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H I G H L I G H T S

� The rigid flux balance analysis (FBA) biomass reaction hinders whole-cell modeling.
� New flexible FBA can produce subsets of biomass reactants.
� Time-linked FBA removes the reactant-to-byproduct long-time assumption.
� Our new methods avoid low-copy enzyme metabolic artifacts for whole-cell modeling.
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a b s t r a c t

We present two modifications of the flux balance analysis (FBA) metabolic modeling framework which
relax implicit assumptions of the biomass reaction. Our flexible flux balance analysis (flexFBA) objective
removes the fixed proportion between reactants, and can therefore produce a subset of biomass reactants.
Our time-linked flux balance analysis (tFBA) simulation removes the fixed proportion between reactants
and byproducts, and can therefore describe transitions between metabolic steady states. Used together,
flexFBA and tFBA model a time scale shorter than the regulatory and growth steady state encoded by the
biomass reaction. This combined short-time FBA method is intended for integrated modeling applications
to enable detailed and dynamic depictions of microbial physiology such as whole-cell modeling. For
example, whenmodeling Escherichia coli, it avoids artifacts caused by low-copy-number enzymes in single-
cell models with kinetic bounds. Even outside integrated modeling contexts, the detailed predictions of
flexFBA and tFBA complement existing FBA techniques. We show detailed metabolite production of in silico
knockouts used to identify when correct essentiality predictions are made for the wrong reason.

& 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Quantitative metabolic models are important tools for under-
standing and engineering the behavior of microorganisms. Flux
balance analysis (FBA) is a powerful technique to simulate large
metabolic networks for which kinetic parameters are unavailable.
FBA simulations capture microorganism growth, nutritional
resource consumption, and waste-product secretion rates (Varma
and Palsson, 1993; Mahadevan et al., 2002). In addition FBA can
generate knockout essentiality predictions which can be treated as

hypotheses to explore an organism's metabolic capability (Covert
et al., 2001; Edwards and Palsson, 2000).

Classical implementations of FBA quantify microbial growth
using a rigid biomass reaction which represents all the processes
of cell replication as a single proportion of the reactants required
and byproducts returned. It is used to quantify microbial growth
even when another objective is used to refine flux predictions or
evaluate perturbations (Raman and Chandra, 2009; Schuetz et al.,
2007; Segrè et al., 2002).

The biomass reaction can produce only balanced growth or
complete inactivity as predictions. For many applications the assump-
tions underlying this all-or-nothing behavior have been valid and the
results have been useful. However, current in silico biology incorpo-
rates FBA in integrated models which combine mathematical models
of different types to interact over a simulation (Birch et al., 2012,
Gonçalves et al.). For these applications — most notably whole-cell
models (Karr et al., 2012) — the rigid biomass reaction is a limitation.
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To enable whole-cell modeling, we require a more nuanced
alternative to the biomass reaction so that FBA can produce
metabolites in non-wild-type and non-steady-state proportions.

In this work, we relax two implicit assumptions of the biomass
reaction to construct new FBA methods. The first assumption is of
balanced population average growth, encoded by the biomass
reaction's fixed proportion of reactants. The second assumption is
of steady state growth, encoded by the biomass reaction's fixed
proportion of byproducts to reactants. Relaxing the reactant and
byproduct assumptions results in the flexible FBA (flexFBA) and
time-linked FBA (tFBA) approaches, respectively.

Together, the balanced and steady-state growth assumptions
inherent to biomass reaction in FBA make the method applicable
to a timescale longer than regulatory and cell process interactions. By
combining the flexFBA and tFBAmethods which relax these assump-
tions, we obtain a short-time FBA appropriate to use in whole-cell
models. This short-time scale is consistent with whole-cell models
which evaluate the metabolic model on timescales shorter than the
regulatory and process interactions they explicitly represent.

1.1. Biomass reaction and assumptions

The biomass reaction is ubiquitous in microbial FBA because it
lends great predictive power to the under-constrained metabolic
network. It has a succinct mathematical form and is composed of
straightforward parameter values. In addition to quantifying
growth, the biomass reaction flux is often used as an optimization
objective and in this case may be called the ‘biomass objective’
(Feist and Palsson, 2010). Much literature evaluates the ability of
various FBA objectives to mimic observed growth, gene essentiality,
or flux states (Schuetz et al., 2007; Harcombe et al., 2013; Burgard
and Maranas, 2003; Reed, 2012; Zomorrodi et al., 2012), often in
comparison to ‘biomass objective’ performance. In contrast, here
we discuss simulation regimes in which the biomass reaction does
not adequately model the range of metabolic network function,
and is no longer relevant as a quantification of growth.

By constraining together all process reactant requirements and
byproduct returns the biomass reaction combines the two subtly
different assumptions that deal with the (1) reactant-to-reactant
and (2) byproduct-to-reactant groups.

Reactant-to-reactant fixed proportion in the biomass reaction
assumes population average balanced growth: homogeneity
between cells and within cells over time. This assumption is
contained in the biomass reaction's negative coefficients. As a
consequence, the biomass reaction scales the fractional fulfillment
of all process reactants to whichever one is most limited. Homo-
geneity between cells arises from the biomass reaction because its
coefficients are bulk cell composition values. For single cells and
short timescales this homogeneity conflicts with biological reality.
Bulk phenotypes are given by an average and neglect variance in
the underlying population (Taniguchi et al., 2010; Lidstrom and
Konopka, 2010). Strict temporal homogeneity of metabolite pro-
duction ratios is unreasonable because the transcriptional and
translational regulatory mechanisms which could enforce it oper-
ate on timescales longer than the typical FBA time step (1 s to a
few minutes Covert and Palsson, 2002; Covert et al., 2008).
Furthermore, regulatory interactions may not exist between all
metabolites included in the biomass reaction to enforce their
proportional production. Experimental observations reveal that
even essential metabolites can be produced in non-wild-type
proportions (Jackowski and Rock, 1981; Goldstein et al., 1959;
Goss et al., 1964; Ohashi et al., 2008). Additionally, all metabolites
included in the biomass reaction are essential for model growth.
If the biomass reaction includes process reactants which are non-
essential for cell replication, then false-essential predictions will
result (Feist et al., 2007). Previously, the inflexible ratio and

essentiality of the biomass reaction have been addressed via
alternate biomass reaction definitions (Feist et al., 2007; Nookaew
et al., 2008) or reactions allowing similar metabolites to substitute
for one another (Heavner et al., 2012); though these approaches are
not practical for the entire scale or all pathways of metabolism.

Byproduct-to-reactant fixed proportion in the biomass reaction
assumes steady state metabolic function. This assumption is
contained in biomass reaction's positive coefficients. The principle
example is the return of spent energy carrier ADP set proportional
to the amount of ATP produced within a time step. Proportional
byproducts to reactants means the ADP return is immediately
matched to the capacity of metabolism to recharge it to ATP, rather
than being consistent with the previous time step's metabolic
conditions. Relating the reactant and byproduct quantities is
reasonable, but a long-time assumption is implied within a single
evaluation of the FBA optimization. Perturbations or changes in
available media resources therefore result in immediate transition
to a new steady state in the single time step at which they are
applied. This type of transition is unrealistic for short time step
evaluations or if the energy carrier supply or turnover is limited.

2. Methods

Mathematically the biomass reaction consists of coefficients mi

of metabolites Mi appended as a single reaction column to the
stoichiometric matrix S as in the equation,

ð1Þ

where values mio0 represent consumption of process reactants,
and mi40 represent byproduct return. A majority of the n total mi

values are zero because the associated metabolites do not parti-
cipate in cell processes beyond metabolism. Coefficient magni-
tudes for anabolic products are given by relative quantities found
in bulk biomass (Feist and Palsson, 2010); coefficient magnitudes
in the case of catabolic energy carriers are given by requirements
for macromolecule synthesis or calculated from bulk yields (Feist
and Palsson, 2010). Units of mi are usually chosen so that the flux
through the biomass reaction, the last element of flux vector v

denoted vbio, can be directly interpreted as a microbial growth rate
(Varma and Palsson, 1993). Metabolite accumulation d½M�=dt is set
to zero (Varma and Palsson, 1993), applying the steady state
assumption to metabolic network intermediates on the timescale
of evaluationΔt, typically 1 s or longer. Using the biomass reaction
flux as the maximization objective, the optimization problem is

maximize vbio
subject to S0v0 ¼ 0

vlrvrvu;
ð2Þ

where S0 ¼ ½Sjm� and v0 is vbio appended to the end of v as in Eq. (1).
Because the coefficients mi are quantities required for some

basis amount of cell mass, we find it convenient to think of the
biomass reaction flux vbio as the fractional fulfillment of that
requirement per time. The classical FBA biomass reaction therefore
requires the fractional fulfillment of all the metabolite require-
ments to be the same.

2.1. Designing a biomass reaction alternative

While we sought to relax the biomass reaction's assumptions, we
wanted to simultaneously preserve its behavior in the wild-type and
long-time limits. We developed flexFBA to produce all possible
process reactants without inhibition from distant/unrelated blocked
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pathways while maintaining the population average cell composition
for wild type networks. We developed tFBA to allow observation of
transient behavior and integration with other biological process
models while reproducing steady state growth. An additional design
constraint was the need for integrated modeling methods to be
computationally efficient and function without human supervision.

Neither flexFBA nor tFBA relies on or interferes with each other, so
they can be implemented separately or together. We therefore treat
them individually in initial methods explanation and evaluation.
However, because flexFBA and tFBA relax separate long-time assump-
tions of the biomass reaction, only by implementing them together do
we achieve short-time FBA suitable for use in whole-cell models.

2.2. Reactant flexibility: flexFBA

As long as the process reactants participate in the same
reaction they must be provided by the network at rates related
by a nonzero constant multiplier. To remove this constraint and
produce them independently, we append their coefficients in
separate reactions to the stoichiometric matrix

ð3Þ

where the fluxes corresponding to each of these reactions fi
appended to v still intuitively represent the fractional fulfillments
of the requirement for metabolites by processes, but they can now
vary from one another. We will call the combined matrix of Eq. (3)
~S, and the combined vector ~v. The blocks appended to S are square
diagonal in the general forms of Eqs. (3) and (5), however the
many all-zero columns are removed in practical use.

The objective criteria applied must incentivize process reactant
metabolite production — large values of fi — and simultaneously
encourage proportional production — similar values of fi. In the
wild type case, such an objective will result in process reactant
exchange to and from the metabolic network identical to the
biomass reaction flux maximization case in Eq. (2). We achieve
this mathematically using the objective

maximize f atp�γ∑
i
j f atp� f i j ; ð4Þ

where f atp is the fractional fulfillment of energy carrier ATP. It
maximizes the fractional fulfillment of ATP while penalizing any
metabolite produced less than proportionally to ATP. The weight γ
applied to penalty terms is a constant, which we explain how to
choose later. Fig. 1A compares biomass reaction flux maximization
to the flexible form.

The ℓ1 norm penalty encourages sparsity in its arguments;
incentivizing that most fi match f atp rather than drawing all fi
towards those that are constrained to be low. Similar motivations
for ℓ1 norm use are found in robust and regularized regression
(Boyd and Vandenberghe, Sra et al., 2012). In contrast, the ℓ2 norm
does not penalize small errors, and draws the solution towards
outliers. We also found that the ℓ2 norm is less numerically stable,
failing to give reliable results for the metabolic system.

ATP production f atp is used as a representative of metabolic
function, based on its biological importance and large process
requirement mi. Including ATP explicitly in the objective is also
consistent with previous FBA implementations which include ATP
rate or yield in the optimization criteria or maintenance energy
flux constraints (Schuetz et al., 2007). Alternatives to this choice
include functions of fi values such as the mean, but these are prone
to trade-offs between metabolites, especially due to the eight
orders of magnitude spanned by the values of mi.

We additionally introduce the constraint that f atpZ f i, resulting
in the simplification to difference penalty terms. However, this
constraint is optional and ℓ1 norm penalties could be used in

Fig. 1. Flexible FBA objective diagrams and results. (A) Diagram of biomass reaction flux
maximization compared to application of flexible FBA to a small example system with
key metabolite Matp corresponding to ATP and other biomass metabolites generically
denotedMi. The biomass reaction flux maximization objective optimizes the production
of all metabolites necessarily in exact proportion (green). The flexible FBA objective
increases ATP production (blue) with a penalty for any other process reactant which is
produced less than proportionally (red). (B) FlexFBA objective demonstration showing
biomass metabolite production for the wild type metabolic network, and for a glycogen
pathway knockout compared to biomass reaction flux maximization objective for that
knockout.
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subsequent equations instead. Because the ATP coefficient mATP is
based on bulk yield measurements it accounts for some of the
thermodynamic inefficiencies of metabolism, which we have
chosen to maintain strictly with the f atpZ f i constraint. We include
an optional full biomass reaction flux with weight β in the
optimization criteria, so the full problem is

maximize f atp�γ ∑
n

i ¼ 1
ðf atp� f iÞþβgbio

subject to ~S ~v ¼ 0

vlrvrvu

0rgbior f i

f ir f atp for i¼ 1;…;n: ð5Þ

The biomass group term gbio, if it is included with sufficiently large
β, assures that no metabolite is produced less than it would be
using biomass reaction FBA. Including the biomass group alters the
flexFBA simulation only when a pathway is partially restricted
upstream of a branch to multiple process reactant metabolites, as
we discuss subsequently. The problem in Eq. (5) can be forced to
the biomass reaction solution by further setting 0rgbio ¼ f i.

Basic flexFBA simulation results are shown in Fig. 1B with
identical metabolite production to biomass reaction FBA for the
wild-type network. When glycogen synthesis capacity is removed
by a simulated gene knockout, the biomass reaction predicts no
metabolite production, while flexFBA predicts full wild type level
production of all metabolites except glycogen.

Simulations in Fig. 2 exemplify the contribution of the full
biomass group gbio term. Pathway restriction makes the metabolic
precursor of tyrosine and phenylalanine a limited resource.
Escherichia coli biomass contains slightly greater amounts of
phenylalanine than tyrosine ðmtyrompheÞ, with 57% of the flux to
the branch point heading to phenylalanine. The process require-
ment for tyrosine being smaller means each increment of frac-
tional fulfillment is less costly in terms of the limited precursor so
the flexible terms f atp with penalty equation (4) alone would
produce f tyr4 f phe. The biomass group incentivizes proportional
production to the extent that its flux is permitted: f tyr ¼ f phe in the
single knockdown (left two columns). This contribution is limited
by any other restricted process metabolites, just as the biomass
reaction would have been. We see the preference of flexFBA for the
smaller requirement downstream of a restricted branch when the
biomass group is additionally constrained — in Fig. 2 by a glycogen
pathway restriction with the double knockdown (right two col-
umns, Fig. 2).

The addition of βgbio the flexible objective is only one of many
ways to increase fi similarity among subsets of the process
metabolites. Mathematically these terms could positively weight
group production as with the biomass group term. Taking as an
example the reactants of DNA synthesis, this would entail adding
the βdNTPgdNTP to the maximization criteria and the constraint
gdNTPr f j for j¼ fdATP;dTTP;dGTP;dCTPg to the problem of Eq. (5).
Similarly, deviations within the group could be penalized using a
form like the flexible objective itself, or a strict limit imposed on
members f jrmink f k, for j; k¼ fdATP;dTTP;dGTP;dCTPg. These
additional terms would apply the assumption with varying strict-
ness that molecular interactions maintain proportion between
these metabolites on the timescale of FBA evaluation. However,
assigning groups and weighting their terms increase the para-
meterization and potentially complicate the optimization problem.
We consider current experimental evidence insufficient to guide
or justify including such groups generally.

2.3. Time-linked byproducts: tFBA

Biomass reaction FBA can represent only the steady states of
growth and not the transients between those steady states. This
limitation is because process byproducts are returned from the
reactants provided to processes within the same optimization time
step. In tFBA the byproducts from time step t are available to the
metabolic network at time step tþΔt. With this modification we
remove the long term steady state assumption from the biomass
reaction.

Additional motivation for tFBA is that to construct integrated
models it is advantageous to separate process reactant require-
ments and byproduct return. The biomass reaction can be thought
of as an integrated model lumping all cell processes together.
Because the biomass reaction is expressed as a single linear
equation, it can be included in the linear system for optimization.
However, it is not possible to represent processes of differential
equation form, and especially stochastic processes, within the
framework. Once it is required to evaluate FBA optimization and
process models separately, the simulation must include methods
to assure a metabolic solution exists and the overall simulation
conserves mass — to keep processes and metabolism consistent.

Fig. 2. Branched pathway restriction. Flex FBA objective biomass metabolite
production compared to biomass reaction flux maximization for a 50% knockdown
in aromatic amino acid biosynthesis immediately upstream of the branch to
Phenylalanine (Phe) and Tyrosine (Tyr), and with additional 75% knockdown to
the glycogen synthesis pathway.
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A former solution to maintaining process–metabolism consistency
while preserving byproduct-to-reactant ratio within an FBA opti-
mization required multiple evaluations of each for every simulated
time step. We applied this solution to FBA integrated modeling in
Birch et al. (2012), however it is computationally inefficient, prone
to time step dependent artifacts, and would be very problematic
for stochastic models. The preferable alternative is tFBA: process–
metabolism consistency can be enforced with straightforward
metabolite quantities by separating process reactant consumption
and byproduct return to occur between time steps.

The biomass reaction summarizes many molecular steps which
may share reactants and byproducts, so mi summarizes a reactant
and byproduct stoichiometric coefficient ri and pi, respectively:
mi ¼ piþri, with rio0 and pi40. In tFBA we replace mi with the
reactant coefficient ri in the reactions appended to the S matrix,

ð6Þ

where separate exchange reactions xi for the process byproducts
have been added, and the matrix and flux vector are denoted as Ŝ
and v̂, respectively. The bounds for byproduct exchanges xlrxr0
are set only for uptake, and based on the available byproduct
metabolite returned by the processes at the prior time step. In the
case that a simple proportionality is still used to represent

processes, at steady state in the wild type network these exchange
reactions will have flux bounds and values of xi ¼ xl;i�pif where f
is the fractional fulfillment of all metabolites at this steady state.
During the transient metabolic states the bounds xl;i will depend
on f j;ðt�ΔtÞ the fractional fulfillment of related reactant Mj from the
previous time step. Note that we maintain the FBA steady
state assumption with respect to metabolic intermediates, which
addresses an intermediate timescale between the fluctuations in
metabolite concentrations to which enzyme–small molecule inter-
actions respond quickly, and the longer regulatory responses. The
full optimization problem statement for tFBA is

maximize f atp�γ ∑
n

i ¼ 1
f atp� f i

� �
þβgbio

subject to Ŝv̂ ¼ 0
vlrvrvu
xlrxr0
0rgbior f i
f ir f atp for i¼ 1;…;n; ð7Þ

where in this case the flexFBA is also being used. To implement
tFBA but retain fixed proportion of reactants the last constraint of
Eq. (7) becomes 0rgbio ¼ f i.

To present the impact of the tFBA method on simulations, we
compare it to the previous methods for generating FBA time
courses. Such methods consist of updating media concentrations
based on the resources consumed during discrete time steps, with

Fig. 3. Biomass reaction FBA and tFBA time step relationship schematics and example media transition simulations. (A) Biomass reaction FBA diagram of relationship
between metabolism and biomass process within and between time steps, with influence from simulation conditions represented as colored highlight. (B) Corresponding
tFBA diagram. (C) Biomass reaction FBA simulation of acetate to glucose media transition at t¼10 s showing normalized production of biomass reactants (black open) and
return of biomass byproducts (closed grey). Marginal ticks for process reactant production values are colored according to a scale of yellow to blue with the end points set as
steady states of acetate and glucose growth, respectively. (D) Corresponding tFBA simulation of acetate to glucose media transition.
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the most thorough accounting called dynamic FBA (dFBA) from
Mahadevan et al. (2002). Such simulations capture organism
growth rate shifts in the time step after one of the resources is
exhausted. However, at each time step growth is steady state with
respect to the biomass reaction, so the resulting time course is a
sequence of growth steady states. Fig. 3A and B illustrates the
reactant–byproduct relationship for a time course of biomass
reaction FBA steady states, and tFBA, respectively. Upon a change
in conditions, biomass reaction FBA byproduct return is already
informed by the new conditions — which is why the arrow from
reactants to byproducts in Fig. 3A appears reversed with respect to
time — and immediately achieves steady state. In comparison,
tFBA byproduct return is a function of reactant consumption at the
previous time step and condition. As a result, it transitions over
some number of evaluations to the new steady state. At steady-
state growth, time steps are identical so the same result is
obtained at the long time limit.

Fig. 3C and D shows process reactants and byproducts across an
example transition from acetate to glucose media conditions for
biomass reaction FBA and tFBA simulations. Transition time is not
the only distinction, as tFBA also accounts for the difference in
resources needed to maintain the states. In the E. coli network
purine energy carriers ATP and ADP are the most important
example. Using biomass reaction FBA, one of the modeling
assumptions is that additional ADP are assumed to exist as soon
as they can be phosphorylated in the glucose media condition,
whereas tFBA simulation includes synthesis of these additional
purine molecules via the metabolic network. The higher glucose
growth rate requires twice the number ATP plus ADP to sustain
(Bennett et al., 2009), and it is certainly preferable to account for
the resources used in their synthesis. Because Fig. 3 simulations
employ the wild type network and necessary media resources are
available to produce balanced growth, either flexFBA or the
biomass reaction objective will produce the results shown.

We note here that the quantities of reactants and byproducts
exchanged between metabolism and the processes will not be
representative of physiological metabolite concentrations. These
quantities are an accounting practicality of representing discrete

metabolic steps and cell function beyond linear system represen-
tation. However, the variables at this metabolism-process interface
provide an opportunity for further methods development in FBA
and whole-cell modeling fields.

2.4. Implementation

The genome scale metabolic model used for all main text
figures is a slight expansion on iMC1010 (Covert et al., 2004). Text
files used for the reaction network and other modeling informa-
tion are included with the code associated with this publication.
Kinetic bounds and reaction perturbations are included in source
code. Simulations were implemented in Python, with linear
programming completed using CVXOPT (Andersen et al.) and
GLPK or MOSEK. Source code for simulation and figure generation
is available at simtk.org/home/flexfbatfba.

Simulations of in silico knockouts entail setting the associated
reaction flux constraints vl ¼ vu ¼ 0. For tFBA simulations, use of
process byproduct protons by metabolism was required. Fluxes are
accounted in our simulations on a per cell rather than on a per
gram dry cell weight basis, and are displayed as such unless
otherwise noted. If β is nonzero we hold its value large, βb1.

The weighting of penalty terms must be 0oγo1 for the
production of any biomass metabolites other than ATP, with some
tighter lower and upper bounds depending on the metabolic
network and biomass metabolite count (theoretically γZ1 is
feasible but practically interferes with solver). For all main text
simulations in this work a value of 0.1 was used, chosen based on
the total count of process reactants terms to avoid solution
convergence to the biomass reaction limit. An analysis of meta-
bolite production sensitivity to γ (Supplementary Fig. S1) shows
that the value can be chosen to produce the desired qualitative
flexFBA solution, robust to various conditions and with multiple
perturbations. Fig. S1 includes simulations over a physiologically
reasonable range of growth conditions, and with a range of
metabolites constrained to low production.

Fig. 4. Flex and tFBA simulation with knockouts. Immediately after perturbation (left panels) at t45 s indicated by arrows, and in the steady state time limit (right panels).
(A) Acidic phospholipid pathway knockout of gene pgsA. (B) Purine pathway knockout of gene purA.
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3. Results

3.1. Knockouts

Using combined flexFBA and tFBA to achieve a short-time FBA,
we can simulate the metabolic network in dynamic response to
an in silico gene knockout perturbation. When we applied such

knockouts, we observed two broad types of simulation results,
examples of which are presented in Fig. 4.

Many knockouts converge almost immediately to steady state,
as in Fig. 4A. An example is pgsA which catalyzes a step in the
synthesis of E. coli membrane components cardiolipin and phos-
phatidylglycerol. Immediately upon constraining the pgsA flux to
zero, the associated process reactant production is zero (Fig. 4A,

Fig. 5. Knockout strain versus process reactant production grid for flexFBA and biomass reaction FBA (small grids at top), and expanded to show detail for flexFBA. Strains
included are those experimentally categorized as essential in glucose minimal (gene) or glucose minimal and additionally rich media (gene bolded) by Feist et al. (2007).
Simulations completed in glucose minimal in silico media. Production immediately following perturbation given by shading (dark indicating metabolite absence), steady
state limit result is outline. Experimental evidence associated with colored key for prediction correctness is in Table S1, categorized as follows: ‘Auxotrophs’ are associated
with direct literature reference to the knockout strain requiring the absent metabolites, precursors from which they can be synthesized, or some combination; ‘Likely
Auxotrophs’ are associated consistent but indirect literature reference to the knockout strain requiring the absent metabolites or precursors from which they can be
synthesized; ‘Other Agreement’ indicates that the absent metabolites are entirely consistent with literature documentation of the gene product, but cannot be transported
from the media to supplement an auxotrophy; ‘Partial Agreement’ indicates that literature references are consistent with some of the missing metabolites, but some either
are or fail to be produced in conflict with literature evidence; ‘Incorrect’ predictions are those for which detailed metabolite production is largely inconsistent with literature
biochemical evidence. The knockouts in Fig. 4 provide additional orientation to the information presented.
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top left) and this continues in the long time limits (Fig. 4A, top
right). Meanwhile, all unrelated biomass reactants and byproducts
continue to be produced (Fig. 4A, bottom left and right). Lack of
cardiolipin and phosphatidylglycerol in the pgsA knockout simula-
tion is consistent with the experimental evidence where this strain
has been shown to lack these two membrane components
(Mileykovskaya et al., 2009) and survive under some conditions.

A smaller group of knockouts display qualitatively different
metabolite synthesis immediately upon and long after perturba-
tion, as exemplified by purA in Fig. 4B. Flux through the reaction
towards de novo purine synthesis is set to zero, but in the short term
purines are still provided to the processes (Fig. 4B, top right).
Continued purine availability is due to tFBA purines being returned
from the previous step as byproduct spent energy carrier ADP. Long-
term gradual decrease occurs because at each time step a few of the
returned purines are sequestered in cell macromolecules as RNA and
‘soluble pool’ maintenance — mathematically mampþmatpo�madp

— so without the ability to synthesize adenosine from small molecule
nutrients the free amount declines (Fig. 4B, top right). Based on the
flexFBA constraint f mo f atp, which represents the biological depen-
dance of all metabolic activity on ATP, all other biomass reactants
decrease proportionally (Fig. 4B, bottom left and right). Experimen-
tally, purA knockouts are purine auxotrophs (Zalkin, 1996), consistent
with the flexFBA and tFBA phenotype predictions.

The flexFBA and tFBA techniques allow us to compare knockout
simulations to experiment for each metabolite individually, rather
than with the binary essential/non-essential gene classifications of
biomass reaction FBA. Previously, such detailed predictions would
have been possible only in part and only by testing media
supplements over many simulations, or with computational
searches of the FBA solution space (Imielinski et al., 2005). Fig. 5
emphasizes the increase in prediction detail with our techniques
by summarizing results like those in Fig. 4. In Fig. 5, genes knocked
out computationally are true-essential predictions for glucose
minimal media from Feist et al. (2007). Process reactant absence
is indicated by dark shading of that metabolite, short-term as fill
and long-term as border. We contrast these results with the
analogous biomass reaction results (Fig. 5, small grids at top);
using the biomass reaction no useful detail is contained in the
completely shaded grid (Fig. 5, right).

We can now make graded assessments of metabolic network
predictions. A knockout has historically been called true-essential
if the biomass reaction flux value is below some threshold for a
gene found experimentally necessary for growth. These true-
essential matches are considered a metric for the quality of
metabolic network reconstructions. However, it provides no infor-
mation about whether the prediction is correct for the relevant
biological reason. We compared the literature information to
flexFBA metabolites absences in Fig. 5, and indicate agreement
by color (associated references in Table S1). The strains missing
one or more biomass metabolites are analogous to auxotrophs,
and most of these experimental literature confirms that media
must be supplemented with the metabolites unavailable in simu-
lation or precursors. For genes where experimental evidence was
consistent with the in silico phenotype, but it was not expected for
the critical components to exchange with the media, we assigned
an ‘other agreement’ classification. The ‘other agreement’ group
consists of mostly membrane components, electron transport
chain enzymes, and nucleotide kinases.

Shown by the pie inset of Fig. 5, the majority of true-essential
predictions occur from biologically relevant consequences in the
metabolic network. This agreement means that our detailed
results are largely consistent with the accuracy classification
implied by the ‘true’ of true-essential biomass reaction predic-
tions. Fourteen metabolic phenotypes were found in at least
partially inconsistent with biochemical and genetic evidence.

These phenotypes include cases in which FBA made technically
correct predictions of essentiality, but with faulty reasoning. One
example is the metK knockout for which spermidine synthesis is
blocked in silico, preventing any biomass reaction flux. The zero
biomass reaction flux is the traditional FBA prediction that metK is
an essential gene, which matches with metK essentiality found
experimentally. However, the metK knockout is not lethal because
of spermidine absence, as strains have been isolated without the
polyamines (Tabor and Tabor, 1985). Instead, the reason a metK
knockout is lethal involves the production of critical cofactors
required for methionine biosynthesis (Wei and Newman, 2002).
These cofactors are used in cycles, which means that FBA can
‘balance’ the fluxes even though the cofactors are never produced.
Our new approach allows us to resolve the discrepancy between
biochemical evidence and the in silico phenotype, whereas the
previous FBA methods claimed a correct prediction. The folA
knockout prediction is an analogous case to metK; serA, serB, and
serC knockouts demonstrate the opposite phenomena wherein
cycles which are possible for FBA but not in cells are disrupted.
A number of these incorrect predictions involve cofactor cycling,
among them folA and metK knockouts are both able to produce
metabolites whose synthesis is in reality prevented. In the cases of
serA, serB, and serC knockouts the balance of interconversion
between acetyl-CoA and CoA is perturbed, to which FBA is
apparently more sensitive than metabolism in vivo.

3.2. Expression bursts

Fig. 6 compares the results of our short-time FBA to biomass
reaction simulations in the case of enzyme copy number fluctua-
tions in a single cell. Some process reactant metabolites are
required by the cell in small amounts, and the enzymes that
produce them exist on the order of tens per cell. Increasingly, FBA
approaches are refined with the addition of enzymatic parameters
in bounds calculation (Reed, 2012), for example using protein
counts and turnover number to constrain internal network fluxes
(Karr et al., 2012). For kinetic flux bounds to be applied in single
cell integrated models, flexFBA is required to avoid biomass
reaction artifacts from low copy number enzymes.

Coenzyme A (CoA) is the small process requirement metabolite
example for Fig. 6 simulations, with total inclusion in biomass
alone and as acetyl- and succinyl-CoA being six orders of magni-
tude smaller than the process requirement for ATP. An essential
step in CoA synthesis is performed by coaBC, which is observed at
an average of less than twenty per cell, produced from two or
three transcription events per cell cycle (Taniguchi et al., 2010). We
input an approximation of coaBC expression by translational
bursts, which informs kinetic bounds on CoA synthesis shown in
Fig. 6A and B, compared to kinetic bounds which smoothly
increase according to a population average. The biomass reaction
and flexFBA predictions for CoA synthesis rate are similar, both
being restricted while kinetic bounds for the single cell are lower
than smooth population average (Fig. 6A and B). The difference is
when CoA synthesis is constrained below the smooth level, using
the biomass reaction, all process reactant metabolite synthesis is
also constrained (Fig. 6C), whereas it is unperturbed by CoA limits
using flexFBA (Fig. 6D). Biomass reaction accumulation of macro-
molecular precursors is lowered by the periods of restriction. This
deficit is seen as slightly lower fluxes compared to the smooth case
even when coaBC enzyme is not limiting.

4. Discussion and conclusions

We have constructed an FBA objective which is able to produce
subsets of process reactants, and reproduces the traditional biomass
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production in the wild-type network case. In addition, our time-
linked simulations allow us to observe transitions between FBA
steady states. Critically, the methods satisfy the requirement for
quick unsupervised operation such that they can be used in
integrated modeling applications, and do so using off-the-shelf and
open-source optimization packages. Furthermore, flexFBA functions
robustly with the single added adjustable parameter of penalty term
weighting γ. An additional strength is that as the penalty weighting
approaches one the question asked converges from ‘whatever
metabolism can make’ to the classic population survival assessment.

The detailed results of flexFBA and tFBA in silico knockout
predictions offer a new window into metabolic reconstructions.
Correctness or incorrectness of essentiality and metabolic pheno-
type predictions are properties of the metabolic reconstruction
and gene associations. What our methods make possible is to
identify when correct predictions are made for the wrong reason,
indicating a problem with the metabolic reconstruction. Identifi-
cation of erroneous true-essential predictions is important as they
may cause problems within other applications of FBA. For exam-
ple, in metabolic engineering design these could lead to misguided
computational suggestions for strain development efforts.

Our short-time FBA is necessary to avoid artifacts as we apply
FBA at the short-time scale single-cell level with enzyme count
and kinetic parameters as constraints. Using the biomass reaction,
models predict that a cell constrains these distant pathways,

including large fluxes catalyzed by high copy number enzymes,
to match the transcriptional fluctuations of a single rare protein.
On one second timescales, such a strict constraint is unreasonable
both from an evolutionary perspective and from our mechanistic
understanding. Furthermore, in the coaBC example we saw the
impact of only one reaction limited by an enzyme produced in
bursts, whereas many exist and, in simulation simultaneously,
would result in even more dramatic limitation. Our methods
introduce the first FBA solution that avoids propagating low copy
enzyme bounds implausibly.

The biomass reaction previously limited application of genome
scale stoichiometric metabolic models to population average and
steady state growth. FlexFBA and tFBA together bring the relevant
timescale to an intermediate range which will allow us to
represent more cell physiological detail. The combined short-
time FBA will be instrumental in whole-cell simulations and
understanding the heterogeneity that underlies many critical
phenomena in microbiology.
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