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a b s t r a c t 

Cooperative breeding occurs when individuals help raise the offspring of others. It is widely accepted 

that help displayed by cooperative breeders emerged only after individuals’ tendency to delay dispersal 

had become established. We use this idea as a basis for two inclusive-fitness models: one for the evo- 

lution of delayed dispersal, and a second for the subsequent emergence of helpful behavior exhibited by 

non-breeding individuals. We focus on a territorial species in a saturated environment, and allow terri- 

tories to be inherited by non-breeding individuals who have delayed dispersal. Our first model predicts 

that increased survivorship and increased fecundity both provide an incentive to non-breeding individ- 

uals to delay dispersal, and stay near their natal territory for some period of time. Predictions from the 

first model can be well understood by ignoring complications arising from competition among relatives. 

Our second model shows that effects on relatives play a primary role in the advantage of helping. In 

addition, the second model predicts that increased survivorship and fecundity promote the emergence 

of help. Together, our models lead us to conclude that the emergence of cooperative-breeding systems 

is made easier by life-history features associated with high survivorship and fecundity. We discuss the 

implications of our conclusions for life-history-based hypotheses of cooperative breeding and social evo- 

lution. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In many cooperatively breeding species, subordinate individuals

ostpone or even forgo their own reproduction in order to pro-

ote the reproductive success of the dominant individuals who

ccupy breeding territories. Familiar examples include the Florida

crub Jay ( Aphelocoma coerulescens ), and meerkats ( Suricata suri-

atta ) ( Clutton-Brock, 2002; Cockburn, 1998 ). Uncovering the adap-

ive significance of the helpful behavior displayed by these and

ther cooperative breeders is key to understanding the evolution

f animal societies more broadly. 

Attempts to explain the selective advantage of cooperative

reeding have emphasized a range of complementary influences

 Emlen, 1994 ). Some have focused on the personal fitness bene-

ts of helping, such as delayed reciprocity ( Wiley and Rabenold,

984 ), and territory inheritance ( Stacey and Ligon, 1991 ). Others

ave focused on the indirect fitness benefits of raising related but
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on-descendant offspring, especially as a response to various envi-

onmental constraints ( Emlen, 1982a; 1982b; Skutch, 1961 ). 

As plausible as the various explanations for cooperative breed-

ng are, studies in the field have failed to uncover a general ef-

ect of species’ ecology that is also consistent with the variety

f theoretical predictions made ( Arnold and Owens, 1998 ). Con-

equently, recent research has looked more deeply into the spe-

ific life-history features that might promote cooperative breed-

ng ( Arnold and Owens, 1998; Beauchamp, 2014 ). Efforts there

ave centred on finding evidence, among cooperatively breeding

pecies, for the predominance of similar “K-selected” life-history

raits. These traits include high survivorship and low fecundity—

raits that are thought to be advantageous in environmentally con-

trained populations, near carrying capacity. Unfortunately, empir-

cal support for the existing life-history based theories has also

een mixed ( Hatchwell and Komdeur, 20 0 0 ). 

Despite the lack of empirical support, it seems inappropriate

o dismiss life-history-based explanations for cooperative breed-

ng outright, since they are theoretically underdeveloped. That is to

ay, the explanations are based on generic ideas about life-history

volution, rather than on models tailored for cooperatively breed-

ng species. In this paper, we use simple, yet reasonably compre-
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Table 1 

Summary of notation used in the main text. 

Symbol(s) Explanation 

b Number of immature offspring produced on a territory during a given time period, and interpreted as fecundity or birth rate. 

c, ˆ c Fraction of dominant vacancies per time period per territory that are contested by related individuals. A hat denotes the equilibrium value of the 

parameter. 

h Subordinate helping rate. 

m α, ˆ m α Number of local dominant vacancies secured by a subordinate. This parameter can also be interpreted as a probability. A hat denotes the equilibrium 

value of the parameter. 

m β , ˆ m β Likelihood that a subordinate does not compete successfully for a breeding opportunity as a dominant. Of course, m β = 1 − m α . A hat denotes the 

equilibrium value of the parameter. 

n α, ˆ n α Number of dominant vacancies secured by a disperser. A hat denotes the equilibrium value of the parameter. 

ˆ r Genetic relatedness between two different individuals born on the same territory during the same time period, at equilibrium. 

s α Survival rate of a dominant individual. 

s β , �s β Survival rate of a subordinate, and the positive change in this rate following receipt of help from a subordinate born in the previous time period. 

s ω , �s ω Survival rate of a disperser, and the negative change in this rate following donation of help to an individual born in the current time period. 

v α Reproductive value of a dominant individual. 

v β Reproductive value of a subordinate individual, v β = s ω ̂ n αv α . 

z The probability that an individual delays its dispersal from its natal territory for one time period for the chance to compete to inherit a dominant position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Cartoon depiction of the possible fate of individuals in our models. Verbal 

descriptions of events are given in Section 2.1 . 
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hensive, models to capture the evolution of cooperative breeding,

with the goal of clearly assessing the influence of basic life-history

on the origin of these systems. 

Biologists have long agreed that the evolution of delayed disper-

sal of offspring from their natal site is an important first step in

the establishment of cooperative-breeding systems ( Brown, 1974;

Emlen, 1982a; Hatchwell and Komdeur, 20 0 0; Koenig et al., 1992;

Kokko and Ekman, 2002; Kokko and Lundberg, 2001 ). Evidence

also suggests that the evolution of delayed dispersal preceded the

emergence of helping in certain eusocial insects ( Thorne, 1997 ).

Our approach, therefore, is to separate an individual’s dispersal de-

cision from its decision to help, in contrast to many previous mod-

els ( Leggett et al., 2012; McLeod and Wild, 2013; Motro, 1993; Pen

and Weissing, 20 0 0; Wild and Koykka, 2014 ). We implement this

approach by constructing and analysing a model for the evolution

of delayed dispersal (Model I). Results from this model are then

used to inform a second model for the evolution of helping fol-

lowing establishment of delayed dispersal (Model II). 

Biologists have also long recognized the importance of genetic

relatedness among cooperative breeders ( Brown, 1987; Emlen,

1982b ). Unlike those who incorporate relatedness into their the-

ory as a fixed parameter ( Kokko and Johnstone, 1999; Kokko et al.,

2001 ), we model relatedness as a function of species’ population

dynamics, which ultimately depends on life-history details. Fur-

thermore, our consideration of relatedness is explicit and allows

for inbreeding within groups to build, and so our models differ

from recent theoretical work ( Koykka and Wild, 2016 ). 

Overall, our models predict that cooperative breeding is pro-

moted as survivorship, or fecundity (or both) is increased. We dis-

cuss the implications of our predictions in the final section, paying

particular attention to life-history based explanations of coopera-

tive breeding and the evolution of social insects. 

2. Model I: delayed-dispersal 

It is a challenge to build a simple model of the evolution of de-

layed dispersal, since so many factors (both ecological and social)

come into play ( Kokko and Ekman, 2002 ). Here, we concentrate

on building a model that is tractable but still reflects key aspects

of relevant biological systems. As the reader will see, this has re-

quired us to sometimes balance our interest in biological realism

against our need for a set of assumptions that help to keep our

models mathematically tractable. For the reader’s convenience, we

summarize all mathematical notation introduced below in Table 1 .
.1. Monomorphic wild-type population 

We first consider a genetically monomorphic population of hap-

oid individuals. This “wild-type” population will serve as the back-

rop against which we later measure the fitness of mutant individ-

als. We assume a haploid genetic system because it is simple, and

ecause it mirrors a diploid system with additive interactions be-

ween alleles ( Johnstone and Cant, 2008 ). 

We track our model wild-type population in discrete time, ob-

erving it at the beginning of each time period, e.g. season, year,

eneration ( Fig. 1 ). Each individual in this population begins its life

s one of b ≥ 2 offspring produced by the two dominant breed-

rs occupying one of a very large number of breeding territories.

n keeping with our use of dominant individuals as stand-ins for

ominant males and females, respectively, we assume that an off-

pring inherits all of its genetic material from one or the other

ominant on its natal territory, independently, with one-half prob-

bility. 

As the reader will see, our decision to allow two dominant in-

ividuals on a territory means that, in general, genetic lineages

xperience some degree of inbreeding. In turn, the possibility of

nbreeding implies that relatedness among family members is not

xed, but rather can vary in a way that is influenced by the details

f the life history. As we have said, this approach to modelling re-
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atedness has not been used by previous authors (e.g. Kokko and

ohnstone, 1999; Kokko et al., 2001; Wild and Koykka, 2014 ), even

hough it reflects a key means through which life-history features

an act to influence the evolution of cooperative breeding. 

Following birth, each individual offspring matures, and then

oes one of two things. With probability z each remains on its na-

al territory, delaying dispersal for exactly one time period in an

ttempt to compete locally for a breeding opportunity, should such

n opportunity arise. With probability 1 − z each disperses from

ts natal territory and attempts to compete non-locally for breed-

ng opportunities, wherever these might arise. For convenience we

ill refer to z as an individual’s “tendency to delay dispersal.”

hose individuals who delay dispersal we call “subordinates” as

ong as they are on their natal territory, in order to distinguish

hem from the territory’s two dominant owners. Those who dis-

erse we call “dispersers.” For now, subordinate individuals offer

o help to dominants. 

ubordinate route. An individual who delays its dispersal will com-

ete for local breeding opportunities when these arise. If s α is the

urvival rate of dominants, then, on average, breeding opportuni-

ies arise on a given territory at the rate of 2(1 − s α) per time

eriod. That is to say, breeding opportunities follow the death of

 dominant. We assume subordinates, by virtue of the fact that

hey are native to a territory, always outcompete dispersers for lo-

al breeding opportunities. This reflects what is understood to be

 key incentive for cooperative breeding ( Kokko and Ekman, 2002;

okko and Lundberg, 2001; Wild and Koykka, 2014 ). 

It should be emphasized that there are downsides to the prior-

ty access we afford subordinates. First, subordinates are not guar-

nteed to survive to compete for the local opportunities that may

r may not arise. We use s β to denote the probability with which

 subordinate survives to compete, and so 1 − s β gives the proba-

ility with which a subordinate dies before any local competition

an occur. Second, subordinates compete against one another on an

qual footing (we assume no queuing of subordinates). Since sub-

rdinate competitors are all native to a given territory they are ge-

etically related. Consequently, success as a subordinate may come

t the expense of a relative, and we use c to denote the probability

ith which this occurs. 

Conditioned on its survival, then, a subordinate competes suc-

essfully to become a dominant with probability m α (or, equiva-

ently, competes for m α breeding opportunities). Again conditioned

n survival, the same subordinate fails to compete successfully

ith probability m β = 1 − m α . In the latter case, it remains a sub-

rdinate until the following time period, when it disperses, and so

ecomes a “disperser,” with probability 1 (see below). Complete

ispersal of subordinates is an assumption that allows us to keep

he model simple (it allows us to circumvent the need for classi-

ying territories using a potentially large state space). It is, how-

ver, also an assumption that is reflected in the delayed disper-

al of the cooperative breeding corvids like the Florida Scrub Jay

 Brown, 1974 ), and the Gray Jay ( Waite and Strickland, 1997 ). 

In Appendix A , we develop expressions for m α , m β , and c when

he wild-type population has reached equilibrium, as it is the equi-

ibrium population in which we later assume mutant behavior

rises (see below, and also Taylor and Frank, 1996 ). This same as-

umption can be found in other approaches to modelling behavior

e.g. Geritz, 2005 ). 

To emphasize the fact that m α , m β , and c are calculated at

quilibrium, we re-write them as ˆ m α, ˆ m β, ˆ c , respectively. In

ppendix A , we also develop an expression for the equilibrium

evel of genetic relatedness between two offspring born on the

ame territory during the same time period, denoted ˆ r ; i.e. relat-

dness between potential local competitors. 
t  
isperser route. A disperser – either an individual who became a

isperser immediately following its birth, or an individual who had

een a subordinate on its natal territory, but then failed to secure

 breeding opportunity there – competes for breeding opportuni-

ies on territories other than the one on which it was born. We

ssume that each disperser survives dispersal with probability s ω ,

nd, conditioned on its survival, expects to compete successfully

or n α breeding opportunities. In Appendix A , we provide an ex-

ression for n α at equilibrium, and we write its equilibrium value

s ˆ n α . 

We make two technical assumptions in this part of our model.

irst, we assume that dispersers cannot secure breeding opportuni-

ies in time periods other than the one in which they disperse. This

an be thought of, effectively, as assuming that a disperser who

ails to secure a breeding opportunity dies. Second, we assume

hat dispersers fill all dominant positions not filled by subordi-

ates. This means that, in principle, n α can exceed 1 (our model for

ompetition uses a typical “sampling with replacement” scheme;

ee Appendix A ). More importantly, it also means that breeding

abitat is saturated. In this way the model incorporates ideas from

arly theory ( Brown, 1974; Emlen, 1982a; 1982b ), as well as evi-

ence from cooperatively breeding birds in the field ( Pruett-Jones

nd Lewis, 1990 ). 

.2. The inclusive-fitness effect of delayed dispersal 

To understand how selection acts to change the tendency to de-

ay dispersal, we use a version of Hamilton’s rule ( Hamilton, 1964 )

hat reflects the assumptions laid out above. Specifically, we con-

ider a mutant allele that increases the tendency of its immature

arrier to delay dispersal, and we develop an expression for the ef-

ect the allele has on its carrier’s inclusive fitness. We stress that

his inclusive-fitness effect is calculated under the assumption that

he population is at equilibrium, and that, relative to the wild-

ype, the mutant allele changes the tendency to delay dispersal by

 small amount only. 

We use �w ( z ) to denote the inclusive-fitness effect of the mu-

ant allele, where z now reflects the population-wide average ten-

ency to delay dispersal ( Taylor and Frank, 1996 ). When �w ( z ) is

ositive (resp. negative) a mutant individual that increases (resp.

ecreases) its tendency to delay dispersal puts its genetic lineage

t an advantage. It follows that when �w ( z ) is positive (resp. neg-

tive) selection favors an increase (resp. decrease) in the tendency

o delay, and so the sign of �w ( z ) reflects the direction of the se-

ection gradient acting on z . In Appendix B , we use the approach

escribed in Taylor and Frank (1996) to show that 

w (z) = s β ˆ m αv α + s β ˆ m βv β − s ω ̂  n αv α︸ ︷︷ ︸ 
direct effects 

− s β ˆ m α ˆ c (v α − v β ) ̂ r ︸ ︷︷ ︸ 
indirect effects 

(1) 

here v α = 1 is the reproductive value of a dominant individual,

nd v β = s ω ̂  n αv α is the reproductive value of a subordinate indi-

idual. Reproductive value measures the extent of an individual’s

enetic contribution to generations in the long-run. Here, repro-

uctive value serves both as an “exchange rate” between the evo-

utionary significance of dominants and subordinates, respectively,

nd as the “gold standard” measure of evolutionary success. It is

orth noting at this point that terms in (1) depend on life-history

arameters b, s α , and s β , but s ω cancels out of Eq. (1) . 

Eq. (1) has a straightforward biological interpretation. To see

hat this interpretation entails, consider an individual who (for

ack of a better term) intended to disperse immediately after its

irth, but remained on its natal site as a subordinate for one time

eriod instead. Now ask, how has this decision altered the evolu-

ionary success of this individual’s genetic lineage? 

First, by staying on its natal site, the individual in question ei-

her survives to become a dominant individual (probability s β ˆ m α),
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Fig. 2. Description of the numerical simulation procedure used to determine the stable delay-dispersal phenotype, z , meaning that value of z favored by selection in the 

long-run. 
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i  
survives and remains a subordinate ( s β ˆ m β ), or fails to survive

(probability 1 − s β ). The value of a dominant individual to its ge-

netic lineage is v α , the value of a subordinate to its genetic lineage

is v β , and the value of a dead individual to its genetic lineage is,

of course, zero. Combining this information shows us that, by stay-

ing, the individual in question increases the success of its lineage

by s β ˆ m αv α + s β ˆ m βv β , which is represented by the first two terms

of Eq. (1) . 

Second, by staying on its natal site rather than leaving, the in-

dividual in question has forfeited fitness gains it might have oth-

erwise made elsewhere in the population. Those gains would have

required the individual to survive, and would have included gains

made by winning a dominant position. The amount of evolutionary

success forfeited, in this case, is therefore equal to s ω ̂  n αv α, which

is the third term in Eq. (1) . 

Third, the decision to stay has implications for other individ-

uals belonging to the same lineage as the individual in question.

By staying for one additional time period, the individual in ques-

tion has increased the amount of competition among kin for local

dominant vacancies. Specifically, any success this individual has in

securing a dominant position (we can quantify this success as ˆ m α)

comes at the expense of one other subordinate with probability

ˆ c . The displaced subordinate would have been valued by its lin-

eage in the amount v α , but is now valued at v β . Moreover, the

lineage to which the displaced subordinate belongs is the same as

that to which our focal individual belongs with probability ˆ r . It fol-

lows that, by staying, the individual in question further reduces the

success of its own lineage by ˆ m α ˆ c (v α − v β ) ̂ r , which is the fourth

term in (1) . 

Overall, we can group terms in (1) in the usual way ( Brown,

1987 ); that is, according to whether they represent gains/losses

made through personal survival and reproduction (“direct effects”

on fitness), or whether they represent gains/losses made through

the production of non-descendant kin (“indirect effects” on fit-

ness). 

3. Method of analysis and results I: delayed-dispersal 

3.1. Simulation algorithm 

We analyzed our delayed-dispersal model using a numerical

simulation of the evolution of z ( Fig. 2 ). The simulation relied on

the fact that the sign of �w ( z ) indicates the direction in which se-
ection acts to change z ( Rousset, 2004 ). As previously mentioned,

f �w ( z ) > 0 then z is increasing over time, and if �w ( z ) < 0 then

 is decreasing over time. Of course, if �w (z) = 0 then z is at an

volutionary steady state. 

The simulation, itself, consisted of two replicate populations.

ne population initially had a z near zero, while the other ini-

ially had a z near one. All other life-history parameters in the two

eplicates were set to identical values. Values of z in each replicate

opulation were updated, independently, by adding a multiple of

w ( z ) to the most recent rate. Updating continued until z values

n the replicate populations were sufficiently close to one another.

y using two replicate populations, then, we were able to use a

lear stopping criterion for our simulation. Overall, our simulation

roduced a prediction for the stable tendency to delay dispersal

the stable z ) under given set of life-history conditions. 

.2. Simulation-based predictions 

Intermediate phenotypes (0 < z < 1) are predicted to be stable

n only a narrow range of parameter space. As shown in Fig. 3 a–c,

utside of this narrow range selection results in either (1) all im-

ature individuals delay dispersal, and forgo the chance to mature

nd reproduce independently for one time period ( z = 1 ), or (2) all

mmature dispersing in the same year in which they were born,

ature and attempt to reproduce as dominant individuals ( z = 0 ). 

In general, delaying dispersal (resp. dispersing immediately)

uring the first year is favored more readily when fecundity and/or

urvivorship is high (resp. low) ( Fig. 3 a–c). This result is due to the

ssumption that individuals born on a territory have an advantage

ver non-native dispersers when competing for dominant vacan-

ies, and it can be understood sufficiently well in terms of direct-

tness effects only ( Fig. 3 d–f). As fecundity is increased, the com-

etitive pressure from subordinates for dominant vacancies inten-

ifies, and the chance of a disperser securing a dominant territory

s reduced disproportionately. As dominant survivorship increases,

he competitive pressure from subordinates also increases—not be-

ause there are more natives, but because there are fewer vacan-

ies over which individuals compete. Therefore, by delaying disper-

al, an individual can profit from a valuable competitive advantage

t would otherwise lose. Should that same individual not compete

uccessfully, it may still survive to compete as a disperser in the

ext time period. In this way, an individual who delays dispersal

s no worse off than one who did not (the absence of opportunity
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Fig. 3. Results for Model I: delayed dispersal. Long-term, stable tendency to delay dispersal (stable z ) as a function of subordinate survival rate ( s β ) for varying dominant 

survival rate s α , and varying birth rate b . Panels (a)–(c) show predictions from the complete inclusive-fitness model, while panels (d)–(f) uses direct-fitness effects only. 

Predictions do not depend on s ω . 

c  

t  

a  

o  

I  

d

 

w  

c  

i  

fi  

i  

“  

b  

n  

w  

1

4

 

e  

h  

f  

t  

t  

t  

v

4

 

W  

o  

1  

(

4

 

t  

r  

i  

j

 

s  

d  

l

<  

f  

t  

l  

c  

t  

w  

t  

 

i

�

W  

d  

t  

a

 

w  

p  

t  

s  

a

ost is common in models of cooperative breeding in stable habi-

ats ( McLeod and Wild, 2013 )). In fact, delaying dispersal naturally

ffords individuals the opportunity to compete for vacancies twice:

n its natal territory the first time, and elsewhere the second time.

ncreased survivorship as a subordinate, then, incentivizes delayed

ispersal by improving one’s chances of competing a second time. 

The fact that direct-fitness considerations, alone, provide us

ith good understanding of the long-term evolution of z is also

onsistent with the quasi-threshold effect evident in Fig. 3 . When

ndirect-fitness considerations are small, compared to the direct-

tness ones, there will be little to oppose the pursuit of selfish

nterests over the course of evolution. The answer to the question,

Is it advantageous to delay dispersal?”, then, will almost always

e a clear “yes” or “no” because only one individual’s perspective

eed be adopted. This kind of clarity ultimately means selection

ill drive z to take a value of 0 (when the clear answer is “no”) or

 (when the clear answer is “yes”) over time. 

. Model II: subordinate helping 

From the previous section, we predict that delayed dispersal

volves readily when fecundity and survivorship are sufficiently

igh. Once delayed dispersal has emerged, non-breeding relatives

rom different generations have the opportunity to interact, and so

he subordinate helping rate, denoted h , may be expected to evolve

o non-zero levels. In this section we extend our first model to de-

ermine conditions under which subordinate helping, h > 0, is ad-

antageous. 

.1. Monomorphic wild-type population 

We again consider the wild-type population described above.

e assume that life-history parameters are such that the action

f selection has resulted in all individuals delaying dispersal ( z =
 ), and we assume that the wild-type subordinate does not help

 h = 0 ). 
.2. The inclusive-fitness effect of subordinate help 

Consider a subordinate on a territory at the very beginning of a

ime period. Suppose that this mature subordinate individual car-

ies a mutant allele that causes it to interact with one of the b

mmature individuals produced by the dominants on its territory

ust prior to its own dispersal (see Fig. 1 ). 

We assume that the interaction in question is costly for the

ubordinate who is about to disperse. Specifically, the interaction

iminishes the physical condition of this subordinate so that the

ikelihood with which it survives as a disperser is changed by �s ω 
 0. We also assume that the interaction in question is beneficial

or the immature individual. In this case, the interaction improves

he condition of the immature individual so that its survival, fol-

owing maturation, as a subordinate is changed by �s β > 0 (re-

all that we have assumed z = 1 ). The assumptions we make in

his model reflect typical interactions among cooperative breeders,

ith non-breeding individuals paying a cost to ultimately promote

he production of non-descendant kin ( Heinsohn and Legge, 1999 ).

In Appendix C , we show that the helpful act has changed the

nclusive fitness of the subordinate actor by 

w (h ) = �s β ( ̂  m αv α + 

ˆ m βv β − ˆ m α ˆ c (v α − v β )) ̂  r ︸ ︷︷ ︸ 
indirect effect 

+ �s ω ̂  n αv α. ︸ ︷︷ ︸ 
direct effect 

(2) 

e also argue, in Appendix C , that ˆ r , the relatedness between two

ifferent individuals born on the same territory during the same

ime period, is the relevant measure of relatedness for studying the

dvantage of costly subordinate help. 

Like Eq. (1) , Eq. (2) has a straightforward interpretation, but we

ill dispense with the details of the interpretation, here. It is im-

ortant, though, to note that when �w ( h ) is positive (resp. nega-

ive) a helpful act confers an advantage (resp. disadvantage) to a

ubordinate actor’s lineage when the act, itself, is directed toward

 recipient born on the same territory as the actor. 
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Fig. 4. Results for Model II: subordinate helping. Contours for critical cost-benefit ratio, −(�s ω /s ω ) / (�s β/s β ) , when all individuals become subordinates ( z = 1 ). Darker 

black contours are shown in the space of dominant and subordinate survival rates ( s α and s β , respectively), and calculated for various fecundity parameters ( b ). Contour 

labels 1.0, or 10.0 give the value of the cost-benefit ratio which, if not exceeded, ensures subordinate helping a selective advantage. Shaded region shows where complete 

delayed dispersal, z = 1 , is not stable. To ensure z = 1 is stable, life-history parameters must lie in the unshaded region of s β , s α-space. 
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5. Method of analysis and results II: subordinate helping 

By simple algebraic rearrangement of the condition �w ( h ) > 0,

we can arrive at a critical cost-benefit ratio, −(�s ω /s ω ) / (�s β/s β ) ,

above which subordinate helping is disadvantageous. By expressing

the change in survival ( �s ω or �s β , respectively) relative to sur-

vival rates themselves ( s ω and s β , respectively), we obtain a critical

ratio that does not depend on s ω . 

Study of the critical cost-benefit ratio shows that increases in

both survivorship and fecundity promotes the emergence of sub-

ordinate help. Evidence of this is presented in Fig. 4 . In that fig-

ure, we see larger values of s α , s β , and b , respectively, increase

the range of conditions under which the advantage of help is

maintained under large relative costs. As an example of what we

mean, consider what happens as the fecundity parameter b is in-

creased in Fig. 4 (from left to right): the region of s α , s β -space

over which the advantage of help is maintained increases in area,

when the cost-benefit ratio exceeds 10.0. Carrying on with this

example, if we assume s ω = s β , then our critical cost-benefit ra-

tio takes a more usual form, −�s ω / �s β . Certainly, the condition

−�s ω / �s β < 10 . 0 is not overly restrictive and suggests the indi-

rect benefits in Eq. (2) can translate to appreciable inclusive-fitness

gains. 

6. Discussion and conclusions 

6.1. Comparison with previous models 

Models of the evolution of cooperative breeding often assume

an individual’s tendency to delay dispersal is linked to its ten-

dency to help ( Leggett et al., 2012; McLeod and Wild, 2013; Motro,

1993; Pen and Weissing, 20 0 0; Wild and Koykka, 2014 ). Those that

have sought to separate the link between staying and helping have

either treated relatedness as a fixed parameter ( Kokko and John-

stone, 1999; Kokko et al., 2001 ), have neglected the possibility

that relatedness builds within social groups while placing severe

limits on subordinate numbers ( Koykka and Wild, 2016 ), or have

focused on modelling delayed dispersal only ( Kokko and Ekman,

2002; Kokko and Lundberg, 2001 ). 

Here, we provide an explanation for the evolution of coopera-

tive breeding that separates delaying dispersal from helping, while

providing equal coverage to both behaviors. Our explanation also

makes clear assumptions that show how relatedness within social

groups, among other things, changes with changing life-history pa-

rameters, and ultimately how those changes impact the origin of

cooperative breeding. This brings theory for cooperative breeding

in line with that of many other social behaviors, including more

generic forms of altruism ( Taylor, 1992a, 1992b ), natal dispersal
 Taylor, 1989 ), reproductive effort ( Pen, 20 0 0 ), sex allocation ( Wild

nd Taylor, 20 04; 20 05 ), and sexual conflict ( Wild et al., 2011 ).

e have also allowed variable numbers of subordinates to inhabit

reeding territories (cf. Koykka and Wild, 2016 ). In all of these

ays, then, our work represents a step forward in our understand-

ng of cooperative breeding. 

.2. Delayed dispersal 

Our model for the evolution of delayed dispersal makes two

ain predictions. First, it predicts that indirect effects of delayed

ispersal have minimal impact on the evolution of this trait. We

ound that predictions of a modified version of Eq. (1) , one that

gnored effects on relatives, made predictions that were very close

o those made by the full inclusive-fitness model. Previous models

or the evolution of delayed dispersal have purposefully neglected

he indirect effects of delayed dispersal ( Kokko and Ekman, 2002;

okko and Lundberg, 2001 ). The importance of competition among

iblings has been identified by theoretical models of dispersal in

pecies without dominance hierarchies ( Hamilton and May, 1977;

aylor, 1988 ), and is considered to be a prominent force shaping

ociality in cooperative breeders ( Gaston, 1978; Griffin and West,

002 ). We see here, however, that ignoring those effects in coop-

rative breeders is unlikely to lead one too far astray provided the

ssumptions of the model are met. Chief among these assumptions

s the degree of ‘habitat elasticity’ ( Taylor, 1992b ) experienced by

ubordinates. Subordinate individuals in our model may compete

ith relatives for breeding opportunities, but they do not com-

ete with relatives in order to simply remain on their natal ter-

itory. Instead, a territory effectively expands in an ‘elastic’ manner

o accommodate variable numbers of subordinates, thus reducing

nclusive-fitness costs of delaying dispersal. 

The kind of habitat elasticity experienced by subordinates in

ur model is not at all far-fetched. Though cooperative-breeding

ertebrates often occupy saturated habitats, it is suitable breeding

abitat that is considered to be saturated. Non-breeding individuals

re often able to remain near their natal sites, “floating” in avail-

ble marginal habitat and reducing competition with kin ( Stacey

nd Ligon, 1991 ). This also applies to social insects, whose territo-

ies expand as their colonies grow. Expansion, here, is either due

o (1) the fact that social insects are central site foragers, where

ncreasing forager numbers increases the foraging area that can

e explored and exploited, or (2) the fact that territories occupied

ave vast food supplies that, in turn, allow for the coexistence of

ast numbers of insects with minimal local competition ( Korb and

einze, 2008 ). 

The second, perhaps more important, prediction made by our

elayed-dispersal model concerns the effect of life-history param-
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ters. We found that increased longevity and increased fecundity

oth promote delayed dispersal. In keeping with our previous com-

ents, these effects are well understood in terms of direct con-

equences for personal fitness. These points are discussed further

elow, but it is worth stressing that our results confirm previous

onjectures about life-history effects on delayed dispersal, particu-

arly fecundity ( Kokko and Ekman, 2002 ). 

.3. Subordinate helping, life-history features, and cooperative 

reeding 

Our second model predicts that increased survivorship and fe-

undity, respectively, increase the maximum cost that can support

n advantage of helping. This is similar to the predictions made

y our model for delayed dispersal. Since cooperative breeding is

hought to have arisen as a result of the emergence of delayed dis-

ersal followed by helping ( Brown, 1974; Emlen, 1982a ), our mod-

ls predict that life-histories that consist of low mortality and high

ecundity promote the evolution of cooperative breeding, overall. 

Life-history-based hypotheses for the advantage of cooperative

reeding have focused on the role played by mortality, especially

he mortality of dominant breeders. It is often argued that low

ortality results in overcrowded populations with limited avail-

bility of breeding habitat due to low rates of turnover ( Arnold and

wens, 1998; Beauchamp, 2014 ). Our results agree with this pre-

icted association between the occurrence of cooperative breeding

nd mortality/survival. 

Life-history hypotheses have also tended to downplay the ef-

ects fecundity might exert in the emergence of cooperative breed-

ng systems. Authors predict that cooperative breeding will be as-

ociated with smaller clutch sizes, owing to a trade-off between

urvival and fecundity ( Arnold and Owens, 1998; Beauchamp,

014 ). Essentially this perspective characterizes fecundity as a life-

istory response to cooperative breeding, rather than a life-history

eature that might directly promote help. 

In contrast to the typical life-history-based views, our results

how that, all else being equal, increases in fecundity can promote

ooperative breeding via increasing incentives to both delay disper-

al and to help. Incentives, here, stem from the fact that increased

ecundity can also result in low territory turnover, and a build-up

f within-territory relatedness—or, more simply, high rates of ter-

itory retention by a given genetic lineage. 

Certainly, our modelling shows that fecundity and survival both

ave a primary role to play in promoting and shaping coopera-

ive breeding, but what practical implications might this have? One

nswer has to do with the mixed support life-history hypothe-

es have received ( Arnold and Owens, 1998; Beauchamp, 2014 ).

n the presence of a trade-off between survivorship and fecundity,

ne might not expect any clear life-history pattern to be associ-

ted with cooperative breeding. Macroscopic features of the pop-

lation, like low rates of territory turn-over, could be associated

qually well with high fecundity and low mortality, or low fe-

undity and high mortality, or even intermediate levels of both.

ranted, comparative analyses have found little differences in birth

ates of cooperatively breeding and non-cooperatively breeding

pecies ( Arnold and Owens, 1998; Beauchamp, 2014 ). Variation in

irth rates, however, was still reported by these analyses and could

efinitely confound efforts to extract a clear “life-history signal”

rom the data collected. In addition, comparative analyses cannot

xplain why longevity alone does not lead to cooperative breeding

ore frequently in certain taxa ( Arnold and Owens, 1998 ). Perhaps

uch puzzles presented by the absence of cooperative breeding

ould be solved by giving greater consideration to the role played

y fecundity in directly promoting cooperative breeding, and may

equire deeper investigation into the details of relevant survival-

ecundity trade-offs. Alternatively, it may be necessary to develop
easures of territory turnover rates, rather than indices of habitat

aturation, that combine fecundity and survival field data in mean-

ngful ways to improve comparative analyses. To this end, terms

ike ˆ m α or ˆ c , that appear in Eqs. (1) and (2) might serve as useful

uides for field biologists. 

We may extend the above considerations to social insects. So-

ial hymenoptera (ants and some bees and wasps) as well as ter-

ites, which evolved eusociality independently, are characterized

y an apparent reversal (or absence) of the fecundity/longevity

rade-off. The most fecund individuals (queens, and in termites

lso kings) outlive the non-reproducing workers and soldiers by

ne to two orders of magnitude ( Keller, 1998; Keller and Genoud,

997; Monroy Kuhn and Korb, 2016 ). An extreme example comes

rom fungus-growing Macrotermes termites in which the lifespan

f queens is more than 15–20 years while the workers only live 2–

 months ( Traniello and Leuthold, 20 0 0 ). At the same time, these

ueens are the most fertile individuals amongst all animals as they

ay up to 20 , 0 0 0 eggs per day. The evolution of this reshaping

f the fecundity/longevity trade-off is still poorly understood but

ne may speculate that, after the evolution of helping, feedback

etween sociality, increased survival and fecundity may explain it. 

Insects have higher maximum fecundities than vertebrates and

t has been speculated that this may explain why eusociality rarely

volved in the latter ( Alexander et al., 1991; Korb, 2009 ). Strikingly,

he single eusocial vertebrates are rodents, those mammals with

he highest fecundity. Hence, high fecundity, which allows for large

amilies with many offspring to care for, may facilitate the evolu-

ion of altruism and set the stage for the co-evolution of sociality,

nd increased survival and fecundity. 

.4. Limitations and future work 

Models are always limited by their assumptions, and several

ey assumptions limit those presented here. One of the most im-

ortant assumptions we made, was the assumption of weak se-

ection: an individual’s tendency to delay dispersal was slight, as

ere the effects of helping on the survival of actors and recipi-

nts alike. In mathematical terms, weak selection means that we

annot use our model to definitively assess the evolutionary stabil-

ty of strategies, as these have been traditionally defined ( Rousset,

004 ). In biological terms, this means our model cannot be used to

tudy non-additive effects, like any possible synergy that could oc-

ur among helpers as a helpful gene invades ( Grafen, 1985 ). Exten-

ions of this work that consider higher-order effects of behaviors

e.g. using the analytic tools of adaptive dynamics ( Dercole and Ri-

aldi, 2008 )) could, therefore, be fruitful. 

A second key feature of our work was the assumption that de-

ayed dispersal had become established prior to the emergence

f helping. Though this idea has some long-standing support in

he biological literature ( Brown, 1974; Emlen, 1982a; Hatchwell

nd Komdeur, 20 0 0; Koenig et al., 1992; Kokko and Ekman, 2002;

okko and Lundberg, 2001 ), an alternative scenario – where help-

ng arises first, then delay dispersal emerges to enhance helping –

as not been explored theoretically. That said, there is little, if any,

vidence that such an alternative scenario has actually occurred, as

t would likely be recognized as within-generation altruism rather

han cooperative breeding. 

Our focus on the origins of helping is yet another limitation of

ur work. Indeed, few studies have tracked the coevolution of de-

ayed dispersal and helping beyond their origins as independent

raits, and those that have tracked said coevolution have presented

elatively complicated results ( Koykka and Wild, 2016 ). Clearly, ori-

ins of helping along with the subsequent maintenance of cooper-

tive breeding via coevolution deserve further attention. 

Finally, we chose to model the tendency to delay dispersal as

 condition-independent strategy. In natural populations, though,
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delays in dispersal can be informed by an individual’s physiological

condition, as well as local population densities, and the availabil-

ity of suitable alternative habitats ( Pruett-Jones and Lewis, 1990 ).

Helping may also be expressed in a similarly facultative manner

( Holman, 2014 ). While our decision to ignore condition depen-

dence likely did not influence our basic conclusions (e.g., popu-

lation elasticity would have reduced kin competition even with

condition-dependence), accounting for condition-dependent strate-

gies might be important when investigating the levels to which

helping and dispersal evolve once helping becomes established.

Thus, ignoring condition dependence as we have done could limit

our ability to extrapolate our conclusions beyond simply the emer-

gence of cooperative breeding to include maintenance and longer-

term evolution of these systems. The role of condition dependence

in the origins of cooperative breeding is one of several interesting

lines of further research. 
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Appendix A. Monomorphic wild-type population without 

subordinate help 

A1. Equilibrium state 

In this section, we develop the mathematical expressions that

characterize the equilibrium state of the wild-type population, in

the absence of subordinate help, as a distribution of the state of

the territories in the population. We define the “state” of a terri-

tory as the number of subordinates found there at the beginning

of a given time period. Since these probabilities are identical for

each territory, the population converges to its equilibrium state af-

ter only a single time period. 

Let ˆ p j denote the frequency of territories supporting j =
0 , 1 , . . . , b subordinates at equilibrium. We express equilibrium fre-

quencies in terms of the number of dominant vacancies on a

given territory, k = 0 , 1 , 2 , and the number of surviving subordi-

nates who have also delayed dispersal, � = 0 , 1 , . . . , b. For example,

to determine an expression for ˆ p 0 we note that there are exactly k

vacancies on a given territory in any given time step with proba-

bility (
2 

k 

)
s 2 −k 
α (1 − s α) k . (A.1)

Conditioned on the event that k dominant vacancies arise, the ter-

ritory in question ends up with j = 0 subordinates when no more

than k of the b offspring produced have survived and delayed dis-

persal (if fewer than k survive and delay dispersal, then vacancies

are filled by dispersers, as described in the main text). The proba-

bility with which this conditional event occurs is given by 

k ∑ 

� =0 

(
b 

� 

)
(zs β ) � (1 − zs β ) k −� . (A.2)

Combining the previous observations using the Law of Total Prob-

ability, we get 

ˆ p 0 = 

2 ∑ 

k =0 

(
2 

k 

)
s 2 −k 
α (1 − s α) k 

k ∑ 

� =0 

(
b 

� 

)
(zs β ) � (1 − zs β ) k −� . (A.3)
o  
imilar conditioning arguments results in the following overall de-
cription for ˆ p j : 

ˆ p j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ∑ 

k =0 

(
2 

k 

)
s 2 −k 
α (1 − s α ) k 

k ∑ 

� =0 

(
b 

� 

)
(zs β ) � (1 − zs β ) b−� j = 0 , 

2 ∑ 

k =0 

(
2 

k 

)
s 2 −k 
α (1 − s α ) k 

(
b 

k + j 

)
(zs β ) k + j (1 − zs β ) b−(k + j) 1 ≤ j ≤ b − 2 , 

1 ∑ 

k =0 

(
2 

k 

)
s 2 −k 
α (1 − s α ) k 

(
b 

k + b − 1 

)
(zs β ) k +(b−1) 

× (1 − zs β ) b−(k + b−1) j = b − 1 

s 2 α(zs β ) b j = b. 

(A.4)

he equilibrium state of the population, then, is given by

ˆ p 0 , . . . , ˆ p b . Note that ˆ p 0 is the probability of the event that all

urviving subordinates fill local vacancies left by dominants, and

ˆ p j≥1 is the probability of the event that all but j surviving subor-

inates fill local vacancies left by dominants. As a check, note that
 

j ˆ p j = 1 , as expected. 

2. Success of dispersers 

We continue to consider a monomorphic wild-type popula-

ion without subordinate help, but now we determine the number

f dominant positions each surviving disperser expects to secure

t equilibrium. This number, denoted ˆ n α, is simply the expected

umber of vacancies available to dispersers, 

 × 2 s α(1 − s α)(1 − zs β ) b + (1 − s α) 2 bzs β (1 − zs β ) b−1 ︸ ︷︷ ︸ 
prob one vacancy for dispersers 

+ 2 × (1 − s α) 2 (1 − zs β ) b ︸ ︷︷ ︸ 
prob two vacancies for dispersers 

(A.5)

ivided by the number of surviving dispersers, s ω [(1 − z) b +
 

j j ̂  p j ] (dispersing individuals born in the current time period

lus former subordinates). Using the expressions in (A.4) it is pos-
ible to show that 

∑ 

j j ̂  p j , is equal to the number of surviving sub-

rdinates from the previous time period less the number of vacan-
ies filled by this group. Mathematically, the number of surviving
ispersers, s ω [(1 − z) b + 

∑ 

j j ̂  p j ] , is given by 

 ω 

⎡ 

⎢ ⎣ 

(1 −z) b + bzs β︸︷︷︸ 
# surviving subordinates 

−(2(1 −s α ) −2 s α(1 −s α )(1 −zs β ) b −(1 −s α ) 2 (bzs β (1 −zs β ) b−1 + 2(1 −zs β ) b )) ︸ ︷︷ ︸ 
# vacancies filled by non-dispersers 

⎤ 

⎥ ⎦ 

(A.6)

nd so the expected number of territories won by a surviving dis-
erser is, 

ˆ  α = 

2 s α(1 −s α )(1 −zs β ) b + (1 −s α ) 2 bzs β (1 −zs β ) b−1 + 2(1 −s α ) 2 (1 −zs β ) b 

s ω [(1 −z) b + 

∑ 

j j ̂  p j ] 
. 

(A.7)

his expression for ˆ n α will be used in the development of fitness

xpressions in a subsequent section. 

Careful consideration of Eq. (A.7) reveals that one disperser

an win multiple dominant positions; that is, ˆ n α might be greater

han one. This situation is typical of social evolutionary models

f behavior—for example in models of sex-ratio evolution where

http://dx.doi.org/10.13039/501100000038
http://dx.doi.org/10.13039/501100007323
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ales secure multiple female mates ( Wild and Taylor, 2004 ). This

odel feature arguably implies that the model itself over-estimates

he success of dispersers. However, the model feature could be

nderstood as a single individual being part of several different

ated pairs, as in any one of a number of cases of extra-pair

arentage found in the literature ( Petrie and Kempenaers, 1998 ).

egardless of interpretation, the model feature is an important

echnical part of our model, because it ensures that vacancies

hich cannot be filled locally never go unfilled, and so the pop-

lation does not tend to extinction over time. 

3. Success of subordinates 

Now we turn our attention to the expected number of domi-

ant and subordinate positions won by a surviving non-disperser

n a wild-type population at equilibrium, denoted ˆ m α and ˆ m β, re-

pectively. 

We calculate ˆ m α by (a) fixing attention on an immature indi-

idual that stays on its natal territory and survives to become a

ubordinate (possibly only temporarily), then (b) conditioning on

he dispersal and survival of various territory inhabitants to get 

ˆ 
 α = (1 − s α) 2 

[ 

1 ∑ 

� =0 

(
b − 1 

� 

)
(zs β ) � (1 − zs β ) b−1 −� 

+ 

b−1 ∑ 

� =2 

(
b − 1 

� 

)
(zs β ) � (1 − zs β ) b−1 −� 2 

� + 1 

] 

+ 2 s α(1 − s α) 
b−1 ∑ 

� =0 

(
b − 1 

� 

)
(zs β ) � (1 − zs β ) b−1 −� 1 

� + 1 

= 

2(1 − s α)(1 − (1 − zs β ) b ) − (1 − s α) 2 bzs β (1 − zs β ) b−1 

bzs β
. 

(A.8) 

q. (A.8) can be understood as follows. In the case that two local

acancies arise (probability (1 − s α) 2 ), the focal individual secures

 local dominant position with probability 1 provided no more

han one other subordinate survived (summarized by the first term

n square brackets in Eq. A.8 ). If two or more additional subordi-

ates are able to compete for the vacancies, then the focal individ-

al secures a local dominant position with probability less than 1

summarized by the second term in square brackets in Eq. A.8 ). If

nly one vacancy arises (probability 2 s α(1 − s α) ), the focal individ-

al secures the dominant position with probability 1 only when

o other subordinate is present to contest the vacancy (summa-

ized by the final summation in Eq. A.8 ). As a check, notice that

hen we add the numerator of ˆ m α in (A.8) to the numerator of

ˆ  α in Eq. (A.7) , the sum is 2(1 − s α) which is the total dominant

acancy rate. 
By conditioning on the dispersal and survival of all but a fo-

al subordinate, we find that the probability with which that sub-
rdinate does not have to compete for a local dominant posi-
ion against a relative (i.e. the probability that said position is
 ncontested by a relative of the subordinate) is 

ˆ  = 

2 s α(1 −s α )(1 −zs β ) b−1 + (1 −s α ) 2 
(
(1 −zs β ) b−1 + (b−1)(1 −zs β ) b−2 

)
ˆ m α

. 

(A.9) 

t follows that the fraction of sites that are contested by relatives
t equilibrium is, ˆ c = 1 − ˆ u , or 
ˆ  = 1 −
2 s α(1 −s α )(1 −zs β ) b−1 + (1 −s α ) 2 

(
(1 −zs β ) b−1 + (b−1)(1 −zs β ) b−2 

)
ˆ m α

. 

(A.10) 

 similar line of reasoning gives us 

ˆ 
 β = (1 − s α) 2 

b−1 ∑ 

� =2 

(
b − 1 

� 

)
(zs β ) � (1 − zs β ) b−1 −� 

(
1 − 2 

� + 1 

)

+ 2 s α(1 − s α) 
b−1 ∑ 

� =1 

(
b − 1 

� 

)
(zs β ) � (1 − zs β ) b−1 −� 

(
1 − 1 

� + 1 

)
+ s 2 α = 1 − ˆ m α, (A.11) 

hich makes intuitive sense, because a subordinate who survives

ither becomes a dominant or remains a subordinate. In fact, this

alculation serves as yet another check on the correctness of (A.8) .

4. Calculation of relatedness 

Here, we provide an explicit expression for ˆ r , the coefficient

f relatedness between two individuals born on the same terri-

ory during the same time period. Again, to make our calcula-

ions we assume that the population is at equilibrium, genetically

onomorphic, and that subordinates do not help. 

We begin by considering the relatedness between the two dom-

nant breeders that occupy the same territory in a given time

tep, denoted f . Technically, f gives the probability that one breeder

arries an allele at some focal locus that is identical by descent

IBD) to the allele carried by the other breeder at the same locus

 Michod and Hamilton, 1980 ). We make the usual assumption that

wo individuals born on different territories have a coefficient of

elatedness equal to zero (e.g. Taylor, 1992a ). After any given time

eriod, then, the relatedness between breeders can either increase

o one, decrease to zero, or remain unchanged. It follows that the

elatedness between dominant breeders in the next time step, de-

oted f ′ , can be expressed recursively as, 

f ′ = f × (1 − P 1 − P 0 ) + 1 × P 1 + 0 × P 0 (A.12)

here P 1 is the probability with which the relatedness increases

o 1, and P 0 is the probability with which it decreases to zero. We

nd 

 1 = 

1 

2 

2 s α(1 − s α)[1 − (1 − zs β ) b ] + 

1 

2 

(1 − s α) 2 

× [1 − (1 − zs β ) b − bzs β (1 − zs β ) b−1 ] . (A.13) 

he first term in Eq. (A.13) gives the probability that exactly one

ominant dies, at least one subordinate is available to succeed the

eceased dominant, and the surviving dominant made the genetic

ontribution to the successor. The second term in Eq. (A.13) gives

he probability that both dominants die, at least two subordinates

re available to succeed the deceased dominants, and the two suc-

essors both received genetic contributions from the same breeder.

 similar argument allows one to arrive at the remaining terms in

A.13) , and also leads one to conclude that 

 0 = 2 s α(1 − s α)(1 − zs β ) b + (1 − s α) 2 

× [(1 − zs β ) b + bzs β (1 − zs β ) b−1 ] . (A.14) 

At equilibrium, f = f ′ = 

ˆ f where 

ˆ f = 

P 1 
P 1 + P 0 

. (A.15) 

e now use ˆ f to express the relatedness between two individu-

ls born on the same territory during the same time period, de-

oted ˆ r . Conditioning on the identity of the dominant breeder(s)
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who made the genetic contribution to the individuals being com-

pared, we find 

ˆ r = 

1 + 

ˆ f 

2 

. (A.16)

This is the measure of relatedness featured in the main text. 

Appendix B. The selective advantage of delayed dispersal 

B1. Key assumptions 

Suppose that the tendency to delay dispersal is controlled at a

single locus, and suppose further that there are two alleles at this

locus, one wild-type allele and one mutant allele (no longer is the

model population genetically monomorphic). A mutant remains on

its natal site at a rate that differs only slightly from the wild-type

rate, z ; in other words, selection is assumed to be weak. 

B2. Components of fitness 

In order to determine whether the mutant is at an advan-

tage/disadvantage, and ultimately the direction in which selection

moves z , we use the “direct-fitness approach” ( Taylor and Frank,

1996 ). 

The direct-fitness approach requires expressions for fitness. For

this model, we develop fitness expressions for an immature in-

dividual at the very beginning of a given time period (the “focal

individual”). Each focal individual has two distinct components of

fitness. The first component represents the likelihood with which

the focal individual belongs to the dominant class in the next time

period, and is denoted w α . The second component represents the

likelihood with which it belongs to the subordinate class in the

next time period, and is denoted w β . We deal with each compo-

nent in turn, below. 

Consider w α , the likelihood that a focal individual belongs to

the dominant class in the next time period, or more accurately,

the expected number of dominant positions won by the focal in-

dividual in the next time period. We will break the calculation of

w α into two parts: the number of dominant positions won on its

natal territory in the next time period (i.e. locally), and the num-

ber of dominant positions won on territories other than its natal

territory in the next time period (i.e. non-locally). 

Let z 0 denote the focal individual’s tendency to delay dispersal,

and let z 1 denote the tendency of another individual, born on the

same territory and at the same time as the focal individual, to de-

lay its own dispersal. Conditioning on the event that the focal indi-

vidual stays on its natal patch and survives (probability z 0 s β ), then

applying the same argument that led to Eq. (A.8) , we find that the

number of local dominant positions next time is 

z 0 s β
2(1 − s α)(1 − (1 − z 1 s β ) b ) − (1 − s α) 2 bz 1 s β (1 − z 1 s β ) b−1 

bz 1 s β
. 

(B.1)

In order to determine the number of non-local successes, we

condition on the event that the focal individual disperses and sur-

vives to compete for a vacancy (probability (1 − z 0 ) s ω ). Because

selection is weak, we can approximate the number of vacancies

available using the expression for ˆ n α already derived for a wild-

type population at equilibrium (see Appendix A ). Consequently, the

number of non-local dominant position next time is 

(1 − z 0 ) s ω ̂  n α. (B.2)

We arrive at an expression for w α by simply summing Eqs.

(B.1) and (B.2) : 
 α = z 0 s β
2(1 −s α)(1 −(1 −z 1 s β ) b ) −(1 −s α) 2 bz 1 s β (1 −z 1 s β ) b−1 

bz 1 s β

+ (1 − z 0 ) s ω ̂  n α. (B.3)

Now, consider the likelihood with which the focal individual
elongs to the subordinate class at the beginning of the next time
eriod, w β . Given the assumptions of the model, an individual can

nly become a subordinate if it remains on its natal territory, and
o we condition on the event that the focal individual has delayed
ispersal and has survived (probability z 0 s β ). Using the approach

hat led to Eq. (A.11) , we get 

 β =z 0 s β

(
1 − 2(1 −s α )(1 −(1 −z 1 s β ) b ) −(1 −s α ) 2 bz 1 s β (1 −z 1 s β ) b−1 

bz 1 s β

)
. 

(B.4)

3. Combining components of fitness 

Expressions (B.3) and (B.4) can be combined into a single mea-

ure of fitness using coefficients of reproductive value. “Reproduc-

ive value” is defined as the genetic contribution made by an indi-

idual to the population in the very distant future ( Taylor, 1996 ).

f we use v α to denote the reproductive value of a dominant in-

ividual, then reproductive value of a subordinate becomes v β =
 ω ̂  n αv α . The expression for v β can be understood as the product

f three terms: the probability with which a subordinate later sur-

ives as a disperser to compete on a new territory, the expected

umber of dominant positions it wins, and its value as a domi-

ant. This measure of reproductive value is approximated to zeroth

rder in the strength of selection. 

With reproductive value defined, we get 

 = v αw α + v βw β (B.5)

s our measure of the overall fitness of a focal individual. 

4. The inclusive-fitness effect of philopatry 

Using Taylor and Frank (1996) as a guide, we calculate �w ( z ) by

a) treating z 1 as a function of z 0 , (b) differentiating w with respect

o z 0 , paying careful attention to the Chain Rule from freshman cal-

ulus, (c) substituting the relatedness between the focal individual

nd its newborn neighbour, denoted ˆ r (see Appendix A ), in place

f the ordinary derivative dz 1 / dz 0 , and (d) evaluating the entire ex-

ression at z 0 = z 1 = z and. These steps lead to Eq. (1) in the main

ext. 

ppendix C. Model extension: the advantage of subordinate 

elp 

1. Preliminary comments 

In this section, we consider a scenario in which selection has

ed all individuals to delay dispersal for one time period (i.e.,

 = 1 ). We develop an expression for the inclusive-fitness advan-

age/disadvantage created by a helpful subordinate individual on

 territory at the beginning of a time step, in this case. We dis-

ense with the direct-fitness methodology used in a previous sec-

ion, and instead use a more traditional inclusive-fitness approach

 Taylor, 1990 ). However, we do assume the reader is familiar with

he contents of previous appendices. 

2. Marginal changes in fitness 

Suppose the helpful individual in question reduces its own con-

ition to improve the condition of an immature individual on its

erritory. Let s ′ ω denote the eventual survival rate of the helper that



G. Wild, J. Korb / Journal of Theoretical Biology 427 (2017) 53–64 63 

r  

n  

a  

o  

h  

m  

o

 

r  

t  

h

�

i  

t

 

w  

t  

g

�

w

 

c  

c  

d

�

w

 

r  

l

s  

 

s  

g  

a  

c  

c  

l  

b  

c

C

 

t  

s  

c

 

t  

w  

o  

a  

t  

d  

s  

d  

o  

c  

m

 

t  

t  

c  

t  

t  

r  

i  

s  

t  

t

 

g  

t  

t  

t  

n  

i  

t  

1  

t  

t  

d  

1  

e  

i  

b  

r

 

d  

b  

p  

o

 

r  

u

C

 

s  

c  

i

R

A  

 

A  

B  

B  

B  

C  

C  

D  

 

E  

E  

E  

G  

G  

G
G  

H  
esults from its reduced condition, and let �s ω = s ′ ω − s ω < 0 de-

ote the marginal effect helping has on helper’s eventual survival

s a disperser. Similarly, let s ′ 
β

denote the eventual survival rate

f the immature individual whose condition is improved by the

elper, and let �s β = s ′ 
β

− s β > 0 denote the marginal improve-

ent in survival rate that occurs. In keeping with our assumption

f weak selection, both �s ω and �s β are assumed to be small. 

Following Eq. (A.8) , we see that the likelihood with which the

ecipient of the help becomes a dominant individual in the next

ime period is s ′ 
β

ˆ m α, whereas without help the likelihood would

ave been s β ˆ m α . It follows that 

s β ˆ m α (C.1) 

s one of the immediate benefits of help. It should be understood

hat ˆ m α in (C.1) is calculated with z = 1 . 

A second immediate benefit of helping is realized in the case

here the recipient belongs to the subordinate class in the next

ime period. The second benefit is calculated in a manner analo-

ous to the one in (C.1) , and is expressed as 

s β ˆ m β, (C.2) 

here it is understood that ˆ m β is calculated with z = 1 . 

Because it improves survival, helping increases the extent of

ompetition among kin for dominant positions. This is a deferred

ost of helping, and it is incurred when the recipient of the help

isplaces a relative. We express the cost as 

s β ˆ m α ˆ c (C.3) 

here it is, once again, understood that z = 1 . 

Finally, the helper also changes its own fitness. Specifically, it

educes the likelihood with which it fills a dominant vacancy, fol-

owing its own inevitable dispersal, by an amount equal to 

 

′ 
ω ̂  n α − s ω ̂  n α = �s ω ̂  n α. (C.4)

The fitness changes described above must be weighted by mea-

ures of reproductive value so that they be combined into a sin-

le, overall expression for inclusive-fitness change. The appropri-

te measures are again v α and v β presented in Appendix B . To be

lear, changes in lines (C.1) and (C.4) must be weighted by v α , the

hange in line (C.2) must be weighted by v β , and the change in

ine (C.3) must be weighted by v α − v β . Lines (C.1) –(C.3) must also

e weighted by relatedness coefficients. These coefficients are cal-

ulated below. 

3. Relatedness 

We will use the calculations presented in Appendix A in order

o determine the correct coefficient of relatedness to use in our

econd model. It is important to remember that the calculations

arried out below assume that z = 1 and h = 0 . 

Fix attention on a subordinate at the beginning of time period

 . During time period t − 1 we know that, on the territory with

hich the subordinate is associated, there were more than enough

ther subordinates to fill any dominant vacancies that might have

risen (otherwise, we would not have found the focal subordinate

here, by assumption). Let q i denote the probability that i = 0 , 1 , 2

ominant positions were filled at the end of time t − 1 on the focal

ubordinate’s natal territory. We will not concern ourselves with

eveloping explicit expressions for q i s since these ultimately drop

ut of our calculation. We will, however, use q i s to guide our cal-

ulation of relatedness between the focal subordinate and an im-

ature individual on the same territory. 

Consider a uniform-random immature individual on the same

erritory as the focal subordinate, at the beginning of time period

 . With probability q 0 the dominant individuals that occupy the fo-

al territory during time period t also occupied the territory during
ime period t − 1 . In this case, the focal subordinate and the imma-

ure may have the same parent (probability 1/2) so that they are

elated by a factor of 1. Alternatively, the focal subordinate and the

mmature individual may have different parents (probability 1/2)

o that they are related by a factor of ˆ f . With probability q 0 , then,

he relatedness between the focal subordinate and a given imma-

ure individual on the same territory is (1 + 

ˆ f ) / 2 = ̂  r . 

With probability q 1 one of the dominant individuals at the be-

inning of time period t also occupied the territory during time

 − 1 , while the other dominant individual is breeding for the first

ime during time period t . In this case, the parent of the imma-

ure individual under consideration may be the first-time domi-

ant (probability 1/2) so that the subordinate and the immature

ndividual are related by a factor ˆ r . Alternatively, the parent of

he immature may be the more experienced dominant (probability

/2). The more experienced dominant may also be the parent of

he focal subordinate (probability 1/2), so that the relatedness be-

ween subordinate and the immature is 1. If the more experienced

ominant is not the parent of the focal subordinate (probability

/2), then the relevant relatedness is ˆ f since the subordinate’s par-

nt would have been found alongside the more experienced dom-

nant during time t − 1 . With probability q 1 , then, the relatedness

etween the focal subordinate and a given immature individual is

ˆ  / 2 + (1 / 2)(1 + 

ˆ f ) / 2 = ̂  r . 

With probability q 2 , both dominant individuals are first-time

ominants during period t . By assumption, both would have been

orn during the same time period as the focal subordinate (time

eriod t − 1 ). It follows that the relatedness between the focal sub-

rdinate and any immature produced during time period t is ˆ r . 

Putting the pieces of our calculations together, we find that the

elatedness between a focal subordinate and the immature individ-

al that receives its help is q 0 ̂ r + q 1 ̂ r + q 2 ̂ r = ̂  r . 

4. The inclusive-fitness effect of helping 

Weighting marginal fitness changes by the appropriate mea-

ures of reproductive value, and the appropriate relatedness coeffi-

ients we find that the inclusive-fitness effect of subordinate help

s given by Eq. (2) in the main text. 
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