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a b s t r a c t 

The heterogeneity of stochastic gene expression, which refers to the temporal fluctuation in a gene prod- 

uct and its cell-to-cell variation, has attracted considerable interest from biologists, physicists, and mathe- 

maticians. The dynamics of protein production and degradation have been modeled as random processes 

with transition probabilities. However, there is a gap between theory and phenomena, particularly in 

terms of analytical formulation and parameter estimation. In this study, we propose a theoretical frame- 

work in which we present a basic model of a gene regulatory system, derive a steady-state solution, and 

provide a Bayesian approach for estimating the model parameters from single-cell experimental data. The 

proposed framework is demonstrated to be applicable for various scales of single-cell experiments at both 

the mRNA and protein levels and is useful for comparing kinetic parameters across species, genomes, and 

cell strains. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Gene expression in prokaryotes and eukaryotes is exposed to

various molecular noises. Modern single-cell gene expression anal-

yses have revealed that gene expression levels fluctuate in each

cell ( Chubb et al., 2006; Elowitz and Leibler, 20 0 0; Golding et al.,

2005; Taniguchi et al., 2010 ) and differ from cell to cell even

within a clonal population in an identical environment ( Blake

et al., 2003; Elowitz et al., 2002; Gardner et al., 20 0 0; Zenklusen

et al., 2008 ). Meanwhile, ordered dynamics—ranging from micro-

scopic to macroscopic levels, such as nearly perfect DNA replica-

tions ( Shapiro, 2007 ), cell polarization ( Zamparo et al., 2015 ), and

mammalian embryogenesis ( Yamanaka et al., 2010 )—has also been

observed. These discoveries reveal that cells integrate both noisy

and accurate molecular processes to make them well organized

overall, demonstrating the difference between organisms and ma-

chinery. However, there is the question of how cells achieve or-

chestration through stochastic expression kinetics. 

It has been proposed that stochastic expression kinetics is re-

lated to its cell-to-cell variation ( Elowitz et al., 2002 ), cellular

memory ( Acar et al., 2005 ), cell differentiation ( Becskei et al.,

2001; Süel et al., 2006 ), and evolution ( Fraser and Kærn, 2009 ).

Accordingly, heterogeneous cellular responses to environmental
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hanges have been thoroughly studied ( Losick and Desplan, 2008 ).

or example, the lac operon in Escherichia coli ( Choi et al., 2008;

ettetal et al., 2006; Ozbudak et al., 2004 ) and GAL genes in Sac-

haromyces cerevisiae ( Acar et al., 2010; Peng et al., 2015; 2016 )

roduce discriminative unimodal and bimodal distributions of the

rotein concentration. Another study on population survival sug-

ested that increasing expression noise, rather than the mean ex-

ression level, could provide cells with a selective advantage under

tress conditions ( Blake et al., 2006; Bódi et al., 2017 ). A theoret-

cal study using single-cell experimental data suggested that the

icoid/Hunchback system in the early Drosophila embryo achieves

ts optimal control in the sense of maximum information trans-

ission ( Tka ̌cik et al., 2008 ). These observations indicate that cells

tilize the protein distribution to adapt to environmental changes.

evertheless, many previous studies have focused on the mean and

ariance, not on the benefits gained from the distribution. 

To address the aforementioned issue, theoreticians have devel-

ped analytical procedures to derive mRNA and protein distribu-

ions ( Assaf et al., 2011; Bokes et al., 2012; Feng et al., 2012;

riedman et al., 2006; Hornos et al., 2005; Paulsson and Ehren-

erg, 20 0 0; Peccoud and Ycart, 1995; Pendar et al., 2013; Schwabe

t al., 2012; Shahrezaei and Swain, 20 08; Shibata, 20 03; Vande-

an and Blossey, 2013; Zhang et al., 2013; Zhang and Zhou, 2014;

hou and Liu, 2015 ). The dynamics of protein production and

egradation have been modeled by a discrete stochastic model

 Munsky et al. (2012) ), whereas the dynamics of transition prob-

bility have been modeled by a master equation. However, the

onnection between stochastic processes and probability distribu-
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Fig. 1. (a) Schematic representation of the simplified gene regulatory system. (b) and (c) (left) Typical sample paths of 10 X ( t ) (gray line) and Y ( t ) (black line), and (right) 

p ( y ), i.e., the probability density of Y ( t ), plotted in log10 scale. The common parameters are biologically relevant: λ− = 0 . 7 (this value is 10 times larger than the presumable 

value), λ+ = 9 . 73 , β = 0 . 16 , and γ = 0 . 014 ; and the control parameters (b) k on = k off = 10 γ , and (c) k on = γ / 10 and k off = 3 γ / 10 . 

t  

p  

s  

o  

p  

w  

i  

t

 

i  

s  

w  

a  

s  

s  

s  

t  

i  

m  

(  

t  

t  

c  

e  

a  

t  

fl  

e  

2

2

2

 

F  

l  

c  

t  

c  

t  

g  

b  

s  

w  

g  

Y  

o  

x

 

H  

c  

fl  

w  

l  

i  

c  

S  

t  

S  

i  

t

 

2  

i  

a  

b  

t  

p  

q  

c  

t

(  

t  

m

X

d

w  

d  

p  

c  

2

C

w  

w  

j  

d  

i  
ion is less studied. This point indicates a gap between theory and

henomena because the master equation does not always repre-

ent the stochastic dynamics. Moreover, in practice, many previ-

us studies are based on a discrete model that counts mRNA and

rotein copy numbers because they are discrete in nature. Mean-

hile, in most experiments, single-cell gene expression levels are

ndirectly observed through the measurement of fluorescence in-

ensity, indicating that a continuous model is needed. 

In the present article, we begin with the biophysical model-

ng of a simple gene regulatory system. First, we formulate the

tochastic process of protein production and degradation coupled

ith an active-or-inactive genetic switch. Second, we introduce

 system of master equations and derive an important steady-

tate solution expressing protein distribution. We show that the

olution can be fit to experimental data with an arbitrary mea-

urement scale. Finally, we apply the proposed theory to the

hiomethylgalactoside (TMG)-induced system of lacZYA expression

n E. coli , estimate the model parameters from published experi-

ental data ( Ozbudak et al., 2004 ) with Markov chain Monte Carlo

MCMC) methods, and investigate the heterogeneous responses of

he lac genes to extracellular TMG concentrations. Consequently,

he results of this study demonstrate that the proposed theoreti-

al framework is widely applicable to various types of single-cell

xperiments at both the mRNA and protein levels, such as reporter

ssays ( Bakstad et al., 2012; Coulon et al., 2013; Suter et al., 2011 ),

he MS2-GFP system ( Chubb et al., 2006; Golding et al., 2005 ),

uorescent in situ hybridization ( Bakstad et al., 2012; Zenklusen

t al., 2008 ), and flow cytometry ( Bódi et al., 2017; Peng et al.,

016 ). 

. Methods 

.1. Model 

Starting with a simplified gene regulatory system, as shown in

ig. 1 (a), we assume the following three phases: the extracellu-

ar phase is a molecular reservoir in which concentrations remain

onstant; the cytoplasmic phase contains a vast amount of pro-

ein molecules, and the system size is large enough to keep the

ondition dilute and well stirred (to benefit from the determinis-

ic chemical reaction rate equation ( Wallace et al., 2012 )); and the

ene-mRNA phase is a small-size subsystem in which nonnegligi-

le molecular noises exist. We also assume that the system con-

ists of two variables, x and y , and a gene-protein interaction, f ,

here x = 1 and x = 0 denote the active and inactive states of the

ene, respectively, and y is the amount of the synthesized protein

. For the gene-protein interaction, we assume that the probability
f x switching between 0 and 1 per unit time d t is described by

 + f (x )d t, where 

f (x ) = k on (1 − x ) − k off x. (1)

ere, k on and k off are the transition rates, depending on the con-

entrations of effector proteins. Assume that the influx and ef-

ux of the effectors through the cytoplasmic membrane are al-

ays in equilibrium ( Choi et al., 2008; Yagil and Yagil, 1971 ), and

et k on and k off always be constant. We note that the scheme

n Fig. 1 (a) is inspired by the well-known two-state model dis-

ussed in Friedman et al. (2006) ; Peccoud and Ycart (1995) ;

hahrezaei and Swain (2008) . In a sense, our model is a con-

inuous version of those proposed in Peccoud and Ycart (1995) ;

hahrezaei and Swain (2008) . The greatest benefit of our approach

s that our model has a scalability and continuity with respect to

he protein level, which will be discussed later. 

Based on the concept of fast-slow dynamics ( Popovi ́c et al.,

016; Shahrezaei and Swain, 2008 ), we assume that the unit time

s considerably larger and smaller than the lifetimes of the mRNA

nd protein, respectively, and that Ys are produced through a

ursting manner from their mRNA in the genetic phase, whereas

hey are degraded in a continuous manner in the cytoplasmic

hase. We also define the following: λ− and λ+ are the burst fre-

uencies, β is the mean burst size per burst, and γ is the de-

ay constant. Here, λ− represents the basal transcription rate from

he inactive promoter, which is referred to as “promoter leakage”

 Zhou and Liu, 2015 ). Based on these assumptions, we formulate

he time evolutions of X ∈ {0, 1} and Y ∈ R > 0 by the following

ixed random process: 

 (t + d t) ∼ Ber (X (t) + f (X (t ))d t ) , (2) 

 Y (t) = −γY (t)d t + dC −(t;λ−, β) + X (t)dC + (t;λ+ , β) , (3) 

here “ ∼ ” denotes random sampling, and Ber( p ) is the Bernoulli

istribution, whose random variable takes a value of 1 with the

robability of p ; otherwise, it is 0. Here, dC i ( t ) ( i ∈ { + , −} ) is the

ompound Poisson white noise (or shot noise) ( Denisov et al.,

009; Pirrotta, 2007 ) defined by 

 i (t;λi , β) = 

M i (t) ∑ 

j=1 

R j U(t − t j ) , (4) 

here { M i ( t )} denotes a homogeneous Poisson counting process

ith the occurrence rate λi , U ( t ) is the unit step function, t j is the

 th arrival time, and { R j } is a sequence of independent identically

istributed random burst sizes with a mean of β . Based on exper-

mental observations ( Yu et al., 2006 ) and theoretical assumptions
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( Friedman et al., 2006; Paulsson and Ehrenberg, 20 0 0; Shahrezaei

and Swain, 2008 ), we assume that R j follows an exponential dis-

tribution with the assigned probability density q (r) = (1 /β)e −r/β .

The typical sample paths of X ( t ) and Y ( t ) for different values of k on

and k off are shown in Fig. 1 (b) and (c). Note that directly predicting

the values of k on and k off may be possible from Fig. 1 (c), but such

a prediction is difficult from Fig. 1 (b). Hence, we need a theoretical

procedure to estimate these parameters in any case. 

2.2. Analysis 

Next, we investigate the probability density functions (PDFs) of

X ( t ) and Y ( t ). Since dC −(t) and dC + (t) are independent random

processes, we can analyze the following systems individually: 

d Y −(t) = −γY −(t)d t + dC −(t;λ−, β) , (5)

d Y + (t) = −γY + (t)d t + X (t)dC + (t;λ+ , β) , (6)

where Y (t) = Y −(t) + Y + (t) . Let p ( t, y ), p −(t, y ) , and p + (t, x, y ) be

the transition PDFs of Y ( t ), Y −(t) , and Y + (t) , respectively, and

let p + (t, y ) = 

∑ 1 
x =0 p + (t, x, y ) . According to the procedures in Ref.

Denisov et al. (2009) ; Pirrotta (2007) , we obtain the following sys-

tem of integro-differential equations along with the normalization

condition: 

∂ p −(τ, y ) 

∂τ
= 

∂ 

∂y 
(yp −(τ, y )) 

+ Λ−

(∫ y 

0 

q (y ′ ) p −(τ, y − y ′ )d y ′ − p −(τ, y ) 

)
, (7)

∂ p + (τ, 0 , y ) 

∂τ
= 

∂ 

∂y 
(yp + (τ, 0 , y )) −K on p + (τ, 0 , y ) + K off p + (τ, 1 , y ) , 

(8)

∂ p + (τ, 1 , y ) 

∂τ
= 

∂ 

∂y 
(yp + (τ, 1 , y )) + K on p + (τ, 0 , y ) −K off p + (τ, 1 , y ) 

+ Λ+ 

(∫ y 

0 

q (y ′ ) p + (τ, 1 , y − y ′ )d y ′ − p + (τ, 1 , y ) 

)
, 

(9)

∫ ∞ 

0 

p i (τ, y )d y ≡ 1 (i ∈ { + , −} ) , (10)

where τ = γ t, K on = k on /γ , K off = k off /γ , and Λi = λi /γ ( i ∈
{ + , −} ). Note that Eq. (7) is the so-called Kolmogorov–Feller equa-

tion ( Gnedenko, 1988 ) introduced by Friedman and his coworkers

as a model of constitutive gene expression ( Friedman et al., 2006 ).

Let us consider the steady-state problem by setting the left-

hand sides of Eqs. (7) –(9) to zero. Let p (y ) , p −(y ) , and p + (x, y )

be the PDFs under the steady state, and let p + (y ) = 

∑ 1 
x =0 p + (x, y ) .

The Laplace transforms of Eqs. (7) –(9) yield 

p −(y ) = 

y Λ−−1 e −y/β

�(Λ−) βΛ−
, (11)

p + (x, y ) = x + (1 − 2 x ) C 0 

∫ 1 

0 

y a −1 e −y/ (βw ) 

�(a )(βw ) a 
· w 

b−1 (1 − w ) c−b 

B (b, c − b + 1) 
d w, 

(12)

p + (y ) = 

∫ 1 

0 

y a −1 e −y/ (βw ) 

�(a )(βw ) a 
· w 

b−1 (1 − w ) c−b−1 

B (b, c − b) 
d w, (13)

p (y ) = 

∫ y 

p −(y ′ ) p + (y − y ′ )d y ′ , (14)

0 
here C 0 = K off / (K on + K off ) , a + b = K on + K off + Λ+ , ab = K on Λ+ ,
nd c = K on + K off (see Appendix A for the derivation). Here,

q. (13) is the PDF of the weighted gamma distribution, whose

cale parameter βw is averaged over w ∈ (0, 1) with the assigned

eta distribution as a weight function. Assuming that K on , K off � 1,

q. (13) can be approximated as follows: 

p + (y ) ≈
∫ 1 

0 

y Λ+ −1 e −y/ (βw ) 

�(Λ+ )(βw ) Λ+ 
·w 

K on −1 (1 −w ) K off −1 

B (K on , K off ) 
d w (K on , K off �1) ,

(15)

here Λ+ , K on , and K off serve as the shape parameters of the pro-

ein distribution, and β is the scale parameter. In fact, as shown

n Eqs. (11) –(13) , changing the value of β only results in the scal-

ng of p i (y ) ( i ∈ { + , −} ). In other words, for any k > 0, the following

dentity holds: 

p i (ky ; ˜ θi )(k d y ) = p i (y ; θi )d y, (16)

here ˜ θi = (k on , k off , λi , kβ, γ ) , θi = (k on , k off , λi , β, γ ) , and i ∈
 + , −} . This result indicates that Eqs. (11) –(14) can be fit to various

xperimental data with an arbitrary measurement scale of y only

y changing the value of β . In addition, we found that the protein

istribution defined by Eq. (13) is analogous to the “Poisson-Beta

istribution”, which is the solution of the discrete model for the

irth-and-death process of the mRNA copy number with an all-

r-none genetic switch ( Iida and Kimura, 2015; Kim and Marioni,

013; Stinchcombe et al., 2012 ). Through the analysis, we can also

alculate any order of moment (see Appendix B for the calculation)

nd discuss sources of protein noise (see Appendix C), thereby pro-

iding another aspect of our results and a comparison with an ear-

ier report ( Shahrezaei and Swain, 2008 ). 

. Results 

Finally, we apply our theory to the TMG-induced system of

acZYA expression in E. coli , as reported in 2004 (see Figure 2b in

zbudak et al. (2004) ). In the study, cells with well-defined ini-

ial states, either uninduced or fully induced, were used, and the

uorescence intensity of the green fluorescent protein (GFP) un-

er the control of lacZYA promoter in each cell toward the vari-

us TMG concentrations was measured. The remaining definitions

nd assumptions in our study are as follows: (i) x and y denote

he activity of the lac promoter and the intracellular levels of the

FP, respectively; (ii) p (y ) denotes the cell-to-cell variation of y at

he steady state; (iii) λ− + λ+ , β , and γ are the maximum tran-

cription rate defined for the fully induced population, the aver-

ge scaled number of protein molecules being produced during

he lac mRNA lifetime, and the decay constant of GFP, respectively;

iv) λ− is the minimum transcription rate defined for the fully re-

ressed population; and (v) ( k on , k off) and (λ−, λ+ , β) are depen-

ent on and independent of the extracellular TMG, respectively.

ased on assumptions (i)–(v), we estimate the values of λ−, λ+ 
nd β from our bibliographic survey and experimental data with

he fully repressed and induced populations ( Kennell and Riezman,

977; Leive and Kollin, 1967; Megerle et al., 2008; Ozbudak et al.,

004; So et al., 2011; Yu et al., 2006 ). Here, the estimated values

re λ− = 0 . 07 min 

−1 , λ+ = 9 . 73 min 

−1 , β = 0 . 16 , and γ = 0 . 014

in 

−1 (see Appendix D for the parameter estimation). 

As shown in the previous study, most of the GFP distribu-

ions are far from Gaussian, indicating that such distributions are

oorly characterized by the mean and variance. Hence, we adopt

 Bayesian approach utilizing the Metropolis algorithm ( Brooks,

998; Metropolis et al., 1953 ) with a noninformative prior and in-

er the joint posterior distributions of k on and k off for various TMG

oncentrations from the published single-cell data ( Ozbudak et al.,

004 ) (see Appendix E for the parameter estimation). Since each

osterior had a single peak over our searched parameter range, we
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Fig. 2. (color) Histograms obtained from (a) the data Ozbudak et al. (2004) and (b) the independent 10 5 samplings per plot from our model p (y ) for preuninduced (left 

panel) and preinduced (right panel) populations. The TMG-independent parameters are λ− = 0 . 07 , λ+ = 9 . 73 , β = 0 . 16 , and γ = 0 . 014 ; and TMG-dependent parameters, k on 

and k off , are the mean values obtained from the joint posterior distributions. 
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nferred the mean values of k on and k off. Fig. 2 (a) and (b) show

istograms obtained from the data ( Ozbudak et al., 2004 ) and the

ndependent samplings from p (y ) for various TMG concentrations,

espectively. As shown in these figures, our parameter estimations

sing probabilistic model p (y ) well capture the modality of the ex-

erimentally observed distributions across 3–30 μM TMGs with re-

pect to the preuninduced and preinduced populations. 

Fig. 3 (a) and (b) show the mean values of k on and k off ob-

ained from their posterior distributions as functions of the extra-

ellular TMG levels, and Fig. 3 (c) shows the values of τ on ( = k −1 
off 

)

nd τ off ( = k −1 
on ), which are the average durations of X(t) = 1 and

(t) = 0 , respectively, for both preuninduced and preinduced pop-

lations. Consequently, we found that the preuninduced and prein-

uced populations mainly modulate k off for 3–21 and 3–5 μM

MG, respectively, the values of which are necessary for their half-

nduction, i.e., the bimodal distribution (see the shaded region in

ig. 3 (c)). This result is comparable with those found at the mRNA

c  
evel ( So et al., 2011 ). In addition, we found that the preuninduced

nd preinduced cells mainly modulate k on for 24–30 and 6–30 μM

MG, respectively, the values of which are necessary for their fur-

her induction. 

. Discussion 

We have shown that our theoretical framework can estimate

he biological parameters from single-cell data measured as fluo-

escence intensity. Fig. 3 (c) shows that τ on ≈ 2 min and τ off ≈ 345

in at 3 μM TMG for the preuninduced population. The experi-

ental study with direct measurement using another E. coli strain

nder the control of a repressed lac promoter reported that the

ene expression burst lasts ∼ 3 to 15 min and that the average

ime between two adjacent expressions is 46 min ( Yu et al., 2006 ).

ence, careful tuning of the parameters λ−, λ+ , β , and γ in ac-

ordance with given experimental data may help researchers ac-

urately quantify the kinetic parameters k on and k . The shape
off
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Fig. 3. The inferred mean values of k on and k off for the preuninduced (unfilled circles) and preinduced (filled circles) populations across the various extracellular TMG 

concentrations. (a) and (b) The rate parameters k on and k off (mean ± standard deviation) versus TMG levels. (c) The average durations of X(t) = 1 and X(t) = 0 defined by 

τ on ( = k −1 
off 

) and τ off ( = k −1 
on ), respectively, for the different TMG concentrations: 3–30 μM with 3 increments for unfilled circles, and 3–9 with 1 increment having 12, 15, and 

30 μM for filled circles. The shaded region at the right top corner indicates the bimodality of p (y ) . The solid and dashed lines connecting the points are simply visual guides. 

The TMG-independent parameters are the same as those for Fig. 2 . 
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of the distribution can also be affected by other factors such as

DNA sequence ( Saiz, 2012; Sanchez and Golding, 2013 ), growth rate

( Marathe et al., 2012 ), cell cycle ( Soltani and Singh, 2016 ), parti-

tioning noise ( Huh and Paulsson, 2011 ), and various extrinsic noise

Shahrezaei et al., 2008 . Incorporating these effects into the model

and choosing an effective parameter estimation method are future

studies. 

Interestingly, Fig. 3 (a) and (b) show that k on and k off are nonlin-

ear functions of TMG levels. In this case, if the TMG level is a ran-

dom variable that obeys a distribution with nonzero variance, then

the mean output value of y may deviate from that predicted from

deterministic reaction kinetics. This situation occurs at any time

when considering a random molecular flux across the cell mem-

brane, a genetic circuit with feedback loops, and so forth. Math-

ematically, Jensen’s inequality may help us predict such deviation

provided that k on and k off are convex functions. However, Fig. 3 (a)

and (b) indicate that k on and k off are nonconvex, which leads to a

notorious mixed convex problem ( Niculescu and Roven ̧t a, 2015 ). 

Within the next decade, single-cell experiments with quantita-

tive mathematical biology will enable comparing biologically im-

portant parameters such as τ on and τ off across species, genomes,

and strains as functions of various environmental conditions, part

of which were briefly reviewed by Lionnet and Singer (2012) .

Gnügge et al. (2016) reported that E. coli and S. cerevisiae have sim-

ilar core networks in the lactose and galactose utilizing systems,

but the functional role of the network complexity has yet to be

determined. Our results show that the transition behaviors of the

system can be compared on the ( τ on , τ off)-plane along with the

probability distributions ( Figs. 2 and 3 (c)), which may provide a

better understanding of the quantitative differences across species.

Pioneers have proposed ingenious methods for estimating their

model parameters from a finite number of statistics ( Dar et al.,

2012; Munsky et al., 2009; Zechner et al., 2012 ), such as expres-

sion level, coefficient of variation, and autocorrelation time. They

mapped the kinetic features of human gene expression into their

parameter space through a genome-wide experiment ( Dar et al.,

2012 ). However, their method is based on a finite number of statis-

tics, which can estimate a smaller number of parameters; fur-

thermore, the experiment requires high-resolution real-time mon-

K  
toring, which is costly. To overcome these issues, a Bayesian

r maximum likelihood approach is suitable, as Shahrezaei and

wain (2008) mentioned in their report. In this respect, our frame-

ork including MCMC performed well without any concern for the

umber of statistics. 

Choi et al. (2008) experimentally examined various E. coli

trains with different genetic constructions and found that the

inding affinity of the effector protein to its target locus signif-

cantly changes the protein distribution. Linking DNA structure,

uch as looping, chemical modification, and DNA-protein complex

ormation, to its expression pattern is an important future work. 

. Conclusion 

We have proposed a fairly general model of a gene regulatory

ystem along with clear biophysical assumptions, and we formu-

ated this model by both stochastic differential equations ( Eqs. (2)

nd (3) ) and corresponding master equations ( Eqs. (7) –(10) ). We

ubsequently derived a steady-state solution while avoiding com-

licated forms such as intricate combinations of hypergeometric

unctions, which allows one to understand the parameters that af-

ect the shape and scale of the protein distribution ( Eq. (15) ). We

lso demonstrated that the solution can be fit to experimental data

ith an arbitrary measurement scale ( Eq. (16) ). 

As an application, we investigated the TMG-induced system

f lacZYA expression in E. coli . Accordingly, we found that the

ystem mainly modulates k off for the lower or intermediate lev-

ls of induction and k on for the higher level, which can be pre-

icted on the ( τ on , τ off)-plane ( Fig. 3 (c)). Finally, we conclude that

ur theoretical framework is widely applicable to various types

f single-cell experiments at both the mRNA and protein levels,

nd it is expected to be useful for predicting the kinetic behav-

ors of a given biological network, including genetic oscillations

 Elowitz and Leibler, 20 0 0; Vilar et al., 20 02 ), cell differentiations

 Süel et al., 2006 ), and evolution ( Bódi et al., 2017 ). 
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