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Abstract

We explore the minimal conditions for sustainable cooperation on a spatially distributed population of memoryless, unconditional

strategies (cooperators and defectors) in presence of unbiased, non-contingent mobility in the context of the Prisoner’s Dilemma game.

We find that cooperative behavior is not only possible but may even be enhanced by such an ‘‘always-move’’ rule, when compared with

the strongly viscous (‘‘never-move’’) case. In addition, mobility also increases the capability of cooperation to emerge and invade a

population of defectors, what may have a fundamental role in the problem of the onset of cooperation.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The onset and sustainability of cooperation in social and
non-social populations is still an open and challenging
problem (Maynard Smith, 1982; Axelrod, 1984; Dugatkin
and Reeve, 1998; Hauert and Szabó, 2005; Szabó and Fath,
2006) that has been tackled with tools from different fields,
ranging from psychological and social sciences to statistical
physics. Although involving a cost to the performer,
cooperative behavior is ubiquitous in biological popula-
tions. Even more tantalizing is its presence in groups of
extremely simple individuals (Turner and Chao, 1999;
Crespi, 2001; Vulic and Kolter, 2001; Frick and Schuster,
2003; Rainey and Rainey, 2003; Velicer and Yu, 2003;
Griffin et al., 2004; Greig and Travisano, 2004; Wolf et al.,
2005; Fiegna et al., 2006; Mehdiabadi et al., 2006), where a
mechanism other than direct or indirect reciprocity due to
memory of previous encounters or kinship relations should
apply. Indeed, cooperative behavior is found to occur when
dispersal is very limited (high viscosity), what increases the
probability of future encounters among close neighbors
(the so-called shadow of the future), albeit decreasing the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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propagation rate of the strategies. Axelrod (1984) was
perhaps the first to consider the effects of territoriality in
the spread of strategies in the Prisoner’s Dilemma game
(see definition below), either by colonization or imitation,
but without explicit migration. Differently from the
standard, random mixing population, spatial localization
allows a continuing interaction within the local neighbor-
hood. The reasons for this are manyfold: individuals
usually occupy well-defined territorial regions, they do not
move far from their places of birth (population viscosity,
Hamilton, 1964), interactions occur in places where
animals usually meet such as water ponds, etc. That
preliminary study was later extended by Nowak and May
(1992, 1993) who showed that geographical fixation
enhances the probability of further interaction in such a
way that even simple nice rules like unconditional
cooperation are able to survive. In these structured
populations, cooperative strategies can build clusters in
which the benefits of mutual cooperation can outweight
losses against defectors, maintaining the population of
cooperators stable. These spatial games, where the inter-
actions are localized and non-random, have been studied
and extended in many ways (see, for example, Nowak
et al., 1994a,b; Lindgren and Nordahl, 1994; Grim, 1995;
Killingback and Doebeli, 1996; Nakamaru et al., 1997;
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Szabó and Töke, 1998; Brauchli et al., 1999; Killingback
et al., 1999; Szabó et al., 2000; Vainstein and Arenzon,
2001; Abramson and Kuperman, 2001; Hauert, 2002, 2006;
Kim et al., 2002; Miekisz, 2004; Aktipis, 2004; Hauert and
Doebeli, 2004; Fort and Viola, 2005; Santos and Pacheco,
2005; Durán and Mulet, 2005; Eguiluz et al., 2005; Soares
and Martinez, 2006; Santos et al., 2006; Hammond and
Axelrod, 2006). Once the population is spatially structured,
a natural question concerns the effects of mobility that,
along with other important biological factors, is often
neglected (Houston, 1993): is it possible to evolve and
sustain cooperation in a population of mobile agents,
where retaliation can be avoided by moving away from the
former partner? In particular, do we need explicit assort-
ment, contingent movements or any behaviorally complex
strategy, or is it possible to have a finite density of
unconditional cooperators with unbiased, random mobi-
lity? By increasing the effective range of interactions, the
introduction of mobility increases the random mixing and
gets the system closer to the mean field situation, in which
every agent interacts randomly with the whole population,
and defection is known to prevail. Thus, one might naively
think that by dissipating the shadow of the future, mobility
becomes a limiting factor for cooperation.

Here we provide some insight on this issue by explicitly
considering individual random diffusion in the framework
of a locally, non-randomly interacting spatial game, where
simple, memoryless, strategy-pure agents coexist. This is
important as it helps to settle the minimal conditions under
which cooperative behavior might emerge. Although there
is no simple answer to the above question since motion can
both destroy and enhance the altruistic behavior, we show
that there are broad conditions under which even a blind
pattern of mobility, without anticipating the future
neighborhood (no assortment) and without considering
the accumulated payoff, may have a positive effect in the
amount of cooperation. In other words, although mobility
decreases the shadow of the future for nearest neighbors by
diminishing the probability of a future encounter, it also
increases it for more distant ones, that may now be visited.

Dugatkin and Wilson (1991) and Enquist and Leimar
(1993) showed that a randomly interacting population of
fixed cooperators (playing Tit-for-Tat, TFT) could be
invaded by mobile defectors that avoid retaliation by
moving in search of new cooperators to exploit. Mobility
was introduced as a cost to wander between patches
without spatial structure, not as an explicit diffusive
process. By letting both mobility and cooperative traits
evolve together, Koella (2000) (see also van Baalen and
Rand, 1998; Hamilton and Taborsky, 2005; Le Galliard
et al., 2005) obtained low dispersive altruists and highly
dispersive egoists which enhanced the stability of local
clusters. Again, there was no explicit diffusive behavior as
mobility was introduced by generating offspring within a
given dispersal range. Diffusion was considered by Ferrière
and Michod (1995, 1996) by including a diffusive term in
the replicator equation (Hofbauer and Sigmund, 1998).
Two strategies, TFT and unconditional defection (D), were
allowed to move in a one-dimensional system with local,
non-random interactions, mobility again involving a cost.
This system may sustain cooperation when both strategies
have a minimum mobility, and retaliation by TFTs was
found to be an important ingredient. More recently,
Aktipis (2004) considered contingent movement of coop-
erators: once a defection occurred in the previous move-
ment, they walk away. This win-stay, lose-move strategy
can invade a population of defectors and resists further
invasions. Hamilton and Taborsky (2005) and Le Galliard
et al. (2005) (and Koella, 2000 as well) considered the
coevolution of mobility and cooperation traits. However,
both models are a kind of mean field approach as there is
no spatial structure and interactions are random. Models
with alternating viscosities, reflecting different stages of
development that benefit both from the clusterization of
cooperators and dispersal, have also been considered
(Wilson et al., 1992; Taylor, 1992), showing that local
competition for resources balances the benefits of kinship
cooperation, inhibiting cooperation. The present work
differs from all these in several aspects: we consider non-
random interactions on a two-dimensional structure,
mobility traits do not evolve and movements are Brownian,
non-contingent, and not under the control of the agents,
both strategies considered are simple, unconditional and
non-retaliating, with no memory of previous steps. In other
words, we are considering the simplest possible scenario for
cooperation.
We addressed in earlier work (Vainstein and Arenzon,

2001) the question of the robustness of cooperation in
spatial games in the presence of heterogeneous environ-
ments. By introducing quenched disorder in the lattice
(random dilution) each individual would sense a locally
varying social environment as the number of neighbors
becomes site dependent: optimal cooperation can be
achieved for weak disorder as the defects (or inaccessible
regions) act as pinning fields for the strategy transition
waves that cross the system, keeping the clusters of
cooperators more protected from invasions. Thus, an
irregular landscape may enhance cooperation by introdu-
cing natural defenses against invasions of defectors. Now
we allow this disorder to be annealed: the vacant sites are
no longer fixed and may become occupied by a neighbor
agent with a probability that depends on the populational
viscosity. Only random, unbiased diffusion is considered
here, although extensions to contingent rules may be also
devised. The detailed outcome of the game will depend on
the precise implementation of the dynamics. For example,
the order in which combats, offspring generation and
diffusion occur leads to qualitative differences in the
population.

2. The spatial Prisoner’s Dilemma

The Prisoner’s Dilemma game is the archetypal model
for reciprocal altruism. In any round, each of the two
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Fig. 1. Average fraction of cooperators rc=r as a function of time for

several values of m for the COD dynamics at r ¼ 0:7 in a semi-log plot. In

all cases there is an initial decrease in the cooperators density since

cooperators are not yet coordinated and only form small groups, being

easily predated. Depending on the mobility, at later times the existing

cooperator clusters may either disappear or grow, leading to extinction or

a stable, mixed population, respectively. For values of m\0:33, mobility

leads to extinction of cooperation, even if sometimes very slowly. Indeed,

close to the transition point, the extinction time seems to diverge. On the

other hand, for low mobility, mt0:33, after the initial decrease common

to all values of m, cooperation resumes and a plateau is attained at

intermediate values of rc, with cooperators and defectors coexisting.

Notice also that for m ¼ 0, rc=r ’ 0:2 (not shown) (Vainstein and

Arenzon, 2001): the behavior, for m ¼ 0 and m! 0þ, is quite different.
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Fig. 2. Average fraction of cooperators rc=r as a function of time for

r ¼ 0:24 and several values of m for the CDO dynamics near the transition

from an all-D to an all-C phase. Analogously to Fig. 1, after the common

initial decrease in the amount of cooperation, at late times the existing

cooperator clusters may either disappear or increase their sizes, depending

on the mobility m. On the other hand, in this case cooperators may fully

invade the population and rc ¼ r.
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players either cooperates (C) or defects (D), without
knowledge of the opponent’s strategy. The result depends
on the mutual choice and is given by the payoff matrix
whose elements are: a reward R (punishment P) if both
cooperate (defect), S (sucker’s payoff) and T (temptation)
if one cooperates and the other defects, respectively.
Moreover, these quantities should satisfy the inequalities
T4R4P4S and 2R4T þ S. In a random mating, infinite
population of asexual (haploid) elements, where two pure
strategies are present (cooperators C and defectors D),
defecting will be the most rewarding strategy, indepen-
dently of the opponent’s choice. Nonetheless, more
complex rules (with memory of previous encounters) have
been devised (Axelrod, 1984) if the agents are to meet again
in the future. Here we will take a simplified version of the
payoff matrix (Nowak and May, 1992): R ¼ 1, P ¼ S ¼ 0
and T ¼ b41, reducing the matrix to only one free
parameter. Initially, an equal number of cooperators and
defectors are randomly placed on a two-dimensional
square lattice of length size L and periodic boundary
conditions, such that the total density is r. Each individual
combats with all its four closest neighbors (if any),
accumulates the corresponding payoff and then may either
move or try to generate its offspring. In the reproduction
step, each player compares its total payoff with the ones of
its neighbors and changes strategy, following the one with
the greatest payoff among them. This strategy changing
updating rule preserves the total amount of individuals,
thus keeping r constant. Results, averaged over 30–130
samples, are shown for L ¼ 100 and b ¼ 1:4, where the
original model ðr ¼ 1Þ is known to sustain cooperation
along with a finite fraction of strategy changing, active
sites. As mentioned in the introduction, different values of
r can be used to mimic heterogeneous environments by
allowing the number of connections to vary from site to site
due to dilution (Vainstein and Arenzon, 2001).

There are several ways of implementing an unbiased
random walk along with the PD interactions. Here we
consider two possibilities, named combat–offspring–diffu-
sion (COD) and combat–diffusion–offspring (CDO). In the
former, as the name says, each step consists of combats
followed by the generation of offspring done in parallel, and
then diffusion, while in the later, the diffusion and offspring
steps are reversed. During the diffusive step, each agent
makes an attempt to jump to a site chosen randomly within
its four nearest neighbors, what is accepted, provided the site
is empty, with a probability m. Here we only consider local
steps with a reduced dispersal range (one lattice site), m thus
measuring the mobility of the agents (m ¼ 0 reduces to the
case studied in Vainstein and Arenzon, 2001).

3. Results

Figs. 1 and 2, where the average temporal evolution of
the cooperators density rc is shown for different values of
the viscosity parameter m, exemplify the rich behavior
presented by the model once mobility is introduced. Under
thinning or thickening, the ultimate fate of a population
depends on the total density (and probably on the initial
state), as is exemplified in these figures: while in the COD
dynamics of Fig. 1 the asymptotic density of cooperators
decreases as m increases, in the CDO case of Fig. 2, on the
contrary, rc may increase with m for some values of r. The
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short time behavior is similar in both cases: the density of
cooperators initially decreases since they are not yet
coordinated (the initial state is random) forming only
small groups, what does not prevent the exploitation by
neighboring defectors.

Fig. 3, for COD dynamics, shows both the density of
cooperators and strategy-changing individuals (active sites,
ra), as a function of the total lattice occupation r, after the
system attained a stationary state where both quantities
fluctuate around their average values. Also shown, for
comparison, are the results from Vainstein and Arenzon
(2001) for the extremely viscous case m ¼ 0. Cooperation
only appears above a minimum, m-dependent, density;
below this point, defectors dominate ðrc ¼ 0Þ. At low
densities, any mobility destroys cooperation ðrc ¼ 0Þ: for
m ¼ 0, isolated all-cooperating clusters are able to survive,
but as soon as m40 the existence of free riders will invade
these small clusters. Although cooperation is possible for
large mobilities (e.g. m ¼ 1), cooperators perform better
when nobody moves, rcðm ¼ 0Þ4rcðm ¼ 1Þ, for all r.
Interestingly, for intermediate values of the mobility (e.g.
m ¼ 0:1) cooperation is enhanced when compared with the
viscous case: for a broad range of densities,
rcðm ¼ 0:1Þ4rcðm ¼ 0Þ. Thus, two immediate conclusions
are: first, cooperation is possible in the presence of mobility
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Fig. 3. Average fraction of cooperating individuals rc=r and active sites

ra=r (inset) for the COD dynamics and different values of the mobility,

from m ¼ 0 (solid line) to 1. Different from the CDO case (see Fig. 5), here

there is not a defector-free phase (rc=r is always lower than 1) at

intermediate densities, although their presence is reduced. For small

mobilities (smaller than 0.5 in the figure) there is an optimal density where

the relative amount of cooperators is maximized. This maximum increases

as m decreases. Notice that as soon as there are cooperators, there are also

active sites: there is no frozen mixed configurations in this case. Thus, as

was exemplified in Fig. 1, for a fixed density, a very tiny mobility is usually

the best scenario at intermediate densities. For small and high values of r,
the viscous, ‘‘never-move’’ case performs better. In particular, the m ¼ 1

always has less cooperators than the immobile case ðm ¼ 0Þ. In the inset,

the corresponding fraction of active sites are plotted: the mixed state

where Cs and Ds coexist is also an active phase. Differently from the

m ¼ 0 case, mobility, even if in small amounts, helps to unpin the strategy-

flipping waves that roam the system.
when the available space is somewhat reduced and, second,
intermediate mobilities enhance cooperation! Indeed, for
intermediate mobilities, there is a maximum in the fraction
of cooperators (e.g. for m ¼ 0:1, the maximum occurs at
r ’ 0:75), differently from the m ¼ 1 case where this
maximum occurs at r ¼ 1, where no movement is allowed.
The transition from the region with rc ¼ 0 to the
cooperative one seems to be continuous and the finite
fraction of active sites indicates that when rca0, both
strategies, C and D, coexist. Remarkably, the fall of
cooperation after the maximum seems not to be associated
with any particular behavior of active sites, whose fraction
keeps growing with the total density. Thus, although no
particular sign is observed in ra around the maximum of
rc, the decrease of cooperation after the maximum is
related to a smaller number of empty sites that act as
pinning points that slow the dynamics or even prevent that
some regions of cooperators be predated, as was observed
in Vainstein and Arenzon (2001). Fig. 4 shows the fraction
of cooperators as a function of m for two different
densities, 0.7 and 0.9. For both densities, mobility
decreases cooperation, and in the former, even destroys it
completely above a threshold (close to it, the relaxation
becomes too slow and longer runs should be performed in
order to decide whether the transition is continuous or
not). Both cases also differ on the role played by the active
sites, much more prominent for r ¼ 0:9 because the smaller
the number of empty sites (pinning points), the larger the
number of active sites.
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Fig. 4. Average fraction of cooperating individuals (empty symbols) and

active sites (filled symbols) for the COD dynamics and densities r ¼ 0:7
(squares) and 0.9 (circles). For comparison, the values of rc=r for m ¼ 0

are: 0.2 ðr ¼ 0:7Þ and 0.52 ðr ¼ 0:9Þ. For all values of r, the amount of

cooperation is a decreasing function of the mobility. Whether cooperative

behavior exist depends, however, on the value of r: while for r ¼ 0:9
cooperators exist in the whole region, for r ¼ 0:7 a critical value of m

(around 0.33) exists above which defectors dominate. In analogy with

some physical systems, the dynamics close to this point slows down and

long time simulations are needed in order to extract the correct location

and order of the transition. Inset: the same as above but for the CDO

dynamics. Notice that in this case, the cooperation increases with m for

some values of r (e.g. 0.24, squares), and decreases for others (0.8, circles).
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active sites (circles), ra=r, for the CDO dynamics and several values of the

mobility: m ¼ 0 (solid line), 1 (hollow symbols) and 0.1 (filled symbols).

Notice the three regimes: defector dominated (rc ¼ 0, at low r),
cooperator dominated (rc ¼ 1, at intermediate r) and a mixed one

(0orco1, at greater values of r). They are separated by two transitions,

discontinuous and continuous, respectively. Notice also that active sites,

those that change strategy at a given time, have non-neglectable densities

only at large densities (roughly above r ’ 0:7), where there is a mixed

phase with both strategies coexisting ð0orcorÞ. Again, in analogy with

the COD case, mobility enhances cooperation for intermediate values of

densities. However, higher mobilities increase the range of r of the all-C

phase.
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Fig. 5 presents the long time behavior of the density of
cooperators shown in Fig. 2 for the CDO dynamics, as a
function of the total lattice occupation r, along with the
fraction of active sites ra. Again, the overall picture
remains the same: mobility destroys cooperation for low
densities, while enhances it for higher densities. This effect
is even stronger here than in the COD case: besides
occurring in a wider range of r (compare Figs. 3 and 5),
cooperators can invade completely the population (rc ¼ r,
for some r, in Fig. 5 and rcor, for all r, in Fig. 3). Also,
when compared with the viscous m ¼ 0 case, this dynamics
outperforms it, except very close to r ¼ 1. The origin of the
difference between CDO and COD dynamics is that,
whenever ma0, it is always good for the cooperators to
move away from its partner, whatever its strategy, what
favors the CDO dynamics. Differently from the previous
case, here there are two transitions: a sharp one from a D-
dominated ðrc ¼ 0Þ to a C-dominated ðrc ¼ rÞ, followed by
a continuous one to an active phase (both strategies coexist
and raa0). Moreover, for a given r, the dependence on
mobility is more complex than the previous case, as shown
in the inset of Fig. 4: for large densities, the behavior is
analogous to the COD dynamics, while the behavior for
intermediate densities is unexpected, as the system passes
from an all-D to an all-C state as m increases. Although we
do not deal in this paper with the question of invadability
of a population by a different strategy, we present in Fig. 6,
an example of when an initial patch with only two
cooperators completely replaces the sea of defectors in
which they are immersed. Again, in this case the mobility
enhances the effect (unless the density is so high that
movements are prevented), and the larger m is, the greater
is the probability of cooperators to invade the population.
In comparison, this has a very small probability of
happening when m ’ 0.

4. Discussion and conclusions

High population viscosity, or very limited dispersal (low
mobility), is a possible mechanism for the emergence and
maintenance of cooperation, even in a population of very
simple, non-retaliating, strategy-pure, agents (Nowak and
May, 1992). The cluster organization prevents defectors
from completely overtaking the population because the
payoff from the bulk cooperators outwin the exploitation
at the borders. A fundamental problem consists in
obtaining the minimal conditions under which cooperation
is present in a population. In particular, in this paper, we
tried to shed some light in the role of mobility, a usually
neglected factor. On one hand, besides helping to spread
clusters of cooperators, mobility may allow defectors to
escape retaliation from a former partner and helps to
increase the random mixing of a population by increasing
the range of interaction. Once memoryless agents are
considered (no recognition process is involved), the
probability of future encounters (the so-called shadow of
the future) increases when the mobility is small, and spatial
correlations are strong. Moreover, when increasing the
mobility, the effective range of interactions increases
proportionally to it and the probability of sharing the
same opponent decreases, thus dissipating the shadow of
the future. In this case, defection is expected. On the other
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hand, contingent mobility is expected to enhance coopera-
tion by avoiding continued exploitation or defector rich
regions. In between, when diffusion is unbiased and the
strategies, unconditional, it is not obvious what would be
the effect of mobility.

Here we presented results for a simple spatial game
where the patched environment allows explicit, although
random, movement of agents whose strategies are pure,
non-retaliating (unconditional). The diffusion is Brownian,
not relying on any type of explicit, genotypic or phenotypic
assortment. Moreover, in our model there is no correlation
between mobility and altruism: all rules are equally mobile.
Whether a given strategy is able or not to invade another
population would strongly depend on how viscous a
population is, the global density and the chosen dynamics.
However, some universal conclusions can be stated. First
of all, cooperation is possible under the above conditions,
thus enlarging the limits for cooperative behavior. Second,
for a broad range of the parameters (density, viscosity,
etc.), cooperation is enhanced in respect to the viscous case.
Third, a rule like always-move, regardless of the opponent
strategy, may increase the capability of cooperators to
invade and overtake a population of defectors. In this
sense, mobility may have a fundamental role in the
problem of the onset of cooperation. Once mobility is
incorporated within a population, it may evolve to
more contingent forms, perhaps under the control of the
agents, and be strategy, payoff or partner dependent.
A possible realization of such diffusion scenario may
occur in organisms with extracellular metabolism, as is
the case of some yeast cells (Greig and Travisano, 2004).
Sugar is processed outside the cell by a secreted enzyme
called invertase, creating a common resource for all
surrounding cells. This offers the opportunity for defection
as some cells may not have the cost of producing the
enzyme but yet benefit from that produced by others. To
what extent the cooperative behavior observed in such
simple organisms is a sole effect of the underlying spatial
structure or whether there is an enhancement factor due to
diffusion is an open and interesting question. Moreover, in
systems that present polarized motion (chemotaxis),
depending on the concentration of cooperators a gradient
of nutrients may be present and both cooperators and
defectors can migrate towards (away) high cooperator
(defector) density regions. Thus, a possible rule in this case
can be: ‘‘cooperators attract–defectors repell’’, but many
others can be devised. Such non-random rules may also
develop cooperative swarming, relevant for evolving higher
levels of biological organization, and is already found to
occur in bacteria (Velicer and Yu, 2003). Also interesting is
the effect of these more complex dynamical rules as well as
the consequences of random mobility in other regions of
the strategy space, in particular, when involving TFT
players.

The mobility m is an intrinsic parameter that indicates
the individual capability of performing walks (with unitary
step). As so, data for the same density r but different
mobilities m can be directly compared in Figs. 3 and 5,
and this information is summarized in Fig. 4. However,
this parameter alone is not a measure of the effective
dispersal since, as the density increases, movements are
prevented by the lack of empty space. Unfortunately there
is not a general prescription for this effective dispersal
and an actual measure would be necessary. This is an
important point, that will be addressed in a forth-
coming publication along with the question of how the
diffusivity of individuals change, for a given m and r,
when changing the displacement rule from the random
case considered here to a more biased choice. Even for
the simple unbiased case of this work some preliminary
results indicate that the effective mobility is not a simple
function of these parameters as the dynamics may
become very slow, due both to the presence of defects or
critical slowing down, analogous to those observed in
glassy systems and close to a continuous transition,
respectively.
The PD is not the only possible framework in which

social dilemmas can be studied. For example, the snowdrift
game (Szabó and Fath, 2006; Doebeli and Hauert, 2005),
where PoS (while P4S in the PD), is also biologically
relevant and may lead to persistent cooperative behavior.
The payoff matrix considers that cooperation involves a
benefit b to those involved and a cost c to the performer,
while defection involves no costs or benefits. When both
cooperate, they receive R ¼ b� c=2, sharing the cost, while
if they both defect they receive P ¼ 0. When one
cooperates and the other defects, the later receives T ¼ b

while the former is penalized with the total cost S ¼ b� c.
Although b4c40 and PoS, if we allow higher costs,
boco2b, we have P4S, recovering the PD ranking.
Interestingly, when taking the spatial structure into
account in the snowdrift game, the amount of cooperation
may be reduced, depending on the cost to benefit ratio
c=ð2b� cÞ (Hauert and Doebeli, 2004). It would be
interesting to extend our results and study the effects of
dilution and mobility in the snowdrift game, and different
updating rules, stochastic or deterministic, synchronous or
not, as well. The parametrization considered in our work,
proposed in the original work of Nowak and May (1992),
is at the borderline between these two games as it considers
b ¼ c. There are, however, other possible one-parameter
matrixes, still keeping the ranking of the PD game, for
example, T ¼ 1þ r, R ¼ 1, P ¼ 0 and S ¼ �r, with
r ¼ c=ðb� cÞ.
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