends
on the intensity of infection in fish. We ignore the intensity of infection in455

fish, but model the prevalence of infected fish. Similar to the heterogeneity in
humans, the heterogeneity of intensity of infection in fish could lead to higher
transmission. Infected snails and fish are not infectious immediately but need
some time for the parasite to develop. This latent period could lead to a lower
prevalence of infectious snails and fish, because infected snails and fish can die460

before becoming infectious. We plan to investigate the implication of these
assumptions in future work.

This work suggests that including cats and dogs in a model of opisthorchis
allows us to better differentiate the most important parameters for maintaining
transmission and reducing worm burden in humans. However cats and dogs are465

not necessary to maintain transmission so it would be possible to eliminate O.
viverrini by only targeting humans with effective interventions such as regular
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treatment, safe fish production and improved sanitation.

Appendix

Proposition 1 (Routh-Horwitz criterion, see [32]). For a polynomial470

f(x) = a0x
3 + a1x

2 + a2x+ a3 = 0 (.1)

with ai ∈ R for i = 0, 1, 2, 3, the number of roots with positive real parts is equal
to the number of sign changes in either one of the sequences

T0, T1,
T2
T1

or

T0, T1, T1T2,

where

T0 = a0 > 0, T1 = a1, T2 = det

[
a1 a0
a3 a2

]
.

Given a0 > 0, all roots have negative real parts if and only if T0, T1 and T2 are475

all positive.
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Nh Population size of humans Animals
Nd Population size of dogs Animals
Nc Population size of cats Animals
Ns Population size of snails Animals
Nf Population size of fish Animals
µph Per capita death rate of adult parasites

in humans (includes additional mortal-
ity due to death of humans)

1/Time

µpd Per capita death rate of adult parasites
in dogs (includes additional mortality
due to death of dogs)

1/Time

µpc Per capita death rate of adult parasites
in cats (includes additional mortality
due to death of cats)

1/Time

µs Per capita death rate of snails 1/Time
µf Per capita death rate of fish including

mortality through fishing by humans
1/Time

βhf Transmission rate from infectious fish to
humans per person per fish

1/(Time × Animals)

βdf Transmission rate from infectious fish to
dogs per dog per fish

1/(Time × Animals)

βcf Transmission rate from infectious fish to
cats per cat per fish

1/(Time × Animals)

βsd Infection rate of snails per parasite in a
dog host

1/(Time × Animals)

βsc Infection rate of snails per parasite in a
cat host

1/(Time × Animals)

βsh Infection rate of snails per parasite in a
human host

1/(Time × Animals)

βfs Infection rate of fish per snail 1/(Time × Animals)

Table 2: Parameters of the opisthorchiasis model
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Variable Description Value
nh number of tested humans 994
ph number of positive tested humans 603
nd number of tested dogs 68
pd number of positive tested dogs 17
nc number of tested cats 64
pc number of positive tested cats 34
ns number of tested snails 3102
ps number of positive tested snails 9
nf number of tested fish 628
pf number of positive tested fish 169

Table 3: Total number tested and positive hosts from two islands in Lao PDR [21].

Variable Value Range Unit
βhf 4.898× 10−5

[
4.898× 10−6, 9.795× 10−5

]
1/(Animal x Day)

βsh 9.160× 10−11
[
9.160× 10−12, 1.832× 10−10

]
1/(Animal x Day)

βfs 3.477× 10−5
[
3.477× 10−6, 6.954× 10−5

]
1/(Animal x Day)

Nh 14542 [1454.2, 29084] Animals
Ns 20000 [2000, 40000] Animals
Nf 8000 [800, 16000] Animals

µph
1

10×365

[
1

20×365 ,
1

1×365

]
1/Days

µs
1

1×365

[
1

2×365 ,
1

0.1×365

]
1/Days

µf
1

2.5×365

[
1

5×365 ,
1

0.25×365

]
1/Days

Table 4: Parameter values and ranges of the basic model (1)
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Variable Value Range Unit

βhf 4.898× 10−5
[
4.898× 10−6, 9.795× 10−5

]
1/(Animal x Day)

βdf 4.110× 10−6
[
4.110× 10−7, 8.220× 10−6

]
1/(Animal x Day)

βcf 4.414× 10−5
[
4.414× 10−6, 8.829× 10−5

]
1/(Animal x Day)

βsh 3.053× 10−11
[
3.053× 10−12, 6.107× 10−11

]
1/(Animal x Day)

βsd 3.053× 10−11
[
3.053× 10−12, 6.107× 10−11

]
1/(Animal x Day)

βsc 3.053× 10−11
[
3.053× 10−12, 6.107× 10−11

]
1/(Animal x Day)

βfs 3.477× 10−5
[
3.477× 10−6, 6.954× 10−5

]
1/(Animal x Day)

Nh 14542 [7271, 21813] Animals
Nd 7271 [3635.5, 10906.5] Animals
Nc 4847 [2423.5, 7270.5] Animals
Ns 20000 [2000, 40000] Animals
Nf 8000 [800, 16000] Animals

µph
1

10×365

[
1

20×365 ,
1

1×365

]
1/Days

µpd
1

4×365

[
1

8×365 ,
1

0.4×365

]
1/Days

µpc
1

4×365

[
1

8×365 ,
1

0.4×365

]
1/Days

µs
1

1×365

[
1

2×365 ,
1

0.1×365

]
1/Days

µf
1

2.5×365

[
1

5×30 ,
1

0.25×365

]
1/Days

Table 5: Parameter values and ranges of the model with reservoir hosts (4)
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Basic model Model with reservoir hosts
Parameter MLE MLE
βhf 3.4891× 10−5 1.6850× 10−5

βdf - 1.2733× 10−6

βcf - 1.1851× 10−5

βsh 5.6002× 10−11 3.3575× 10−11

βsd - 5.2889× 10−11

βsc - 7.5833× 10−12

βfs 4.1682× 10−5 2.5073× 10−5

Nh 12, 231 15, 143
Nd - 6, 236
Nc - 6, 220
Ns 18, 862 6, 261
Nf 6, 969 6, 824
µph

1
1.3526×365

1
2.8603×365

µpd - 1
0.7424×365

µpc - 1
1.6392×365

µs
1

0.3580×365
1

0.4600×365
µf

1
0.4479×365

1
2.2044×365

Reproduction number
R0 1.1112 1.1112

Table 6: Maximum likelihood estimation (MLE) and the corresponding basic reproduction
number (R0)
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Figure 4: Distributions of the host-specific type-reproduction numbers of the model with
reservoir hosts (4) calculated from the resampled parameter distributions from Section 4.2
and the probability that the number is above 1.
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Figure 5: Local sensitivity indices and partial rank correlation coefficients (PRCC) of the
basic reproduction number R0 for the basic model (1) and the model with reservoir hosts (4).
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Figure 6: Local sensitivity indices and partial rank correlation coefficients (PRCC) of mean
worm burden in humans at the endemic equilibrium point w∗

h of the basic model (1) and the
model with reservoir hosts (4).

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0
20

0.2

40

R
0

N
f
 in 1,000s

10

N
s
 in 1,000s

0.4

20
0 0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Basic model: Ns and Nf

0
20

1

40

R
0

2

N
f
 in 1,000s

10

N
s
 in 1,000s

3

20
0 0

0.5

1

1.5

2

2.5

(b) Model with reservoir hosts: Ns and Nf

1.1
10

1.11

20

R
0

N
c
 in 1,000s

5

N
d
 in 1,000s

1.12

10
0 0

1.105

1.11

1.115

(c) Model with reservoir hosts: Nd and Nc

0.8
10

1

40

R
0

1.2

N
c
 in 1,000s

5

N
h
 in 1,000s

20
0 0

0.9

1

1.1

1.2

(d) Model with reservoir hosts; Nh and Nc

Figure 7: Basic reproduction number R0 for the basic model (1) and the model with reservoir
hosts (4) varying population sizes of two hosts with all other parameters as in Table 6.
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Figure 8: Numerical simulations of the opisthorchiasis models (1) and (4) with the Dormand-
Prince method over a time line of 70,000 days. The initial values are 1 for the worm burdens
and 0 for the prevalences. The parameter values are in Table 6.
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