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a b s t r a c t 

A ring oscillator is a system in which one species regulates the next, which regulates the next and so 

on until the last species regulates the first. In addition, the number of the regulations which are neg- 

ative, and so result in a reduction in the regulated species, is odd, making the overall feedback in the 

loop negative. In ring oscillators, the probability of oscillations is maximised if the degradation rates of 

the species are equal. When there is more than one loop in the regulatory network, the dynamics can 

be more complicated. Here, a systematic way of organising the characteristic equation of ODE models of 

regulatory networks is provided. This facilitates the identification of Hopf bifurcations. It is shown that 

the probability of oscillations in non-ring systems is maximised for unequal degradation rates. For exam- 

ple, when there is a ring and a second ring employing a subset of the genes in the first ring, then the 

probability of oscillations is maximised when the species in the sub-ring degrade more slowly than those 

outside, for a negative feedback subring. When the sub-ring forms a positive feedback loop, the optimal 

degradation rates are larger for the species in the sub-ring, provided the positive feedback is not too 

strong. By contrast, optimal degradation rates are smaller for the species in the sub-ring, when the pos- 

itive feedback is very strong. Adding a positive feedback loop to a repressilator increases the probability 

of oscillations, provided the positive feedback is not too strong, whereas adding a negative feedback loop 

decreases the probability of oscillations. The work is illustrated with numerical simulations of example 

systems: an autoregulatory gene model in which transcription is downregulated by the protein dimer and 

three-species and four-species gene regulatory network examples. 

© 2019 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Oscillations in gene expression are important in a variety of bi-

ological processes, from circaidian rhythms ( Reddy and Rey, 2014 )

to somitogenesis ( Dequéant et al., 2006; Hirata et al., 2002 ) to

apoptosis in response to DNA damage ( Bar-Or et al., 20 0 0; Michael

and Oren, 2003 ). Determining the conditions necessary for oscil-

lations to occur is thus important in the understanding of these

processes. 

A ring oscillator is typically a gene regulatory network, con-

taining a single negative feedback loop between the biochem-

ical species. Gene/ biochemical species 1 regulates the expres-

sion of species 2 which regulates species 3 and so on. The fi-

nal species (species n ) regulates species 1, see Fig. 1 a. A species

can up-regulate or down-regulate the next. Up-regulations are in-

dicated by sharp-headed arrows and down-regulations by flat-

headed arrows, see Alon (2007) for a review of network mo-
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ifs and De Jong (2002) for a review of mathematical models of

ene regulatory networks. If the number of down-regulations in

he cycle is odd, so that the feedback loop for species 1 (or any

ther species) on itself is negative, oscillations are expected ( Smith,

987; Müller et al., 2006; Bu ̧s e et al., 2009; 2010 ). If the num-

er of down-regulations is even, so that the feedback loop is pos-

tive, multi-stability is expected ( Smith, 1987; Plahte et al., 1995;

inquin and Demongeot, 2002; Soulé, 2003; Angeli et al., 2004;

üller et al., 2006; Kaufman and Soulé, 2019 ), although long-lived

scillations are possible, for example, in systems with stochasticity

 Strelkowa and Barahona, 2010 ). 

Previous work has shown that when the systems giving rise

o oscillations are ring oscillators, that is they contain a single

egative feedback loop between the chemical species, oscillations

re most likely if the degradation rates of all species are equal

 Page and Perez Carrasco, 2018 ). Frequently, oscillations arise in

egulatory systems which are more complicated and contain more

han one feedback loop, see for example ( Panovska-Griffiths et al.,

013; Perez Carrasco et al., 2018; Verd et al., 2017; 2018; Good-

ellow et al., 2014 ). Here I investigate the conditions necessary for
der the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. (a) Diagrams of ring oscillators. The biochemical species indicated by 

X 1 , X 2 , . . . , X 2019 regulate each other in a cyclic manner. There is an odd number of 

repressions. The diagram on the right hand side depicts a repressilator. (b) Diagram 

of species interactions in the autoregulatory gene model with dimeric transcription 

factor. A is the protein dimer, B the mRNA and C the protein monomer. (c) Diagram 

of the ACDC motif. (d) Diagram of the four species network considered in Section 4 . 
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scillations in these multiple feedback loop systems. The study is

imited to ordinary differential equation models. 

The general theory for predicting the onset of oscillations is

resented in Section 2 . Section 3 concerns the case of networks

onsisting of a loop and a sub-loop and explores optimal condi-

ions for oscillations. Section 3.1 concerns the example of a single

uto-repressive gene, and the species modelled are its mRNA con-

entration and the concentrations of its protein in the form of a

onomer and of a dimer, see Fig. 1 b. Section 3.2 concerns three-

pecies systems with a loop and sub-loop, such as the ACDC motif,

ee Fig. 1 c. Section 3.3 reverts to the n -species case and the opti-

al conditions for oscillations. Section 4 concerns networks with

wo interconnected rings, exploring a four-species example, which

annot be described as a loop with a sub-loop. Finally the results

re discussed in Section 5 . 

. The feedback system 

In the most general case of a feedback system, there are n

pecies and any species can regulate any other. This can be rep-

esented by a directed graph, with two types of edges. Sharp ar-

ows indicate that the biochemical species at the base of the ar-

ow positively influences the other, while flat-headed arrows indi-

ate that the biochemical species at the base negatively influences
he other. In gene regulatory networks, transcription of a gene is

ypically regulated by the protein of the other gene. Proteins that

o this are referred to as transcription factors. Therefore, to a good

pproximation, it is the mRNA of the second gene that is directly

egulated by the protein of the first. In some models, this is dealt

ith directly (see for example Elowitz and Leibler, 20 0 0; Page and

erez Carrasco, 2018 ). It is common, however, to assume that the

ynamics of mRNA are fast compared to those of protein so that

heir concentrations are at quasi- steady state. Here we not only

onsider transcriptional regulation, but also consider reactions be-

ween biochemical species, for example dimerisation of a protein. 

The time evolution of the concentrations of the biochemical

pecies of interest can be described by differential equations. If it is

ssumed that the biochemicals are well-mixed within the cell and

ufficiently abundant, then ordinary differential equations can be

mployed (see Discussion for a description of more refined models

n which this assumption is not made). Here we assume, in addi-

ion, that all species, be they mRNAs or proteins, degrade at a rate

hich is linear in their concentration. Within the general theory,

t would be fairly straightforward to replace this assumption with

egradation at a rate which is monotonically increasing in concen-

ration (see for example Alrikaby, 2018 ). 

As in Page and Perez Carrasco (2018) , we model the concentra-

ions of the species with a system of ordinary differential equa-

ions: 

˙ 
 i = d i ( f i ( x ) − x i ) , (1)

here d i is the degradation rate of species i and d i f i describes its

egulation by the other species. f i is some function of the concen-

ration of the n -species. In the case of a ring oscillator, f i depends

nly on x (i −1) mod n (see Fig. 1 a). In addition, the number of down-

egulations is odd. 

The steady states of the system 1 are given by solutions to the

ystem of equations: 

f ( x ) = x . 

A straightforward argument shows that, for the ring oscilla-

or, there is a unique steady state (see for example Page and

erez Carrasco, 2018 ). Rings in which there are an even number

f down-regulations typically show multi-stability and are more

omplicated to analyse (see e.g. Smith, 1987; Müller et al., 2006;

trelkowa and Barahona, 2010 ). We assume that since we model

hemical reactions, transcription and translation only, the dynam-

cs will be bounded. We look for the onset of oscillations by lo-

ating Hopf bifurcations. According to linear analysis, these occur

hen the eigenvalues of the Jacobian matrix at the steady state

re imaginary. 

We consider a Hopf bifurcation in such a system and derive the

haracteristic equation, setting the eigenvalue to be i α: 

 = det 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−iα − d 1 + d 1 
∂ f 1 
∂x 1 

d 1 
∂ f 1 
∂x 2 

. . . d 1 
∂ f 1 
∂x n 

d 2 
∂ f 2 
∂x 1 

−iα − d 2 + d 2 
∂ f 2 
∂x 2 

. . . d 2 
∂ f 2 
∂x n 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

δn 
∂ f n 
∂x 1 

. . . d n 
∂ f n 

∂x n −1 
−iα − d n + d n 

∂ f n 
∂x n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

( 

n ∏ 

k =1 

d k 

) ∑ 

σ∈ S n 
sgn (σ ) 

n ∏ 

j=1 

(
∂ f j 

∂x σ j 

− (1 + iα/d j ) δ jσ j 

)
, 

here all the partial derivatives are taken at the relevant steady

tate and δ is the Kronecker delta. For a given permutation σ , let

s divide the elements of { 1 , 2 , . . . , n } into those for which j = σ j ,

hich we call fixed points, and those for which this is not true,

hich we call moving points. The contribution from the term cor-

esponding to σ in the determinant is only nonzero if the mov-

ng points of σ correspond to a set of mutually exclusive feedback

oops. It is straightforward to see this: σ can be decomposed into
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a product of cycles and the term in the determinant corresponding

to σ is a product of the products over these cycles. For the mov-

ing points, the product for each cycle is simply the products of the

derivative of f j with respect to x σ j 
within the cycle. These are only

nonzero if species σ j regulates species j for each j in the cycle and

therefore the cycle forms a feedback loop. Therefore, further as-

suming that there is not direct self-regulation of species ( 
∂ f i 
∂x i 

= 0

for all i ), the characteristic equation is given by: 

0 = 

∑ 

S ∈ set of sets of mutually 
exclusive feedback loops 

(−1) l S H S 

∏ 

j / ∈ (∪ X∈ S X ) 

(1 + iα/d j ) , 

(2)

where l S is the number of loops in S and H S is the product of the

gradients of the functions representing each link in each loop in

S at the steady state. Hence positive feedback loops give rise to

positive parameters, H S , and negative feedback loops give rise to

negative parameters (the overall sign of H S is the product of the

signs of the individual loops). The parameter is multiplied by a

factor (1 + iα/d j ) for each value of j representing a species not

in the set of feedback loops. For example, the original ring con-

tains all species and is therefore not multiplied by any of these fac-

tors. We must also include the empty set in the sum, with H ∅ = 1 .

Eq. (2) provides a systematic way of organising the characteristic

equation of an ODE model of a regulatory network. It will facili-

tate the identification of Hopf bifurcations. 

3. Analysis of system with a loop and a sub-loop 

Let us start by considering the case where there is a ring feed-

back involving all the species which is a negative feedback and

in which there is one feedback loop other than the ring and the

empty set, we refer to H for the whole ring as F and H for this

other loop as G . We refer to the set of species involved in the other

feedback loop as W . We define θ j = tan 

−1 (α/d j ) , for j = 1 , ., n,

with θ j ∈ [0, π /2). Then the characteristic equation becomes 

F = 

∏ 

j / ∈ W 

(1 + i tan θ j ) 

[ 

−G + 

∏ 

j∈ W 

(1 + i tan θ j ) 

] 

. (3)

When G was zero, this had a solution for minimal | F | when∑ n 
j=1 θ j = π . We can show that if G is greater than zero, the value

of 
∑ n 

j=1 θ j , and hence α and hence | F | at the bifurcation is in-

creased, whereas if G is negative it is decreased. 

Since in the case with just a ring, oscillations were favoured

by equal degradation rates and since there is no means to distin-

guish within the characteristic equation between species involved

in the same feedback loops, we assume that the degradation rates

within W are the same and the degradations of the other species

are the same as each other, but potentially different from those of

the species in W . We call angles within W, θ , and those outside W,

φ. Then 

F = (1 + i tan φ) n −| W | [−G + (1 + i tan θ ) | W | ]. (4)

Therefore 

| F | = sec n −| W | φ
∣∣−G + (1 + i tan θ ) | W | ∣∣ (5)

and 

π = (n − | W | ) φ + Arg 
(
−G + (1 + i tan θ ) | W | ). (6)

Consider the sine rule applied to the triangle in the complex

plane whose vertices are the origin and the points −G and −G +
(1 + i tan θ ) | W | . This gives 

G 

sin [ | W | θ + (n − | W | ) φ] 
= 

sec | W | θ
sin (n − | W | ) φ

= 

∣∣−G + (1 + i tan θ ) | W | ∣∣
sin | W | θ . (7)

This means that 

 F | = sec n −| W | φ sin | W | θ sec | W | θ
sin (n − | W | ) φ (8)

nd 

an (n − | W | ) φ = 

sin | W | θ
G cos | W | θ − cos | W | θ . (9)

Suppose, G is fixed and we want to minimise the value of | F | at

he bifurcation. We first pause and study a couple of simple exam-

les, with n = 3 and | W | = 2 . 

.1. Simplest case incorporating a reversible reaction 

Let us consider a loop with three species with one repression

nd two activations. One of the activations represents a dimerisa-

ion reaction, which is reversible, so there is also a reverse positive

ink from the dimer (A) to the monomer (C). Crucially this gives us

 unique steady state. If the third species (B) is supposed to be the

orresponding mRNA which is transcribed to form C, then this can

e considered a model of negative auto-regulation of a gene. 

The dynamical system is given by 

˙ 
 = kc 2 − la − d a a 

˙ b = d b ( f (a ) − b) 

˙ c = d c (g(b) − c) + 2 la − 2 kc 2 , (10)

here f is a decreasing function and g is an increasing function.

ypically, models of gene regulation employ linear functions for

 , assuming that protein is produced at a rate proportional to the

evel of mRNA. k denotes the forward reaction rate for the dimeri-

ation reaction and l the reverse rate. d a , d b and d c are the degra-

ation rates of dimer, mRNA (or whatever this species is) and

onomer respectively. Let us denote the steady state of the sys-

em of Eq. (10) by ( a ∗ , b ∗ , c ∗ ) and for the sake of brevity, denote

 

′ ( a ∗ , b ∗ , c ∗ ) by f ′ and g ′ ( a ∗ , b ∗ , c ∗ ) by g ′ . 
The characteristic equation is given by 

− 2 kc ∗| f ′ | g ′ = (1 + λ/d b ) [ (d a + λ + l)(1 + λ/d c + 4 kc ∗/d c ) 

− 4 lkc ∗/d c ] . 

At the Hopf bifurcations, λ = iα. Taking imaginary parts: 

2 = d a d b + d b d c + d c d a + l(d c + d b ) + 4 kc ∗(d a + d b ) . (11)

Taking real parts gives: 

 kc ∗ f ′ g ′ /d a = −[ (1 + 4 kc ∗/d c ) /d a + (1 + l/d a ) /d c ] 

× [ d b + d a + d c + l + 4 kc ∗ + d c d a /d b + ld c /d b 

+ 4 kc ∗d a /d b ] . (12)

Varying d b , the modulus of f ′ g ′ is minimised when d b =
 

d a d c + ld c + 4 kc ∗d a . 

Using this optimal value of d b , we get 

 kc ∗ f ′ g ′ /d a = −[ (1 + 4 kc ∗/d c ) /d a + (1 + l/d a ) /d c ] 

×
[ 

d a + d c + l + 4 kc ∗ + 2 

√ 

d a d c + ld c + 4 kc ∗d a 

] 
. 

This implies 
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(

 f ′ g ′ | = 

1 

d c 2 kc ∗
(d c + 4 kc ∗ + l + d a )(d c + 4 kc ∗ + l + d a 

+ 2 

√ 

d a d c ld c + 4 kc ∗d a ) 

= 

2 d c 

4 kc ∗
(1 + 4 kc ∗/d c + l/d c + d a /d c ) 

× ( 1 + 4 kc ∗/d c + l/d c + d a /d c 

+ 2 

√ 

d a /d c + l/d c + (4 kc ∗/d c ) d a /d c 

)
. 

We can see that this is minimised when l / d c and d a / d c are as

mall as possible. In the limit as they tend to zero, we get 

 f ′ g ′ | = 

2 d c 

4 kc ∗
(1 + 4 kc ∗/d c ) 

2 , 

hich is minimised, at value 8, when d c = 4 kc ∗. 

Therefore to optimise the chance of oscillations we want the

imer to be as stable and long lived as possible, whilst the rate

t which monomers produce the dimer should be much larger

han the dimeric degradation rate, but fourfold smaller than the

onomeric degradation rate. At steady state, kc 2 ∗ = (l + d a ) a ∗. In

rder that l + d a << 4 kc ∗, we require that c ∗ < < a ∗ , so at steady

tate, the majority of the molecules should exist in the dimerised

tate. 

Using d c = 4 kc ∗ in the optimal value for d b , we get d b =
 

(2 d a + l) d c . This means that the fastest degradation rate is of the

onomer, followed by the other species (which might be the cor-

esponding mRNA), followed by the dimer. The frequency of the

scillations at the bifurcation will be 
√ 

2 d b d c . 

We illustrate the results with numerical simulations for an ex-

mple system. For the sake of simplicity, we consider that g is lin-

ar and f is piecewise linear. The function f takes value f max for

 < 0.9, it takes value 0 for a > 1.1 and between these values it is

inear, decreasing from f max to 0. This means that f ′ ( a ) only takes

wo values: 0 or −5 ∗ f max . g(b) = mb, so that the production rate

f the monomer is proportional to the level of species B , which

ight, for example represent the corresponding mRNA, whereby

his is a model of auto-repressive gene regulation. 

We set l = d a = 0 . 1 , d b = 

√ 

3 . If d c = 4 kc ∗ = 10 , this gives ideal

onditions for oscillations, which will occur approximately if

 f ′ g ′ | > 8. If we set k = 25 , this is approximately true. As d c diverges

rom 4 kc ∗ , oscillations become progressively less likely. We there-

ore fix parameters as mentioned, set f max = 1 . 0 , m = 5 . 0 and

ary d c . 

In Fig. 2 , we show numerically that indeed for intermediate val-

es of d c there are oscillations. There are no oscillations when d c 
s too small or too large. It appears that there are two Hopf bifur-

ations at d c ≈ 1.25 and d c ≈ 82. Whether these are sub- or super-

ritical warrants further investigation (see Discussion). 

Including a reversible reaction substantially changes the condi-

ions for oscillations to occur. As before, they occur when the reg-

lation functions are sufficiently steep at the steady state, but this

ime they are most likely to occur when the degradation rates dif-

er between species. 

Couching this in terms of the general system, we can no longer

ssume that the angles in the loop are the same, since one of the

radients is 2 kc ∗ (see Discussion). Thus we must take the slightly

ore general form with three angles θ a , θb and θ c , where tan θa =
α

l+ d a , tan θb = 

α
d b 

and tan θc = 

α
d c +4 kc ∗ . We get 

 F | = sec θb sin (θa + θc ) 
sec θa sec θc 

sin θb 

= 

tan θa + tan θc 

tan θb 

(1 + tan 

2 θb ) 

= d b 

[ 
1 

l + d a 
+ 

1 

d c + 4 kc ∗

] 
(1 + tan 

2 θb ) 
nd 

an θb = 

sin (θa + θc ) 

G cos θa cos θc − cos (θa + θc ) 
, 

here G = 4 kc ∗l / [(d a + l )(d c + 4 kc ∗)] and | F | = 2 kc ∗ f ′ g ′ d c / [(l +
 a )(d c + 4 kc ∗)] . 

The equation for tan θb gives 

 − 1 + tan θa tan θc = d b 

[ 
1 

l + d a 
+ 

1 

d c + 4 kc ∗

] 
. 

his implies: 

2 = (d a + l)(d c + 4 kc ∗) 

[
d b 

d a + l 
+ 

d b 
d c + 4 kc ∗

+ 1 

− 4 kc ∗l 

(d a + l)(d c + 4 kc ∗) 

]
, 

hich implies 

an 

2 θb = 

l + d a 

d b 
+ 

4 kc ∗ + d c 

d b 
+ 

d a d c + ld c + 4 kc ∗d a 

d 2 
b 

. 

herefore 

 F | = 

[ 
1 

l + d a 
+ 

1 

d c + 4 kc ∗

] 
[ d b + l + d a + 4 kc ∗ + d c 

+ 

d a d c + ld c + 4 kc ∗d a 

d b 

]
, 

hich is the same result as above ( Eq. (12) ). 

If we have two species involved in a negative feedback loop,

.g. when the protein corresponding to a gene represses the gene’s

ranscription, then in the simplest well-mixed model, there can be

o oscillations, since there are only two species. If, however, the

rotein dimerises before acting as a repressor, there can be os-

illations, since the number of species is now three. Two-species

ystems can show oscillations in models in which there are de-

ays, see Monk (2003) , Jensen et al. (2003) , Lewis (2003) , and

omiji and Monk (2008) . It is possible to think of the two-species

elay system as a higher dimensional system without delays. De-

ays may be due to the time taken for transcription, for example. In

hat case, it would alternatively be possible to model the levels of

ranscripts of different lengths and not explicitly use delays. Sim-

larly, oscillations are possible in models in which there are two

hemical species and diffusion ( Glass and Kauffman, 1972; Shymko

nd Glass, 1974; Sturrock et al., 2011; 2012; 2013 ). However, in the

apers by Sturrock and co-workers, the number of mathematical

pecies is at least four, since the protein and mRNA have a nu-

lear and a cytoplasmic pool. In Glass and Kauffman (1972) and

hymko and Glass (1974) a two-species system is given which ex-

ibits oscillations when there is diffusion, but the authors demon-

trate in the appendix of Glass and Kauffman (1972) that a simpler

rdinary differential equation model with only two-compartments

hows the same behaviour. We also note that if we explicitly

odel the state of the enhancer or promoter which controls the

ene’s expression, then this introduces a third species into the

odel of the single auto-repressive gene. It is common to as-

ume that binding and unbinding to the DNA is fast compared

o the dynamics of mRNA and protein. Assuming the binding is

t quasi-equilibrium reduces the dimension of the resulting sys-

em, so that in the well-mixed system without delays, oscilla-

ions are impossible. However if DNA binding and unbinding oc-

ur on a timescale similar to transcription, translation and de-

ay of protein and mRNA, then the system is three-dimensional

nd oscillations are possible ( François and Hakim, 2005; Morant

t al., 2009 ). Stochastic oscillations can even occur in such a three-

imensional systems when the regulation of transcription is lin-

ar, which would preclude oscillations in the deterministic system

 Wang et al., 2014 ). 
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Fig. 2. Bifurcation diagram with the amplitude of oscillations in species C , the monomer, (which we compute, approximately, as the maximum value of c minus its minimum 

value in the time interval [50 0,10 0 0]) against the value of d c . Other parameters are given in the main text. We solve the ODEs using the Matlab ode solver ode23s. We use 

initial conditions, a = 1 . 0 , b = 0 . 1 and c = 0 . 1 . In (a), we show the bifurcation diagram generated using values of d c = 1 . 0 , 2 . 0 , . . . , 100 . 0 . In (b), we zoom in on the first 

bifurcation, using values d c = 1 . 01 , 1 . 02 , . . . , 2 . 00 . In (c), we zoom in on the second bifurcation, using values d c = 70 . 1 , 70 . 2 , . . . , 85 . 0 . In (d), we show the period of the 

oscillations against d c near the first bifurcation. In (e), we show the period of the oscillations against d c near the second bifurcation. We compute the period by identifying 

timepoints, in [50 0,10 0 0], at which the concentration of monomer is less than its mean concentration (over [50 0,10 0 0]), but at the next timepoint that is no longer true. 

We then divide the time difference between the first and last such timepoints by the number of such timepoints. In (d)-(e) we mark with a red circle the value of d c at the 

bifurcation and the period of oscillations there, as predicted by linear analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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.2. The ACDC network and other three-species systems with a loop 

nd a sub-loop 

The ACDC network is a simple gene circuit consisting of a neg-

tive feedback loop between three species, with one reverse link,

aking a positive feedback loop between two of the species. It

s hence a superposition of a repressilator and a toggle switch

 Panovska-Griffiths et al., 2013; Perez Carrasco et al., 2018 ). It can

isplay either switches between expression of the three genes as

n input parameter (e.g. a morphogen signal) is changed or oscilla-

ions. For some values of the parameters, a stable steady state and

 stable limit cycle can coexist. When there are stochastic fluctu-

tions, this can lead to spontaneous switching on and off of os-

illations. It has been proposed that the gap gene system, which

atterns the anterior-posterior axis in the Drosophila melanogaster

mbryo, consists of three linked ACDC circuits, two of which op-

rate in the DC (switch-like) regime and one in the AC (oscilla-

ory) regime ( Verd, 2016 ). More complex networks showing multi-

le negative and positive feedback loops have been proposed to

ontrol circaidian rhythms in Drosophila ( Leloup and Goldbeter,

998 ). 

This simplest case of a system with a loop and a sub-loop rep-

esents the ACDC network if G is positive. 

an φ = 

sin 2 θ

G cos 2 θ − cos 2 θ
= 

2 tan θ

G − 1 + tan 

2 θ
. (13) 

et t = tan θ and λ = 

tan φ
t = 

d 
in 

d out 
, where d in is the degradation

ate of species in the sub-loop and d out is the degradation rate of

pecies not in the sub-loop. In the notation of Section 3 . 

= 

2 

G − 1 + t 2 
(14) 

nd 

 F | = sec φ sin 2 θ
sec 2 θ

sin φ
= 2 

t 

cos 2 φ tan φ

= 2 

1 

λ
(1 + tan 

2 φ) = 

2 

λ
+ 2 λt 2 . (15) 

ow we have G − 1 + t 2 = 

2 
λ
, so t 2 = 1 − G + 

2 
λ

. Therefore 

 F | = 

2 

λ
+ 2 λ

[ 
1 − G + 

2 

λ

] 
= 4 + 

2 

λ
+ 2(1 − G ) λ. (16)

This is minimised at 4[1 + 

√ 

1 − G ] when λ = 

1 √ 

1 −G 
, provided

 < 1. This means that when G > 0, i.e. the second loop repre-

ents a positive feedback loop, λ> 1, so that the degradation of

pecies in the second loop is faster than that of those outside the

econd loop. In the case, G > 1, we get λ < 2 / (G − 1) and hence

 F | > G − 1 . | F | is minimised at G − 1 when λ = 

2 
G −1 . Therefore the

ptimal value of λ is > 1 provided G < 3. Therefore with a posi-

ive feedback sub-loop, oscillations are favoured when the degra-

ation of the species in the sub-loop is faster that of those outside

he loop, provided the feedback loop is not too strong. If it is very

trong then oscillations are favoured when the degradation rate of

he species in the sub-loop is slower than those outside. The os-

illations that will form when the ratio of the degradation rates is

lose to 2 
G −1 , have very low frequency. When 0 < G < 1, the oscil-

ations have an angular frequency which decreases as G increases

rom 

√ 

3 d in (when G = 0 , optimally d in is the same as the degrada-

ion rate of the species outside the sub-loop). 

By contrast, when G < 0, i.e. the sub-loop represents a negative

eedback loop, λ< 1, so that the degradation of species in the sub-

oop is slower than that of those outside the sub-loop. In terms

f angular contribution to the oscillations, those species involved

n coherent sub-loops (which have the same sign as the outer

oop) contribute a greater angle than those outside the sub-loop,
hereas those involved in incoherent loops have a lesser contribu-

ion than those outside the sub-loop. An exception is when there is

 very strong incoherent loop. We note that for G < 0, the angular

requency of oscillations decreases when compared to the degra-

ation rate of the species outside the sub-loop, until it tends to a

alue equal to that degradation rate. The degradation rate of the

pecies within the sub-loop becomes much smaller, so the oscilla-

ions increase in frequency compared to it. 

We note that in the case G < 0, the steady state remains unique.

n the case G > 0, there may be more than one steady state. 

The value of | F | at the bifurcation is minimised when G is

lightly greater than 1. Thus, counterintuitively, the probability of

scillations is maximised when there is a positive feedback loop

mbedded in the negative feedback loop. The ACDC network gives

ise to oscillations more readily than the repressilator, provided

hat G < 9. By contrast, when there is an embedded negative feed-

ack loop, oscillations are less likely than in the repressilator. For

 < G < 3, the probability of oscillations is greater than for 0 < G < 1.

We illustrate this in Fig. 3 by showing the results of numerical

imulations. We plot the maximal amplitude of oscillations (max-

mum concentration minus minimum concentration in the time

indow [50 0,10 0 0] for a gene regulatory network with a nega-

ive feedback ring (with repression functions equal to 2 for x < 1/2,

 − 2 x for 1/2 < x < 3/2 and 0 for x > 3/2) and a second feedback

oop (with a reverse repression or activation given by Max (1 −
 + kx, 0) , which multiplies the other input to that species), see

ig. 3 a. This is the ACDC motif, if the reverse link is a repression

see Fig. 1 c). Thus | F | = 8 and G = −2 k takes various values. We

se the same initial condition, x 1 = 2 , x 2 = 1 . 1 and x 3 = 1 . 1 . We

ee that sustained oscillations are possible for G > 0. We also plot

he period of oscillations against G ( Fig. 3 b) and show for compar-

son the analytically derived values of G at the bifurcation and the

nalytically computed period 2 π / α. 

Note: We find that for all values of G < 0 used in Fig. 3 , the

scillations in simulations are actually decaying, but when G is just

elow zero, the amplitude is still significant at t = 500 . 

.3. n -Species case 

Returning to the general case. We again want to minimise the

alue of | F | at the bifurcation keeping G fixed. 

d| F | 
dθ

= | W || F | ( cot | W | θ + tan θ ) 

+ 

dφ

dθ
(n − | W | ) | F | ( tan φ − cot (n − | W | ) φ) . (17) 

Now 

(n − | W | ) sec 2 (n − | W | ) φ dφ

dθ

= | W | 
(G cos | W | θ − cos | W | θ ) cos | W | θ

− sin | W | θ (−G cos | W | θ tan θ + sin | W | θ ) 

(G cos | W | θ − cos | W | θ ) 2 

= | W | [ G cos | W |−1 θ cos (| W | − 1) θ − 1] 

(G cos | W | θ − cos | W | θ ) 2 
. 

So d| F | 
dθ

= 0 implies 

ot | W | θ + tan θ = ( cot (n − | W | ) φ − tan φ) cos 2 (n − | W | φ) 

× [ G cos | W |−1 θ cos (| W | − 1) θ − 1] 

(G cos | W | θ − cos | W | θ ) 2 
. (18) 

Substituting for tan (n − | W | ) φ, we get 
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Fig. 3. (a) Bifurcation diagram plotting the amplitude of oscillations in the species receiving the reverse regulation, in a gene regulatory network with a negative feedback 

ring and a sub-ring, against the sub-ring feedback coefficient G . We compute the amplitude, approximately, as the maximum concentration minus the minimum in the time 

interval [50 0,10 0 0]. Other parameters are given in the main text. We solve the ODEs using the Matlab ode solver ode23s. We use initial conditions, (2.0,1.1,1.1), and plot the 

amplitude of oscillations in the species receiving the reverse regulatory link (species A in Fig. 1 c which assumes G > 0, i.e. the link is repressive). In (b), we show the period 

of the oscillations against G . We compute this as in Fig. 2 . We mark with a red circle the value of G at the bifurcation and the period of the oscillations there as predicted 

by linear analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tan φ = cot (n − | W | ) φ − ( cot | W | θ + tan θ ) 

G cos | W | θ (G cos | W | θ − 2 cos | W | θ ) + 1 

G cos | W |−1 θ cos (| W | − 1) θ − 1 

= 

(G cos | W | θ − cos | W | θ )(G cos | W | θ cos (| W | − 1) θ − cos θ ) 

sin | W | θ [ G cos | W | θ cos (| W | − 1) θ − cos θ ] 

− cos (| W | − 1) θ (G cos | W | θ (G cos | W | θ − 2 cos | W | θ ) + 1) 

sin | W | θ [ G cos | W | θ cos (| W | − 1) θ − cos θ ] 

= 

− sin θ − G cos | W | θ sin (| W | − 1) θ

G cos | W | θ cos (| W | − 1) θ − cos θ
. 

We note that for small G , this means that tan φ is approxi-

mately tan θ , so that θ ≈φ. Also from Eq. (8) , tan (n − | W | ) φ =
− tan | W | θ, so tan (n − | W | ) φ = − tan | W | φ, which implies nφ =
mπ, where m is an integer. We note that in this case | F | = sec n φ,

with φ ∈ [0, π /2), so | F| is minimal when φ takes the smallest pos-

sible value. This recapitulates previous results ( Page and Perez Car-

rasco, 2018 ), giving θ = φ = π/n, as the approximately optimal

condition for oscillations. 

When G is large, in order for | F | to be reasonably small,

we require from Eq. (4) , G ≈ (1 + i tan θ ) | W | , so that sin | W | θ ≈ 0

and therefore | W | θ ≈ r π and sec | W | θ (−1) r ≈ G . This implies that

| sec θ | is very large, so that θ ≈π /2, which means | W | = 2 r. This

only works if (−1) r = sgnG . If this is true, tiny changes in θ can

lead to large changes in the argument of −G + (1 + i tan θ ) | W | .
Therefore the argument of (1 + i tan φ) n −| W | is relatively uncon-

strained and, in order that | F | is as small as possible, sec φ should

be minimised. Therefore φ should be small. Thus if G is large, and

| W | is 2 r , where (−1) r = sgnG, the degradation rates of species

within the sub-loop should be small and those of species outside

the sub-loop large. The system is thus approximately equivalent

to the sub-loop only, with the species outside it in quasiequilib-

rium with those inside. We have said that for the species in the

loop, θ should be close to π /2, which means that their degrada-

tion rates should be close to zero. This, however, is at the Hopf bi-

furcation. What will happen is that, when the sub-loop has a very

large negative coefficient, the system will oscillate for most val-
es of the degradation rates. When the degradation rates are very

mall, oscillations will cease. For information on what happens

hen there is a strong positive feedback loop, see Strelkowa and

arahona (2010) . 

. Two interconnected rings 

Many cases of two interconnected rings can be viewed as a

arge ring with a single sub-ring, which we have already stud-

ed. A simple example, which cannot, is obtained by extending the

CDC network, such that the reverse link added to the repressi-

ator forms another repressilator with a fourth gene (see Fig. 1 d).

lthough there is an outer ring ( ACDB in the figure) and a sub-

ing ( BC in the figure), there are more sub-loops to consider, cor-

esponding to the three-species repressilators. The equations can

e written as: 

˙ a = d a ( f (b) − a ) 

˙ b = d b (g(c, d) − b) 

˙ c = d c (h (a, b) − c) 

˙ 
 = d d ( j(c) − d) , (19)

here all functions f, g, h and j are decreasing in their arguments. 

We note that this system can have multiple steady states. In

he example version that we use for numerical simulation, below,

here are five steady states. 

The characteristic equation at any of these steady states is given

y (
1 + 

λ

d a 

)(
1 + 

λ

d b 

)(
1 + 

λ

d c 

)(
1 + 

λ

d d 

)

− h b g c 

(
1 + 

λ

d a 

)(
1 + 

λ

d d 

)

− h b j 
′ g d 

(
1 + 

λ

d a 

)
− f ′ h a g c 

(
1 + 

λ

d d 

)
− f ′ g d h a j 

′ = 0 , 
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Fig. 4. Bifurcation diagram plotting the amplitude of oscillations in species A 

against δ for numerical simulations of the system with two interconnected rings 

( Eqs. (19) ). We compute the amplitude as in Fig. 2 . We use δ = 0 . 1 , 0 . 2 , . . . 10 . 0 . 

Other parameters are as described in the main text. We solve the ODEs using the 

Matlab ode solver ode23s. We use initial conditions, a = 1 . 4 , b = 1 . 0 , c = 1 . 7 and 

d = 0 . 3 . 
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here all derivatives are evaluated at the relevant steady state.

herefore 1 (
1 + 

λ

d a 

)(
1 + 

λ

d b 

)(
1 + 

λ

d c 

)(
1 + 

λ

d d 

)

= h b g c 

(
1 + 

f ′ h a 

h b 

+ 

λ

d a 

)(
1 + 

j ′ g d 
g c 

+ 

λ

d d 

)
. 

We see that this is symmetric with respect to d b and d c , so we

ssume the optimal condition for oscillations has d b = d c . 

At the Hopf bifurcation, λ = iα, for some real angular velocity

. 

Without loss of generality, we set d c = d b = 1 , and substituting

n we get: 

(1 + iα) 2 (1 + iα/d a )(1 + iα/d d ) 

= h b g c 

(
1 + 

f ′ h a 

h b 

+ 

iα

d a 

)(
1 + 

j ′ g d 
g c 

+ 

iα

d d 

)
. 

If we further assume that the two negative feedback loops have

qual coefficients ( f ′ h a g c = j ′ g d h b ) , then species a and d are in-

olved in the characteristic equation in symmetric ways, so we as-

ume the probability of oscillations will be optimised if d a = d d =
. Setting f ′ h a /h b = −L = j ′ g d /g c , we therefore get: 

(1 + iα)(1 + iα/δ)] 2 = h b g c (1 − L + iα/δ) 2 . 

herefore 

(1 + iα)(1 + iα/δ) = ±
√ 

h b g c (1 − L + iα/δ) . 

aking the imaginary part gives and observing that the left hand

ide of the equation is positive gives: 

 + 1 /δ = 

√ 

h b g c /δ. 

his means 

 b g c = (δ + 1) 2 . 

So, it should be easier to get oscillations, the smaller δ is.

his means that in the model of two linked repressilators, oscil-

ations are most likely when degradation of the species involved

n the positive feedback loop is faster than that of the species

ot involved in the positive feedback loop. At the Hopf bifurca-

ion, α = 

√ 

δ
√ 

L + Lδ − δ, which corresponds to an actual angular

requency of 
√ 

d a d b 
√ 

L + Lδ − δ. If δ is very small, then the angular

requency of oscillations at the Hopf bifurcation will be approxi-

ately 
√ 

Lδ ( 
√ 

Ld a d b in dimensional terms), which is intermediate

etween the degradation rates of the fast and the slow species. 

In Fig. 4 , we show numerically that in a simple example sys-

em with f = 3 / (1 + b 4 ) , j = 3 / (1 + c 4 ) , g = 10 / (1 + c 4 + d 4 ) and

 = 10 / (1 + a 4 + b 4 ) , there are oscillations when δ is small, but

hese cease when δ gets big enough. 

This system exhibits multi-stability because of the existence of

ositive feedback loops as well as negative feedback loops. There-

ore a more careful investigation of its bifurcations is warranted,

ee Discussion. In addition, the oscillations appear to occur around

teady states which break the symmetry of the equations, i.e. the

teady state values of A and D are different, as are those of B and

 . It is therefore difficult to impose the symmetry condition that

he repressilator coefficients are equal. A piecewise linear model

ould be employed in order to create a direct numerical compari-

on with the analytic results. This is beyond the scope of the cur-

ent study. Nevertheless, simulations do show that for high δ os-

illations are switched off. This is to be expected, since the sys-

em is then effectively a bistable switch between species B and

 . 
1 In terms of the general theory presented in Section 2 , in addition to the term 

orresponding to the empty set, we have terms corresponding to the feedback loops 

C, ACB, BCD and ACDB. 

t  

d  

f  

t  
The structure of this four-species model is similar to a model

f the p53-Mdm2 network response to DNA damage presented in

bou-Jaoudé et al. (2009) and Ouattara et al. (2010) . The difference

here is that the links from C to D and from D to B ( Fig. 1 d) are

ositive (see Fig. 1 of Abou-Jaoudé et al., 2009 ) and their direction

s reversed relative to the model presented here. 

. Conclusions and discussion 

In this paper, I have presented a systematic way ( Eq. (2) ) of or-

anising the characteristic equation for the eigenvalues of the Jaco-

ian matrix which determine the stability of steady states in regu-

atory networks. This facilitates the identification of Hopf bifurca-

ions. I have used this to determine optimal conditions for oscilla-

ions in regulatory networks. 

The chance of oscillations in a ring oscillator is maximised if

he degradation rates of the species are equal ( Page and Perez Car-

asco, 2018 ). This is independent of all details of the negative feed-

ack loop. When the system has more than one feedback loop the

ituation is more complicated. For example, when there are two

oops, one of which is negative and contains all the species, then

f the other loop is also negative, the optimal degradation rates of

he species within it are smaller than those of the species outside

t. If the second loop is a positive feedback loop, then, provided it

s not too strong, the opposite is true and species outside the loop

hould degrade more slowly. 

Counterintuitively, adding a positive feedback loop to a repres-

ilator increases the probability of oscillations, provided that the

oop is not too strong, whereas adding another negative feed-

ack loop decreases the probability of oscillations. The fact that

ositive feedback loops could enhance oscillations in a repressila-

or was already known for specific kinetic functions, see for exam-

le ( Ananthasubramaniam and Herzel, 2014 ). 

In Section 3.1 , it is shown that the optimal conditions for os-

illations for the autoregulatory gene model have the majority of

he protein in its dimerised form at the steady state. The dimeric

egradation rate and the rate at which the dimer dissociates to

orm monomers should both be small. The degradation rate of

he mRNA should optimally be intermediate and the monomeric
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protein degradation rate large. This is unlikely to be typical of

autoregulatory genes, since mRNA degradation rates are typically

larger than protein degradation rates (e.g. Hoffmann et al., 2002;

Nelson et al., 2004 ) and may suggest that oscillations are most

likely when some process explicitly removes monomeric protein.

Degradation rates of Hes1 protein and mRNA are however similar

(e.g. Jensen et al., 2003; Hirata et al., 2002 ). Optimally d c = 4 kc ∗,
which means that, at the steady state, only one in every three

monomers dimerises whilst the other two degrade (see Eq. (10 )).

The optimal mRNA degradation rate is then 

√ 

(2 d a + l) d c . A simple

closed form expression in terms of the parameters of the model is

given for the angular frequency of the oscillations close to the bi-

furcation ( Eq. (11) ). This simplifies under the optimal assumptions

listed above to α = 

√ 

2 d b d c . Thus, under these conditions, the pe-

riod of oscillations is intermediate between the timescale of degra-

dation of the mRNA and the protein monomer. If, instead of as-

suming optimal conditions for oscillations, we simply assume that

the dimeric protein does not degrade directly, then the angular

frequency at the bifurcation is given by α = 

√ 

d b d c + ld c + d b 4 kc ∗.

Again assuming the optimal condition for one in every three

monomers to form a dimer, gives α = 

√ 

d c (2 d b + l) and assum-

ing that the dimeric unbinding rate is small compared to the

mRNA degradation rate yields the same angular frequency as be-

fore of α = 

√ 

2 d b d c , without assuming that the mRNA is longer

lived than the monomeric protein. If the dimer less stable, this

should speed up oscillations. A dimeric model of autoregulation of

Hes1 with protein and mRNA degradation rates of approximately

1/(25 mins.) would predict an oscillation period at the bifurcation

of 111 mins., assuming one in every three monomeric proteins

dimerises and the unbinding rate of dimers is very low. This is

close to the actual period (see e.g. Yoshiura et al., 2007 ). Much

more rapid oscillations would be possible if the dimer were less

stable. See Momiji and Monk (2008) and Sturrock et al. (2014) for

more detailed models incorporating nuclear and cytoplasmic com-

ponents and transcriptional and translational time delays. Whilst

the detailed features of sub-cellular location are no doubt impor-

tant, an angular frequency of 
√ 

2 times the geometric mean of

the mRNA and protein degradation rates may serve as a useful

estimate. 

In Section 4 , we predict that for two linked repressilators (or

equivalent negative feedback loops), see Fig. 1 d, of equal strength

(i.e. feedback coefficient), conditions for oscillations are optimised

if the species forming the two-species positive feedback loop ( B

and C in the figure) degrade faster than the other species. A and

D should have equal degradation rates, as should B and C . If B

and C degrade very fast compared to the other two species, then

the angular frequency of oscillations at the bifurcation will be

α = 

√ 

Ld a d b , where −L is the coefficient of the negative feedback

loop divided by the coefficient of the two-species positive feedback

loop. This warrants further investigation, see below. 

The dynamics of systems with more than one feedback loop are

more complicated than those with a single feedback loop. There

can be multiple stable steady states (as is true for a ring with a

positive feedback sub-loop). There can be the co-existence of a sta-

ble steady state and a stable limit cycle, for example for the sim-

ple ACDC circuit, Perez Carrasco et al. (2018) . Finally there can be

chaos, Zhang et al. (2012) , which is not possible for the negative

feedback ring systems, Page and Perez Carrasco (2018) . 

In this paper, we only consider ordinary differential equation

models of regulatory networks. Much interesting work has shown

how oscillations can arise when there are only two biological

species, but when there are delays ( Lewis, 2003; Monk, 2003;

Jensen et al., 2003; Momiji and Monk, 2008 ), multiple compart-

ments ( Glass and Kauffman, 1972 ) and/ or diffusion ( Busenberg

and Mahaffy, 1985; Shymko and Glass, 1974; Cangiani and Natalini,
 G  
010; Sturrock et al., 2011; 2012; 2013 ). As mentioned in Section 3 ,

hese cases are equivalent or similar in nature to ordinary dif-

erential equation models with a higher number of mathematical

pecies. Nevertheless, sub-cellular location of biochemical species

s clearly an important factor in the regulation of gene expression

e.g. Hoffmann et al., 2002; Nelson et al., 2004 ). The environment

f the cells is also noisy and so stochastic effects are important. For

xamples of numerical algorithms to simulate stochastic gene reg-

lation and the implications of intrinsic noise in negative feedback

ystems, see Hegland et al. (2007) and Zeron and Santillán (2010) . 

Further work could address the inclusion of nonlinear degra-

ation or other nonlinear negative self-regulatory terms for the

pecies. This would allow the auto-regulatory gene model to be

ouched in terms of the general theory of Section 2 and would also

acilitate application to a wider range of real gene regulatory mod-

ls. Characterising the Hopf bifurcations as supercritical or subcrit-

cal would also be interesting. This is somewhat laborious, how-

ver, even for the case of a ring oscillator (see Page and Perez Car-

asco, 2018 ). A better numerical bifurcation analysis of the four-

pecies model and similar models, such as that of Abou-Jaoudé

t al. (2009) and Ouattara et al. (2010) , would also be desirable.

he multiple steady states render finding Hopf bifurcations more

ifficult in this model. Finally, future work could extend the re-

ults on optimal conditions for oscillations to systems with delays,

iffusion and stochasticity. 
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