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Highlights

• Larger group sizes can both hinder and promote the evolution of cooperation.

• Increasing the group size decreases the proportion of cooperators at equilibrium.

• Increasing the group size increases the basin of attraction of more cooperative
outcomes.
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Abstract

How the size of social groups affects the evolution of cooperative behaviors is a
classic question in evolutionary biology. Here we investigate group size effects in the
evolutionary dynamics of games in which individuals choose whether to cooperate
or defect and payoffs do not depend directly on the size of the group. We find that
increasing the group size decreases the proportion of cooperators at both stable
and unstable rest points of the replicator dynamics. This implies that larger group
sizes can have negative effects (by reducing the amount of cooperation at stable
polymorphisms) and positive effects (by enlarging the basin of attraction of more
cooperative outcomes) on the evolution of cooperation. These two effects can be
simultaneously present in games whose evolutionary dynamics feature both stable
and unstable rest points, such as public goods games with participation thresholds.
Our theory recovers and generalizes previous results and is applicable to a broad
variety of social interactions that have been studied in the literature.
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1 Introduction1

Cooperative behaviors increase the fitness of other individuals, possibly at the expense2

of a personal fitness cost (Sachs et al., 2004). Biological examples include the produc-3

tion of extracellular public goods in microbes (e.g., iron-scavenging molecules, West4

and Buckling 2003, bacteriocins that eliminate competition, Bucci et al. 2011, and5

factors that contribute to biofilm formation, Rainey and Rainey 2003), vigilance and6

sentinel behavior in meerkats (Clutton-Brock et al., 1999), group hunting in social7

carnivores (Packer and Ruttan, 1988), and the costly punishment of free-riders in hu-8

mans (Raihani and Bshary, 2011). Identifying the different pathways that allow coop-9

erative behavior to be favored by natural selection (Lehmann and Keller, 2006; Nowak,10

2006; West et al., 2007; Van Cleve and Akçay, 2014) is important for understanding11

the origin of social groups (Krause and Ruxton, 2002) and the major transitions in12

evolution (Maynard Smith and Szathmáry, 1995; Bourke, 2011).13

Group size is a crucial variable of social life. Therefore, how an increase or decrease14

in group size affects individual incentives to cooperate is a recurrent question across15

the behavioral sciences. In economics and political science, the “group-size paradox”16

refers to cases where larger groups are less successful than smaller groups in pursuing17

their common goals because individuals have a greater incentive to shirk when group18

size is large (Olson, 1965; Esteban and Ray, 2001). In behavioral ecology, one of the19

most replicated findings is the negative relationship between group size and level of20

vigilance in social foragers due to increased predator detection and dilution of preda-21

tor risk (Elgar, 1989; Roberts, 1996; Beauchamp, 2008). Increasing group size has also22

been shown to reduce voluntary contributions to public goods (Isaac and Walker, 1988)23

and reciprocity-based cooperation in multi-person interactions (Boyd and Richerson,24

1988). More generally, however, whether or not larger groups are less conducive to25

cooperation might depend on specific assumptions about group interactions. In par-26

ticular, instances of positive group size effects have also been reported in the empirical27

literature (Isaac et al., 1994; Yip et al., 2008; Powers and Lehmann, 2017) and are of28

significant theoretical interest (Dugatkin, 1990; Shen et al., 2014; Powers and Lehmann,29

2017; Cheikbossian and Fayat, 2018).30

To study how the size of social groups affects the evolution of cooperation we fol-31

low the standard approach of modelling social interactions as symmetric games with32

two strategies (“cooperate” and “defect”) between several players, i.e., as symmetric33

multiplayer matrix games (Broom et al., 1997; Gokhale and Traulsen, 2014). Payoffs34

depend on the own strategy and on the number of co-players choosing to cooperate,35

possibly in a nonlinear way. Strategies are genetically or culturally transmitted, and36

populations are large enough that the replicator dynamic (Weibull, 1995; Hofbauer and37

Sigmund, 1998) provides a reasonable model of evolution. Within this framework, the38

stable rest points of the replicator dynamic correspond to evolutionary endpoints, while39

the unstable rest points signpost the basins of attraction of such evolutionary attrac-40

tors. Many social dilemmas for which cooperation can be maintained without repeated41

interactions or genetic assortment have been theoretically studied using this or related42

formalisms during the last decades (Taylor and Ward, 1982; Palfrey and Rosenthal,43
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1984; Diekmann, 1985; Boyd and Richerson, 1988; Motro and Eshel, 1988; Dugatkin,44

1990; Dixit and Olson, 2000; Goeree and Holt, 2005; Bach et al., 2006; Hauert et al.,45

2006; Archetti, 2009; Pacheco et al., 2009; Souza et al., 2009; Archetti and Scheuring,46

2011; Chen et al., 2013; Van Cleve and Lehmann, 2013; Sasaki and Uchida, 2014; Chen47

et al., 2015; Peña et al., 2015; Chen et al., 2017; De Jaegher, 2017; dos Santos and48

Peña, 2017; Kaznatcheev et al., 2017).49

To obtain our results, we make use of the fact that the gain function determin-50

ing the direction of selection in the replicator dynamic is a polynomial in Bernstein51

form (Farouki, 2012). The coefficients of this polynomial are given by the gains from52

switching (Peña et al., 2014), i.e., the differences in payoff a focal player obtains by53

switching from defection to cooperation as a function of the number of other coop-54

erators in the group. Our analysis makes essential use of the structure of the gain55

sequence of the game, which collects such gains from switching. We illustrate our re-56

sults with examples and discuss how previous results in the literature (either proven57

using alternative arguments or hinted at by numerical analysis) can be recovered using58

our approach.59

Under the conditions that payoffs do not depend directly on the size of the group60

and that the number of interior rest points of the replicator dynamics do not change61

as group size increases, we establish that the proportion of cooperators at both stable62

and unstable interior rest points decreases with group size. This finding, summarized63

in Proposition 1 in Section 3.1, is our main result. Proposition 1 implies that two kinds64

of group size effects are possible in the games we analyze. First, a negative group size65

effect, as the levels of cooperation at stable polymorphisms decrease with increasing66

group size. Second, a positive group size effect, as the size of the basin of attraction of67

the stable rest point with the largest level of cooperation increases as well. Proposition 268

identifies general conditions under which the number of rest points is independent of69

group size.70

Sections 3.2 and 3.3 explore the consequences of these general results for two im-71

portant particular cases subsuming many of the multiplayer matrix games appearing72

in the literature studying the evolution of cooperation (e.g., Dugatkin 1990; Weesie73

and Franzen 1998; Bach et al. 2006; Pacheco et al. 2009; Souza et al. 2009; Archetti74

and Scheuring 2011). Section 3.2 considers games with gain sequences having a single75

sign change. For such games the replicator dynamics have a unique interior rest point76

that is decreasing in group size (Proposition 3). If the sign change is from positive to77

negative, the interior rest point is stable and the group size effect is negative, as the78

proportion of cooperators at the interior rest point decreases. Conversely, if the sign79

change is from negative to positive, the interior rest point is unstable and the group size80

effect is positive, as the basin of attraction of full defection decreases while the basin81

of attraction of full cooperation increases. In Section 3.3, we focus on games charac-82

terized by “bistable coexistence” (Gokhale and Traulsen, 2014; Peña et al., 2015), i.e.,83

a phase portrait where the unstable interior rest point divides the basins of attraction84

of the stable interior rest point and full defection. Such a phase portrait is typical of85

many nonlinear social dilemmas, including those featuring participation thresholds or86

public goods games with sigmoid production functions (Dugatkin, 1990; Bach et al.,87
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2006; Pacheco et al., 2009; Souza et al., 2009; Archetti and Scheuring, 2011; Peña et al.,88

2014; Archetti, 2018). For these games there is both a negative group size effect (as89

the proportion of cooperators at the stable interior rest point decreases) and a positive90

group size effect (as the basin of attraction of full defection decreases). This result91

is stated in Proposition 4. Alternatively, an increase in group size can lead to a loss92

of both interior rest points. This makes the group size effect negative as an increase93

in group size results in full defection being the only attracting point of the replicator94

dynamics.95

Several models in the literature consider a more complicated dependence of payoffs96

on group size than the one we consider in our main result. For instance, if the total97

benefit from cooperating has to be shared among group members (as in standard for-98

mulations of the linear public goods game, see, e.g., Boyd and Richerson 1988), then99

the gains from switching themselves depend on group size. This introduces an addi-100

tional effect, which might either reinforce or countervail the fundamental group size101

effect investigated in Section 3. We investigate this additional effect in Section 4 and102

state counterparts of Propositions 3 and 4 as Propositions 5 and 6. Section 5 discusses103

and concludes.104

2 Model105

2.1 Social interactions106

Social interactions take place in groups of equal size n. Throughout the paper, n is107

treated as a parameter that satisfies n ≤ n ≤ n for some given numbers n < n and we108

use N to denote the set of all such group sizes. Individuals within each group participate109

in a symmetric n-player game, playing either strategy A (“cooperate”) or strategy B110

(“defect”). The payoff for an individual is determined by its own strategy and the111

number of other individuals in the group who cooperate but is otherwise independent112

of group size. Let ak denote the payoff to an A-player (“cooperator”) and bk denote the113

payoff to a B-player (“defector”) when k = 0, 1, . . . , n− 1 co-players play A (and hence114

n − 1 − k co-players play B). Irrespective of their own strategy, players prefer other115

group members to cooperate, i.e., ak+1 ≥ ak and bk+1 ≥ bk hold for all k = 0, 1, . . . , n−2116

(Uyenoyama and Feldman, 1980; Kerr et al., 2004). We begin our analysis by assuming117

that the payoffs ak, and bk do not depend explicitly on group size n. In Section 4 we118

relax this assumption.119

The gain in payoff an individual makes from cooperating rather than defecting when120

k co-players cooperate is dk = ak− bk. We refer to this as the k-th gain from switching121

(to cooperation). In all of the games we consider in the following, dk will be negative122

for some k, indicating the presence of a social dilemma in which individuals increase123

their own payoff by defecting but thereby lower the payoffs of all other group members124

(Matessi and Karlin, 1984; Kerr et al., 2004).125

While our results apply more generally, we will consider a variety of public goods126

games to motivate and illustrate our results. In these games, cooperators make a127

costly contribution to the provision of a public good, whereas defectors free ride on128
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the contribution of cooperators. Unless indicated otherwise, we will suppose that the129

cost c > 0 incurred by each contributor is independent of the the number of other130

contributors and that all group members obtain the same benefit uj , which is increasing131

in the number of cooperators j. As the number of contributors includes the focal132

player, we have j = k if the focal player defects, but j = k + 1 if the focal player133

cooperates. Therefore, in such a public goods game payoffs are given by ak = uk+1 − c134

and bk = uk, and the k-th gain from switching is dk = ∆uk − c, where ∆uk = uk+1 −135

uk ≥ 0. Perhaps the simplest example of such a public goods game is the volunteer’s136

dilemma (Diekmann, 1985) in which at least one cooperator is required for a benefit137

v > c to be enjoyed by all group members. This corresponds to the case θ = 1 of a138

threshold public goods game, in which a minimum number θ of cooperators is required139

for a benefit v > c to be enjoyed by all group members, so that uj = v if j ≥ θ and140

uj = 0 otherwise (Taylor and Ward, 1982; Palfrey and Rosenthal, 1984; Bach et al.,141

2006; Archetti, 2009).142

2.2 Evolutionary dynamics143

Evolution occurs in a large, well-mixed population with groups of identical size n ran-144

domly formed by binomial sampling. Hence, if there is a proportion x of A-players145

and a proportion 1 − x of B-players in the population, then the expected payoffs to146

A-players and B-players are respectively given by147

πA
n (x) =

n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−kak,

and148

πB
n (x) =

n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−kbk.

We assume that the change in the proportion of A-players over evolutionary time149

is given by the continuous-time replicator dynamic (Weibull, 1995; Hofbauer and Sig-150

mund, 1998)151

ẋ = x(1− x)gn(x), (1)

where152

gn(x) = πA
n (x)− πB

n (x) =

n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−kdk, (2)

i.e., the difference in expected payoffs between the two strategies, is the “gain function”153

(Bach et al., 2006), which can also be interpreted as the selection gradient on a contin-154

uously varying mixed strategy x (Peña et al., 2015). Since the factor x(1−x) is always155

nonnegative, the sign of the gain function gn(x) indicates the sign of ẋ in Eq. (1) and156

hence the direction of selection, that is, whether or not the proportion of A-players will157

increase for a given population composition x and group size n.158

The replicator dynamic has two trivial (or “pure”) rest points at x = 0 (where159

the whole population consists of defectors) and at x = 1 (where the whole population160
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consists of cooperators). Interior (or “mixed”) rest points are given by the values161

x∗ ∈ (0, 1) satisfying162

gn(x∗) = 0.

To simplify the exposition, we impose the regularity condition that dgn(x∗)/dx 6= 0163

holds at all interior rest points. An interior rest point is then stable (i.e., evolution-164

arily attracting) if and only if dgn(x∗)/dx < 0 holds, and unstable (i.e., evolutionarily165

repelling) otherwise. We further suppose that for n ∈ N the number of sign changes166

s of the gain sequences (d0, d1, . . . , dn−1) is independent of group size n (i.e., the gain167

sequence (d0, d1, . . . , dn−1) has no sign changes between n − 1 and n − 1), indicating168

that the fundamental structure of the social dilemma under consideration is the same169

for all group sizes in the range under consideration. Moreover, we suppose that s ≥ 1170

holds as otherwise either full defection (x = 0) or full cooperation (x = 1) is the unique171

stable rest point of the replicator dynamics for all group sizes n ∈ N .172

3 Results173

3.1 General results174

Our first result shows that if the number of interior rest points is independent of group175

size, then the proportion of cooperators at all interior rest points decreases when group176

size increases.177

Proposition 1. Suppose that the replicator dynamics (1)–(2) have the same number178

of interior rest points ` ≥ 1 for all group sizes n ∈ N , and denote these rest points179

by 0 < x∗n,1 < . . . < x∗n,` < 1 for group size n. Then x∗n+1,r < x∗n,r holds for all180

n = n, . . . , n− 1 and r = 1, · · · , `.181

The full proof of Proposition 1 is in Appendix A.1. The key step towards obtain-182

ing this result is the following identity, which links the gain functions (and thus the183

replicator dynamics) for adjacent group sizes:184

gn(x) = gn+1(x)− x

n

dgn+1

dx
(x). (3)

Eq. (3) is a simple consequence of properties of the gain functions gn(x), previously185

observed by Motro (1991), which stem from the fact that the gain functions are poly-186

nomials in Bernstein form (Peña et al., 2014) with coefficients (given by the gains from187

switching dk) that do not depend on group size.188

To see how Eq. (3) yields Proposition 1, observe that this equation implies that at189

the interior rest points of the dynamic with group size n+ 1 (where the gain function190

gn+1(x) vanishes), the gain function gn(x) will have the opposite sign of the derivative191

dgn+1(x)/dx. This ensures that between any two interior rest points of the replicator192

dynamic for group size n + 1 the replicator dynamic for group size n has exactly one193

rest point. The result then follows upon establishing that the remaining interior rest194

point for the replicator dynamic with group size n must have a higher proportion of195

cooperators than the largest interior rest point x∗n+1,` for group size n+ 1.196
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Figure 1: Group size effects in the threshold public good game with an additional
reward δ > 0 shared among cooperators considered by Chen et al. (2013). Payoffs are
given by ak = uk+1 + δ/(k + 1) − c and bk = uk, where uj = v if j ≥ θ and uj = 0
otherwise. In all panels, c = 1, v = 5, θ = 7, δ = 1.5. Left panel: Gain functions
(blue lines) with corresponding rest points (red symbols), and direction of selection
(black arrows) for two group sizes: n = 10, and n = 11. Full circles represent stable
rest points and empty circles represent unstable rest points. Right panel: Proportion
of cooperators at the interior rest points as function of group size for 10 ≤ n ≤ 40.
The direction of selection (black arrows) is also shown. As group size increases, the
proportion of cooperators at interior rest points decreases.

The decrease in the proportion of cooperators at all interior rest points as group197

size increases asserted in Proposition 1 leads to contrasting effects of group size on the198

evolution of cooperation. First, there is an obvious negative group size effect, as the199

proportion of cooperators at stable polymorphisms decreases with group size. Second,200

the proportion of cooperators at unstable rest points decreases as well. As the rest201

points of the replicator dynamics alternate between being stable and unstable, this202

implies an increase in the size of the basin of attraction of the stable rest point with203

the largest proportion of cooperators. Hence, there is also a positive group size effect.204

These two effects are illustrated in Fig. 1 for the relatively complex case of a game with205

three interior rest points: x∗n,1 (stable), x∗n,2 (unstable), and x∗n,3 (stable). In line with206

Proposition 1, larger group sizes lead to smaller proportions of cooperators at the two207

stable interior rest points x∗n,1 and x∗n,3 but also, via a decrease in the value of x∗n,2,208

to a larger basin of attraction for x∗n,3 and a smaller basin of attraction for x∗n,1. As209

x∗n,3 sustains a higher level of cooperation than x∗n,1, this latter effect can be said to210

promote the evolution of cooperation.211
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Figure 2: An increase in group size can lead to a reduction in the number of rest points.
Here we illustrate this effect for a threshold public goods game with c = 1, v = 2.8,
θ = 4, which has two interior rest points for group size n = 5 but no interior rest points
for group size n = 6.

Proposition 1 is predicated on the assumption that the number of interior rest points212

for the different group sizes under consideration is the same. This does not have to be213

the case. In particular, it is possible that an increase in group size leads to a decrease214

in the number of rest points. Fig. 2 illustrates this possibility for the case of a threshold215

public goods game. On the other hand, the arguments establishing Proposition 1 show216

that an increase in group size can never lead to an increase in the number of rest points.217

Further, it is known that the number of interior rest points of the replicator dynamics218

cannot exceed the number of sign changes s in the gain sequences (Peña et al., 2014,219

Property 2). Therefore, if the number of interior rest points of the replicator dynamic220

for the maximal group size n is equal to s, then the number of interior rest points of221

the replicator dynamics is independent of group size. The proof of the following result222

in Appendix A.2 demonstrates that, in addition, if an increase in group size causes223

a reduction in the number of interior rest points, then the number of rest points is224

reduced by an even amount.225

Proposition 2. Suppose that the number of interior rest points of the replicator dy-226

namic (1)–(2) for group size n is equal to the number of sign changes s of the gain227

sequences. Then for all group sizes n ∈ N the number of interior rest points of the228

replicator dynamics is equal to s. More generally, if n ≥ n > m ≥ n, then the number229

of interior rest points of the replicator dynamic with group size n is either equal to the230
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number of interior rest points of the replicator dynamic with group size m or lower by231

an even amount.232

3.2 Games with a unique interior rest point233

Suppose that for all group sizes n ∈ N the replicator dynamics have a unique interior234

rest point that, for simplicity, we denote by x∗n. It is then immediate from Proposition235

1 that the proportion of cooperators at this rest point is decreasing in group size.236

Combining this observation with the sufficient condition for the existence of a unique237

interior rest point from Result 3 in Peña et al. (2014) immediately yields:238

Proposition 3. Suppose that for all n ∈ N the gain sequences have a single sign change239

(s = 1). Then the replicator dynamics (1)–(2) have a unique interior rest point for all240

n ∈ N , and the proportion of cooperators x∗n at this interior rest point is decreasing in241

group size n.242

Proposition 3 encompasses two cases. First, the gains from switching can be positive243

for a small number of cooperators (up to some threshold k̂ < n) and negative for a244

large number of cooperators (beyond the threshold k̂). In this case there exists a245

unique interior rest point x∗n that is also the unique stable rest point of the replicator246

dynamics (Peña et al., 2014, Result 3.2). For this case, Proposition 3 indicates that the247

group size effect is negative in the sense that an increase in group size causes a decrease248

in the proportion of cooperators at equilibrium. This finding generalizes a result due249

to Motro (1991), who showed that there is a unique stable interior rest point and a250

negative group size effect for public goods games with concave benefits and intermediate251

costs (for which ∆uk, and therefore dk, is decreasing in k, and ∆u0 > c > ∆un holds).252

It also generalizes the well-known result that the proportion of cooperators at the253

unique stable rest point of the volunteer’s dilemma is decreasing in group size (cf.,254

e.g., Archetti 2009) and corresponding results for the volunteer’s dilemma with cost255

sharing (Dugatkin, 1990; Weesie and Franzen, 1998). This last example, which differs256

from the other two in that the gains from switching are not monotonically decreasing257

in k, is illustrated in Fig. 3.258

The second case encompassed by Proposition 3 is the one in which the gains from259

switching are negative for a small number of cooperators (up to some threshold k̂ < n)260

and positive for a large number of cooperators (beyond the threshold k̂). In this case261

the two trivial rest points x = 0 and x = 1 are stable and the unique interior rest262

point x∗n, which separates the basins of attraction of the two stable rest points, is263

unstable (Peña et al., 2014, Result 3.2). For this case, Proposition 3 indicates that264

the group size effect is positive in the sense that with an increase in group size the265

basin of attraction of full defection (x = 0) shrinks while the basin of attraction of266

full cooperation (x = 1) increases. For public goods games with convex benefits and267

intermediate cost (for which ∆uk, and therefore dk, is increasing with ∆u0 < c < ∆un)268

this effect has been previously noted in Motro (1991).269
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Figure 3: Group size effects in the volunteer’s dilemma with cost sharing considered
by Weesie and Franzen (1998). Payoffs are given by ak = v − c/(k + 1), b0 = 0, and
bk = v for k ≥ 1. In all panels, c = 1. Left panel: Gain functions (blue lines) with
corresponding rest points (red symbols), and direction of selection (black arrows) for
v = 2, and two group sizes: n = 3, and n = 4. Full circles represent stable rest
points and empty circles represent unstable rest points. Right panel: Proportion of
cooperators at the interior rest point as function of group size for different parameter
values. The direction of selection (black arrows) is also shown. As group size increases,
the proportion of cooperators at the unique stable interior rest point decreases, i.e., the
group size effect is negative.
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3.3 Games with two interior rest points270

Many social dilemmas are such that defection is individually advantageous if the number271

of cooperating co-players is either sufficiently small or sufficiently high, while cooper-272

ation is individually advantageous in between, i.e., the gains from switching satisfy273

d0 < 0 and the gain sequences (d0, d1, . . . , dn−1) have two sign changes for all group274

sizes n ∈ N . This scenario arises in the threshold public goods game when the mini-275

mum number θ of cooperators required for the benefit v > c to be enjoyed by all group276

members satisfies 2 ≤ θ < n. More generally, public goods games in which the benefits277

from the provision of the public good are sigmoid in the number of contributors and278

the costs of provision are intermediate (Archetti and Scheuring, 2011; Archetti, 2018)279

have this structure. Peña et al. (2014) provide further examples and discussion.280

Assuming that the gains from switching have the structure described above ensures281

that the rest point at x = 0 is stable and the rest point at x = 1 is unstable for282

all n ∈ N (Peña et al., 2014, Result 1). Further, there are at most two interior rest283

points satisfying 0 < x∗n,1 < x∗n,2 < 1, with the smaller of these rest points (x∗n,1) being284

unstable and the larger interior rest point (x∗n,2) being stable. The existence of these285

rest points is guaranteed if ḡn = max0≤x≤1 gn(x) > 0 holds (Peña et al., 2014, Result286

4.1). Combining these observations with the arguments yielding the results in Section287

3.1, Appendix A.3 proves:288

Proposition 4. Suppose that for all n ∈ N the gain sequences have two sign changes289

(s = 2), their initial signs are negative, and that ḡn̄ > 0 holds. Then, the replicator290

dynamics (1)–(2) have two interior rest points for all group sizes n ∈ N . Further,291

at both the unstable rest point x∗n,1 and the stable rest point x∗n,2 the proportion of292

cooperators is decreasing in group size and we have293

x∗n+1,1 < x∗n,1 < x∗n+1,2 < x∗n,2 (4)

for all n satisfying n ≤ n < n.294

Proposition 4 indicates that there are two different effects of group size on cooper-295

ation in games with two interior rest points. First, there is a negative group size effect,296

as the proportion of cooperators at the stable interior rest point decreases as group297

size increases, i.e., x∗n+1,2 < x∗n,2 holds. Second, there is a positive group size effect,298

as the proportion of cooperators at the unstable interior rest point also decreases as299

group size increases, i.e., x∗n+1,1 < x∗n,1 holds, implying that the basin of attraction of300

full defection (x = 0) shrinks while the basin of attraction of the stable rightmost rest301

point increases. These effects are in line with what happens in games with a unique302

interior rest point that we have discussed in Section 3.2. The additional twist is that303

rather than having the group size effect being negative or positive depending on the304

structure of the game, both the negative and the positive group size effects co-occur in305

the same game.306

Fig. 4 illustrates Proposition 4 for the case of a threshold public goods game. As307

noted above, the result is applicable more generally. For instance, the observations308

(obtained via numerical calculations) that both interior rest points decrease with group309
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Figure 4: Group size effects in a threshold public good game. Payoffs are given by
ak = uk+1 − c and bk = uk, where uj = v if j ≥ θ and uj = 0 otherwise. In all panels,
c = 1, v = 5, and θ = 3. Left panel: Gain functions (blue lines) with corresponding
rest points (red symbols), and direction of selection (black arrows) for two group sizes:
n = 5, and n = 6. Full circles represent stable rest points and empty circles represent
unstable rest points. Right panel: Proportion of cooperators at the interior rest points
as function of group size for 5 ≤ n ≤ 30. The direction of selection (black arrows)
is also shown. As group size increases, the proportion of cooperators at both interior
rest points decreases. This leads to both a negative group size effect (the proportion of
cooperators at the interior stable rest point decreases) and a positive group size effect
(the basin of attraction of the interior stable rest point increases).
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size for the n-person tit-for-tat model of Dugatkin (1990) (his “Model II”) and the n-310

person snowdrift game discussed by Souza et al. (2009), are implied by Proposition311

4.312

The role of the condition ḡn̄ > 0 in the statement of Proposition 4 is to ensure that313

the replicator dynamic has two interior rest points for group size n̄ and, therefore, has314

these two rest points for all group sizes (Proposition 2). If the reverse inequality ḡn̄ < 0315

holds, then for large groups there are no interior rest points, whereas (provided that316

the inequality ḡn > 0 holds) for small group sizes there exists two interior rest points.317

In such a situation there is (as illustrated in Fig. 2) a critical group size such that for318

smaller group sizes the rest point x = 0 is the only stable rest point, whereas for larger319

group sizes there is a stable polymorphism at which some proportion of the population320

cooperates. Hence, this describes a case in which the group size effect is unambiguously321

negative.322

4 Extension: games with gain sequences depending on323

group size324

So far our analysis has assumed that the payoffs ak and bk, and therefore the gains325

from switching dk, depend only on the number of other cooperators a focal player326

interacts with and not directly on the size of the group. This assumption is not always327

warranted. For instance, Hauert et al. (2006) and Pacheco et al. (2009) consider variants328

of a public goods game in which the benefits uk from cooperation are shared among329

all group members rather than accruing to each individual. The payoffs to cooperators330

and defectors are then ank = uk+1/n − c and bnk = uk/n. The resulting gains from331

switching332

dnk =
∆uk
n
− c, (5)

depend not only on k but also on group size n.333

If the gains from switching are, as in Eq. (5), decreasing in group size, then the334

proportion of cooperators at an unstable interior rest point may increase with group335

size. In particular, as illustrated for the case of a threshold public goods game in Fig. 6336

below, Propositions 3 and 4 are no longer applicable to describe the group size effect337

on unstable interior rest points. Further, there is no hope to obtain a counterpart to338

Proposition 1. In the following we therefore focus on stable interior rest points and339

show that for these the conclusions from Propositions 3 and 4 remain intact.340

Consider, first, the case in which the gain sequences (dn0 , d
n
1 , . . . , d

n
n−1) have a single341

sign change from positive to negative for all group sizes n ∈ N . This ensures that the342

replicator dynamics, given by Eq. (1) with343

gn(x) =

n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−kdnk , (6)

have a unique interior rest point x∗n for all group sizes n ∈ N and that this rest point is344
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Figure 5: Group size effects in the model with discounted benefits from Hauert et al.
(2006). Payoffs are given by ak = uk+1/n−c and bk = uk/n, where uk = v(1−wk)/(1−
w) with 0 < w < 1. For intermediate values of c (wn−1/n < c/v < 1/n) the gains from
switching dnk = vwk/n− c satisfy the assumptions in the statement of Proposition 5. In
all panels, c = 1. Left panel: Gain functions (blue lines) with corresponding rest points
(red symbols), and direction of selection (black arrows) for v = 50, w = 0.7, and two
group sizes: n = 10, and n = 11. Full circles represent stable rest points and empty
circles represent unstable rest points. Right panel: Proportion of cooperators at the
interior rest point as function of group size for different parameter combinations. The
direction of selection (black arrows) is also shown.
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stable. Appendix A.4 shows the following result, and Fig. 5 illustrates it for the model345

with discounted benefits proposed by Hauert et al. (2006).346

Proposition 5. Suppose that the gain sequences (dn0 , d
n
1 , . . . , d

n
n−1) have a single sign347

change from positive to negative for all n ∈ N . Then the replicator dynamics defined by348

Eq. (1) and Eq. (6) have a unique stable interior rest point x∗n for all n ∈ N . Further,349

if dn+1
k ≤ dnk holds for all k = 0, 1, . . . , n − 1 and all n satisfying n ≤ n < n̄, then the350

proportion of cooperators x∗n at this interior rest point is decreasing in group size n.351

The intuition for Proposition 5 is that a decrease in the gains from switching de-352

creases the gain function and that such a decrease in the gain function reduces the353

proportion of cooperators at the stable interior rest point. Therefore, the negative de-354

pendence of the gains from switching on group size considered here reinforces the group355

size effect observed in Proposition 3 by further reducing the proportion of cooperators356

at the stable interior rest point. The same intuition applies to the following counterpart357

to Proposition 4 that we prove in Appendix A.5:358

Proposition 6. Suppose that the gain sequences (dn0 , d
n
1 , . . . , d

n
n−1) have two sign changes,359

their initial signs are negative, and that ḡn > 0 holds for all n ∈ N . Then the replicator360

dynamics defined by Eq. (1) and Eq. (6) have two interior rest points x∗n,1 < x∗n,2 for361

all group sizes n ∈ N with the first of these unstable and the second stable. Further,362

if dn+1
k ≤ dnk holds for all k = 0, 1, . . . , n − 1 and all n satisfying n ≤ n < n̄, then the363

proportion of cooperators at the stable rest point x∗n,2 is decreasing in group size n.364

Fig. 6 illustrates the conclusions from Proposition 6 for a game having the same365

structure as a threshold public goods game, except that the benefits uk are shared366

among all group members as in Eq. 5. Fig. 6 also illustrates that sharing the benefits367

among more group members decreases the gain function and thereby increases the368

proportion of cooperators at the unstable interior rest point compared to the benchmark369

case considered in Proposition 4. Depending on parameter values, this effect may or370

may not be large enough to overturn the conclusion from Proposition 4.371

5 Discussion372

We have investigated how group size affects the evolutionary dynamics of multiplayer373

cooperation. More specifically, we have shown that an increase in group size can have374

a negative effect (a decrease in the proportion of cooperators at equilibrium) and a375

positive effect (an increase in the basin of attraction of the stable rest point sustaining376

the largest proportion of cooperators) on social evolution. Depending on the payoff377

structure of the social interactions one effect can be present and the other absent (as in378

games featuring a single interior rest point), or both effects can be present at the same379

time (as in games featuring two interior rest points). For threshold public goods games380

and other games characterized by bistable coexistence both the invasion barrier needed381

for cooperators to invade a population of defectors and the proportion of cooperators382

expected at the stable interior rest point decrease as group size increases. We have383
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Figure 6: Illustration of Proposition 6 for the case of a threshold game with shared
benefits. Payoffs are given by ank = uk+1/n − c and bnk = uk/n, where uj = v if j ≥ 3
and uj = 0 otherwise. Both panels show the gain functions gn(x) for group sizes n = 4
and n = 5 (solid lines) and the gain function ĝ5(x) for the larger group size (dashed
lines) corresponding to the benchmark of a threshold public goods game in which
payoffs for group size 5 are the same as for group size 4. In both panels the proportion
of cooperators at the stable interior rest point decreases as group size increases. Left
panel: the proportion of cooperators at the unstable interior rest point decreases as
group size changes from n = 4 to n = 5 (v = 20, c = 1). Right panel: the proportion
of cooperators at the unstable interior rest point increases as group size changes from
n = 4 to n = 5 (v = 14, c = 1).
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also shown that if payoffs depend explicitly on group size and such dependence is384

negative, the negative group size effect is reinforced, while the positive group size effect385

is attenuated or, depending on the particular payoff structure of the game, reversed.386

The negative group size effect we identify is in line with the common expecta-387

tion that the selection pressure on certain types of cooperation decreases as group size388

rises. Such a negative group size effect requires that the gain sequence is sometimes389

decreasing, meaning that individual incentives to cooperate are (at least for some social390

contexts) decreasing in the number of cooperators in the group. When this is the case,391

the decisions to cooperate are strategic substitutes (Bulow et al., 1985); equivalently,392

cooperation is discounted or subject to diminishing returns. Anti-predator vigilance393

often follows this payoff structure, as the presence of other vigilant individuals usually394

disincentivizes individual investment in vigilance, i.e., there is a “many eyes” effect (Pul-395

liam, 1973; McNamara and Houston, 1992); in extreme cases one vigilant individual396

is enough for the group to be protected (Bednekoff, 1997; Clutton-Brock et al., 1999).397

In agreement with our results, empirical and theoretical studies indicate that vigilant398

behavior often decreases with group size (Elgar, 1989; McNamara and Houston, 1992;399

Beauchamp, 2008).400

Contrastingly, the positive group size effect we identify has been less emphasized in401

evolutionary game theory (but see Sumpter and Brännström 2008 and Cornforth et al.402

2012, who demonstrate this effect in models with continuous strategies). In an early403

paper, Dugatkin (1990) noted that, in his model of n-person reciprocity, the threshold404

frequency of cooperators needed to invade a population of defectors decreased as group405

size increased. Our analysis reveals that such a positive group size effect is not specific406

to the payoff structure assumed in Dugatkin (1990), but that it holds more generally407

for any matrix game featuring unstable interior rest points. As a necessary condition408

for the existence of unstable interior rest points is that the gain sequence is sometimes409

increasing, the group size effect can be positive only when the individual incentives to410

cooperate are (for at least some social contexts) increasing in the number of cooperators411

in the group. In this case, the decisions to cooperate are strategic complements (Bulow412

et al., 1985); equivalently, cooperation is synergistic or subject to increasing returns. A413

common form of synergistic cooperation occurs when a critical number of cooperators414

is required for cooperation to be individually worthwhile. Examples of such threshold415

effects have been documented in empirical studies, and hypothesized to be a causal416

factor behind inverse density dependence or Allee effects (Courchamp et al., 1999). For417

instance, a large critical number of bark beetles is needed to overcome the defenses of418

the tree they attack (Franceschi et al., 2005), and cooperative hunting often requires a419

critical number of hunters to be energetically efficient (Creel and Creel, 1995; Alvard and420

Nolin, 2002; MacNulty et al., 2014). Also, in group-hunting sailfish, a larger number of421

hunters improves the hunting success of the group by allowing individuals to alternate422

their attacks (Herbert-Read et al., 2016), and by keeping group-level unpredictability423

high in the face of individual lateralization (Kurvers et al., 2017). In all of these424

cases of synergistic cooperation, our theory suggests that larger groups can be more425

favorable to cooperation and less favorable to free riding. Indeed, this general prediction426

is in agreement with both general models of synergistic cooperation with continuous427
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cooperative investments (Cornforth et al., 2012), and a recent mechanistic model of428

free riding in group-hunting sailfish (Herbert-Read et al., 2016).429

We used a variety of public goods games to illustrate our results. In such games,430

both cooperators and defectors gain equal access to the collective good produced by431

cooperators, i.e., the collective good is public. Notwithstanding the importance of these432

models, there are other social dilemmas for which public goods games are not a natural433

description of the relevant strategic trade-offs. For instance, social interactions can take434

the form of a collective action problem where the produced good can be accessed only435

by cooperators or only by defectors, i.e., the collective good is in some sense excludable.436

Group size effects in such “club” and “charity” goods games (Peña et al., 2015) are437

readily amenable to analysis by applying our results.438

We conclude by noting that our analysis assumed populations were well-mixed and439

hence without genetic structure. This assumption is not always justified, as many440

social interactions take place in spatially structured populations characterized by non-441

negligible amounts of genetic structure (Rousset, 2004; Lehmann and Rousset, 2010;442

Van Cleve, 2015). A simple way of modeling social evolution in these populations443

is to focus on a continuously varying mixed strategy and to identify the convergence444

stable strategies of the resulting adaptive dynamics (e.g., Rousset 2004; Van Cleve and445

Lehmann 2013; Peña et al. 2015). In this case, the counterpart to the gain function we446

have analyzed in this paper is also a polynomial in Bernstein form, now with coefficients447

given by “inclusive gains from switching” depending on the payoffs of the game, the448

group size, and demographic parameters of the particular spatial model determining449

the degree of genetic relatedness and the amount of local competition (Peña et al.,450

2015). In this light, the analysis conducted here is also relevant to investigate group451

size effects in genetically structured populations, provided that the likely dependence452

of the inclusive gains from switching on group size is taken into account. Investigating453

the effects of group size on the evolution of cooperative behaviors under nontrivial454

population structure with the tools developed here would complement recent efforts in455

this area (Shen et al., 2014; Powers and Lehmann, 2017; Van Cleve, 2017).456
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Appendix459

A.1 Proof of Proposition 1460

We first obtain Eq. (3). To do so, we make use of two identities established in the461

appendix of Motro (1991). Using our notation for the gain function and the gains from462

switching, these identities are463

dgn
dx

(x) = (n− 1)
n−2∑

k=0

(
n− 2

k

)
xk(1− x)n−2−k (dk+1 − dk) , (7)
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and464

gn+1(x)− gn(x) = x
n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−k (dk+1 − dk) . (8)

Applying Eq. (7) (which is nothing but the derivative property of polynomials in465

Bernstein form; see, e.g., Peña et al. 2014) to group size n+ 1 and dividing both sides466

of the resulting equation by n yields467

1

n

dgn+1

dx
(x) =

n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−k (dk+1 − dk) . (9)

Substituting Eq. (9) into Eq. (8) we obtain468

gn+1(x)− gn(x) =
x

n

dgn+1

dx
(x),

from which Eq. (3) is immediate.469

Consider any n satisfying n ≤ n < n. The following establishes that the replica-470

tor dynamic for group size n must have a rest point in the interval (x∗n+1,`, 1): Be-471

cause gn+1(x) has no root in (x∗n+1,`, 1), gn+1(x) has the same sign as the derivative472

dgn+1(x∗n+1,`)/dx for all x ∈ (x∗n+1,`, 1). As the gain sequences (d0, . . . , dn−1) and473

(d0, . . . , dn) have the same initial sign (given by the sign of the first non-zero gain from474

switching dk) and the same number of sign changes s, they also have the same final475

sign. Hence, the final sign of the gain sequence (d0, . . . , dn) is the same as the sign of476

dgn+1(x∗n+1,`)/dx, too (Peña et al., 2014, Property 1). Therefore, for sufficiently large477

x̂ ∈ (x∗n+1,`, 1) the sign of gn(x̂) coincides with the sign of dgn+1(x∗n+1,`)/dx. From478

Eq. (3) and gn+1(x∗n+1,`) = 0 we then have that gn(x∗n+1,`) and gn(x̂) have opposite479

signs, so that gn(x) has a root in the interval (x∗n+1,`, x̂). Consequently, the replicator480

dynamic for group size n has a rest point in the interval (x∗n+1,`, x̂). For the case ` = 1481

this finishes the proof of the proposition.482

Suppose ` ≥ 2 and let n again satisfy n ≤ n < n. Consider (with r = 1, . . . , `− 1)483

any adjacent interior rest points x∗n+1,r < x∗n+1,r+1 of the replicator dynamic for group484

size n+1. As stable and unstable rest points alternate, the derivatives dgn+1(x∗n+1,r)/dx485

and dgn+1(x∗n+1,r+1)/dx have opposite signs. As gn+1(x∗n+1,r) = gn+1(x∗n+1,r+1) = 0486

holds, it follows from Eq. (3) that gn(x∗n+1,r) and gn(x∗n+1,r+1) have opposite signs, too.487

Therefore, gn(x) has at least one root in the interval (x∗n+1,r, x
∗
n+1,r+1), with each such488

root corresponding to an interior rest point of the replicator dynamic for group size n.489

As there are `−1 intervals of the form (x∗n+1,r, x
∗
n+1,r+1) and the replicator dynamic for490

group size n has an interior rest point in the interval (x∗n+1,`, 1), this implies that there491

is exactly one interior rest point of the replicator dynamic for group size n in each of492

the intervals (x∗n+1,r, x
∗
n+1,r+1) for r = 1, . . . , ` − 1. Therefore, for all n = n, . . . , n − 1493

and r = 1, · · · , `− 1, we have494

x∗n+1,r < x∗n,r < x∗n+1,r+1. (10)

In conjunction with the inequality x∗n+1,` < x∗n,` established in the preceding paragraph,495

Eq. (10) finishes the proof.496
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A.2 Proof of Proposition 2497

Let ` denote the number of interior rest points of the replicator dynamic for a given498

group size n ∈ N . We begin by showing that the number of interior rest points of the499

replicator dynamic for group size m ∈ N satisfying m < n must be at least `. This is500

trivially true for ` = 0, so consider ` ≥ 1. By the same arguments as in the proof of501

Proposition 1, the replicator dynamic for group size n− 1 has at least one rest point in502

the interval (x∗n,`, 1) and, in case ` > 1, at least one rest point in each of the intervals503

(x∗n,r, x
∗
n,r+1) for r = 1, . . . , ` − 1. As there are ` − 1 such intervals, the replicator504

dynamic for group size n− 1 has at least as many rest points as the replicator dynamic505

for group size n. By a straightforward induction argument, it follows that the same506

conclusion obtains not only for group size n−1 but for all group sizes m ∈ N satisfying507

m < n.508

Suppose that the number of interior rest points for group size n̄ is equal to the509

number of sign changes s of the gain sequences. It then follows from the argument in510

the previous paragraph that, for all group sizes n ∈ N , the number of interior rest points511

is at least s. On the other hand, the number of interior rest points of the replicator512

dynamic for group size n cannot be larger than the number of sign changes s of the513

gain sequence (Peña et al., 2014, Property 2). Hence, independently of group size the514

number of interior rest points is s.515

The assumption that the regularity condition dgn(x∗)/dx 6= 0 holds for all interior516

rest points implies that all roots of the polynomials gn(x) are simple. Therefore, for all517

group sizes n ∈ N the number of interior rest points is either equal to the number of sign518

changes s of the gain sequences or less by an even amount Peña et al. (2014, Property519

2). It follows that the number of interior rest points for the replicator dynamics for520

two different group sizes either are equal or differ by an even amount. As it has been521

established above that the number of interior rest points cannot increase with group522

size, this observation finishes the proof.523

A.3 Proof of Proposition 4524

From Result 4.1 in Peña et al. (2014) the condition ḡn̄ > 0 (in conjunction with the525

assumption on the sign pattern of the gain sequences) is sufficient to imply that the526

replicator dynamic for group size n̄ has two interior rest points x∗n̄,1 < x∗n̄,2 with the527

first of these being unstable and the second stable. As the gain sequences have two sign528

changes for all n ∈ N , Proposition 2 then implies that the replicator dynamic for any529

group size n ∈ N has two interior rest points with the same stability pattern. From530

Proposition 1, the inequalities x∗n+1,1 < x∗n,1 and x∗n+1,2 < x∗n,2 hold for all n satisfying531

n ≤ n < n̄. The remaining inequality in Eq. (4) follows from Eq. (10) in the proof of532

Proposition 1 in Appendix A.1.533

A.4 Proof of Proposition 5534

The existence of a unique interior rest point x∗n and its stability for all group sizes is535

immediate from Result 3 in Peña et al. (2014).536
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Fix n satisfying n ≤ n < n and let537

hn(x) =
n−1∑

k=0

(
n− 1

k

)
xk(1− x)n−1−kdn+1

k . (11)

Observe that the assumption dn+1
k ≤ dnk for all k = 0, 1, . . . , n−1 implies hn(x) ≤ gn(x)538

for all x ∈ [0, 1], where gn(x) has been defined in (6).539

An argument identical to the one that we have used to obtain Eq. (3) in Appendix540

A.1, yields541

hn(x) = gn+1(x)− x

n

dgn+1

dx
(x). (12)

As the rest point x∗n+1 is stable, Eq. (12) implies hn(x∗n+1) > 0 and therefore gn(x∗n+1) >542

0. By the stability of the rest point x∗n, we have gn(x) < 0 for all x ∈ (x∗n, 1). Therefore,543

the inequality gn(x∗n+1) > 0 implies x∗n+1 < x∗n, which is the desired result.544

A.5 Proof of Proposition 6545

From Result 4.1 in Peña et al. (2014) the condition ḡn > 0 (in conjunction with the546

assumption on the sign pattern of the gain sequences) is sufficient to imply that for all547

group sizes n ∈ N , two interior rest points x∗n,1 < x∗n,2 exist with x∗n,1 being unstable548

and x∗n,2 being stable. The proof is then finished by observing that the same argument549

as in the proof of Proposition A.4 implies the inequality x∗n+1,2 < x∗n,2 for all n satisfying550

n ≤ n < n.551
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Maynard Smith, J., Szathmáry, E., 1995. The major transitions in evolution. W. H.652

Freeman, Oxford, UK.653

McNamara, J. M., Houston, A. I., 1992. Evolutionarily stable levels of vigilance as a654

function of group size. Animal Behaviour 43 (4), 641–658.655

Motro, U., 1991. Co-operation and defection: Playing the field and the ESS. Journal656

of Theoretical Biology 151 (2), 145–154.657

Motro, U., Eshel, I., 1988. The three brothers’ problem: kin selection with more than658

one potential helper. 2. The case of delayed help. The American Naturalist 132 (4),659

567–575.660

Nowak, M. A., 2006. Five rules for the evolution of cooperation. Science 314 (5805),661

1560–1563.662

Olson, M., 1965. The logic of collective action. Harvard University Press, Cambridge,663

MA.664

Pacheco, J. M., Santos, F. C., Souza, M. O., Skyrms, B., 2009. Evolutionary dynamics665

of collective action in n-person stag hunt dilemmas. Proceedings of the Royal Society666

of London B: Biological Sciences 276 (1655), 315–321.667

Packer, C., Ruttan, L., 1988. The evolution of cooperative hunting. The American668

Naturalist 132 (2), 159–198.669

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Palfrey, T. R., Rosenthal, H., 1984. Participation and the provision of discrete public670

goods: A strategic analysis. Journal of Public Economics 24 (2), 171–193.671
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