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H I G H L I G H T S
� Ebola transmission intense within households compared to between households.

� Models show larger households increase epidemic risk if all other conditions same.
� Control by case detection and isolation alone challenging if households large.
� Additional household quarantine can mitigate impact of large households on control.
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a b s t r a c t

A salient characteristic of Ebola, and some other infectious diseases such as Tuberculosis, is intense
transmission among small groups of cohabitants and relatively limited indiscriminate transmission in the
wider population. Here we consider a mathematical model for an Ebola epidemic in a population
structured into households of equal size. We show that household size, a fundamental demographic unit,
is a critical factor that determines the vulnerability of a community to epidemics, and the effort required
to control them. Our analysis is based on the household reproduction number, but we also consider the
basic reproduction number, intrinsic growth rate and final epidemic size. We show that, when other
epidemiological parameters are kept the same, all of these quantifications of epidemic growth and size
are increased by larger households and more intense within-household transmission. We go on to model
epidemic control by case detection and isolation followed by household quarantine. We show that, if
household quarantine is ineffective, the critical probability with which cases must be detected to halt an
epidemic increases significantly with each increment in household size and may be a very challenging
target for communities composed of large households. Effective quarantine may, however, mitigate the
detrimental impact of large household sizes. We conclude that communities composed of large house-
holds are fundamentally more vulnerable to epidemics of infectious diseases primarily transmitted by
close contact, and any assessment of control strategies for these epidemics should take into account the
demographic structure of the population.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The epidemiology of an infectious disease is governed by the
way it is transmitted. Many respiratory infections are spread
widely and fairly indiscriminately by aerosols. HIV is mainly
spread through limited and well defined networks of sexual con-
tacts. The Ebola virus is spread by direct contact with the bodily
fluids of an infectious person (Aylward et al., 2014). Consequently
transmission is much more intense among members of the same
household than in the wider community. A study in Guinea in
2014 found that 82% of transmission occurred in the community
and, of this, 81% occurred between family members (Faye et al.,
2015). Therefore, the composition of the community in terms of
households and the balance of transmission between and within
 84
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households may be expected to have strong influences on key
epidemiological characteristics such as reproduction numbers, the
final epidemic size and the impact of control strategies. Here we
use a mathematical model to investigate how household structure
is likely to influence the epidemiological dynamics of Ebola. We
show that, under otherwise equivalent epidemiological conditions,
communities composed of larger households are more vulnerable
to epidemics, and these epidemics are much harder to control by
case detection and isolation unless the whole household is placed
under effective quarantine.

Epidemiological models with household structure have been
around for some time (Ball, 1999; Ball et al., 1996a,b; Becker and
Dietz, 1995) and interest has steadily increased over the last dec-
ade. Household structure is appropriate to investigate any scenario
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in which it is important to distinguish between random ‘mass-
action’ transmission in the general population and transmission
between members of the same family or small, well-defined
group. Early household models considered stochastic epidemics.
They were analysed with techniques such as branching process
theory, typically to derive epidemic thresholds. More recently,
deterministic household epidemic models have been introduced,
using a similar framework to network epidemic models (House
and Keeling, 2008). For these deterministic models the state
variables of the system are the proportions of households in given
epidemiological states, and ordinary differential equations
describe how these variables change. Key epidemiological char-
acteristics such as the intrinsic growth rate and distribution of the
number of secondary household infections arising from an infec-
ted household can be computed using efficient methods based on
the associated Markovian transition matrix (Ross et al., 2010). In
recent years there has also been a concerted effort to develop
theory for reproduction numbers for epidemics in populations
with household structure. The household reproduction number,
defined as the expected number of households infected by one
infected household in a typical susceptible population, has
received the most attention because it is relatively easy to define,
construct and calculate. The basic reproduction number, ubiqui-
tous throughout epidemiological theory, was elusive for household
models but has recently been carefully derived to have the correct
physical interpretation, although construction and calculation
remain challenging (Pellis et al., 2012). Both the household and
basic reproduction numbers specify epidemic thresholds – the
probability of an epidemic is only non-zero if they are greater than
1. Several other reproduction numbers have also been defined for
household models. These quantities offer insight into different
aspects of the epidemiological dynamics and provide bounds for
the basic reproduction number and the critical vaccination rate.
Most of them also specify the epidemic threshold (Ball et al., 2014).

Household structured epidemic models have provided some
interesting insights. House and Keeling (2008) considered an SIR
epidemic model with no mortality, no demographic turnover and
permanent immunity. They fixed the within-household transmis-
sion rate and, for any given household size, adjusted the between-
household transmission rate to maintain a constant intrinsic
growth rate. They showed that, under this constraint, household
structure leads to a more sustained epidemic phase and larger
final epidemic size, with the divergence from the unstructured
model greatest in communities with intermediate household size.
They also showed that the critical coverage of a responsive vac-
cination scheme depends on household size, but it is better to
vaccinate randomly than target certain households. Ross et al.
(2010) considered an SIRS model with no mortality, no demo-
graphic turnover and waning immunity. They showed that large
households act as amplifiers of infection. So large households and
high within-household transmission rates can support a positive
epidemic growth rate even if between-household transmission
rates are low. Black et al. (2013) considered a similar model with
heterogeneous household sizes, SEEIIR infection states (where the
inclusion of two exposed and infectious states allows the dura-
tions of exposure and infectiousness to be Erlang-2 distributed),
and delayed antiviral treatment. They showed that epidemic pre-
vention in communities with larger mean household sizes requires
the antiviral treatment to be more effective, or be administered
more quickly.

In this paper we will introduce and analyse a household-
structured SEIR epidemic model for Ebola. This model incorpo-
rates within-household transmission that can be high relative to
between-household transmission, and significant infection-
induced mortality. Our analysis will focus on the emergent stage
of the epidemic, before significant depletion of the susceptible
Please cite this article as: Adams, B., Household demographic determ
org/10.1016/j.jtbi.2015.11.025i
population, although we will also briefly consider the final epi-
demic size. The structured framework allows us to probe, with
specific reference to Ebola, how household size and the balance of
transmission between and within households influence epidemic
risk, understand the divergence from the epidemiological
dynamics generated by conventional unstructured models (effec-
tively households of size 1), and examine how community com-
position modulates the impact of control strategies based on case
detection and quarantine.
2. Model description

In this section we present the household-structured epidemic
model as a system of ordinary differential equations, and as a
Markovian transition matrix. We discuss how these representa-
tions are used to find the intrinsic growth rate, household repro-
duction number and basic reproduction number, set out the
parametrisation and describe the main components of our model
analysis.

2.1. Household states

The model population is structured into households using the
deterministic framework of House and Keeling (2008). The state of
each household is defined by the number of individuals in the
household with an infection status of susceptible (s), exposed but
not yet infectious (e), infectious (i), and recovered with immunity
(r). This state is coded as fs; e; i; rg ¼ seir. For instance, a household
composed of 2 susceptible individuals and 1 infectious individual
has state 2010. If the maximum household size is n, then the
set of possible household states is S ¼ seirj0rs; e; i; rrn and
sþeþ iþrrn. Note that we assume that initially all households
are of size n, but the household size is not constant because of
infection-induced mortality. The epidemiological system describes
the rates of change of the proportion of households in each state,
Hseir. The dynamics are specified by considering the rate at which
individuals in each class of households experience epidemiological
‘events'. Exposed individuals become infectious at rate η. Infec-
tious individuals recover at rate γ, die at rate μ, make transmissible
contact with other members of their household at rate τ, and make
transmissible contact with members of other households (i.e. with
the wider community) at rate α. These contact rates are frequency
dependent. They are independent of the population density in the
household, or in the community as a whole.

If the maximum size of all households is n¼1 then households
are equivalent to individuals and the model is equivalent to the
standard SEIR model. There are four household states S¼H1000; E
¼H0100; J ¼H0010;R¼H0001 and a fifth implicit state in which the
household is empty Z ¼H0000. There is no within-household
transmission and the system is given by Eq. (1a)–(1d).

2.1.1. Model with no within-household transmission

_S ¼ �α
SJ
N

ð1aÞ

_E ¼ α
SJ
N
�ηE ð1bÞ

_J ¼ ηE�ðγþμÞJ ð1cÞ

_R ¼ γJ ð1dÞ
where N¼ SþEþ JþR is the size of the extant population which is
not constant because households/individuals may be in state Z.
inants of Ebola epidemic risk. J. Theor. Biol. (2015), http://dx.doi.
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Table 2
Transition rates for the additional states in the quarantine model. Transition rates
for the seir states not affected by quarantine are as in Table 1 except that for all
transitions associated with between-household transmission the proportion of the

contactable population that is infectious is I¼
P

S i:Hseir þθ
P

Sq
i:HseirqP

ðsþ eþ iþ rÞH þθ
P

ðsþ eþ iþ rÞH .
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The basic reproduction number is R0 ¼ α
γþμ, which is also the

household reproduction number Rn.
For households of size n the general system is given by Eq. (2).

This equation applies for all states seir in S if we adopt the con-
vention that the proportions of households in any states generated
on the right hand side of Eq. (2) that are not in S are set to 0. The
terms in the square brackets in Eq. (2) correspond, in the order
they appear, to between-household transmission, within-
household transmission, progression from exposure to infec-
tiousness, recovery and mortality. Focussing on the between-
household transmission term, each of the s susceptible people in
a household with state seir makes contact with individuals in the
wider community at rate α. A proportion I of these contacts are
with infectious individuals and result in transmission. Hence
between-household transmission transforms state seir to state ðs
�1Þðeþ1Þir at rate αsI. Similarly, between-household transmission
transforms state ðsþ1Þðe�1Þir to state seir at rate αðsþ1ÞI. The
other terms are constructed in a similar way. For within-
household transmission, the proportion of a household in state
seir that is infectious is i=m. Each of the s susceptible people in a
household makes contact with other individuals in household at
rate τ, a proportion i=ðm�1Þ of these contacts are with the infec-
tious individuals. Hence the within-household transmission rate is
τsi=ðm�1Þ.

2.1.2. Model with within-household transmission

_Hseir ¼ αI �sHseirþðsþ1ÞHðsþ1Þðe�1Þir
� �

þτ �s
i

m�1
Hseirþðsþ1Þ i

m�1
Hðsþ1Þðe�1Þir

� �

þη �eHseirþðeþ1ÞHsðeþ1Þði�1Þr
� �

þγ � iHseirþðiþ1ÞHseðiþ1Þðr�1Þ
� �

þμ � iHseirþðiþ1ÞHseðiþ1Þr
� � ð2Þ

where m¼ sþeþ iþr is the current household size, and I is the

proportion of the total population that is infectious. So I ¼
P

S i:Hseir

n
with n ¼P

Sm:Hseir the current average household size.

2.2. Markovian transition matrix

If the maximum household size is n¼2, 4, 6 there are,
respectively, 15, 70, 210 possible household states. For such large
systems it can be expedient to write the model as a Markovian
transition matrix Q. Following the methods described in Ross et al.
(2010), this matrix is relatively simple to construct algorithmically.
An index j is assigned to each state in S. Element qðj; kÞ of Q is the
rate of transition from state j to state k if jak and
qðj; jÞ ¼ �P

ka jqðj; kÞ. It is straightforward to determine the tran-
sition rate between two states, as shown in Table 1.

2.3. Case detection and quarantine

Infectious disease epidemics can be controlled by efficient case
detection, isolation and quarantine. The model described by Eq. (2)
can be modified to include this process by extending the set of
Table 1
Transition rates from state j to state k. The infection transition combines within and
between-household transmission.

State j State k Transition Rate qðj; kÞ

seir ðs�1Þðeþ1Þir Infection αsIþτs i
sþ eþ iþ r�1

seir sðe�1Þðiþ1Þr Progression η

seir seði�1Þðrþ1Þ Recovery γ

seir seði�1Þr Mortality μ

Please cite this article as: Adams, B., Household demographic determ
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household states. The states in S are as before, but are augmented
by a set Sq ¼ fseirqj0rs; e; i; rrn and sþeþ iþrrng. So each
household state seir has a partner state seirq in which the house-
hold is under quarantine. Households with i infectious individuals
are detected at rate ξi. Upon detection each infectious individual
in the household moves to the immune state r with probability
γ=ðγþμÞ or dies with probability μ=ðγþμÞ. In reality, infectious
individuals would probably be removed to a treatment centre and
either die or recover and return home after a delay. Approximating
this process by reducing the delay to zero simplifies the model,
and has minimal impact on the dynamics since the only role of
immune individuals is to slightly dilute the frequency-dependent
within-household transmission rate. Upon detection, infectious
households are also placed under quarantine. While under quar-
antine, epidemiological dynamics within the household continue
as before but for individuals in that household the between
household contact rate is reduced to θα where 0rθr1. This
change affects outgoing and incoming transmission. The para-
meter θ is the quarantine efficiency. When θ¼ 0 quarantine is
perfect. When θ¼ 1 quarantine has no effect, but detection still
results in the removal of all infectious individuals. Households exit
from quarantine at rate ζ. The transition rates involving the
additional states in the quarantine model are given in Table 2.
These rates can be used to construct differential equations similar
to Eq. (2) in the obvious way. If the case detection rate is ξ, the
probability that a case is detected (directly) before recovery or
death is ρ¼ ξ=ðγþμþξÞ.

2.4. Intrinsic growth rate and reproduction numbers

Initially model epidemics (and most real epidemics) grow
approximately exponentially. This exponential growth continues
until depletion of the susceptible population introduces significant
non-linearity into the transmission terms. In the exponential
growth phase infections increase at a constant rate r, the intrinsic
growth rate. The epidemiological reproduction numbers also
remain constant. The intrinsic growth rate r is the largest eigen-
value of the Jacobian matrix J0 that approximates the system by
linearising about the disease-free equilibrium. Element J0ðj; kÞ is
the rate of change of state j with respect to state k. Consequently,
for all transitions other than between-household infection,
J0ðj; kÞ ¼ Q ðk; jÞ. Since we assume that all households are of size n
linearisation about the disease free equilibrium means that almost
all households are in state n000. So, between-household trans-
mission is always a transition from state n000 to ðn�1Þ000.
Approximately, Hn000 ¼ 1, the mean household size n ¼ n and

I¼
P

S i:Hseir

n . Consequently the rate of change of Hn000 with respect
to Hseir for any other state seir is αi

n ð�nÞ ¼ �αi where i is the
number of infectious individuals in a household in state seir. It
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S seir Sq seirq

State j State k Transition Rate qðj; kÞ

seir se0ðrþ îÞq Detection and quarantine ξi i
î

� �
pî ð1�pÞi� î

with 0r îr i recoveries where p¼ γ=ðγþμÞ
seirq seir Quarantine exit ζ

seirq ðs�1Þðeþ1Þirq Infection under quarantine θαsIþτs i
sþeþ iþ r�1

seirq sðe�1Þðiþ1Þrq Progression under quarantine η

seirq seði�1Þðrþ1Þq Recovery under quarantine γ

seirq seði�1Þrq Mortality under quarantine μ

inants of Ebola epidemic risk. J. Theor. Biol. (2015), http://dx.doi.
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Table 3
Parameter values used for all numerical results, unless otherwise stated. The ori-
ginal values have rates of per day. The rescaled values are such that the expected
infectious period 1=ðγþμÞ ¼ 1.

Parameter Meaning Original value Rescaled value

n Maximum household size 1–6 1–6
α Between-household contact rate 0–0.2 0–2
τ Within-household contact rate 0–0.5 0–5
η Infectivity progression rate 0.11 1.1
γ Recovery rate 0.03 0.30
μ Infection induced mortality rate 0.07 0.70
ξ Case detection rate 0–1 0–10
θ Quarantine efficiency 0–1 0–1
ζ Quarantine exit rate 0.042 0.42
r Intrinsic growth rate 0.04 0.4
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follows that for states j¼ n100 and k¼seir, J0ðj; kÞ ¼ �αi, and for
states j¼ ðn�1Þ100 and k¼seir, J0ðj; kÞ ¼ αi. It does not take long to
find the eigenvalues numerically, even for large matrices but, if
necessary, computationally more efficient methods using the
transition matrix Q directly are detailed in Ross et al. (2010).

The household reproduction number Rn is straightforward to
construct or calculate from the Q matrix (Ross et al., 2010). Briefly,
a state is transient if the rate at which households leave that state
is non-zero qðj; jÞa0. Otherwise the state is absorbing. Let C be the
set of all transient states. The full transition matrix Q is reduced to
the transition matrix of transient states Q C by removing the rows
and columns corresponding to absorbing states. A ‘reward’ func-
tion of the household state is defined f ðjÞ ¼ i where i is the number
of infectious individuals in a household with state j. If X(t) is a
continuous-time Markov process taking values in C then the path
integral Γ ¼ R1

0 f ðXðtÞÞdt is the ‘total reward over the lifetime of
the process'. The expected infectious period is 1=ðγþμÞ. So, each
time the Markov process X(t) adds a new infectious individual, the
expected ‘reward’ Γ increases by 1=ðγþμÞ. The total expected
number of infectious individuals is equal to the total expected
reward multiplied by γþμ. The expected household epidemic size
(ðγþμÞΓ) in a household initially in state j, assuming there are no
further infections from outside, is H1

j ¼ ðγþμÞej where the ej are
found by solving the linear system (Ross et al., 2010)

X
kAC

qðj; kÞekþ f ðjÞ ¼ 0: ð3Þ

When the entire population is initially susceptible, and all
households have size n, the state of all households is seir ¼ n000
and the household reproduction number Rn ¼ α

γþμH
1
j ¼ αej where

α
γþμ≔μG is the expected number of between-household infections
arising from one infectious individual and state j is ðn�1Þ100. For
n¼ 2;Rn ¼ α γþμþ2τ

ðγþμÞðγþμþτÞ. This method can also be used to find
analytic expressions for Rn for larger values of n, certainly up to
n¼6 but these expressions are so complicated that their utility is
doubtful. The Supplementary Material includes the expected
household epidemic sizes for all initial states when n¼2, and
expressions for the household reproduction numbers when
n¼ 1;2 and 3.

The basic reproduction number R0 for household models is not
straightforward to either define or calculate. However, Pellis et al.
(2012) have developed a method based on the next generation
matrix (Diekmann et al., 2013). Briefly, the initial infected indivi-
dual in a household is assigned rank 1 and generation 1. Then, as
the epidemic unfolds within the household, an individual is
assigned generation j if they are first infected by an individual in
generation j�1. A susceptible individual will always be infected by
the first transmissible contact event in which they are involved.
However, that individual may be involved in subsequent encoun-
ters with infected individuals that would also have resulted in
infection, had it not already occurred. These are also considered
transmissible contact events. An individual is assigned rank j if j is
the length of the shortest sequence of transmissible contact events
that connects them to the initial infected individual in that
household; this includes the transmissible contacts that occur
after the individual was first infected. Then μj is defined such that
μ0 ¼ 1 is the initial infected individual in a household and μj is
either the expected number of infections of generation j, or the
expected number of infections of rank j. It follows that each
infected individual for rank (or generation) j causes, on average,
μjþ1=μj new infections. Then, the basic reproduction number is
Please cite this article as: Adams, B., Household demographic determ
org/10.1016/j.jtbi.2015.11.025i
R0 ¼ ρðKÞ where ρ is the spectral radius and

K ¼

μG μG ... μG μG

μ1=μ0 0 ... 0 0
0 μ2=μ1 ... 0 0
⋮ ⋮ ... ⋮ ⋮
0 0 ... μn�1=μn�2 0

0
BBBBBB@

1
CCCCCCA
: ð4Þ

Deriving expressions for the expected number of infections in
each generation of the household epidemic μj is challenging. Pellis
et al. (2012) give a method for an SIR model with no mortality. The
same result holds for SEIR models with no mortality since the
exposed state introduces a delay but does not affect the expected
number of infections. We employ this method, as described in the
Supplementary Material, to get an approximate value of R0 for our
model under the assumption of a constant household size. The
result is not exact because disease-induced mortality may cause
the household size to decrease which increases the contact rate
between the remaining individuals. We also calculated R0 using
expected generation size, and expected rank sizes, found by sto-
chastic simulation; for each parameter set the Gillespie method
was used to simulate 10,000 household epidemics starting with
one infectious individual. Since each of these epidemics is small,
this method is remarkably efficient.

Other individual reproduction numbers have been suggested
for household models. These are easier to construct than the basic
reproduction number and, in addition to being useful in their own
right, provide bounds for R0 (Goldstein et al., 2009; Ball et al.,
2014). The reproduction number RI approximates R0 by assuming
that the initial infected individual in a household is directly
responsible for all subsequent infections. If the expected size of the
household epidemic, excluding the initial case, is μL ¼H1

j �1 then

RI ¼ μG þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
G þ4μGμL

p
2 . The reproduction number RHI is the expected

number of infections arising directly from a typical infected indi-
vidual in a typical household. The μL infections in a household are
caused by μLþ1 infected individuals, including the initial infec-
tion. So, the expected number of infections per infected individual,
including between-household transmission, is RHI ¼ μGþ μL

1þμL
. Ball

et al. (2014) show that if R041 then Rn4RI4R04RHI and if R0

o1 then RnoRIoR0oRHI .

2.5. Parametrisation

For all of the numerical results presented here, parameter values
were assigned as in Table 3, unless otherwise stated. The maximum
household size n was fixed between 1 and 6. Our methodology
readily allows higher values but at high computational cost. For
reference, in 2012/2013 the average household sizes in Liberia,
Sierra Leone and Guinea were 5, 5.9 and 6.3 respectively (Sierra
Leone, 2013; Liberia Institute of Statistics, 2013; Institut National de
inants of Ebola epidemic risk. J. Theor. Biol. (2015), http://dx.doi.
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la Statistique and ICF International, 2012). Observational data from
the emerging Ebola epidemic in Liberia, Sierra Leone and Guinea
collected between December 2013 and September 2014 (Aylward et
al., 2014) report an average duration of incubation 1=η¼ 9:4 days.
The case fatality rate wasm¼ 70:8%, the average time from onset of
symptoms until death was Tm¼7.5 days and the average time from
onset until recovery was Tr¼16.4 days, giving a mean infectious
period of mTmþð1�mÞTr ¼ 10:2 days. So, for our model,
setting the expected infectious period (time until recovery or death)
1=ðγþμÞ ¼ 10:2 days and the proportion of infections resulting in
death μ=ðγþμÞ ¼ 0:7 gives a mortality rate μ¼ 0:07 and recovery
rate γ ¼ 0:03. From the same observational data the basic repro-
duction number was estimated to be between 1.7 and 2, and epi-
demic doubling time between 12.8 and 17.5 days, which corre-
sponds to an intrinsic growth rate of 0.04–0.05 per day. In August
2014, the doubling time was estimated to be between 15.7 and 30.2
days, corresponding to an intrinsic growth rate of 0.02–0.04 per day.
Our numerical results were carried out using parameter values that
were rescaled by dividing by γþμ. With these rescaled parameters,
the expected duration of infection is 1 and an infectious individual
is expected to make a total of α transmissible contacts between
households, and τ transmissible contacts within their household
(but τ infections will not occur in the household due to saturation),
and the case detection probability is ρ¼ ξ=ð1þξÞ. In analyses where
we fix the intrinsic growth rate we use a value of r¼0.04 per day,
which is re-scaled to r¼0.4.

2.6. Model analysis

The analysis of the model presented here will focus on how
household size and the intensity of within-household transmission
affect epidemic risk, epidemic size and epidemic management by
quarantine. The epidemic risk is assessed through the reproduction
numbers, primarily the household reproduction number Rn. When
Rno1 significant epidemics are not expected to occur in stochastic
systems; in deterministic systems the disease-free equilibrium is
stable. For Rn41 higher values of Rn indicate a higher probability of
a significant epidemic when an infected individual is introduced
into a disease-free population; deterministically, the disease-free
equilibrium is unstable. The epidemic size is calculated by solving
the deterministic system (2) numerically from an initial condition
consisting of a small number of infections in an otherwise suscep-
tible population (Hn000 ¼ 0:99;Hðn�1Þ100 ¼ 0:01;Hseir ¼ 0 otherwise)
until the epidemic peak has passed and the infectious proportion of
the population 1

n

P
S i:Hseiro0:01. Two measures of the final epi-

demic size are examined based on the household proportions Hseir
at the end of the epidemic. R1 ¼ 1� 1

n

P
Ss:Hseir is the total
Fig. 1. Intrinsic growth rate, reproduction numbers and epidemic size when the between
τ is varied. (a) Intrinsic growth rate r. (b) Household reproduction number Rn. (c) Ba
simulations, and under the approximation of a constant household population size. (d)
course of an epidemic in an initially susceptible population. In all panels line shade i
parameters are as in Table 3. So when n¼1, R0 ¼ Rn ¼ α.
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proportion of individuals in the initial population that were infec-
ted. R1

n
¼ 1�Hn000 is the total proportion of households in the

population in which at least one person was infected. The potential
for epidemic management by case detection and quarantine is
assessed by using numerical root-finding to determine the critical
case detection rate ξn required to move the household reproduction
number to the epidemic threshold Rn ¼ 1 beyond which the
disease-free state is stable. Although we mainly examine how
household size and the balance of transmission between and within
households affect Rn, R

1 and R1
n
, we also consider the sensitivity of

Rn to all parameters using elasticity analysis. For each parameter p,
the elasticity of Rn with respect to p is defined as eRnp ¼ ∂ ln Rn

∂ ln p ¼ p
Rn

∂Rn

∂p
(Caswell, 2000) and quantifies the proportional response in Rn to a
proportional perturbation in p.

We consider the role of within-household transmission from
two perspectives. Initially, we fix the between-household trans-
mission rate α and consider the impact of varying the within-
household transmission rate τ for different household sizes n. Here
the intrinsic growth rate r also varies with τ. So we also consider
models in which r is held constant by covariation of α and τ. The
intrinsic growth rate of an epidemic can be directly observed, and
this constraint produces models that are in some sense compar-
able. House and Keeling (2008) consider three methods to main-
tain a constant r: fix τ and for any given n adjust α; for any given n
adjust both α and τ but fix their ratio; fix the proportion of
infections in the early stages of the epidemic that occur within
households. Here, for any given τ and n we adjust α to maintain
r¼0.4.
3. Results

3.1. Within-household transmission varied, between-household
transmission constant

Fig. 1a–c shows how the intrinsic growth rate r and reproduc-
tion numbers Rn;R0 depend on the maximum household size n
and the within-household transmission rate τ when the between-
household transmission rate is fixed, α¼ 0:9. The results are
similar for other values of α. The intrinsic growth rate and
reproduction numbers are higher in populations composed of
larger households or with more intensive within-household
transmission. The number of individuals in a household that can
be infected is limited by the household size, regardless of the
transmission intensity. So the impact of within-household trans-
mission saturates, but less quickly for larger households. Elasticity
analysis of Rn (Supplementary Fig. 1) shows that increasing the
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disease-induced mortality rate μ or the recovery rate γ reduce Rn,
because the transmission window narrows. Increasing the within-
household transmission rate τ increases Rn. The impact of all three
of these parameters is strongest for large household sizes n and
intermediate within-household transmission rates (around τ¼ 1).
The duration of the exposed state η has no effect on Rn, and the
impact of the between-household transmission rate α does not
depend on the household size or the within-household trans-
mission rate. Fig. 1c shows that the basic reproduction numbers
calculated under the approximation that the household size
remains constant agrees well with that calculated using the
expected generation size of the household epidemic. Supplemen-
tary Fig. 1 shows that using the expected rank size rather than the
expected generation size has little impact and, although the
individual reproduction numbers RHI and RI do bound R0 as
expected, these bounds are quite broad, particularly when n is
large. Fig. 1d shows how the final epidemic size R1;R1

n
depends on

the maximum household size n and the within-household trans-
mission rate τ. The proportion of households that experience at
least one infection is higher in populations composed of larger
households and with more intensive within-household transmis-
sion. For n42 and τ41, almost all households experience infec-
tion. In comparison to the proportion of households, the propor-
tion of individuals that are infected is smaller, and increases more
slowly with n and τ.

Fig. 2a–c shows the critical probability with which a case must
be detected before death or recovery ρn ¼ ξn=ð1þξnÞ to prevent an
epidemic, or stop it during the initial exponential growth phase.
When infectious individuals are isolated following detection, but
the household is not quarantined (θ¼ 1), in communities of small
households (n¼2) the critical detection probability is below 0.4,
even when there is intense within-household transmission (τ¼ 5).
The critical detection proportion increases markedly with any
increase in household size. When τ¼ 5, ρn increases from 0.34
when n¼2, to 0.53 when n¼3 to 0.82 when n¼6. The general
pattern is similar when the household is quarantined following
case detection, but quarantine means that epidemic prevention is
achieved at a lower case detection rate. Fully effective quarantine
(θ¼ 0) reduces the critical detection probability in communities of
large households considerably; when n¼6 and τ¼ 5, ρn is reduced
from 0.82 to 0.52. But the relative impact is smaller in commu-
nities of small households; when n¼2 and τ¼ 5, effective quar-
antine only reduces the critical detection probability from 0.34
to 0.31.
within-household transmission 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
No quarantine

n = 2
n = 3
n = 4
n = 5
n = 6

within-househo

0 1 2
0

0.2

0.4

0.6

0.8

1
Partial q

Fig. 2. Critical probability with which cases must be detected to prevent an epidemic gr
rate α is fixed and the within-household transmission rate τ is varied. On detection, all
quarantine. (a) No quarantine (θ¼ 1). (b) Partially effective quarantine (θ¼ 0:5). (c) Fully
specified in the legend of (a), α¼ 0:9 and other parameters are as in Table 3.
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3.2. Within and between-household transmission co-varied such
that intrinsic growth rate constant r¼0.4

Fig. 3a shows that an intrinsic epidemic growth rate of r¼0.4 is
consistent with a broad range of between and within-household
transmission regimes. Higher within-household transmission τ is
balanced by lower between-household transmission α. But the
amplification capacity of households is limited by their size so the
impact of increasing τ saturates and some between-household
transmission is always required. For any given intensity of within-
household transmission, in communities composed of larger
households the target intrinsic growth rate is achieved at lower
between household transmission rates.

Fig. 3b and c shows how the reproduction numbers Rn and R0
depend on the maximum household size n and the within-
household transmission rate τ when the between-household
transmission rate α is adjusted to maintain a constant intrinsic
growth rate. In the absence of household structure i.e. when τ¼ 0
or n¼1, the household reproduction number is equal to the basic
reproduction number. If τa0, larger households always increase
the household reproduction number associated with the same
intrinsic growth rate. For communities composed of large house-
holds (n¼6) with intermediate intensity within-household trans-
mission, the household reproduction number is up to 65% higher
than the household (basic) reproduction number derived from an
unstructured population composed of ‘households' of size 1. For
small household sizes ðn¼ 2;3Þ, Rn saturates as within-household
transmission increases. For larger household sizes ðn¼ 4�6Þ, the
between/within-household transmission trade-off is such that Rn

reaches a maximum when τ is around 2 and then drops back. In
contrast to the household reproduction number, household
structure and within-household transmission always decreases
the basic reproduction number associated with the same intrinsic
growth rate. R0 is lower when household size is larger, or within-
household transmission is more intense. However, these factors
have a modest impact on R0 compared with Rn. The greatest
divergence from the basic reproduction number derived without
household structure occurs for communities composed of large
households with high intensity within-household transmission.
For n¼6 and τ¼ 5 the community structure reduces R0 by around
10%. Fig. 1d shows how the final epidemic size R1;R1

n
depends on

the maximum household size n and the within-household trans-
mission rate τ. The between/within-household transmission trade-
off to maintain a constant intrinsic growth rate is such that the
total proportion of households eventually infected is higher if it is
derived from communities of larger households and, for all
household sizes, lower if it is derived from communities with
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Fig. 3. Reproduction numbers and epidemic size when the between-household α and within-household τ transmission rates are co-varied such that the intrinsic growth rate
remains r¼0.4. (a) α - τ pairs that give r¼0.4. (b) Household reproduction number Rn. (c) Basic reproduction number R0, computed using the expected generation size and
the expected rank size from simulations, and under the approximation of a constant household population size. (d) Proportion of households R1

n
, and proportion of

individuals R1 , infected over the course of an epidemic in an initially susceptible population. In all panels line shade indicates the household size n as specified in the legend
of (a). Parameters are as in Table 3.

Fig. 4. Critical detection probability (ρn ¼ ξn=ð1þξnÞ such that Rn ¼ 1) when the between-household α and within-household τ transmission rates are co-varied such that the
intrinsic growth rate remains r¼0.4. On detection, all infected individuals are removed from the household and it may be placed under quarantine. (a) No quarantine (θ¼ 1).
(b) Partially effective quarantine (θ¼ 0:5). (c) Fully effective quarantine (θ¼ 0). In all panels line shade indicates the household size n as specified in the legend of (a). Other
parameters are as in Table 3.
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more intense within-household transmission. Conversely, the total
proportion of individuals eventually infected is lowest when
derived from communities with weak, but non-zero, within-
household transmission and generally increases when within-
household transmission is more intense. Larger household sizes
amplify these effects.

Fig. 4a–c shows the critical probability with which cases must
be detected before death or recovery ρn ¼ ξn=ð1þξnÞ to prevent an
epidemic when the within and between-household transmission
rates are co-varied to maintain a constant intrinsic growth rate.
When infectious individuals are isolated following detection but
the household is not quarantined (θ¼ 1) the critical detection
probabilities derived from communities with household structure
are always higher than ρn derived from an unstructured commu-
nity. The divergence is greater when households are larger and
within-household transmission is more intense. When n¼1, ρn ¼
0:38 but this increases to ρn ¼ 0:61 when n¼6 and τ¼ 5. When
quarantine is partially effective (θ¼ 0:5) the critical detection
probabilities are generally lower. Values of ρn derived from com-
munities with household structure are higher than those derived
from an unstructured community unless within-household
transmission is weak (0oτo0:5) in which case they are mar-
ginally lower. When quarantine is fully effective (θ¼ 0) the critical
detection probabilities derived from communities with household
Please cite this article as: Adams, B., Household demographic determ
org/10.1016/j.jtbi.2015.11.025i
structure are always lower than ρn derived from an unstructured
community, although the divergence is relatively small.
4. Discussion

We have used an epidemic model in which the population is
structured into households to examine how demography, in terms
of the size of the households that make up a community, affects
the vulnerability to epidemics of Ebola and other infectious dis-
eases where a significant proportion of transmission occurs
between cohabitants. Much of our analysis has been based on the
household reproduction number. This quantity specifies an epi-
demic threshold. Large outbreaks are not expected to occur if
Rno1. The assumptions behind the household reproduction
number mean that it is meaningful as long as the susceptible
population is sufficiently large that almost all of the between-
household transmissible contacts made by an infectious individual
are with susceptible individuals. This may be a reasonable
approximation, and so the insights from our model will be
applicable, for quite an extended period in the emergent phase of
an epidemic. So Rn can be used to assess control strategies that
may be implemented at any time during that period, as well as to
quantify the vulnerability of a disease-free population to an epi-
demic. Here we have considered control case identification and
inants of Ebola epidemic risk. J. Theor. Biol. (2015), http://dx.doi.
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quarantine, but the model framework could also be used to
examine other measures such as ‘lock-down'.

We have shown that, all else being equal, in the early stages of
an epidemic, the intrinsic growth rate, the basic reproduction
number and the household reproduction number are all higher if
households are larger. This divergence is accentuated by more
intense within-household transmission. At the end of the epi-
demic, almost all households will have had at least one infection
unless the community is composed of small households or within-
household transmission is very weak. The proportion of indivi-
duals that are eventually infected is smaller than the proportion of
households, but increases if households are larger or within-
household transmission is more intense.

We also considered the effort required to control an emergent
epidemic by identifying cases, isolating them and placing their
household under quarantine. We showed that in communities
composed of small households a fairly modest, and likely achiev-
able, case detection probability is sufficient to halt or prevent an
epidemic, even without household quarantine. In larger house-
holds this critical detection probability is much higher. Without
quarantine, each additional person in the household makes epi-
demic control much more challenging to achieve. However, com-
bining case detection and isolation with effective quarantine of the
whole household can greatly reduce the critical detection prob-
ability, even in communities of large households with intense
within-household transmission. This results indicates that, when
an infectious case is detected in a large household other members
of the household are likely to be infected, but not yet infectious,
and preventing further transmission by these individuals is a
crucial component of epidemic control.

The intrinsic growth rate of an epidemic can be estimated
directly from incidence data. The basic or household reproduction
number may be inferred from the data, or the intrinsic growth
rate, with an assumed transmission model (e.g. Fraser, 2007). We
have shown that, when a significant part of transmission occurs
within households, the details of this model are important. The
same intrinsic growth rate is consistent with a range of within-
household and between-household transmission rate pairs, which
depend on the household size of the community. If the intrinsic
growth rate is invariant, the basic reproduction number R0 is not
very sensitive to the balance of transmission within and between
households, or the household size; the intrinsic growth rate and
basic reproduction number are approximately proportional.
However, the household reproduction number is more sensitive. In
general the basic reproduction number may be useful because it
indicates the proportion of new infections (1�1=R0) that need to
be prevented in order to halt epidemic growth. However, control
strategies may not prevent infections directly. We have shown that
the control effort associated with case detection, isolation and
household quarantine can be sensitive to assumptions about the
transmission balance and household size, even if the intrinsic
growth rate (and so the basic reproduction number) is invariant. In
comparison to a model with household structure and within-
household transmission, an unstructured model underestimates
the critical case detection probability if quarantine is ineffective,
but slightly overestimates it if quarantine is effective.

Our analysis shows that the demographic structure of a com-
munity can be a critical factor influencing epidemic risk and
control. If a significant component of transmission occurs within-
households, large households act as amplifiers, the risk of an
epidemic is greater, and the number of cases grows faster. The
mean household sizes in the West African countries afflicted by
the 2014 Ebola epidemic are between 5 and 6.3, among the highest
in the world. For comparison the mean household size in the 34
OECD countries is 2.6 (OECD, 2014). For infectious diseases such as
Ebola where the majority of transmission is among family
Please cite this article as: Adams, B., Household demographic determ
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members, putting aside any asymmetries of healthcare infra-
structure and resources, demography alone can determine upon
which side of the epidemic threshold a population finds itself.
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