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a b s t r a c t

This article presents a game theoretic model of parental care which models the feedback between

patterns of care and the operational sex ratio. It is assumed here that males can be in one of two states:

searching for a mate or breeding (including caring for their offspring). Females can be in one of three

states: receptive (searching), non-receptive or breeding. However, these sets of states can be adapted to

the physiology of a particular species. The length of time that an individual remains in the breeding

state depends on the level of care an individual gives. When in the searching state, individuals find

partners at a rate dependent on the proportion of members of the opposite sex searching. These rates

are defined to satisfy the Fisher condition that the total number of offspring of males equals the total

number of offspring of females. The operational sex ratio is not defined exogenously, but can be derived

from the adult sex ratio and the pattern of parental care. Pure strategy profiles and so-called single sex

stable polymorphisms, in which behaviour is varied within one sex, are derived analytically. The

difference between mixed evolutionarily stable strategies and stable polymorphisms within this

framework is highlighted. The effects of various physiological and demographic parameters on patterns

of care are considered.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Research on the evolution of patterns of parental care has
indicated the complex nature of this process. Trivers (1972) gave
an in depth exposition of the then current state of research into
patterns of parental care. By definition females invest more in
gametes. He argues that females have more to lose than males if
the offspring die and should thus invest more in caring for their
offspring. Males can potentially reproduce at a much higher rate
than females. However, due to the physiological constraints of
breeding, the ratio of the number of males searching for a mate to
the number of such females (the operational sex ratio, OSR) will
tend to be much greater than one, i.e. males may face strong
competition from other males when looking for a mate. It is
argued that due to these factors, males should attempt to
maximise the number of females they breed with by being
attractive to females and/or outcompeting other males, rather
than investing in parental care.

Emlen and Oring (1977) carried out an excellent review on the
evolution of mating systems. They define the concept of the OSR
and its relation with sexual selection. They note the feedback
between patterns of parental care and the mating system
ll rights reserved.
(e.g. clear mutual mate choice is normally associated with
biparental care). In addition, they note that parental care in the
form of egg incubation among birds will affect the OSR (the more
males care, the less male biased the OSR is). Kokko and Jennions
(2008) argue that if males desert then it is difficult for them to
find a partner (since the OSR is male biased). It follows that if the
level of male desertion increases, paternal care may well become
a relatively more successful strategy, i.e. parental care is subject to
frequency dependent selection.

Dawkins and Carlisle (1976) argue that Trivers’ argument is a
type of ‘‘Concorde fallacy’’, i.e. if one has invested heavily in a
project, then one should continue even if losses are expected. The
decision of a female on whether to care for her present brood
should, in evolutionary terms, be based on a comparison of her
future gains from care with the gains she could achieve by
following another strategy. Maynard Smith (1977) defends
Trivers’ approach to some degree by stating that in calculating
the expected number of future offspring one needs to take into
account the investment that has to be made. In this paper
Maynard Smith describes three models of parental care. The first
two are matrix games in which deserting males find another
partner with probability p. He recognized that this probability
depends on the behaviour of the population as a whole, i.e.
treating p as fixed is a weak point of the model. The third model is
more realistic, since it takes into account the Fisher condition that
the total number of offspring of males equals the total number of
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offspring of females (see Houston and McNamara, 2002, 2005;
Kokko and Jennions, 2003). This third model is a so-called ‘‘time
in/time out’’ model in which individuals spend part of the
time breeding and caring for their young and part of their time
searching for a partner (between breeding attempts). The cycle
time of an individual is the mean time he/she spends between
breeding attempts. If the adult sex ratio is r, then the mean cycle
time of males must be r times the mean cycle time of females. It is
assumed that individuals maximise the rate of producing off-
spring that survive to adulthood. Grafen and Sibly (1978) develop
this approach. However, these models assume that there is a pure
equilibrium and so do not enable investigating the possibility of
stable polymorphisms or mixed strategies. One other problem lies
in the assumption that members of the least common sex in the
mating pool immediately find a mate. As Székely et al. (2000)
argue, the problems of mate choice and parental care are strongly
interlinked and such time in/time out models cannot be adapted
in a simple way to take such feedback into account. Using
Maynard Smith’s approach the OSR is undefined, since members
of one of the sexes do not spend any time in the mating pool.

Clutton-Brock and Parker (1992) consider a similar time in/
time out model to derive the OSR given the adult sex ratio,
patterns of parental investment (including both gamete produc-
tion and parental care). They include a parameter describing the
level of interaction between the sexes in a population, which in
turn defines the mean time individuals spend looking for a
partner. However, they assume that the amount of parental care
given is fixed, since their goal is to derive the OSR and in this way
predict which of the sexes will compete most strongly for mates
(assumed to be the most common sex in the pool of searchers). As
such, this model does not gives us any insight into why a
particular pattern of parental care evolves. As well as giving an
excellent review of the development of research on patterns of
mate choice and parental care, Kokko and Jennions (2008) extend
this model by allowing the level of parental care given to evolve.
Offspring survival is increasing in the level of care from a parent
given the level of care from the other parent. At the time of
fertilisation, parents simultaneously choose the amount of time
for which they will care from a continuous range. The minimum
time females can choose is assumed to be larger than the
minimum time a male can choose to reflect the fact that males
can replenish their gametes more quickly than females. Sexual
selection is incorporated into the model by assuming that only a
fraction of the members of a particular sex mate. Due to the
complexity of the model, they assume that the level of sexual
selection is fixed, although they admit that in reality it would
evolve along with the parental care strategies.

The model of Yamamura and Tsuji (1993) is in many ways the
most similar to the one presented here. Just as in Maynard Smith
(1977) and Grafen and Sibly (1978) they assume that the
members of the less common sex in the mating pool immediately
find a mate. It is assumed that parents can only make one of two
possible decisions: care or desert. Their model was adapted to the
life cycle of the St. Peter’s Fish, Sarotherodon galilaeus by Balshine-
Earn and Earn (1997).

As in Yamamura and Tsuji, in the model presented here
individuals can make only one of two possible decisions. This is
done partly for simplicity, but mainly for clarity in classifying the
types of evolutionarily stable strategies (ESS) found and to
illustrate the differences between a stable polymorphism and a
mixed ESS within the framework of a large population game. The
model can be relatively easily adapted to allow individuals to
choose the level of parental care they give from some range. As in
Kokko and Jennions (2008), members of the less common sex in
the mating pool find mates at a faster rate than members of the
more common sex in such a way that ensures each female mating
corresponds to a male mating. Hence, the ASR is fixed, but the
present OSR is derived as a resultant of the ASR and the observed
pattern of parental care, rather than being given as an exogenous
parameter. In this way, the OSR and the pattern of parental-care
co-evolve as argued in Jennions and Kokko (2010). The rate at
which mates are found depends on an exogenously defined
underlying interaction rate, l1. This parameter can be thought of
as a measure of the density and mobility of the population. As
Kokko and Rankin (2006) argue, density effects may be very
important in the evolution of behaviour. By defining l1 and
the rate of transition of females from the non-receptive state
to the receptive state to be arbitrarily large, we essentially obtain
the model of Yamamura and Tsuji (1993). The model can be
adapted to take into account the particular nature of physiological
processes involved in reproduction (the assumption used here
that females can be receptive or non-receptive is used to model
œstrus cycles in mammals). It should be noted that these
processes are assumed to be given (i.e. the model cannot explain
why these processes evolved in the first place).

Székely et al. (2000) argue that there is strong feedback
between patterns of mate choice and patterns of parental care.
Owens and Thompson (1994), Kokko and Johnstone (2002) and
Härdling and Kokko (2005) use a similar approach to the one used
here to investigate the relationships between sexual selection,
patterns of mate choice and the sex ratios. Jennions and Kokko
(2010) give a clear exposition of the nature of feedback between
various factors in the reproductive cycle and the interaction
between mate choice and parental care.

One major advantage of the approach used here (in compar-
ison to the one used by Yamamura and Tsuji) is that the model
can be directly extended to incorporate the evolution of mate
choice, which is a goal of future research. The expected length of
time that an individual spends in the mating pool and type of
mate obtained would depend on his/her choosiness and his/her
attractiveness as a mate. The model can also be adapted to
take into account differing mortality rates according to the sex
and state of an individual (see Ramsey, 2009b, also Kokko and
Jennions, 2008). Also, the analytical results obtained regarding
polymorphisms and mixed ESSes are an advance on the numerical
results obtained by Yamamura and Tsuji and give some insight
into intraspecies variation in patterns of parental care.

All the models described above assume that breeding is non-
seasonal and the population size is large. In such a case,
at equilibrium the OSR will be constant over time. In the case
of seasonal breeders, the strategies used by individuals will
change over the breeding season and this is associated
with temporal fluctuations in the OSR (see Webb et al., 1999;
McNamara et al., 2000).

As argued above, the evolution of mating systems depends
on many interacting factors. Verbal explanations of such evolu-
tion cannot realistically take these interactions into account.
The continued development of mathematical models that take
such interactions into account will prove useful in explaining
observed behaviour and predicting the long term reaction of
mating systems to changes in the environment.

Section 2 presents the model and the derivation of so-called
pure equilibrium profiles in which all the members of a particular
sex always use the same action. Four pure equilibrium profiles are
possible: no parental care, maternal care, paternal care and
biparental care. Since there may be intraspecies variation in the
level of parental care and/or female care (see e.g. Booth
and Dabbs, 1993), Section 3 considers stable polymorphisms
and mixed equilibrium profiles. At a stable polymorphism,
each individual always uses the same action, but variations in
behaviour are observed within a particular sex. At a mixed
equilibrium, the variation in behaviour results from individuals
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choosing the action to be used in each breeding attempt at
random. Section 4 considers an example and derives the set of
pure equilibrium profiles according to the gains from parental
care. Section 5 investigates the relationship between some of the
physiological and demographic parameters and the set of pure
equilibrium profiles. This is used to investigate how the patterns
of parental care we expect to see depend on these parameters.
Section 6 gives examples of stable polymorphisms and considers
the relation between stable polymorphisms and mixed equilibria.
These results are used to investigate the conditions under which
we might expect variable care patterns within one sex of a
particular species and whether one of the sexes is more likely to
exhibit such patterns. Section 7 includes a discussion of the
results and directions for future research.
Males Females

Searching Receptive Non-Receptive

Male

Breeding

�2
• �3

�2

�1

•λ1q1 �1p1r

Female

Fig. 1. Transition rates between states. � represents C or D according to whether a

given sex cares for their offspring or not.
2. The model

A basic formulation of this model can be found in Ramsey
(2009a). Consider a large population in which there is no variation
in the quality of mates and individuals only decide whether to
care for their young or desert. The model can be adapted to allow
individuals to choose the level of care they give from a continuous
interval. However, allowing only two discrete actions will enable
us to highlight how the range of possible ESSes in large population
games with two types of player can fundamentally differ from the
ESSes in asymmetric 2-player versions of such a game.

It is assumed that there is no breeding season. Males may be in
one of two states: searching or breeding. Females may be in one of
three states: receptive, non-receptive or breeding. These assump-
tions reflect the reproductive cycle of most mammals, where
females have œstrus cycles (see Bronson, 1989). However, this
model can be adapted to other reproductive cycles. For example,
female rabbits come into œstrus after having sex. In this case, the
model may be simplified so that females are in one of two states:
searching or breeding. The general approach to such a problem
would be the same. Within the class of time in/time out models,
the adaptability of this model to the physiological processes
observed in a species seems to be novel.

For simplicity, it is assumed that when individuals are in the
breeding state that they do not attempt to (or cannot) breed with
other partners. The ratio of the number of males to the number of
females (the ASR) is denoted as r. Denote the proportions of males
in the two male states, searching and breeding, as p1 and p2,
respectively. The proportions of females in the three female
states, receptive, non-receptive and breeding, are denoted as q1,
q2 and q3, respectively.

Males in the searching state find a mate at a rate proportional
to the number of receptive females, namely at rate l1q1. That is to
say that in a small interval of time of length d units, a proportion
l1q1d of searching males will find a mate. Similarly, receptive
females find a mate at a rate proportional to the number of
searching males, i.e. at rate l1p1r. It should be noted that these
assumptions satisfy the condition that a male entering the
breeding state corresponds to a female going into the breeding
state. Also, it is assumed that the population is freely mixing.

Receptive females become unreceptive at rate m1, i.e. the mean
length of their receptive period is 1=m1. Unreceptive females
become receptive at rate m2. Hence, given a female does not mate,
she will be receptive for a proportion m2=ðm1þm2Þ of the time. It is
assumed that the parameters m1 and m2 are fixed according to the
physiological processes in a species.

The rate at which breeding males rejoin the pool of searching
males and females return to the pool of receptive females depends
on whether they care for their young or not. If they do not care for
their young, males return to the pool of searching males at rate lD

2 ,
that is to say that on average the mating process and time to
replenish sperm supplies together occupy on average 1=lD

2 units
of time. Similarly, if females do not care for their young they
return to the pool of receptive females at rate mD

3 . It is assumed
that lD

2 is larger than mD
3 , i.e. male deserters can return to

searching for a new mate faster than female deserters. When they
care for their offspring, males and females return to the pool of
individuals searching for a mate at rates lC

2 and mC
3, respectively. It

is assumed that lC
2 � mC

3. The transition between states is
illustrated in Fig. 1. A summary of the notation used is given in
Tables 1–3.

The number of young surviving to maturity per brood is
measured in relation to the number surviving when no parental
care is given. Suppose the relative number of young surviving to
maturity when (a) just the female cares, (b) just the male cares and
(c) both parents care are kf, km and kb, respectively. It is assumed
that 1okf okb and 1okmokb, i.e. the greater the number of
caring parents, the greater the average number of surviving
offspring per brood. See Gubernick and Teferi (2000) and Wright
(2006) for examples of parental care increasing offspring survival.
It is assumed that the goal of each individual is to maximise the
rate of producing offspring that survive until maturity. For
simplicity this is referred to as the reproduction rate.

For other game theoretic models of large population games
with state transitions see Broom and Ruxton (1998) and Eriksson
et al. (2004).

2.1. Derivation of pure evolutionarily stable strategies

In order to investigate the pure ESSes of such a system, it is
necessary to first derive the ‘‘steady-state’’ proportions of
individuals in each state given the strategy profile used in the
population. The strategy profile is defined by a description of both
the strategies used by the males and the strategies used by the
females. In this section, it is assumed that all individuals of a
particular sex use the same strategy. It should be stressed that the
term ‘‘steady-state’’ will only be used to describe the values q1, q2,
q3, p1 and p2 would tend to, given that the strategy profile used by
the population does not change over time. One important aspect
to note is the feedback between selection and the frequencies of
individuals in each state. Selection will change the proportions of
males and females who care for their offspring, which in turn will
change these steady-state proportions.

At the steady-state proportions the number of individuals
moving from state A to state B per unit time must equal to the
number of individuals moving from state B to state A. Considering
the transition of females from receptive to non-receptive, the
relative number of females becoming non-receptive per unit time
is the proportion of females who are receptive times the rate of
transition from being receptive to being non-receptive, i.e. q1m1.
This rate will be called the population rate of transition from



Table 1
Glossary of the notation used (ratios).

r Adult sex ratio km Relative no. of offspring with male care

kf Relative no. of offspring with female care kb Relative no. of offspring with biparental care

Table 2
Glossary of the notation used (proportions).

p1 Prop. of all males searching p1,C Prop. of caring males searching

p1,D Prop. of deserting males searching p2 Prop. of all males breeding

p2,C Prop. of caring males breeding p2,D Prop. of deserting males breeding

q1 Prop. of all females who are receptive q1,C Prop. of caring females who are receptive

q1,D Prop. of deserting females who are receptive q2 Prop. of all females who are non-receptive

q2,C Prop. of caring females who are non-receptive q2,D Prop. of deserting females who are non-receptive

q3 Prop. of all females breeding q3,C Prop. of caring females breeding

q3,D Prop. of deserting females breeding sm Prop. of males who care

sf Prop. of females who care

Table 3
Glossary of the notation used (rates).

m1 Rate at which females become non-receptive m2 Females become receptive

lD
2

Deserting males return to searching lC
2

Caring males return to searching

mD
3

Deserting females return to searching mC
3

Caring females return to searching

l1 Interaction rate
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receptive to non-receptive. In general, a population transition rate
from state A to state B is obtained by multiplying the proportion
of individuals in state A by the rate at which an individual in state
A moves to state B. Thus the population rate of females becoming
receptive per unit time is q2m2. Hence, at the steady-state
proportions

q1m1 ¼ q2m2: ð1Þ

Considering firstly the transition rates of receptive females to/
from mating females and then the rate of transition of searching
males to/from mating males, since p2¼1�p1

l1p1q1r¼ m�3q3, ð2Þ

l1p1q1 ¼ l�2ð1�p1Þ, ð3Þ

where each � corresponds to D or C according to the strategy
adopted by the appropriate sex. In addition,

q1þq2þq3 ¼ 1: ð4Þ

Rearranging Eqs. (1)–(4), it follows that aq1
2+bq1+c¼0, where

a¼ m�3l1½m1þm2�,

b¼ l�2m2l1rþl2m�3ðm1þm2Þ�l1m2m�3,

c¼�m2m�3l
�

2:

The unique solution to this equation between 0 and 1 is

q1 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac
p

2a
:

The remaining equilibrium proportions may be calculated from
the following relations:

q2 ¼
m1q1

m2

, q3 ¼ 1�q1�q2, p1 ¼
m�3q3

l1q1
:

Since these steady-state proportions depend on the strategy
profiles adopted, the strategy profile will be denoted using
superscripts indicating firstly the strategy used by males and
secondly the strategy used by females. For example, p1

CD denotes
the equilibrium proportion of males searching when males care
for their offspring, but females do not.
First, consider the conditions for no parental care to be an ESS.
To find the equilibrium frequencies when neither sex cares for
offspring, set m�3 ¼ mD

3 and l�2 ¼ lD
2 in Eqs. (2)–(3).

From the Fisher condition, the average reproduction rate of
females must be r times the average reproduction rate of males.
There are two ways of calculating the reproduction rate of males.
Firstly, it can be calculated as the relative number of offspring
surviving from a breeding attempt divided by the mean cycle
time, which is the mean time required to move from the searching
state to the breeding state and back again. Assume neither parent
cares for the offspring. Define this mean cycle time to be TDD.
It follows that

TDD ¼
1

l1qDD
1

þ
1

lD
2

¼
lD

2 þl1qDD
1

lD
2l1qDD

1

:

Since the relative number of offspring surviving per breeding
attempt is 1, the mean reproduction rate of males is given by RDD,
where

RDD ¼
1

TDD
¼

lD
2l1qDD

1

lD
2 þl1qDD

1

: ð5Þ

The second way of calculating the reproduction rate of males is by
noting that it must be the population rate of males entering the
breeding state multiplied by the relative number of surviving
offspring per breeding attempt. Hence, the mean reproduction
rate of males is given by

RDD ¼ l1qDD
1 pDD

1 : ð6Þ

Note that from Eq. (3),

pDD
1 ¼

lD
2

lD
2 þl1qDD

1

:

Hence, Eqs. (5) and (6) are equivalent.
In order for no parental care to be an ESS, this rate must be

greater than the reproduction rate of a male mutant who cares for
his offspring. Since this is a large population game, such a mutant
does not affect the steady-state frequencies or the reproduction
rate of the population as a whole. The reproduction rates of
mutants are calculated by considering their average cycle time.
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The expected cycle time of a male mutant who cares for his
offspring when the rest of the population desert, denoted as Tm

DD, is

TDD
m ¼

1

l1qDD
1

þ
1

lC
2

¼
lC

2þl1qDD
1

lC
2l1qDD

1

:

Since the relative number of surviving offspring of such a male per
brood is km, it follows that a male mutant cannot invade if

l1pDD
1 qDD

1 4
kml

C
2l1qDD

1

lC
2þl1qDD

1

: ð7Þ

The mean cycle time of a female is the mean time required to
go from the responsive state to the breeding state and back.
Denote the mean cycle time of a mutant female who cares for her
offspring when no-one else cares and the rate at which the state
of any responsive female changes by Tf

DD and mDD
R , respectively. It

follows that mDD
R ¼ l1pDD

1 rþm1. The mean length of time to the
first change of state is 1=mDD

R . The probability that she finds a mate
before becoming non-receptive is l1pDD

1 r=mDD
R . Given she first

finds a mate, then the mean time for such a mutant female to
return to the receptive state is 1=mC

3. Given she first becomes
non-receptive, she must then return to the receptive state (after
an expected period of 1=m2 units) and then the additional length
of time expected to complete the cycle is Tf

DD, as she has simply
returned to her starting point. Hence, conditioning on the type of
the first change of state,

TDD
f ¼

1

mDD
R

þ
l1pDD

1 r

mDD
R mC

3

þ
m1

mDD
R

1

m2

þTDD
f

� �
:

This equation leads to

TDD
f ¼

m2mC
3þm2l1pDD

1 rþm1mC
3

mC
3m2l1pDD

1 r
:

It follows that a female mutant cannot invade the population if

l1qDD
1 pDD

1 r4
kfmC

3m2l1pDD
1 r

m2mC
3þm2l1pDD

1 rþm1mC
3

: ð8Þ

It should be noted that the OSR at such an equilibrium,
denoted as SDD, is given by

SDD ¼
rpDD

1

qDD
1

:

The OSR at other equilibria can be calculated in an analogous way.
The derivation of the stability conditions for the remaining

three possible pure equilibria is analogous. Therefore, just the
equilibrium conditions are presented. In each case the left hand
side of the inequality is the reproduction rate of males (which
according to the Fisher condition must be the reproduction rate of
the females divided by the ASR), the first entry on the right hand
side is the reproduction rate of a mutant male and the second
entry is the reproduction rate of a mutant female divided by the
ASR.

To find the equilibrium frequencies when only males care for
offspring, set m�3 ¼ mD

3 and l�2 ¼ lC
2 in Eqs. (1)–(4). Only male

parental care is an ESS if

kml1qCD
1 pCD

1 4max
l1qCD

1 lD
2

lD
2 þl1qCD

1

,
kbmC

3m2l1pCD
1

m2mC
3þm2l1pCD

1 rþm1mC
3

( )
: ð9Þ

To find the equilibrium frequencies when only females care for
offspring, set m�3 ¼ mC

3 and l�2 ¼ lD
2 in Eqs. (1)–(4). Only female

parental care is an ESS if

kfl1qDC
1 pDC

1 4max
kbl1l

C
2qDC

1

lC
2þl1qDC

1

,
mD

3m2l1pDC
1

m2mD
3 þm2l1pDC

1 rþm1mD
3

( )
: ð10Þ

To find the equilibrium frequencies when both parents care for
offspring, set m�3 ¼ mC

3 and l�2 ¼ lC
2 in Eqs. (1)–(4). Parental care by
both sexes is an ESS if

kbl1qCC
1 pCC

1 4max
kfl1l

D
2 qCC

1

lD
2 þl1qCC

1

,
kmmD

3m2l1pCC
1

m2mD
3 þm2l1pCC

1 rþm1mD
3

( )
: ð11Þ

3. Stable polymorphisms and mixed evolutionarily stable
strategies

Such equilibria may well be of interest with regard to variation
in patterns of maternal or paternal care within a single species.
Hammock and Young (2005) report that the length of the avpr1a

microsatellite is associated with the patterns of paternal care in
prairie voles, but not with patterns of maternal care. According to
Booth and Dabbs (1993), human males with higher levels of
testosterone are less likely to marry and when married are more
likely to divorce. The results obtained in this section may be
helpful in explaining which sex is more likely to show such
variable patterns and under what circumstances such variation
might be observed, even when there is no observable difference
between individuals of a particular sex.

One important question in evolutionary game theory relates to
whether a mixed ESS (at which each individual uses the
appropriate randomized strategy) corresponds to a stable poly-
morphism (at which each individual uses a pure strategy) such
that the proportion of individuals using a given action at the
polymorphism equals the probability of that action being used at
the mixed ESS. See Maynard Smith (1982) for an overview of this
question. For the model considered, if there is a stable poly-
morphism, the probability of using a particular action at the
mixed ESS will differ from the proportion of individuals using that
action at the stable polymorphism. This occurs for the following
reason: Suppose all males use the same mixed strategy ‘‘care with
probability p, otherwise desert’’. The probability that a searcher
will care is clearly p. Now suppose a proportion p of males care.
Since carers spend a greater proportion of time in the breeding
state, the probability that a male in the searching state is a carer
will be less than p. Hence, the expected number of surviving
offspring of a female from mating differs in the two considered
scenarios. For further illustration of this issue, see Ramsey
(2009a).

The following types of polymorphisms and mixed ESSes are
among the possible equilibria:
(1)
 A complete polymorphism: In both sexes, a certain proportion
of individuals always care, while the remainder always desert.
An individual’s reproduction rate is independent of the
strategy used.
(2)
 A male polymorphism: At such an equilibrium all females use
the same pure strategy. A mutant female using the other pure
strategy will obtain a lower reward. Some males always care
and the remainder always desert. A male’s reproduction rate
is independent of the strategy used.
(3)
 A female polymorphism: As above, but females, rather than
males, show variation in observed behaviour.
(4)
 A completely mixed ESS: At such an equilibrium all individuals
follow the mixed strategy appropriate to their sex.
(5)
 A male mixed ESS: At such an equilibrium all females use the
same pure strategy. All males use the same mixed strategy.
(6)
 A female mixed ESS: As above, but females, rather than males,
use a mixed strategy.
The following criterion for the stability of a polymorphism is
also required: Suppose at a polymorphism a proportion s of the
members of one sex cares, 0oso1. If this proportion rises
above s (falls below s), then selection must favour deserting
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(favour caring, respectively). This condition ensures that if the
frequency of carers is slightly different from the equilibrium
frequency s, then selection acts in such a way that this proportion
tends towards s. An analogous condition, where s is interpreted
as the probability of caring, is required for the stability of a
mixed ESS.

It is possible that a population could be at equilibrium in a
multitude of ways. For example, all males could follow the same
randomized strategy, while some females always care while the
other females always desert. It is also possible that in both sexes
some individuals follow pure strategies while others follow mixed
strategies. The focus in this paper will be on single sex
polymorphisms. One type of single sex mixed ESS will be derived
for comparative purposes. To keep the paper of reasonable length,
other types of equilibria are not considered here.

3.1. Stable male polymorphisms with female carers

The equilibrium proportions at such a polymorphism will be
denoted using the superscript PC. Suppose there exists a stable
polymorphism in which females always care and a proportion sm

PC

of males care. Define p1,C
PC and p1,D

PC to be the proportion of male
carers and deserters who are searching, respectively. At equili-
brium, the population rate at which male carers move from the
searching state must equal the rate at which they move in the
opposite direction. Hence,

lC
2ð1�pPC

1,CÞ ¼ l1qPC
1 pPC

1,C : ð12Þ

Similarly, considering the male deserters,

lD
2 ð1�pPC

1,DÞ ¼ l1qPC
1 pPC

1,D: ð13Þ

As before,

m1qPC
1 ¼ m2qPC

2 , ð14Þ

qPC
1 þqPC

2 þqPC
3 ¼ 1: ð15Þ

The rate at which male carers find mates is l1pPC
1,CqPC

1 and the
relative number of surviving offspring from such matings is kb.

Hence, the reproduction rate of male carers is kbl1pPC
1,CqPC

1 .

Similarly, the reproduction rate of male deserters is kfl1pPC
1,DqPC

1 .

At such an equilibrium the reproduction rates of male deserters
and male carers must be equal. Hence,

kbpPC
1,C ¼ kf pPC

1,D: ð16Þ

Solving Eqs. (12)–(16),

qPC
1 ¼

lD
2l

C
2ðkb�kf Þ

l1ðl
D
2 kf�l

C
2kbÞ

,

qPC
2 ¼

m1l
D
2l

C
2ðkb�kf Þ

m2l1ðl
D
2 kf�l

C
2kbÞ

,

qPC
3 ¼ 1�

lD
2l

C
2ðkb�kf Þðm1þm2Þ

m2l1ðl
D
2 kf�l

C
2kbÞ

,

pPC
1,C ¼

lD
2 kf�l

C
2kb

kbðl
D
2�l

C
2Þ

,

pPC
1,D ¼

lD
2 kf�l

C
2kb

kf ðl
D
2�l

C
2Þ
:

The total proportion of males searching is p1
PC, where

pPC
1 ¼ sPC

m pPC
1,Cþð1�sPC

m Þp
PC
1,N :
Considering the population rate of transition of females between
the breeding and receptive states,

l1qPC
1 r½sPC

m pPC
1,Cþð1�sPC

m Þp
PC
1,D� ¼ m

C
3qPC

3 :

Together with Eq. (16), this leads to

sPC
m ¼

kb

kb�kf
1�

mC
3qPC

3

l1qPC
1 pPC

1,Dr

" #
:

For such a stable polymorphism to exist, the following conditions
must be satisfied: 0oqPC

i o1, i¼1,2,3, 0opPC
1,�o1, �AfN,Cg and

0osPC
m o1. These conditions lead to

kb

kf
o

lD
2 ½l1m2þl

C
2ðm1þm2Þ�

lC
2 ½l1m2þl

D
2 ðm1þm2Þ�

, ð17Þ

kf

kb
o

mC
3qPC

3

l1qPC
1 pPC

1,Cr
o1: ð18Þ

In addition, a female carer must have a higher reproduction
rate than a mutant female deserter. The mean reproduction rate
of a female carer is r times the mean reproduction rate of a male,
i.e. kbl1p1,CqPC

1 r. Arguing as in the case of a pure ESS, the mean
cycle length of a mutant female deserter is

TPC
f ¼

m2mD
3 þm2l1pPC

1 rþm1mD
3

mD
3m2l1pPC

1 r
:

The probability that a female mates a male carer is given by
sPC

m pPC
1,C=pPC

1 . It follows that the following is a necessary condition
for such a stable polymorphism:

kbl1pPC
1,CqPC

1 4
mD

3m2l1½kmsPC
m pPC

1,Cþð1�sPC
m Þp

PC
1,D�

m2mD
3 þm2l1pPC

1 rþm1mD
3

: ð19Þ

As stated earlier, selection must act in such a way that the
proportion of males caring tends towards sm

PC. Consider a
population in which all females care and a proportion sm of males
care. As sm increases, intuitively the proportion of males searching
for a mate decreases. It follows that females take longer to find a
mate and hence the proportion of females searching for a mate is
increasing in sm. The ratio of the reproductive rate of a male carer
to the reproductive rate of a male deserter is given by

kbl
C
2ðl

D
2 þl1q1Þ

kfl
D
2 ðl

C
2þl1q1Þ

:

Since kb,km,lD
2 and lC

2 are fixed, this ratio is determined by the
ratio between lD

2 þl1q1 and lC
2þl1q1. Since lD

2 4lC
2, this ratio is

decreasing in q1. Hence, as the proportion of male carers
increases, selection increasingly favours male deserters. It follows
that there can be at most one such stable polymorphism and the
conditions given by Inequalities (17), (18) and (19) are sufficient.

The derivations of the form of the remaining types of single sex
stable polymorphism are analogous. They are given in the
appendix for completeness. It should be noted that, apart from
the specific case kf ¼ km ¼

ffiffiffiffiffi
kb

p
, the set of equations defining a

stable complete polymorphism are difficult to solve analytically
and only numeric solutions have been found. Due to the lack of
space, complete polymorphisms are omitted.
3.2. A male mixed ESS with female carers

Now suppose that a male mixed ESS exists in which all the
females care and all the males play the same mixed strategy: care
with probability sm

MC and desert with probability 1�sm
MC. Analo-

gously, the steady-state proportions are denoted using the
superscript MC. The expected length of time a male spends in



5ln (kb)

0

5ln (kf)

CC & DD

CC

DD

NONE

DC
DC & CD

Fig. 2. Set of pure ESSes in the parental care game.
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the breeding state is 1=lM
2 , where

1

lM
2

¼
sMC

m

lC
2

þ
1�sMC

m

lD
2

:

It follows that the rate at which males go from the breeding state
to the searching state is

lM
2 ¼

lC
2l

D
2

sMC
m lD

2 þð1�sMC
m Þl

C
2

:

Hence, the equations for the steady-state proportions are

qMC
1 m1 ¼ qMC

2 m2, ð20Þ

l1pMC
1 rqMC

1 ¼ m
C
3qMC

3 , ð21Þ

qMC
1 þqMC

2 þqMC
3 ¼ 1, ð22Þ

l1qMC
1 pMC

1 ¼
lC

2l
D
2 ð1�pMC

1 Þ

sMC
m lD

2 þð1�sMC
m Þl

C
2

: ð23Þ

At such an ESS, the reproduction rate of a male is independent of
his strategy. In particular, the reproduction rate of a male mutant
who always cares must be equal to the reproduction rate of a
male mutant who always deserts. The expected cycle length of a
mutant male carer and a mutant male deserter are given by TC

MC

and TD
MC, where

TMC
C ¼

1

l1qMC
1

þ
1

lC
2

¼
lC

2þl1qMC
1

l1qMC
1 lC

2

,

TMC
D ¼

1

l1qMC
1

þ
1

lD
2

¼
lD

2 þl1qMC
1

l1qMC
1 lD

2

:

Equating the reproduction rates of such mutants,

kb

TMC
C

¼
kf

TMC
D

)
kbl

C
2

lC
2þl1qMC

1

¼
kfl

D
2

lD
2 þl1qMC

1

:

It follows that

qMC
1 ¼

lC
2l

D
2 ðkb�kf Þ

l1ðl
D
2 kf�kbl

C
2Þ
:

Hence, q1
MC
¼q1

PC. From Eqs. (20) and (22), it can be seen that the
proportion of females in each of the three states at this mixed
equilibrium must be the same as at the stable male polymorphism
where females care. From Eq. (21), it follows that the proportion
of males in the searching state at the mixed equilibrium must
equal the proportion of all males searching at the corresponding
male polymorphism. It follows that

pMC
1 ¼

mC
3ðl

D
2 kf�l

C
2kbÞ

lD
2l

C
2rðkb�kf Þ

�
mC

3ðm1þm2Þ

m2l1r
:

From Eq. (23),

sMC
m ¼

lC
2l

D
2 ð1�pMC

1 Þ

l1qMC
1 pMC

1 ðl
D
2�l

C
2Þ
�

lC
2

lD
2�l

C
2

:

At such an equilibrium, the reproduction rate of female
carers must be greater than the reproduction rate of a mutant
female deserter. The expected number of surviving offspring of a
caring female per breeding attempt is sm

MCkb+(1�sm
MC)kf. Hence,

considering the expected cycle length of a mutant female
deserter,

½sMC
m kbþð1�sMC

m Þkf �l1pMC
1 qMC

1 4
mD

3m2l1½kmsMC
m þð1�sMC

m Þ�p
MC
1

m2mD
3 þm2l1pMC

1 rþm1mD
3

:

4. Numerical results—pure evolutionarily stable strategy
profiles

Suppose m1 ¼ m2 ¼ 1, mD
3 ¼ 0:2, lD

2 ¼ 5, lC
2 ¼ mC

3 ¼ 0:05, l1 ¼ 20,
r¼1. These parameters reflect the natural constraint that a
deserting male can return to the pool of searchers more quickly
than a deserting female. For example, males of the cichlid fish
species Aequidens portalegrensis can spawn daily, whereas females
can only spawn once every five days (see Polder, 1970). The
relative difference between these rates is generally much more
pronounced in mammal species (see Bronson, 1989). The adult
sex ratio is 1.

First consider how the set of pure ESS profiles depend on the
gains from uniparental and biparental care, i.e. on kf, km and kb.
The procedure is to first find the steady-state proportions for a
given strategy profile and then check the equilibrium conditions
[see Conditions (7)–(11)]. These calculations give
1.
 No parental care is an ESS profile when kmo4:8793,
kf o3:9388.
2.
 Just female parental care is an ESS profile when kf 43:9406,
kb=kf o1:9850.
3.
 Just male parental care is an ESS profile when km460:4523,
kb=kmo1:7450.
4.
 Biparental care is an ESS profile kb=km43:3202,
kb=kf 412:8912.

Assume now that males are equally good at caring as females,
i.e. km¼kf. Fig. 2 illustrates the set of pure ESS profiles (an
approximate log scale is used). The benefits of uniparental care
increase from left to right. Along the diagonal there are no
benefits from biparental care compared to uniparental care. The
gains from biparental care increase in the vertical direction.

The results obtained are qualitatively similar to those obtained
by Balshine-Earn and Earn (1997). Just male care is an ESS profile
only when the gains from uniparental care are very large and the
gains from biparental care relatively small. However, in such
cases just female care is also an ESS profile and the results suggest
that just female care will have a much larger basin of attraction
and so is likely to evolve.
5. Effect of the parameters on the set of pure ESSes

The analysis below is not intended to be exhaustive, but to give
an indication of the effect of parameters on stable patterns of
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parental care. In general, just one or two parameters are changed
at a time, while the remaining parameters take the same values as
in the original problem. The results presented here concentrate on
factors that are not considered in either Kokko and Jennions
(2008) or Yamamura and Tsuji (1993) (e.g. the proportion of time
for which females are receptive) or conclusions that seem to
deviate from the conclusions they make.

The results indicate that biparental care will only ever be
observed if the number of surviving offspring is around twice the
number from uniparental care or greater. These results are similar
to those obtained by Yamamura and Tsuji, as well as McNamara
et al. (2000).
5.1. Effect of the proportion of time for which females are receptive

To observe the effect of the proportion of time for which
females are fertile, the values of m1 and m2 are changed in such a
way that the mean time between female’s fertile periods (given
she does not mate) remains constant (i.e. 1=m1þ1=m2 is fixed), but
the proportion of time for which female is fertile varies. As m1

decreases, the proportion of time for which a female is fertile
increases. The results are presented in Table 4. The first line gives
the minimum value of kf for just female care to be an ESS profile.
The second line gives the minimum value of km for which just
male care is an ESS. The third line gives the minimum value of
kb=km for which biparental care is an ESS profile (this is the gain
from biparental care compared to female care required for males
to care in addition to females). In virtually all of the scenarios
considered, this ratio determined the situations in which
biparental care is evolutionarily stable.

It can be seen from the first row (at least for the values of the
other parameters considered) that the proportion of time a female
spends fertile has very little effect on her decision to care or
desert. The smaller the proportion of time females are fertile, the
more likely males are to give care as a second carer. This does not
appear to agree with classical theory based on parental invest-
ment. It seems logical that as females spend a smaller proportion
of time fertile, they invest more in producing eggs. Hence, the
relative parental investment of males at the time of fertilisation
falls and so males should be less likely to care. However, this
argument ignores the fact that such increased female parental
investment makes the OSR more male biased. Thus it will be
harder for males to find mates and so paternal care becomes a
relatively better option. Hence, these results seem consistent with
the results of Queller (1997) and Kokko and Jennions (2008), who
take into account such feedback between patterns of parental care
and the OSR.

It should be noted that changing the length of time between
female’s fertile periods while leaving the proportion of time she
remains fertile constant leaves the set of ESS profiles unchanged.
5.2. Effect of the level of anisogomy

To observe the effect of the level of anisogomy, the value of lD
2

(the rate at which deserting males can return to the pool of
Table 4
Effect of proportion of time for which females are fertile on pure ESS profiles.

m1 ¼ 3, m2 ¼ 0:6 m1 ¼ 4=3, m2 ¼ 0:8

kf required for DC 3.8283 3.9213

km required for CD 34.1426 53.48319

kb=kf required for CC 8.0611 11.4155

Proportion of time spent fertile increases from left to right.
searchers) was changed. As lD
2 increases the level of anisogomy

increases.
The results are presented in Table 5. Decreasing the level of

anisogomy increases the likelihood of male care to some degree.
However, male care is only expected when females also care.
These conclusions are similar to the ones made by Yamamura and
Tsuji (1993), but seem to differ from the conclusions of Kokko and
Jennions (2008), who conclude that given parental care is just as
valuable as maternal care and the ASR is one that males should
give a similar level of care to females. One possible explanation for
this difference is the type of decision that is made. Yamamura and
Tsuji and the model presented here assume that the choice is
either to care or not to care, while Kokko and Jennions allow
individuals to choose the time for which they care from some
range. The lowest level of anisogamy considered here (male
deserters return to the pool of searchers about 6 times as quickly
as female deserters) is of a similar level to that observed in cichlid
fishes (see Polder, 1970). It is not entirely clear what levels of
anisogomy were considered by Kokko and Jennions.

5.3. Effect of the interaction rate

The parameter l1 can be interpreted as a measure of the
interaction rate between members of the opposite sex.

It should be noted that the model assumes that the population
is large and free moving, hence it seems natural to assume that
the interaction rate should not be small in comparison to the rate
at which female deserters return to the pool of searchers. Given
this assumption, the interaction rate has very little effect on
female behaviour (see Table 6). Males are more likely to care (as a
second parent) at low interaction rates. This seems intuitive, since
the lower the interaction rate the harder it is to find a partner.

5.4. Effect of the adult sex ratio

The results are presented in Table 7. For large values of r

(r41:32), the gain from biparental care compared to just paternal
care, kb=km, determines whether biparental care is stable. Thus,
this table also gives the critical value of this ratio.

The gains from care required for maternal care to be stable
are almost independent of the adult sex ratio. The results indicate
that just paternal care is very unlikely to evolve even when
the sex ratio is very biased towards males. For low values of r, the
pattern of parental care will be for females to care if the gains
from care are large enough and males will care in addition if the
gains from biparental care are large enough. The situation for
large values of r seems somewhat more complex. If uniparental
care evolves, then it seems that females will care. However, there
are situations in which males may be more ‘‘willing’’ to be a
second parent than females are to care given that males care. In
such a situation there will be ‘‘conflict’’ over parental roles and
within the framework of the model presented here, we might
expect varied patterns of parental care. These results seem to be
in line with those of Yamamura and Tsuji (1993), but discordant
with the results of Kokko and Jennions (2008), who predict a
greater level of balance between the level of care given by males
m1 ¼ m2 ¼ 1 m1 ¼ 0:8, m2 ¼ 4=3 m1 ¼ 0:6, m2 ¼ 3

3.9406 3.9523 3.9641

60.4523 65.6048 71.7411

12.8912 14.1514 15.9338



Table 5
Effect of length of time out for males on ESS profiles.

lD
2 ¼ 20 lD

2 ¼ 10 lD
2 ¼ 5 lD

2 ¼ 2:5 lD
2 ¼ 1:25

kf required for DC 3.9410 3.9409 3.9406 3.9400 3.9388

km required for CD 109.9924 86.3930 60.4523 37.7702 21.5779

kb=kf required for CC 14.1675 13.7149 12.8912 11.5088 9.4765

Length of time out increases from left to right.

Table 6
Effect of interaction rate on ESS profiles.

l1 ¼ 80 l1 ¼ 40 l1 ¼ 20 l1 ¼ 10 l1 ¼ 5

kf required for DC 3.9849 3.9700 3.9406 3.8835 3.7757

km required for CD 85.8639 75.2705 60.4523 43.5343 28.1682

kb=kf required for CC 22.5284 17.1591 12.8912 9.5994 7.1196

Table 7
Effect of adult sex ratio on ESS profiles.

r¼2 r¼1.5 r¼1.32 r¼1 r¼ 2
3

r¼0.5

kf required for DC 3.9750 3.9603 3.9549 3.9406 3.9113 3.8824

km required for CD 50.7415 56.1156 57.7802 60.4523 62.9026 64.0186

kb=kf required for CC 1.9706 2.8867 3.8309 12.8912 41.2752 50.7415

kb=km required for CC 3.9415 3.8867 3.8309 3.3202 1.9717 1.5906
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and females. It is likely that this difference results from the types
of decision allowed (here either care or desert, but in Kokko and
Jennions the time a parent cares for is chosen from some interval).
6. Numerical results—stable single sex polymorphisms

The existence of stable polymorphisms according to the values
of kb and kf was investigated for the set of problems given by the
parameters for the original problem (m1 ¼ m2 ¼ 1, mD

3 ¼ 0:2, lD
2 ¼ 5,

lC
2 ¼ mC

3 ¼ 0:05, l1 ¼ 20, r¼1). It was assumed that km¼kf. The
calculations involved are relatively straightforward, but time
consuming and so the details are left out.

6.1. A female polymorphism when males desert

The two conditions for a putative stable polymorphism to be
valid are given by Inequalities (24) and (25) (see Appendix A),
which lead to 3:9388okf o3:9406. It such be noted that this
corresponds exactly to the range of kf for which neither no
parental care nor just maternal care are ever stable.

Secondly, a male deserter must have a higher reproduction
rate than a male carer. This corresponds to Inequality (26), which
gives

kbok2
f þ
ðkf�1Þ2½40 198�10 598kf þ100k2

f �

8150kf�100k2
f �30 550

:

If kf is just above 3.9388, then essentially kb can take any value. As
kf tends to the upper boundary (approx. 3.9406), the maximum
value of kb possible for such a polymorphism tends to 1.9850kf.

Comparing these results with the results on pure equilibria
(see Fig. 2), it can be seen that the range of values of kb and kf for
which such a stable polymorphism can exist is given by a narrow
strip in the horizontal direction (i.e. a narrow range of kf). The left
hand boundary of this region is the vertical boundary of the
region in which no parental care is an ESS. The right hand side of
the boundary is made up of the left hand boundary of the region
in which female care is an ESS and a curve starting from the top
left hand corner of this region. As gains from biparental care
increase (moving upwards in Fig. 2), this strip becomes narrower.

When the gains from biparental care are small, there is no pure
equilibrium. Hence, it seems that such a polymorphism could
evolve. However, the narrow range of parameters suitable for
such a polymorphism to be stable suggests that we would not
observe such patterns of parental care.

6.2. A female polymorphism when males care

The two conditions for a putative stable polymorphism to be
valid are given by Inequalities (27) and (28) (see Appendix B),
which lead to 1:7450okb=kmo3:3202. It such be noted that this
corresponds exactly to the range of values of this ratio for which
not all females should care given that males care, but just paternal
care cannot be an ESS.

Secondly, a male carer must have a higher reproduction rate
than a male deserter. This corresponds to Inequality (29), which
gives for 1:7450oc¼ kb=kmo1:7544

km4
1175c2�9925cþ20 000

49c3þ5003c2�28 978cþ35 176
:

For 1:7544oco3:3202, the direction of this inequality is
reversed. It can be shown that for 1:7544oco3:3202 the right
hand side of the inequality above is negative. Hence, there can be
no such stable polymorphism for this range of values of c.

Now consider the range 1:7450oco1:7544. As c tends to the
lower boundary of this interval, the minimum value of kf for
which the above inequality is satisfied is 60.4523. As c tends to
the upper boundary of this interval, the minimum value of kf

required tends to infinity. It follows that the region in which there
is a stable female polymorphism with male care is a very thin
strip above the region in which just paternal care is an ESS (see
Fig. 2). Since just maternal care is an ESS in this region, it seems
unlikely that a stable female polymorphism with males caring
would evolve.

6.3. A male polymorphism when females desert

The two conditions for a putative stable polymorphism to be
valid are given by Inequalities (30) and (31) (see Appendix C),
which lead to 4:8793okmð ¼ kf Þo60:4523. It should be noted
that this corresponds exactly to the range of km for which paternal
care cannot be an ESS, but not all males should desert given that
females desert.

Secondly, a female deserter must have a higher reproduction
rate than a female carer. This corresponds to Inequality (32),
which gives

kbok2
mþ
ðkm�1Þ2½40 150�10 550kmþ100k2

m�

10 694km�100k2
m�49 798

:

As km tends to the upper limit the region given above (approx.
60.4523), the maximum value of kb for which such a stable
polymorphism exists tends to 1.7450km. Hence, the right hand
border of the region in which such a polymorphism may occur
coincides with the left hand border of the region in which just
male care is an ESS.

As km tends to the lower limit of this region (approx. 4.8793),
the right hand side of the inequality above tends to �1. Hence,
the minimum value of km required for such a stable polymorph-
ism to occur must be greater than 4.8793. Since kbZkm, in
order to find the minimum required value of km, it is necessary to
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solve

km ¼ k2
mþ
ðkm�1Þ2½40 150�10 550kmþ100k2

m�

10 694km�100k2
m�49 798

:

This leads to km � 21:6493. It can be shown that for km421:6493
that the right hand side of the equation above is greater than km. It
follows that the region in which there is a stable male
polymorphism with deserting females is bounded above by a
curve from the point on the diagonal line corresponding to
km¼kf¼21.6493 to the top left hand corner of the region in which
just paternal care is an ESS. Since just maternal care is also an ESS
in this region, it seems likely that a male polymorphism in which
females desert would never evolve.

6.4. A male polymorphism when females care

The two conditions for a putative stable polymorphism to be
valid are given by Inequalities (17) and (18), which lead to
1:9850oc¼ kb=kf o12:8912. This is precisely the range of values
for which neither maternal care nor biparental care can be an ESS.

Condition (19) states that a female carer must have a higher
reproduction rate than a female deserter. This leads to

kf 4
20 000�301c�97c2

25c3þ5075c2�30 322cþ44 824
:

This is illustrated in Fig. 3. Fixing kf, the set of values of kb for
which a male polymorphism with female care is stable can be
derived from the graph. This is done by finding the values of
c¼ kb=kf for which the horizontal line y¼kf lies above the curve
on the interval 1:9850oco12:8912.

For example, for kf¼20, the line lies above the curve for
1:9850okb=kf o2:5468 and 3:2927okb=kf o12:8912. It follows
that for kf¼20 there is a stable male polymorphism if
39:700okbo50:936 or 65:854okbo257:824.

The height of the curve when kb=kf is 1.9850 is approximately
3.9406. From the form of the graph when kf o3:9406 there is only
a stable polymorphism for large enough values of kb=kf . Table 8
gives the minimum value of kb=kf for a stable male polymorphism
Fig. 3. Illustration of the region in which a stable male polymorphism with female

care exists. For a given value of kf such a stable polymorphism exists when the

horizontal line y¼kf lies above the curve.
of this type to exist when kf is between 1 and 3.9406. This is given
by the one value of c where the line y¼kf intersects the curve. The
maximum value in each case is 12.8912. Some numerical results
are given in Table 8.

For intermediate values of kf, from kf¼3.9406 to the maximum
height attained by the curve kf¼103.0036, there are two ranges of
kb=kf for which there is a stable male polymorphism. The first
region is from 1.9850 to the value of c where the curve first
intersects y¼kf. The second region is from the value of c at the
second intersection of the curve with y¼kf up to 12.8912. For
values of kb=kf between these intersection points there is no
stable male polymorphism. Some numerical results are given in
Table 9.

For values of kf greater than 103.0036, a stable male
polymorphism exists for all values of kb=kf between 1.9850 and
12.8912.

It can be seen that the set of values of kf and kb for which there
exists such a stable polymorphism covers a wide range of the
values for which there is no pure equilibrium, as well as some of
the region in which no parental care is an ESS profile. Hence,
within the framework of the model presented, in many scenarios
a system could evolve in which females cared, but males showed
variation in their behaviour.

The set of values of kf and kb for which no stable profile has
been described in this paper is made up of intermediate values of
kf (approximately between 5 and 100 for the problem considered)
and intermediate values of kb=kf (approximately between 2 and 4).
Initial calculations indicate that there are stable complete
polymorphisms in this region (they also exist in other regions).
The analytical results show that there can be only one stable single
sex polymorphism of a given type, but numerical results indicate
that there may be multiple stable complete polymorphisms for
given values of kf and kb.

In order to gain more insight into the patterns of parental care
that evolve in various scenarios, consider the stable proportion of
male carers for three values of kf, allowing kb=kf to vary between
1.9850 and 12.8912. The values of kf considered are 2, 20 and 120.
These three values correspond to the set of values of kf for which:
(a) there is a stable male polymorphism only for relatively large
values of kb=kf , (b) there are two intervals of values of kb=kf for
which there is a stable male polymorphism, (c) for all values of
Table 8
Region of stability of male polymorphism for small values of kf.

kf kb=kf required kf kb=kf required

1.0 4.6716 2.0 4.1762

1.2 4.5266 2.2 4.1191

1.4 4.4126 2.4 4.0690

1.6 4.3197 3.0 3.9490

1.8 4.2422 3.9406 3.8180

Table 9
Regions of stability of male polymorphisms for intermediate values of kf.

kf Region 1 for kb=kf Region 2 for kb=kf

5 (1.9850,1.9924) (3.8113,12.8912)

10 (1.9850,2.3572) (3.4734,12.8912)

20 (1.9850,2.5468) (3.2927,12.8912)

30 (1.9850,2.6357) (3.2069,12.8912)

50 (1.9850,2.7339) (3.1110,12.8912)

75 (1.9850,2.8112) (3.0350,12.8912)

100 (1.9850,2.8916) (2.9551,12.8912)



Fig. 4. Proportion of male carers at the stable polymorphism and probability of

caring at the mixed ESS for kf¼200.
Fig. 5. Reproduction rates of female carers and a mutant female deserter at a

putative stable polymorphism with kf¼2. The polymorphism is stable if the

reproduction rate of carers is greater than the reproduction rate of a deserter

(i.e. for large values of kb/kf).

Fig. 6. Reproduction rates of female carers and a mutant female deserter at a

putative stable polymorphism with kf¼20. The polymorphism is stable if the

reproduction rate of carers is greater than the reproduction rate of a deserter

(i.e. not for intermediate values of kb/kf).

D.M. Ramsey / Journal of Theoretical Biology 266 (2010) 675–690 685
kb=kf between 1.9850 and 12.8912 there is a stable male
polymorphism.

Fig. 4 illustrates how the proportion of carers at a stable
polymorphism and the probability of caring at a mixed
equilibrium change according to kb/kf. The forms of these graphs
are very similar for all values of kf. The proportion of carers at a
stable polymorphism is greater than the probability of caring at a
mixed equilibrium. However, numerical calculations indicate that
the probability of an individual in the pool of searchers caring is
independent of the equilibrium.

Figs. 5–7 illustrate the reproduction rates of female carers and
of a mutant female deserter. In order for the polymorphism to be
stable, female carers must reproduce at a faster rate than the
mutant.

Fig. 5 shows that for kf¼2, there is only a stable polymorphism
for relatively large values of kb/kf (between 4.1762 and 12.8912).
Fig. 4 indicates that at any such equilibrium the proportion of
male carers will always be high. That is to say for kf¼2 and
kbo8:3524 there will only be one ESS (no parental care). For
values of kb between 8.3524 and 25.7824, there is also a stable
polymorphism where all females and a large proportion of
males care.

Fig. 6 shows that for kf¼20 there is no stable polymorphism
for intermediate values of kb/kf. In fact, there is a stable
polymorphism when 1:9850okb=kf o2:5468 and 3:2927okb=kf

o12:8912. As kb/kf increases from 1.9850, the proportion of male
carers at such a polymorphism increases very rapidly. This means
that there are less males in the pool of searchers (i.e. males face
less competition when looking for a mate), which favours
deserters. This factor seems to initially outweigh the gains from
parental care and so the polymorphism becomes unstable. For
larger values of kb/kf the proportion of male carers at such a, now
putative, polymorphism rises more slowly and so in turn the gains
from parental care begin to outweigh the advantages gained by
deserters due to reduced competition for females. Hence, for
larger values of kb/kf the polymorphism again becomes stable.

Fig. 7 shows that for kf¼200 the polymorphism is stable for
1:9850okb=kf o12:8912. There is a range of values of kb/kf for
which a mutant female deserter reproduces at virtually the same
rate as a female carer (this is true for all large values of kf when
kb=kf � 3 in the problem considered). This may indicate a large



Fig. 7. Reproduction rates of female carers and a mutant female deserter at a

putative stable polymorphism with kf¼200. The polymorphism is stable for all

values of kb/kf in the range considered.
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degree of conflict over which parent(s) should care in such
situations.
7. Conclusion

This article has presented a model of a parental care game
which is an adaptation of the model of Yamamura and Tsuji
(1993). Unlike their model, individuals of the rarer sex in the
mating pool do not find a mate immediately on becoming
receptive. This approach allows us to model the interaction
between the patterns of parental care and the OSR. In this way,
the model presented shows similarities to the model presented by
Kokko and Jennions (2008).

The model can be thought of as representing a primeval
situation in which the only difference between the sexes is the
gametes they produce. By definition, females produce larger
gametes and hence their minimum time out is greater than the
minimum time out of males. Given such a scenario, it is generally
expected that if uniparental care occurs, then females care. Males
care if the gains from biparental care are sufficient. The major
exception to this seems to occur when the ASR is male biased. In
this case, if uniparental care is evolutionarily stable, then again
females care. However, the outcome is somewhat unclear when
there are moderate gains from biparental care. In this case, males
should care given females care, but females should not care given
that males care (this is never the case for an even or female biased
ASR). One possible area for future research is to investigate what
patterns of parental care would evolve in such situations.

While Kokko and Jennions assume that both parents choose
the time for which they care from some range, the model here
assumes that the decision is dichotomous: i.e. a parent either
cares or deserts. In the case of St. Peter’s fish (see Balshine-Earn
and Earn, 1997), if a parent decides to brood after fertilization,
then he/she broods until the eggs hatch otherwise the offspring
will not survive. Hence, in this scenario it seems reasonable to
restrict the set of available actions in this way. In other cases, it
may well be realistic to allow parents to case the level of care they
give from a range of values. Comparing the results obtained here
and in Yamamura and Tsuji (1993) with the results obtained by
Kokko and Jennions (2008), it seems that situations in which the
decision is dichotomous make it more likely that female only care
evolves, even when the ASR is heavily male biased (Kokko and
Jennions predict a more even distribution of parental care
between males and females if the only difference between the
sexes is the anisogomy of gametes). The model presented
here can be easily adapted to allow parents to choose the level
of care they give from a range. It would be interesting to see
whether the predominance of female care found here is an artifact
of the assumptions made regarding the set of actions available to
the parents. Also, the models compared here all assume that the
decisions made regarding parental care are made simultaneously,
whereas in reality one parent may be able to desert before the
other has an opportunity to desert, who can react to such a
desertion (this is discussed more fully below in comparing the
parental care patterns of mammals, birds and fish). Dawkins
(1976) argues that if uniparental care is evolutionarily stable, the
sex which can desert earlier will be the one which deserts. It
would be relatively easy to adapt the model to take this
asymmetry into account and in this way explain what effect this
asynchronicity of decisions effects the evolution of patterns of
parental care.

In practice, individuals may well balance the level of parental
care they give with other types of behaviour on a day-to-day basis
and may well be able to react to the level of care provided by their
partner (see e.g. McNamara et al., 1999; Houston et al., 2005).
However, adapting the model presented here to such adaptive
behaviour is likely to lead to an overly complex model.

Analytical results have been obtained describing so-called
single sex polymorphisms, at which variation in behaviour is
observed within a particular sex. The results suggest that variable
patterns of parental care within a species are more likely to be
observed among males than among females. Such equilibria may
evolve for intermediate gains from biparental care. In such cases,
males exhibiting a relatively rare behaviour will be selected for.
Those models considered here in which parents choose the time
they care for from a range (Maynard Smith, 1977; Grafen and
Sibly, 1978; Kokko and Jennions, 2008) assume that the ESS
profile is pure. However, it may be that for a given level of care by
e.g. the female, for low levels of care from the male the marginal
gains from an increase in the level of care he gives may be
increasing. Hence, it seems possible that for such models stable
polymorphisms exist in which some males ‘‘desert’’ (i.e. give the
least possible amount of care) and some males ‘‘care’’ (i.e. give
some higher level of care).

One particular advantage of this model compared to the model
of Yamamura and Tsuji (1993) is that it could be extended to
include variation between individuals and take mate choice into
account. Although it would seem that such a model would be too
complex to obtain analytical results, numerical results could be
obtained using simulations. As Székely et al. (2000) note there is
strong feedback between mate choice and patterns of parental
care. Seki et al. (2007) use a genetic model to simulate the
coevolution of patterns of polyandry and parental care. It has been
noted that many species in which only females care there is
sexual dimorphism. In such species males often invest in
‘‘weaponry’’ or ‘‘ornaments’’, in order to mate with as many
females as possible while avoiding the costs of parental care (see
Weckerly, 1998; Duckworth et al., 2003; Bro-Jørgensen, 2007;
Mitchell et al., 2007). However, the relation between attractive-
ness and parental care is not entirely clear. Møller and Jennions
(2001) observe that males who give parental care can be
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interpreted as attractive. Balshine-Earn (1995) also argues there
may well be a correlation between the attractiveness of a partner
and the level of care they can give. Females prefer larger males as
mates, who are more able to give parental care than small males
(as the same level of parental care from a large male would cost
him less that it would cost a smaller male). Sargent and Gross
(1993) argue that in teleost fish the costs to females of caring are
greater than the costs to males of caring, since females invest
more in reproduction and thus have lower reserves than males.

The model presented here assumes that the only difference
between individuals is sex, whereas obviously individuals vary
according to other traits. In this case, individuals should not only
care about the number of offspring surviving to adulthood, but
also the quality of such offspring. Field and Brace (2004) note
some of the benefits extended parental care gives to offspring
apart from increased survival. One goal of future research should
be to develop models to investigate under what conditions
dimorphism may evolve from a non-dimorphic species in which
there is some initial variation between the members of the
population. Future research should also include a dynamic
analysis of how the population evolves in various scenarios,
rather than the static equilibrium analysis carried out here. This
would be particularly useful in cases where there are multiple
equilibria and/or complete stable polymorphisms.

One question that is not addressed here is the difference
between patterns of care in various classes of species. As Clutton-
Brock (2007) observes, once sex differences have evolved, selection
can become sex specific and the various reproductive processes in
different classes may lead to e.g. dimorphism or a variety of
patterns of parental care. For example, female care is present in
virtually all mammal species, with males caring in less than 10% of
species (see Alcock, 2009; Clutton-Brock, 1991). In bird species,
female care is much more common than male care and biparental
care is more common than in mammals (see Cockburn, 2006).
These differences are somewhat predictable considering the results
given above and the physiological constraints of reproduction in
these classes. The gains from biparental care with respect to
uniparental care in birds are likely to be relatively large. This is due
to the fact that one parent can incubate the eggs while their
partner forages. In mammalian species, females have evolved to
specialise in caring for offspring (e.g. supplying milk) and the
benefits of biparental care seem less clear. Hence, it is expected
that the tendency for just female care to be evolutionarily stable is
stronger in mammals than in the ‘‘primeval’’ species considered by
the model. The patterns of parental care in fishes are much more
varied. Male only care is observed in many fish species (see
Goodwin et al., 1998; Reynolds et al., 2002). Various reasons have
been put forward for this difference. Hale and St. Mary (2007) note
that males who are already caring for offspring are preferred by
females. The model presented here is inappropriate in this case, as
it is assumed that males either care for young or attempt to gain
extra matings. Also, it seems reasonable to assume that the length
of male time outs in relation to the length of female time outs is
longer in fish than in mammals or birds (see Levitan and Petersen,
1995). Another possible reason is that due to external fertilisation,
in fish species females are able to desert before males have the
opportunity of deserting, while in mammal and bird species it is
the opposite way round.

One major drawback of the model is that it does not take into
account the certainty of parentage. Queller (1997) argues that one
reason for males providing less parental care is that they are less
certain of their paternity. In socially monogamous mammal and
bird species, the fact that males attempt to gain extra-pair
copulations means that males will be on average less related to
the offspring than their partners are. Dawson (1996) describes a
so-called trade off between paternal care and attempting to gain
extra matings. Magrath and Komdeur (2003) argue that male care
does not always compromise the search for additional partners.
Møller and Birkhead (1993) observe that there is a correlation
between the level of male care and certainty of parentage. Møller
and Thornhill (1998) argue that males adjust their level of care
according to their expected future rewards, i.e. if they expect that
their latest brood is more highly related to them than average
they will care more. Westneat and Sherman (1993) come to a
similar conclusion and furthermore argue that given the expected
relationship of two males to their partner’s present brood is equal
to their average relationship, then those two males should give
the same level of paternal care, even if one male is on average
more related to the offspring of his partner than the other.
Houston and McNamara (2002) argue that the model of Westneat
and Sherman is inconsistent and that the level of male care must
depend on the average level of relationship of a male to his
partner’s brood. They look at how levels of care should vary from
season to season, within a population, in different populations of
the same species and across species. Kokko and Morrell (2005)
note that by caring for their offspring, males also tend to guard
themselves against lower levels of paternity. They show that the
relationship between guarding and paternity levels is complex.
The traditional argument is that low levels of paternity lead to
males trying to mate with more females and caring less, which
leads to lower levels of paternity, etc. However, this circle can be
broken by mate guarding. It is clear that the problem of the
uncertainty of parentage is a great challenge to modellers.

Another problem with the model presented here is that it does
not consider the mortality of individuals. Ramsey (2009b) derives
pure ESSes for a similar problem in which the mortality rate may
depend on the state and/or strategy of an individual. In this case
one should consider three sex ratios. The incoming sex ratio, ISR,
is the ratio of the rate at which males join the adult population to
the rate at which females join the adult population. This
parameter is defined exogenously. The OSR and ASR depend on
the strategy profile used and can be calculated using the fact that
in a steady state the rates at which males and females mature
must equal the rates at which adult males and females die.

Roff (2002) notes that present investment lowers expected
future reproductive success. Such a relationship would be difficult
to capture using a model of the form considered here. One way of
doing this would be to allow individuals to age at different rates
according to the strategy they use. Clutton-Brock et al. (1985) and
Clutton-Brock and Isvaran (2007) note that in dimorphic
mammalian species there is a very female biased ASR, due to
the fact that males take longer to mature and male–male
competition leads to a higher rate of mortality among adult
males than among adult females. Liker and Székely (2005) and
Donald (2007) observe that in most bird species there tends to a
more balanced ASR than in mammalian species. Also, in avian
species where just female care is observed the ASR tends to be
female biased. Kokko and Monaghan (2001) note that the
relationship between mortality and patterns of parental care
may be complex. For example, suppose in a species where only
female care is observed, the mortality rate of males increases due
to increased male–male competition (this may be due to density
dependent effects). The increased cost of male–male competition
would lead to a more female biased ASR, i.e. greater gains for the
males who outcompete others. It is not clear whether these gains
outweigh the increased costs of male–male competition.
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Appendix A. Female polymorphism when males desert

Let qDP
i,� denote the proportion of females using strategy � in

state i, �AfC,Dg, jAf1,2,3g and sf
DP be the proportion of female

carers at such a stable polymorphism. From the equilibrium
conditions for the proportions of individuals in each state,

qDP
1,�m1 ¼ qDP

2,�m2,

l1qDP
1,�p

DP
1 r¼ m�3qDP

3,�,

qDP
1,�þqDP

2,�þqDP
3,� ¼ 1,

l1pDP
1 ½s

DP
f qDP

1,Cþð1�sDP
f Þq

DP
1,D� ¼ lD

2 ð1�pDP
1 Þ,

where �AfC,Dg. Since female deserters must have the same
reproduction rate as female carers,

qDP
1,D ¼ qDP

1,Ckf :

Solving this system of eight equations,

qDP
1,D ¼

m2ðmD
3�kfmC

3Þ

ðmD
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3Þðm1þm2Þ
,
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,
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" #
:

For this solution to be valid, the following must hold:

kf o
mD
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1 qDP

1

o1: ð25Þ

In addition, a male carer must have a lower reproduction rate
than a male deserter. This gives

l1pDP
1 qDP

1,D4
lC

2l1½s
DP
f qDP

1,Ckbþð1�sDP
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DP
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Appendix B. Female polymorphism when males care

Let qCP
i,� denote the proportion of females using strategy � in

state i, �AfC,Dg, jAf1,2,3g and sf
CP be the proportion of female
carers at such a stable polymorphism. From the equilibrium
conditions for the proportions of individuals in each state,

qCP
1,�m1 ¼ qCP

2,�m2,

l1qCP
1,�p
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1 r¼ m�3qCP
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2ð1�pCP
1 Þ,

where �AfC,Dg. Since female deserters must have the same
reproduction rate as female carers,

qCP
1,Dkm ¼ qCP

1,Ckb:

Solving this system of eight equations,
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In addition, a male deserter must have a lower reproduction rate
than a male carer. This gives
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Appendix C. Male polymorphism when females desert

Let pPD
1,� denote the proportion of males using strategy � in the

searching state, �AfC,Dg, and sm
PD be the proportion of male carers

at such a stable polymorphism. From the equilibrium conditions
for the proportions of individuals in each state,
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Since male deserters and male carers must have the same
reproduction rate, p1,D

PD
¼km p1,C

PD .
Solving this system of six equations,
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2km�

,

qPD
2 ¼
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C
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D
2 ðkm�1Þ
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D
2�l

C
2km�

,

qPD
3 ¼ 1�
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C
2l

D
2 ½km�1�
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D
2�l

C
2km�

,

pPD
1,D ¼

lD
2�l

C
2km

lD
2�l

C
2

,

pPD
1,C ¼

lD
2�l

C
2km

kmðl
D
2�l

C
2Þ

,

sPD
m ¼

km

km�1
1�

mD
3 qPD

3

l1qPD
1 rpPD

1,D

" #
:

For this solution to be valid, the following must hold:

kmo
lD

2 ½l
C
2ðm1þm2Þþl1m2�

lC
2 ½l

D
2 ðm1þm2Þþl1m2�

, ð30Þ

1

km
o

mD
3 qPD

3

l1qPD
1 pPD

1,Dr
: ð31Þ

In addition the reproduction rate of a female carer must be lower
than the reproduction rate of a female deserter. It follows that

l1qPD
1 pPD

1,Dr4
m2mC

3l1r½sPD
m pPD

1,Ckbþð1�sPD
m Þp

PD
1,Dkf �

m2mC
3þm1mC

3þl1m2r½sPD
m pPD

1,Cþð1�sPD
m Þp

PD
1,D�

: ð32Þ
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McNamara, J.M., Székely, T., Webb, J.N., Houston, A.I., 2000. A dynamic game-
theoretic model of parental care. J. Theor. Biol. 205, 605–623.

Mitchell, D.P., Dunn, P.O., Whittingham, L.A., Freeman-Gallant, C.R., 2007.
Attractive males provide less parental care in two populations of the common
yellowthroat. Anim. Behav. 73, 165–170.

Møller, A.P., Birkhead, T.R., 1993. Certainty of paternity covaries with paternal care
in birds. Behav. Ecol. Sociobiol. 33, 261–268.

Møller, A.P., Jennions, M.D., 2001. How important are direct fitness benefits of
sexual selection? Naturwissenschften 88, 401–415.

Møller, A.P., Thornhill, R., 1998. Male parental care, differential parental
investment by females and sexual selection. Anim. Behav. 55, 1507–1515.

Owens, I.P.F., Thompson, D.B.A., 1994. Sex differences, sex ratios and sex roles.
Proc. R. Soc. London B 258, 93–99.

Polder, J., 1970. On gonads and reproductive behavior in the cichlid fish Aequidens
portalegrensis (Hensel). Neth. J. Zool. 21, 265–365.

Queller, D.C., 1997. Why do females care more than males? Proc. R. Soc. London B
264, 1555–1557.

Ramsey, D.M., 2009a. Large population evolutionary games played within a life
history framework. Oper. Res. Decisions 7 (2), 51–74.

Ramsey, D.M., 2009b. Strategy dependent mortality in life history games. In:
Proceedings of 2009 International Conference on Game Theory for Networks,
13–15 May, 2009, Boǧazic- i University, Istanbul, pp. 339–346. Doi: 10.1109/
GAMENETS.2009.5137419.

Reynolds, J.D., Goodwin, N.B., Freckleton, R.P., 2002. Evolutionary transitions in
parental care and live bearing in vertebrates. Philos. Trans. R. Soc. London B,
Biol. Sci. 357, 269–281.

Roff, D.A., 2002. Life History Evolution. Sinaeur Associates, Sunderland, MA.
Sargent, R.C., Gross, M.R., 1993. William’s principle: an explanation of parental

care in teleost fishes. In: Pitcher, T.J. (Ed.), Behaviour of Teleost Fishes.
Chapman Hall, London, pp. 333–361.

10.1109/GAMENETS.2009.5137419
10.1109/GAMENETS.2009.5137419


D.M. Ramsey / Journal of Theoretical Biology 266 (2010) 675–690690
Seki, M., Wakano, J.Y., Ihara, Y., 2007. A theoretical study on the evolution of male
parental care and female multiple mating: effects of female mate choice and
male care bias. J. Theor. Biol. 247, 281–296.
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