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The quality of hosts for a parasitoid wasp may be influenced by attributes such as host size or species,
with high quality for successful development usually coincident with high quality for larger offspring.
This is not always the case: for the Scelionid wasp Trissolcus basalis, oviposition in eggs of the Brown
Marmorated Stink Bug, Halyomorpha halys, rather than of the normal host, the Southern Green Stink
Bug, Nezara viridula, leads to lower offspring survival, but survivors can be unusually large. Adult female
T. basalis engage in contests for host access. As larger contestants are typically favoured in contests
between parasitoids, the larger size of surviving offspring may compensate for the mortality of others.
We construct a general game-theoretic model to explore whether size advantage can sustain a maternal
preference to utilize a more deadly host species. We find that size advantage alone is unlikely to sustain a
shift in host preference, yet such an outcome is possible when size asymmetries act simultaneously with
advantages in host possession (ownership effect). Halyomorpha halys is an invasive pest of major agro-
economic importance in Europe and the Americas, and use of its eggs as hosts by native parasitoids such
as T. basalis has been seen as an evolutionary trap due to their high developmental mortality. Our model
suggests that the recently discovered effect of host choice on offspring size may provide an escape from
the trap via effects on contest biology of T. basalis which could foster a more stable association with H.
halys. An evolutionary shift in the reproductive value of H. halys could increase the efficiency of T. basalis
as a biological control agent of this invasive stink bug pest.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Juvenile parasitoid wasps develop on the resources provided by
the body of a single host. The quality and quantity of the resource
can be influenced by, for instance, the host’s size and by its devel-
opmental stage and these attributes may then be manifest in terms
of parasitoid developmental mortality and/or the size, fecundity
and longevity of surviving offspring, all of which are components
of evolutionary fitness (Godfray, 1994). Many species of parasitoids
can develop from several or even many species of hosts (oligo-
phagy and polyphagy, respectively) and variation, in terms of
nutritional composition, size and defences against parasitism,
between host species can be a major determinant of parasitoid fit-
ness parameters, in turn influencing host acceptance decisions by
foraging adult females.

In some parasitoids, development in a given host species may
negatively influence the probability of offspring survival to adult-
hood and yet positively influence the characteristics of those off-
spring that do survive. This is the case in Trissolcus basalis
(Hymenoptera: Sceleonidae): oviposition into eggs of the invasive
Brown Marmorated Stink Bug (Halyomorpha halys, Hemiptera:
Pentatomidae) leads to far lower offspring survival (with estimates
ranging from 0 to 6% (Rondoni et al., 2017; Peri et al., 2021) to 38%
Balusu et al., 2019) than oviposition into eggs of its main host, the
Southern Green Stink Bug (Nezara viridula, Hemiptera: Pentatomi-
dae), 84% (Cusumano et al., 2011; Peri et al., 2021), but female off-
spring that survive are typically much larger (almost 25% increase
in tibia length, Peri et al., 2021). There is a substantial difference in
the size of the host eggs between H. halys and N. viridula, which is
likely to be the key factor leading to an increase in the size of the T.
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basalis emerging from the invasive stink bug host. Among adult
female parasitoid wasps, larger size is generally associated with
higher fecundity (Hardy et al., 1992) and foraging ability (Karsai
et al., 2006; Visser, 1994). One aspect of foraging is the ability to
competitively acquire and subsequently defend hosts or patches
of hosts against other foraging females, and female T. basalis
engage in such contests (Field and Calbert, 1998). Although Field
and Calbert (1999) did not find any effect of body size asymmetries
between contestant parasitoids, the likely reason for this result is
that they used only one species of host (eggs of the pentatomid
bug Agonoscelis rutila) and in consequence the variation in T. basalis
body size was not large. But when scelionid wasps emerge from
hosts of two different species that differ greatly in size and quality,
wasp size differences can be substantial and strongly affect contest
resolution, as has been recently found by Guerra-Grenier et al.
(2020) in the wasp Telenomus podisi, an egg parasitoid that belongs
to the same family as T. basalis (Scelionidae). Across the parasitoid
Hymenoptera, larger contestants are typically favoured in agonistic
interactions between adults (Hardy et al., 2013) and such body size
effects can influence reproductive decisions by foraging females in
a game-theoretic manner (e.g. clutch size optima, (Mesterton-
Gibbons and Hardy, 2004; Goubault et al., 2007). A further impor-
tant factor influencing contest outcome in wasps such as T. basalis
is prior ownership status (Field and Calbert, 1998): females that
arrive first on a patch have an advantage against subsequent
intruders. We consider both body size and prior ownership effects
in this study.

Accordingly, we develop here a game-theoretic model to
address the following general question: Can size advantage in con-
tests among adults sustain a preference for a more deadly (in terms
of offspring developmental mortality) host by foraging females?
For greatest generality, and with future work in mind, we first for-
mulate the model (in Section 2 and especially Appendix A) in terms
of a five-dimensional parameter space. The parameters are: 1. The
reproductive (developmental) value of the more deadly host rela-
tive to that of the natural host, a; 2. The proportion of hosts that
are of the more deadly species, h; 3. The probability that a host is
never found, k; 4. The probability a large wasp outcompetes a nor-
mal wasp relative to the probability a normal wasp outcompetes a
large wasp, k; and 5. The owner advantage, defined as the increase
in probability beyond 0:5 of an owner winning a contest against an
intruder of equal size, q: These five basic parameters are recorded
in Table 1. Note that, in the context of these definitions, we are
referring to a wasp as ‘‘large” if it emerges from a host of the more
deadly invasive species (H. halys) and hence has a size advantage,
and as ‘‘normal” if it emerges from a host of the native species
(N. viridula).

The model thus integrates non-contest (a; h; k) and contest-
related (k;q) considerations. All five parameters are dimensionless
Table 1
Basic model parameters.

Symbol Definition Constraints

a Reproductive (developmental) value of the more
deadly host relative to that of the natural host

0 < a < 1

h Proportion of hosts that are of the more deadly
species

0 < h < 1

k Probability that a host is never found 0 < k < 1
k Probability a large wasp outcompetes a normal wasp

relative to the probability a normal wasp
outcompetes a large wasp

0 < k < 1

q Owner advantage: the extent beyond equiprobability
to which an owner is favoured to win a contest
against an intruder of equal size, expressed as a
proportion of the maximum possible probability
increase

0 6 q 6 1

2

and in principle measurable, but in most cases their measurement
has yet to be addressed by empirical studies. As clarity of predic-
tion in theoretical work decreases with the number of parameters
considered, we then focus (Section 3) on the subset of the param-
eter space where size advantage in contests is most relevant, thus
reducing the dimension of the parameter space from five to two.
We subsequently revisit the higher-dimensional parameter space
in Section 4 and in our concluding discussion (Section 5). Our
model has a wide set of potential applications, given that species
invasions are likely to occur increasingly frequently due to both
international transport and global climate change (Berthon,
2015; Abram et al., 2017). The model is nonetheless of most imme-
diate use in considering the invasion of European and American
cropping systems by the Brown Marmorated Stink Bug (Rice
et al., 2014; Leskey and Nielsen, 2018; Stoeckli et al., 2020) as
the use of its eggs as hosts by native parasitoids such as Trissolcus
basalis and Telenomus podisi has been seen as an ‘‘evolutionary
trap” due to the high or complete developmental mortality of off-
spring (Abram et al., 2014; Bertoldi et al., 2021; Costi et al., 2020;
Konopka et al., 2018; Tognon et al., 2019). An evolutionary trap
arises when there exists a disconnect between cues that organisms
use to make behavioral decisions and outcomes normally associ-
ated with those cues, and it can lead to a reduced survival/repro-
duction of the trapped species if a population falls below a
critical size threshold before adaptation to a change in circum-
stances (Robertson and Blumstein, 2019; Schlaepfer et al., 2002;
Schlaepfer et al., 2005). However, the recently discovered effects
of host species on offspring size may provide an escape from the
trap by providing a fitness advantage to surviving offspring via
enhanced performance in contests for future hosts.
2. Mathematical model

For the sake of simplicity, we consider a population of female-
producing female parasitoids (thelytoky). Likewise for simplicity,
we assume that there are only two adult body sizes, large and nor-
mal, and that each egg surviving on a more deadly (Halyomorpha
halys-like) host becomes a large adult, whereas each egg surviving
on a natural host becomes a normal adult.

This population consists of three different types or strategies,
distinguished by the type of host they are willing to exploit. A C-
strategist is the customary obligate exploiter of natural (native)
hosts, so its progeny are always of normal size. A D-strategist is
an obligate exploiter of the more deadly host (e.g., the invasive
H. halys), so its progeny are always large. A U-strategist is an undis-
cerning exploiter: its progeny are normal or large according to
whether it happens to have exploited a natural host or a more
deadly one. Let these three types occur in proportions x1; x2 and
x3, respectively, so that C is strategy 1;D is strategy 2 and U is strat-
egy 3: our strategy notation and definitions are summarized in
Table 2.

As in Mesterton-Gibbons and Hardy (2004), we assume that an
individual’s reward is the expected number of surviving offspring
from a suitable host. Without loss of generality, let the value of a
natural host in terms of the average number of surviving offspring
from it be defined as the unit of fitness, and let the corresponding
value of a more deadly host be a units, where a < 1 because the
parasitoid has much higher developmental mortality in the more
deadly host (94%) compared with levels observed in the natural
host (16%) (Peri et al., 2021). Note that a represents parasitoid sur-
vival and fecundity on a more deadly host relative to that on a nat-
ural host, with ‘‘natural” developmental mortality and fecundity
built into the unit of fitness by our definition. For example, with
95% mortality on a more deadly host compared to 20% on natural
hosts but with the same fecundity we would have



Table 2
Strategies and accompanying notation.

Strategy Number Strategy Name Definition Frequency Fitness

1 C Customary natural host exploiter x1 W1

2 D Deadlier host exploiter x2 W2

3 U Undiscerning host exploiter x3 ¼ 1� x1 � x2 W3

Table 3
Auxiliary or derived parameters.

Symbol Definition Constraints

xL Probability a randomly selected U-strategist is
large

xL ¼ ah
ahþ1�h

xN Probability a randomly selected U-strategist is
normal

xN ¼ 1�xL

qO Probability owner wins in contest between
equals

qO ¼ 1
2 1þ qð Þ

qI Probability intruder wins in contest between
equals

qI ¼ 1� qO

qOL Probability a large owner wins against a normal
intruder

qOL ¼ k 1þqð Þ
1�qþk 1þqð Þ

qIN Probability a normal intruder wins against a
large owner

qIN ¼ 1� qOL

qON Probability a normal owner wins against a large
intruder

qON ¼ 1þq
1þqþk 1�qð Þ

qIL Probability a large intruder wins against a
normal owner

qIL ¼ 1� qON

a Parameter of exponential distribution for arrival
at host

a > 0

p Length of vulnerable period of development for a
host

p > 0
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a ¼ 0:05=0:8 ¼ 0:0625; whereas if in addition survivors from more
deadly hosts were three times as fecund as natural survivors we
would have a ¼ 3� 0:05=0:8 ¼ 0:1875.

We assume that the frequencies of more deadly and natural
hosts are h and 1� h, respectively, and hence that more deadly
and natural hosts are located at rates proportional to h and 1� h.
Correspondingly, in the absence of differential survival and fecun-
dity, progeny of a U-strategist would be h

1�h times as likely to be
large as to be normal. However, an egg is only a times as likely
to survive and reproduce on a more deadly host as on a natural
one. Hence progeny of a U-strategist are only a � h

1�h times as likely
to be large as to be normal. So the probability that a randomly
selected U-strategist is large or normal is xL or xN , respectively,
where

xL ¼ ah
ahþ 1� h

; xN ¼ 1� h
ahþ 1� h

: ð1Þ

Note that we assume

0 < a; h < 1 ð2Þ
throughout, so that (1) implies 0 < xL;xN < 1 as well.

We assume that, in contests between two large or between two
normal individuals, where neither has any advantage in terms of
size, it is possible that prior ownership may confer an advantage
instead. Specifically, in a contest between two individuals of equal
size, the owner wins with probability qO and the intruder wins
with probability qI , where

qO ¼ 1
2

1þ qð Þ; qI ¼
1
2

1� qð Þ ð3Þ

with 0 6 q 6 1. We refer to q as owner advantage: it represents the
extent beyond equiprobability to which an owner is favoured to win
in the event of a fight between physical equals, expressed as a pro-
portion of the maximum possible probability increase. (From (3),
the increase of probability beyond 1=2 is q=2; the maximum possi-
ble increase is 1=2; and q is the quotient of these two numbers.)

In contests between large and normal individuals, however,
greater size does confer an advantage on the larger individual.
Let a large individual be k times more likely to win against an indi-
vidual of normal size than it would if it were itself of normal size,
where k > 1. Then in a contest between a large owner and an intru-
der of normal size, the owner wins with probability qOL and the
intruder wins with probability qIN , where

qOL ¼
k 1þ qð Þ

1� qþ k 1þ qð Þ ; qIN ¼ 1� q
1� qþ k 1þ qð Þ : ð4Þ

Likewise, in a contest between a normal owner and a large intruder,
the owner wins with probability qON and the intruder wins with
probability qIL, where

qON ¼ 1þ q
1þ qþ k 1� qð Þ ; qIL ¼

k 1� qð Þ
1þ qþ k 1� qð Þ : ð5Þ

Note that qOL þ qIN ¼ 1 in (4) and that qON þ qIL ¼ 1 in (5), as empha-
sized by Table 3.

As in Mesterton-Gibbons and Hardy (2004), we assume that
there is a narrow time-window in which a parasitoid can actually
acquire a host and thus that each host is the subject of at most one
3

contest. To be able to reproduce, females must either find a suit-
able unguarded host and defend it against at most one intruder
or take over a suitable guarded host in a contest. We assume that
acquired hosts have not been exploited before; moreover, they are
merely guarded—not exploited—during the narrow time-window.
Thus we do not consider, for example, the effect of intrinsic com-
petition due to superparasitism after ownership reversals (Field
et al., 1997). To incorporate this effect and related effects would
render our model overly complex. We return to this point at the
end of Section 5.

Let Z Tð Þ be the probability that a host is located by time T; let
Y Tð Þ be the probability that a host is located some time after time
T; and let k be the probability that a host is never found (during the
entire vulnerable period of its development). Then multiplying the
probability 1� Z Tð Þ that a host has not been found at time T by the
(conditional) probability 1� Y Tð Þ that it is not subsequently found
yields

1� Z Tð Þð Þ 1� Y Tð Þð Þ ¼ k ð6Þ
for any T: the bigger the value of Z Tð Þ, the smaller the value of Y Tð Þ.
We assume that time to next arrival at the host follows an exponen-
tial distribution with parameter a, so that

Z Tð Þ ¼ 1� e�aT ; Y Tð Þ ¼ 1� e�a p�Tð Þ ð7Þ
and

k ¼ e�aT e�a p�Tð Þ ¼ e�ap ð8Þ
by (6), where p denotes the length of the vulnerable period of devel-
opment for a host. We further assume that location time T for a
focal individual is uniformly distributed between 0 and p, so that
the average probability of a host being unguarded is

c ¼ E 1� Z Tð Þ½ � ¼ 1�
Z p

0

1
p
Z tð Þdt ¼ k� 1

ln kð Þ ð9Þ

where E denotes expected value.
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We can now proceed to calculate expressions for the fitnesses
to each of the three strategies, which appear in Appendix A. These
expressions depend explicitly on a; h;q; k and k (both directly and
indirectly through c), but do not depend directly on either a or p,
whose effect on fitness is subsumed by k through (8). We therefore
regard a; h;q; k and k as the five basic dimensionless parameters of
the model; we regard a and p as auxiliary parameters; and all other
parameters are derived parameters, which depend on one or more
of the basic parameters. All of the parameters are defined in either
Table 1 or Table 3 for ease of reference.

The corresponding evolution of the strategy frequencies is gov-
erned by the replicator equations (Taylor and Jonker, 1978;
Hofbauer and Sigmund, 1998). For i ¼ 1;2;3, let Wi denote the fit-
ness to strategy i, whose frequency is xi. Then the governing equa-
tions are

dxi
dt

¼ xi Wi �W
� �

; i ¼ 1; . . . ;3; ð10Þ

where t denotes time and

W ¼
X3
i¼1

xiWi ð11Þ

is the average fitness of the entire population. Note that, because

x1 þ x2 þ x3 ¼ 1; ð12Þ
the first two equations in (10) imply the third, which therefore we
do not need for the analysis that follows.

3. Analysis of the reduced model

In general, the purpose of our analysis is to predict the mix of
strategies to which the population evolves in response to prevail-
ing ecological conditions. In the first instance, the mix of strategies
is represented by the three-dimensional vector x1; x2; x3ð Þ, whose
components are the frequencies x1; x2 and x3 of strategies C;D
and U, respectively, as defined in Table 2. However, if the propor-
tions x1 of C and x2 of D are known, then the proportion
x3 ¼ 1� x1 � x2 of U is also known, by (12). Hence, in practice,
the evolution of the strategy mix is fully determined by the path
of the two-dimensional vector x1; x2ð Þ, which always corresponds
to a point on or inside the triangle

D ¼ x1; x2ð Þj0 6 x1 þ x2 6 1f g ð13Þ
with vertices at 1;0ð Þ; 0;1ð Þ and 0; 0ð Þ; we refer to D as the phase-
plane triangle. Ecological conditions are represented by the five
basic parameters a; h; k; k and q, as defined in Table 1. Thus, our
analysis seeks to predict the final value of x1; x2ð Þ as a function of
a; h; k; k and q. Note that, where we wish to emphasize the depen-
dence on time, t, of the strategy mix, in place of x1; x2ð Þ we write
x1 tð Þ; x2 tð Þð Þ.

Before proceeding with our analysis, it is useful to note which
evolutionary endpoints are at all possible. In principle, there are
seven types of static equilibria and one type of dynamic equilib-
rium that can emerge. The seven possible static equilibria are three
monomorphisms (of C;D or U) and four polymorphisms: C with D,
or CD;C with U, or CU;D with U, or DU; and all three strategies, or
CDU. The possible dynamic equilibrium is a periodic ‘‘limit cycle” in
which the frequencies of all three strategies oscillate over time. In
practice, however, it is impossible for the population to evolve to D
or U (Appendix D); moreover (Section 3.1), it is also impossible for
the population to evolve to CD except in the event that a mutant U-
strategist could never arise, which we discount as unrealistic. Thus,
in practice, the possible evolutionary endpoints are the monomor-
phism C, in which case the deadly host is never exploited by any
strategist (meaning that in a biocontrol scenario, the invasive host
4

is avoided by the resident parasitoids); the polymorphisms CU;DU
and CDU; and a dynamic polymorphism of all three strategies.
These polymorphisms show that inclusion of exploitation of the
deadly host is thus a priori a possible strategic outcome of the evo-
lutionary process.

The expressions for fitness (Appendix A) in general depend both
on the frequencies x1; x2 and x3 ¼ x1 � x2 (of strategies C;D and U,
respectively) and on the five basic parameters (a; h;q; k and k)
and are, in general, too complex for tractable analysis. Therefore,
here we focus our attention on the important limit as a ! 1 in
(8), in which all hosts are eventually found, and thus contest beha-
viour is most relevant. In this limit, which can be regarded as the
limit of high parasitoid density, the expressions for fitness simplify
substantially (Appendix B). Because the correct expressions for fit-
ness are obtained by setting k ¼ 0 and hence c ¼ 0 in (A.8), (A.11)
and (A.19), we will refer to this limit largely as the k ¼ 0 limit (as
opposed to the a ! 1 limit). To make things as simple as possible,
however, we now also assume that there is no owner advantage
and that greater size is always decisive in a contest, in the sense
that a large individual always wins against a normally sized one.
Thus q ¼ 0; k ! 1 in addition to k ¼ 0, and (3)–(5) reduce to

q0 ¼ qI ¼
1
2
; qOL ¼ qIL ¼ 1; qON ¼ qIN ¼ 0: ð14Þ

We refer to this model as our reduced model. The evolution of
the population now depends only on two dimensionless parame-
ters, namely, the relative reproductive (developmental) value a
and frequency h of the more deadly host, and on the proportions
x1; x2 of C and D strategists, with the proportion x3 of U implied
by (12).

In a theoretical exploration, focusing on a low-dimensional
parameter space facilitates clarity of prediction. Nevertheless,
departures from the above assumptions are discussed in Section 4,
where we consider the effects of different values of the other three
parameters from the values assumed here (specifically, we con-
sider finite k and positive q and k).

In general, as noted above, what we wish to know is the strat-
egy mix to which the population ultimately evolves as a function
of prevailing ecological conditions, which now depend only on a
and h. That is, ecological conditions are represented by the set of
all possible pairs of values of a and h; it forms a square, which
we term the parameter square and denote by S. Thus, for any point
a; hð Þ inside the parameter square

S ¼ a; hð Þj0 6 a; h 6 1f g ð15Þ
depicted in Fig. 1 we wish to know the point or set of points in the
phase-plane triangle D defined by (13) to which the vector
x1 tð Þ; x2 tð Þð Þ of proportions of C- and D- strategists ultimately
evolves. This final destination is typically a static equilibrium point,
in which case we may denote it by x1 1ð Þ; x2 1ð Þð Þ; but for a small
subregion of S the final destination is instead a dynamic equilibrium
or limit cycle, as discussed below in Subsections 3.5-3.7 and Appen-
dix D.

Eqs. (10)-(14) and (B.1)-(B.3) imply that the evolution of
x1 tð Þ; x2 tð Þð Þ towards its final destination is governed by

dx1
dt

¼ x1/1 x1; x2ð Þ; dx2
dt

¼ x2/2 x1; x2ð Þ ð16Þ

with

/1 x1; x2ð Þ ¼ 1
2 1� hð Þx32 � 1� x1ð Þ h a 1þ x21

� �� 1�xLx1
� �þxL

� ��
þx22 a 1� hð Þ x1 þ 1ð Þ 1�xLð Þ � h 1þxLð Þx1 þ hþxLf g
þx2 a 1� hð Þ 1� x21

� �
xL � 2

� �� h 1þxLx21
� �þ 1þxLx1

� ��ð17aÞ

and
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Fig. 1. Equilibria corresponding to different subsets of the parameter square S, which represents ecological conditions in the reduced model by virtue of containing all
possible pairs of values of a and h. This figure is best regarded as a necessary stepping stone to Fig. 5, which shows only the global attractor, whereas this figure yields
information about all equilibria (including non-attractors, which have no ecological relevance). The left-hand panel corresponds to Table 4; the right-hand panel corresponds
to Table 5. (a) Regions in S corresponding to equilibria on the boundary of D, as indicated in Table 4. The curve from 1

2 ;1
� �

to 1
2 ;0
� �

between regions ii and iii has equation

4h2a3 þ 12h 1� hð Þa2 þ 11h2 � 20hþ 8
� �

a ¼ 4 1� hð Þ2. The curve from 0;1ð Þ to 1
2 ;0
� �

separating region v [ vi from region iii [ iv has equation h ¼ 1� 2að Þ= 1� að Þ2. The curve

from 1
2 ;1
� �

to 1
3 ;0
� �

separating region iv [ v from region iii [ vi has equation h ¼ 1� 3að Þ= 2 1� að Þ2 � 1
n o

. These curves cross at ac ; hcð Þ, where ac ¼ 1
2 3� ffiffiffi

5
p� �

� 0:382 and

hc ¼ 1
2

ffiffiffi
5

p
� 1

� �
� 0:618. The dots at a; hð Þ ¼ 0:38;0:7ð Þ and 0:42;0:7ð Þ correspond to Fig. 2. In Table 4, a second subscript b is used to identify an equilibrium on the horizontal

or base edge of the right-angled triangle D; a second subscript s is used to identify an equilibrium on its vertical or side edge; and a second subscript r is used to identify an
equilibrium on its hypotenuse or roof edge. Table 4 excludes a saddle point at 0;0ð Þ and an unstable node at 0;1ð Þ, both of which always exist (and are regarded as vertex

equilibria, as opposed to edge equilibria). All other details, including the dashed curve joining 0;1ð Þ to 2
ffiffiffi
5

p
� 2

� �
;0Þ � 0:472;0ð Þ, are discussed in Appendix D. (b) Regions in S

corresponding to a (static) equilibrium in the interior of D, as indicated in Table 5. The curve between regions IIa and IIb joins a1;
1
2

� �
to a2;1ð Þwhere a1 ¼

ffiffiffi
2

p
� 1 � 0:414 and

a2 � 0:628. The dots at a; hð Þ ¼ 0:6;0:6ð Þ; 0:43;0:49ð Þ and 0:5;0:8ð Þ correspond to Figs. 3 and 4. For further details, see Appendix D.
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/2 x1; x2ð Þ ¼ 1
2 a 1� x2ð Þ 1þ x21

� �� x1 x1 1þ x2ð Þ þ 2x22
� �� �

þ 1� x1 � x2ð Þ 1
2 a 1� x2ð Þ 1þ x1ð Þ � x1 1þ x2ð Þf g�

xN � ahK x1; x2;xLð Þ
� 1� hð ÞK x2; x1;xNð Þ � 1� hð Þ 1þ x2ð ÞxLx1g;

ð17bÞ

where we have defined

K p; q;xð Þ ¼ p2 þ 1
2

1þ pð Þ 1� p� qþxqð Þ

for any size probability x and proportions p; q. In view of (1), the
right-hand sides of (16) depend only on the proportions x1; x2 of
strategies C;D and on the two dimensionless parameters a and h.
The evolution of x1 tð Þ; x2 tð Þð Þ over the triangle D in Fig. 2 can now
be determined from (17) by standard methods of nonlinear analysis
(e.g., Strogatz, 2014; Layek, 2015), with the proportion of strategy U
simultaneously determined from (12) as x3 tð Þ ¼ 1� x1 tð Þ � x2 tð Þ. In
describing this evolution, we refer to the horizontal edge of the
right-angled triangle D (where x2 ¼ 0) as its ‘‘base edge,” to its
hypotenuse (where x1 þ x2 ¼ 1) as its ‘‘roof edge” and to its vertical
edge (where x1 ¼ 0) as its ‘‘side edge.” Correspondingly, we use sub-
scripts b; r and s, respectively, to distinguish edge equilibria (as in
Table 4).

3.1. Size advantage has no evolutionary effect without U-strategists,
CD cannot evolve

We begin our analysis of the reduced model with a partial
digression to note that size advantage, although decisive, would
5

have no effect in the complete absence of U-strategists because in
that case all contests would occur between physical equals. Rather,
C would go to fixation when its fitness exceeded that of a D-
strategist by twice or more, thus completely offsetting the 50%
chance of losing a contest, that is, when a < 1

2; whereas both strate-
gies would persist when 1

2 < a < 1, with the proportion of D in the
strategy mix increasing from 0 to 1

2 as a increased from 1
2 to 1. This

intuition is readily confirmed by analysis (Appendix C, where an
explicit expression is given for the proportions of C and D when
both persist). However, this no-U equilibrium, which occurs on
the roof-edge of D (where x1 þ x2 ¼ 1 and hence x3 ¼ 0), fails to per-
sist as soon as a single U-strategist enters the population: in D the
equilibrium is an unstable saddle point, which can be approached
only from points already on the roof-edge itself. (This saddle point
does not appear in Fig. 2 because the phase plane is sketched for
a < 1

2 in both panels, but it does appear in Fig. 3(a) where a > 1
2.)

We conclude that a polymorphism of C and D cannot evolve.

3.2. The three vertex equilibria: potential monomorphisms

We now proceed with a summary of the more general analysis,
whose details are presented in appendices. Inspection of (17)
reveals that all three vertices of D are invariably equilibrium points
because /1 1; 0ð Þ ¼ /2 0;1ð Þ ¼ 0; however, 0;0ð Þ and 0;1ð Þ are both
unstable, 0;0ð Þ being a saddle point and 0;1ð Þ an unstable node
(Appendix D). By contrast, the type of 1;0ð Þ depends on ecological
conditions, that is, on where a; hð Þ lies in the parameter square S:
from Appendix D, it is an unstable node, a saddle point or a stable
node according to whether a; hð Þ lies in region i, region ii [ iii [ vi



2 2
D D

Fig. 2. Phase-plane triangles D corresponding to two different points in regions iii and iv of Fig. 1(a). Large dots denote equilibrium points, small dots points at which sample
trajectories begin. (a) This phase-plane triangle corresponds to the dot in region iv of Fig. 1(a). There are 6 equilibrium points: saddle points at 0;0ð Þ; 0;0:1473ð Þ and
0:1212;0ð Þ, an unstable node at 0;1ð Þ, an unstable focus at 0:0644;0:0644ð Þ and a stable node at 1;0ð Þ. The vertex 1;0ð Þ is the only local attractor and therefore also the global
attractor: the population evolves to a monomorphism of C (which in a biocontrol scenario would mean that the invasive, more deadly, host was no longer attacked by resident
parasitoids). Three sample trajectories are shown, with initial points 0:01;0:8ð Þ; 0:01;0:5ð Þ and 0:08;0:03ð Þ. (b) This phase-plane triangle corresponds to the dot in region iii of
Fig. 1(a). There are now 7 equilibrium points: saddle points at 0;0ð Þ; 0;0:2659ð Þ 0:3779;0ð Þ and 1;0ð Þ, an unstable node at 0;1ð Þ, an unstable focus at 0:1312;0:1312ð Þ and a
stable node at 0:8005;0ð Þ. This base-edge equilibrium is the only local attractor and therefore also the global attractor: the population evolves to a polymorphism of C and U
(in a biocontrol scenario, some parasitoids would attack the invasive host). Three sample trajectories are shown again; two initial points are the same, the third has been
changed from 0:08;0:03ð Þ to 0:225;0:0875ð Þ. Separatrices are shown dashed. In both cases, a separatrix joins the unstable focus to a base-edge saddle point and the side-edge
saddle point to the global attractor, although in (a) this separatrix is scarcely visible behind one of the trajectories.

Table 4
Regions in the parameter square S corresponding to equilibria on the boundary of D.

Region Equilibria

i Unstable nodes at 1;0ð Þ and saddle points at 0; x2sð Þ and x1r ; x2rð Þ,
where x1r þ x2r ¼ 1

ii Saddle points at 1;0ð Þ and 0; x2sð Þ
iii A stable node at xþ1b;0

� �
and saddle points at x�1b;0

� �
; 0; x2sð Þ and

1;0ð Þ
iv A stable node at 1;0ð Þ and saddle points at xþ1b;0

� �
and 0; x2sð Þ

v A stable node at 1;0ð Þ
vi A stable node at xþ1b;0

� �

Table 5
Regions in the parameter square S corresponding to a (static) equilibrium in the
interior of D.

Region Equilibrium in D on the line segment K joining 0;0ð Þ to 1
2 ;

1
2

� �
Ia A stable node
Ib An unstable node
IIa A stable focus
IIb An unstable focus
III No interior equilibrium point
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or region iv [ v of Fig. 1(a). These points are illustrated by Fig. 2,
where 1;0ð Þ is a stable node in (a) but a saddle point in (b),
whereas 0;0ð Þ is a saddle point and 0;1ð Þ is an unstable focus in
both panels. We conclude that a monomorphism of D or of U can-
not evolve, and that C can evolve only for region iv [ v of Fig. 1(a).
3.3. Equilibria on the base of D where x2 ¼ 0 (no D strategists):
Potential CU polymorphism

From Appendix D, either one or two base-edge equilibria of the
form x�1b;0

� �
with 0 < x�1b < 1 will arise when a; hð Þ lies in region
6

iii [ iv [ vi of Fig. 1(a). Region iv corresponds to a base-edge saddle
point; region vi corresponds to a base-edge stable node; and region
iii corresponds to two base-edge equilibria, a saddle point and a
stable node. We conclude that a polymorphism of C and U can
evolve only for region iii [ vi of Fig. 1(a).
3.4. Equilibria on the side of D where x1 ¼ 0 (no C strategists):
Potential DU polymorphism

Again from Appendix D, a side-edge equilibrium of the form
0; x2sð Þ with 0 < x2s < 1 arises when a; hð Þ lies in region
i [ ii [ iii [ iv of Fig. 1(a); but it is always an unstable saddle point.
We conclude that a polymorphism of D and U cannot evolve for the
reduced model. Note, however, that this conclusion is predicated
on q ¼ 0 (no owner advantage) and need not hold when q > 0;
see Section 4.2.
3.5. Interior equilibrium on the line segment in D where x1 ¼ x2 (C;D
equally numerous)

Finally, for all a; hð Þ in the very same region of S, relabelled as
region I [ II in Fig. 1(b), an interior equilibrium invariably arises
on the 45� open line segment

K ¼ x1; x2ð Þj0 < x1 ¼ x2 <
1
2

	 

ð18Þ

joining 0;0ð Þ to 1
2 ;

1
2

� �
in D. Whenever this equilibrium exists—that

is, whenever a; hð Þ lies in region I [ II—we denote it by p	;p	ð Þ. It
is always either a node or a focus; but it is an attractor only for
a; hð Þ 2 Ia [ IIa. For a; hð Þ 2 Ib [ IIb \ iii [ iv there is a local attractor
on the boundary of D, which is also the global attractor; but for
a; hð Þ 2 Ib [ IIb \ iii [ iv in Fig. 1(b), no static local attractor exists.



s

Fig. 3. Phase-plane triangles D corresponding to two different points in region IIa of Fig. 1(b). Large dots denote equilibrium points, small dots points at which sample
trajectories begin. (a) This phase-plane triangle corresponds to the dot in region IIa \ iii of Fig. 1(b), where an overbar denotes a set complement. There are six equilibrium
points: saddle points at 0;0ð Þ; 0;0:4858ð Þ and 0:8417;0:1583ð Þ, unstable nodes at 1;0ð Þ and 0;1ð Þ and a stable focus at 0:2869;0:2869ð Þ. Three sample trajectories are shown,
with initial points 0:01;0:8ð Þ; 0:95;0:03ð Þ and 0:225;0:0875ð Þ. Separatrices join the saddle points at 0;0:4858ð Þ and 0:8417;0:1583ð Þ to the stable focus at 0:2869;0:2869ð Þ.
Because this focus is the only local attractor, it is also the global attractor: the population evolves to a polymorphism of all three strategies. (b) This phase-plane triangle
corresponds to the dot in region IIa \ iii of Fig. 1(b). There are seven equilibrium points: saddle points at 0;0ð Þ; 0;0:07099ð Þ 0:1084;0ð Þ and 1;0ð Þ, an unstable node at 0;1ð Þ, a
stable focus at 0:03994;0:03994ð Þ and a stable node at 0:5715;0ð Þ. Five sample trajectories are shown, with initial points 0:01;0:8ð Þ; 0:01;0:5ð Þ; 0:25;0:5ð Þ; 0:065;0:02ð Þ and
0:08;0:03ð Þ. To avoid clutter, no arrows were placed on the last two trajectories, which converge to the stable focus and the stable node, respectively. A separatrix, shown
dashed, joins the unstable node at 0;1ð Þ to the saddle point at 0:1084;0ð Þ. Because there are now two local attractors, there is no longer a global attractor; rather, x1 tð Þ; x2 tð Þð
converges to 0:03994;0:03994ð Þ from points on the left of the separatrix and to 0:5715;0ð Þ from points on the right of it. That is, the population evolves to a polymorphism of
all three strategies (but dominated by undiscerning U strategists, given that the proportions of both C and D are low) or a monomorphism of C (parasitoids specializing on
native hosts), according to whether x1 0ð Þ; x2 0ð Þð lies on the left or the right of the separatrix.

Fig. 4. Examples of persistence of strategy D in a limit cycle. The phase-plane triangle D is shown for a ¼ 0:5; h ¼ 0:8;q ¼ 0; k ! 1 and two values of k; as in Figs. 2 and 3,
large dots denote equilibrium points, small dots points at which sample trajectories begin. In both cases, there are five equilibrium points: saddle points at 0;0ð Þ and 0; x2sð Þ,
an unstable node at 0;1ð Þ, an unstable focus at p	 ;p	ð Þ and a non–hyperbolic saddle-node equilibrium at 1;0ð Þ, as discussed in Appendix D. The closed curve is a limit cycle
surrounding the unstable focus at p	; p	ð Þ. Two sample trajectories of approach are shown, one starting inside the limit cycle and one starting outside it; for simplicity of
illustration, they are not sketched all the way to convergence. Also shown dashed is the separatrix from the saddle point at 0; x2sð Þ towards the limit cycle. (a) Here k ! 0. This
phase-plane triangle D corresponds to the point a; hð Þ ¼ 0:5;0:8ð Þ in region IIb \ iii \ iv of Fig. 1(b); x2s ¼ 0:5 and p	 � 0:2445. (b) Here k ¼ 5� 10�7; x2s � 0:4698 and
p	 � 0:2303. In both cases, the limit cycle is a global attractor from inside D: the population evolves to a dynamic equilibrium, a periodic polymorphism of all three strategies.
In biocontrol scenarios this would mean that both native and invasive hosts were attacked, but the relative attack rates would vary over time. Further, a commonly observed
behaviour would be that parasitoids attack both host types indiscriminatey.
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In this region, x1 tð Þ; x2 tð Þð converges to a limit cycle, as illustrated by
Fig. 4.
3.6. The unique global attractor

The strategy mix to which the population evolves as a function
of a and h (for q ¼ 0; k ! 1 and k ¼ 0) is depicted in Fig. 5. For
points a; hð Þ in region A, x1 tð Þ; x2 tð Þð Þ is attracted to the vertex
1;0ð Þ in the bottom right-hand corner of the phase triangle D, so
the population evolves to a monomorphism of strategy C. For
points in region B, x1 tð Þ; x2 tð Þð Þ is attracted to the base-edge of
D : x1 1ð Þ; x2 1ð Þð Þ ¼ xþ1b;0

� �
where xþ1b is defined by (D.10), a poly-

morphism of strategies C and U. Only for points a; hð Þ in regions D
or E is strategy D guaranteed to persist. For a; hð Þ in region D,
x1 tð Þ; x2 tð Þð Þ is attracted to a stable node or focus; whereas for
a; hð Þ in region E, the population evolves to a limit cycle instead.
In either case, the population evolves to a (static or dynamic) poly-
morphism of all three strategies. In the narrow transitional region
C, the population evolves either to a static polymorphism of all
three strategies or to xþ1b;0

� �
, according to whether x1 0ð Þ; x2 0ð Þð Þ

lies to the left or the right of a separatrix joining the unstable node
at 0;1ð Þ to the saddle point at x�1b;0

� �
, as illustrated by Fig. 3(b). See

Appendix D for further details. In terms of biocontrol scenarios,
these results suggest that when invasive hosts are very unsuitable
Fig. 5. Strategy mix to which the population evolves as a function of a and h for
q ¼ 0; k ! 1 and k ¼ 0. For points a; hð Þ in region A, the population evolves to a
monomorphism of strategy C. For points in region B, the population evolves to a
polymorphism of strategies C and U. Only for points in region D or region E is
strategy D guaranteed to persist. For points in region D, the population evolves to a
static polymorphism; whereas for points in region E, the population evolves to a
limit cycle instead. In either case, the population evolves to a (static or dynamic)
polymorphism of all three strategies. In the narrow transitional region C, the
population evolves either to CDU or CU, as described in Section 3.6. The dots in
regions A, B, C and E indicate the points for which the phase trajectories are plotted
in Figs. 2(a), 2(b), 3(b), and 4(a), respectively; in region D, the upper dot corresponds
to Fig. 3(a), and the lower dot to Fig. 6(a). The points a	; h	ð Þ � 0:4302;0:691ð Þ and
aw; hwð Þ � 0:4322;0:6168ð Þ are, respectively, the point at which the boundary
between regions B and E has a vertical tangent and the lowest point of the wedge-
shaped region E;a	 is not marked on the horizontal axis because it is too close to aw .
See Section 3.6 and Appendix D for further details. In terms of biocontrol scenarios,
these results suggest that when invasive hosts are very unsuitable for parasitoid
development, parasitoids will evolve to avoid them, but if survival in the more
deadly host is approximately half as good as in the natural host, or better, then
some wasps will attack the invasive host.

8

for parasitoid development, parasitoids will evolve to avoid them,
but if survival in the more deadly host is approximately half as
good as in the natural host, or better, then some wasps will attack
the invasive host.

Our analysis establishes that a unique global attractor exists for
all a; hð Þ 2 S except points lying in the narrow transitional region C
in Fig. 5. In this region, strategy D persists only if the initial propor-
tion of strategy C is very low (so that x1 0ð Þ; x2 0ð Þð Þ lies to the left of
the separatrix discussed in Appendix D). For all a; hð Þ in region
D [ E of Fig. 5, however, strategy D is guaranteed to persist at some
level, either as part of a static polymorphism (region D) or as part
of a periodic dynamic equilibrium or limit cycle that surrounds an
unstable equilibrium (region E). Because p	 is the average value of
x1 tð Þ or x2 tð Þ over the period of any such limit cycle, p	 is a suitable
measure of the representation of strategy D (or C) within a poly-
morphism of all three strategies, regardless of whether strategy
D persists statically or dynamically. We therefore refer to p	 as
the ‘‘strength” of strategy D in such a polymorphism.

3.7. The limit-cycle region

Within region E, the further a; hð Þ moves away from the bound-
ary with region D and into the region where the equilibrium at
p	; p	ð Þ is unstable, the greater the amplitude of the limit cycle;
thus its amplitude increases with h and decreases with a. The
nearer a; hð Þ moves to the boundary with region B, the more the
limit cycle approaches the side edge of D where x1 ¼ 0. It is thus
possible that a stochastic perturbation to strategy C could drive it
to extinction but only at a point where the proportion of strategy
D in the dynamic polymorphism is high. Then x1 tð Þ; x2 tð Þð would
move along x1 ¼ 0 towards the saddle point at 0; x2sð Þ; this is the
only circumstance in which this equilibrium would become an
attractor. However, a single C mutant would shift x1 tð Þ; x2 tð Þð back
onto the limit cycle. So strategy D persists at strength p	 for any
a; hð Þ in region D [ E, regardless of whether its proportion in the
strategy mix is fixed or changes with time. For any given value of

h, within region D [ E, the least value of a is
ffiffiffiffiffiffiffiffiffiffiffiffi
1� h

p
� 1þ h

n o
=h;

as a increases from that value to 1, the strength of strategy D
increases from 0 to 1

2.
How likely is such a limit cycle to arise in practice? There are

currently no empirical data to address this question. Nevertheless,
because it would require the point a; hð Þ to lie in region E of Fig. 5, it
would at least require h to exceed 0:617 and a to lie between 0:432
and 0:628. In other words, our model predicts that a limit cycle can
arise only at high values of the proportion of more deadly hosts
and intermediate values of the relative reproductive (developmen-
tal) value.

3.8. The proportion of large individuals in a polymorphic population

We conclude this section by noting that the proportion of large
individuals in a polymorphic population is always higher than the
strength of strategy D because a U-strategist is large with probabil-
ity xL. Let PL and PN denote the proportions of individuals in the
population who are large and normal, respectively. Then

PL ¼ x2 þxLx3; PN ¼ x1 þxNx3 ð19Þ
where xL and xN are defined by (1), x3 is determined by (12) and
PL þ PN ¼ 1. Thus, for example, at the static polymorphism in
Fig. 3(a) where D persists at strength p	 � 0:287, the proportion of
individuals in the population who are large is
p	 þxL 1� 2p	ð Þ � 0:489. An important point for future empirical
investigations is that an ESS may not itself be directly observable
(Mesterton-Gibbons, 2019 p. 360); and in this context, PL and PN

are observable, whereas p	 is not.
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4. Implications of owner advantage and other departures from
the reduced model

In this section we relax some of the assumptions of the previous
section by discussing the effects of owner advantage (q – 0) and of
reduced parasitoid density (a < 1 or k > 0) or size advantage
(k < 1). Our results were obtained largely from numerical explo-
ration of the larger five-dimensional parameter space, although
some analysis was possible (Appendix E). Here we provide only a
brief summary, especially for k and k, so that we can focus on
the more important implications of increasing q.
4.1. Reduced parasitoid density (a < 1 or k > 0) or size advantage
(k < 1)

The effects of reducing parasitoid density and of reducing size
advantage are similar. In essence, for sufficiently large relative
reproductive (developmental) value a, strategy D of exploiting
the deadlier host will persist at reduced parasitoid density as long
as k does not depart too greatly from its very small value in the
reduced model, when q and k are unchanged; and again for suffi-
ciently large a, strategy D will persist at reduced size advantage
as long as k does not depart too greatly from its very large value
in the reduced model, when q and k are unchanged. Both of these
results are strongly intuitive: size advantage in contests is less
likely to be favoured if a contest is less likely in the first place, or
if it is less than certain to be decisive when a contest does arise.
Either increasing k or decreasing k from its reduced-model value
reduces the strength of strategy D in the polymorphism that allows
it to persist, and causes the interior equilibrium p	; p	ð Þ to drift
down K towards the origin, where it eventually disappears (along
with strategy D). Significantly, however, in the absence of owner
advantage (q ¼ 0), whenever an interior equilibrium exists, it
always lies in K.
4.2. Owner advantage (q – 0)

By contrast, as soon as owner advantage is included (q– 0), the
interior equilibrium veers off K towards the side edge of D, so we
must now instead denote it by p	; q	ð Þ, where p	 < q	. The effect is
illustrated by Fig. 6: the first panel shows a reduced-model phase
triangle for a point a; hð Þ in region D of Fig. 5 with a lower value
of h than in Fig. 3(a), so that the global attractor is a stable node
as opposed to a stable focus. Both strategy C and strategy D have
strength p	 � 0:113 in the corresponding polymorphism of all
three strategies. Steadily increasing the value of q from zero
increases the strength of D in the polymorphism, but decreases
that of both C and U. The second panel shows the phase plane at
q ¼ 0:2. The stable node has veered off K to
p	; q	ð Þ � 0:0766;0:211ð Þ; and so the strength of D has increased
by almost 0:1, while that of C and that of U have decreased by
almost 0:04 and over 0:06, respectively. As q continues to increase,
p	; q	ð Þmoves steadily towards the side-edge saddle point, which it
absorbs at p	; q	ð Þ � 0;0:279ð Þ for q � 0:523. For this and any
higher value of q, the global attractor is a side-edge stable node,
as illustrated by the third panel of Fig. 6 (the fourth panel is essen-
tially unrelated to the present discussion, being included to illus-
trate a point about the effect of k in Appendix E). Strategy C has
now been eliminated from the polymorphism, but D persists
alongside U, whose strength is lower than for q ¼ 0 (although still
much higher than that of D).

Fig. 6 illustrates that owner advantage reinforces the effect of
size advantage to increase the strength of strategy D in a polymor-
phism where D would have persisted for q ¼ 0, because a; hð Þ lies
in region D of Fig. 5. However, a more interesting question is
9

whether owner advantage can enable D to persist in region A of
Fig. 5, where Dwould not persist for q ¼ 0: the answer is yes. What
happens in this case is that increasing q induces the globally
attracting stable node at 1;0ð Þ to migrate leftward along x2 ¼ 0
toward the origin, and then upward along the side edge. This effect
is illustrated by Fig. 7 for a ¼ 0:25 and h ¼ 0:5, so that a; hð Þ lies in
region A of Fig. 5. In this case, x1 tð Þ; x2 tð Þð Þ transitions away from
1;0ð Þ and through the origin at q � 0:25 and q � 0:467, respec-
tively. In biocontrol scenarios, we would expect parasitoid species
that have ownership effects as one of the factors determining con-
test outcomes to more readily evolve to attack invasive hosts.

To appreciate how significantly owner advantage changes the
overall picture, we need only remember that in its absence a global
attractor on the side edge of D is impossible. For q ¼ 0, no a; hð Þ in
region v [ vi of Fig. 1 ever corresponds to a side-edge equilibrium;
and when a side-edge equilibrium does exist (in region
i [ ii [ iii [ iv), it is always an unstable saddle point. By contrast,
Figs. 7 and 8 show that a point in region v of Fig. 1 can correspond
not only to a side-edge equilibrium, but also to a global attractor if
q is sufficiently large. In Fig. 8, which illustrates the effect of vary-
ing a and qwhile holding h fixed, we have set h ¼ 1

2 (equal numbers
of natural and more deadly hosts) to match Fig. 7. With h fixed, dif-
ferent ecological conditions are represented by different values of a
and q. So all possible ecological conditions are represented by the
set of all possible pairs of values of a and q, that is, by the alterna-
tive parameter square

eS ¼ a;qð Þj0 6 a;q 6 1f g: ð20Þ

If we think of S in Fig. 5 as the horizontal base of a cube with q
increasing vertically, then eS corresponds to a vertical cross section
through the centre of this cube in the plane where h ¼ 1

2.
The strategy mix to which the population evolves as a function

of a and q for h ¼ 1
2 (with k ! 1 and k ¼ 0) is depicted in Fig. 8. For

points a;qð Þ in region 1 of eS in Fig. 8, x1 tð Þ; x2 tð Þð Þ is attracted to
vertex 1;0ð Þ 2 D as t ! 1, so the population evolves to a
monomorphism of strategy C. For points in unshaded region 2,
x1 1ð Þ; x2 1ð Þð Þ ¼ xþ1b;0

� �
on the base edge of D, so the population

evolves to a polymorphism of strategies C and U. Only for points
in region 3 or region 4 and outside transitional region 5 is strategy
D guaranteed to persist, within a polymorphism of either D and U
or all three strategies, as indicated in Fig. 8. For points in region 3,
x1 1ð Þ; x2 1ð Þð Þ ¼ 0; x2sð Þ on the side edge of D, except in the inter-
section of regions 3 and 5, where x1 1ð Þ; x2 1ð Þð Þ ¼ 0; x2sð Þ only if
x1 0ð Þ; x2 0ð Þð Þ is very close to 0; x2sð Þ, and otherwise
x1 1ð Þ; x2 1ð Þð Þ ¼ xþ1b;0

� �
as in the rest of region 2. For points in

region 4, x1 1ð Þ; x2 1ð Þð Þ ¼ p	; q	ð Þ in the interior of D, except in
the intersection of regions 4 and 5, where
x1 1ð Þ; x2 1ð Þð Þ ¼ p	; q	ð Þ only if x1 0ð Þ; x2 0ð Þð Þ is very close to
p	; q	ð Þ, and otherwise x1 1ð Þ; x2 1ð Þð Þ ¼ xþ1b; 0

� �
as in the rest of

region 2. For all other details, including the purpose of the smaller
dots in region 5, see Appendix G.
4.3. The strength of D versus the proportion of large individuals

A very small value of a may require a very large value of q to
ensure the persistence of strategy D, and Fig. 8 demonstrates its
persistence for only a single value of h. Nevertheless, it is shown
in Appendix E that q can always be made sufficiently large to
ensure that D persists, although if a is small, D may persist only
if q is close to 1, and only at very low strength. However, the
strength of D is less important than the proportion of large individ-
uals, who may be either D-strategists or U-strategists; and
although, for example, the strength of D at the global attractor in
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Fig. 6. The effect of increasing owner advantage, q. These four phase-plane triangles D correspond to the lower point marked in region D of Fig. 5 for different values of q. The
line segment K defined by (18) is shown dashed; as in Figs. 2–4, large dots denote equilibrium points, small dots points at which sample trajectories begin. In addition to the
three vertex equilibria, there is a side-edge equilibrium in each example, a roof-edge saddle point in each example except (a), and an interior equilibrium in each example
except (c). In (a), (b) and (d), the interior equilibrium is a globally attracting stable node; in (c), the global attractor has migrated to the side-edge; and in (a), (b) and (d), the
side-edge equilibrium is a saddle point. See Section 4.2 and E for further details. Overall, these results suggest that the presence of ownership effects will reduce the
proportion of parasitoids specializing on native hosts and favour those specializing on the invasive host.
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Fig. 7(c) is only q	 � 0:0729, from (19) the proportion of large indi-
viduals in this polymorphism is q	 þxL 1� q	ð Þ � 0:258.

5. Discussion

Advancement of the understanding of animal contests has been
possible through a successful combination of well-integrated the-
oretical and experimental approaches (Briffa and Hardy, 2013;
Kokko, 2013; Sherratt and Mesterton-Gibbons, 2013). Game theory
is not only useful in predicting how general strategies evolve in
order to maximize fitness, but also flexible enough to adapt
towards the specific biological features of a given species of inter-
est (Hammerstein and Riechert, 1988; Spencer and Broom, 2018;
10
Wyse et al., 2017). To date, limited attention has been given to
the role played by anthropogenic disturbances, yet these are
increasingly frequent components of the environment of free-
living organisms as a result of globalization, leading to accidental
introductions, and climate change affecting species’ geographical
ranges (Mooney and Hobbs, 2000).

We have used evolutionary game theory (Broom and Rychtář,
2013; Mesterton-Gibbons, 2019; Sigmund, 2010) to address the
following question: can size advantage in contests among para-
sitoid wasps sustain a preference for a more deadly host? The
question is currently constrained to have only a theoretical answer
because relevant empirical observations are so preliminary, and
hence we have used a reduced model with a low-dimensional
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Fig. 7. The effect of increasing owner advantage, q, where its absence would eliminate strategy D. These four phase-plane triangles D corresponds to a point in region A of
Fig. 5 for different values of q. As in Figs. 2–4 and 6, large dots denote equilibrium points, small dots points at which sample trajectories begin. In addition to the three vertex
equilibria, there is a base-edge stable node in (b), and there are both a roof-edge saddle point and a side-edge stable node in both (c) and (d). As q increases, the globally
attracting stable node migrates leftward along the base edge towards the origin, and then upward along the side edge (to eliminate C). See Section 4.2 for further details.
Overall, these results further suggest that the presence of ownership effects will reduce the proportions of parasitoids specializing on native hosts and favour those
specializing on the invasive host.
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parameter space for clarity of prediction: our answer depends on
only two dimensionless parameters, namely, the ratio (a) of the
reproductive (developmental) value of a more deadly host to that
of a natural host and the proportion (h) of all hosts that are of
the more deadly variety. Because the left-hand boundary of region
E in Fig. 5 has its vertical tangent at a	; h	ð Þ, where a	 � 0:4302 and
h	 � 0:691, our reduced-model analysis predicts that the answer is
yes, but that D can persist only if the reproductive (developmental)
value of a more deadly host is at least 43% of the value of a natural
one (though, on the other hand, strategy D is also guaranteed to
exist, even at low proportions of the more deadly host, if the rela-
tive value is 50% or greater, because a; hð Þ 2 D [ E in Fig. 5 for all
11
aP 1
2). Current empirical estimates of survival by T. basalis in

native (84%) and invasive hosts (0–38%) (Cusumano et al., 2011;
Rondoni et al., 2017; Balusu et al., 2019; Peri et al., 2021) suggest
that a may range between zero and circa. 45%: assuming no
host-species effects on the fecundity of emerging adults, this sug-
gests that for this particular host-parasitoid association, inclusion
of the invasive species in the range of attacked hosts will generally
not be selected for. However, if there were positive fecundity
effects of emerging from the invasive host species or if parasitoids
further evolve to develop better in the invasive host (see below),
then the value of a could be considerably increased, making spe-
cialization on native hosts no longer the only strategy selected.



Fig. 8. Strategy mix to which the population evolves as a function of a and q for
h ¼ 1

2 ; k ! 1 and k ¼ 0. For points a;qð Þ in region 1, the population evolves to a
monomorphism of strategy C. For points in unshaded region 2, the population
evolves to a polymorphism of strategies C and U. Only for points in region 3 or
region 4 and outside transitional region 5 is strategy D guaranteed to persist, within
a polymorphism of either D and U or all three strategies, as indicated. The larger
dots at 0:25;0:2ð Þ; 0:25;0:4ð Þ; 0:25;0:6ð Þ and 0:25;0:8ð Þ correspond to panels (a), (b),
(c) and (d), respectively, in Fig. 7; and moving along the base of the above square
from left to right corresponds to moving in the same direction along the central axis
h ¼ 1

2 of the square in Fig. 5 For details of transitional region 5, including the purpose
of the two smaller dots, see Section 4.2 and G. For biocontrol scenarios these results
suggest that parasitoids will not be selected to remain specialists on their native
hosts unless the invasive host species is very unsuitable for development and the
role of ownership asymmetries in determining contest outcomes is small.
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Moreover, this conclusion is based on a reduced-model analysis,
for which owner advantage is absent, whereas we have shown in
Section 4.2 that increased ownership advantage favours inclusion
of the invasive species in the range of attacked hosts by reducing
the value of a for which strategy D persists (again, see below).

The two-parameter model we have analysed in Section 3 is a
special case of the more general five-parameter model formulated
in Section 2 (and Appendix A), obtained in the limit of no owner
advantage, extreme size advantage and high parasitoid density
(for q ¼ 0; k ! 1 and k ¼ 0). In principle, we could repeat our
analysis for any other set of values of the other three parameters
(i.e., for q > 0, finite k and k > 0), and for each such choice we
could thus obtain analogues of Figs. 1–5. In practice, however, such
efforts would provide little added benefit, because in the absence
of empirical data, no such values have any greater significance than
the limiting values we have already chosen.

Nevertheless, we have explored the more general five-
dimensional parameter space numerically, as described in Sec-
tion 4, and in particular have investigated how owner advantage
can reinforce the advantage of size. Our analysis not only shows
that a preference for the more deadly host is most favoured when
the asymmetries of size and ownership both apply, but it also pre-
dicts that an obligate preference for the natural host cannot be
eliminated unless both asymmetries operate. This result is implicit
in Figs. 6 and 7 but is further clarified by the analytical results pre-
sented in Appendix F. Because owner advantage substantially
reduces the value of a at which a preference for the more deadly
host can persist, it seems that size advantage in contests is unlikely
12
by itself to sustain a preference for Halyomorpha halys among Tris-
solcus basalis, but that such a preference could be maintained by
the simultaneous operation of both size advantage and ownership
advantage (as is observed in some of the species of parasitoids in
which contests have been studied, Hardy et al., 2013). However,
the issue remains very much an open question because empirical
studies are at such a preliminary stage, even though some aspects
of patch defence and contest behaviour in T. basalis have been pre-
viously investigated with regard to its role as a parasitoid of the
pentatomid bug Agonoscelis rutila (Fabricious) (Field and Calbert,
1998; Field, 1998; Field et al., 1998; Field and Calbert, 1999). Large
asymmetries in wasps’ contestant abilities were not explored (con-
testant size was relatively invariant), and this body of work indi-
cated that the main factor influencing contest outcome is prior
ownership, closely fitting the Bourgeois strategy that was explored
by classic game-theoretic models during the early development of
general theory for contests (Maynard Smith, 1982): i.e., females
that arrive first on the patch almost always win against subsequent
intruders (Field et al., 1998). The larger size asymmetries likely
generated by development in one of several host species may,
however, lead to additional and perhaps stronger effects of contest
ability (as found for the egg parasitoid Telenomus podisi, Guerra-
Grenier et al., 2020).

The oviposition into invasive hosts by indigenous parasitoids
would be expected to select for an enhanced ability to survive
development in those hosts and thus an evolutionary change in
a, the relative reproductive (developmental) value of the unnatural
host (Berthon, 2015; Konopka et al., 2018; Robertson and
Blumstein, 2019; Kruitwagen et al., 2021), as has been analagously
observed in Australian native snakes that are evolving long-term
adaptations (including higher resistance to toxin) in order to con-
sume invasive and toxic tadpoles (Shine and Wiens, 2010) and the
beak length in the soap berry bug Jadera haematoloma (Hemiptera:
Rhopalidae) evolving in response to fruit size of plant species intro-
duced to North America (Carroll and Boyd, 1992; Cenzer, 2017).
Hence, it is possible that the contest biology of T. basalis will act
in concert with adaptations to developing in a novel host species
to promote a more stable association with the Brown Marmorated
Stink Bug, ultimately facilitating escape from what has been seen
as the evolutionary trap (Schlaepfer et al., 2002; Schlaepfer et al.,
2005; Abram et al., 2014). The invasive Brown Marmorated Stink
Bug is a major agricultural pest in Europe and in north America
where the biological control currently provided by resident egg
parasitoids, such as T. basalis, is generally considered insufficient
to reduce the pest population density below economic thresholds
(Rice et al., 2014; Leskey and Nielsen, 2018). An enhanced ability
of resident natural enemies to survive development in this pest
may indicate that, over generations, the value of native egg para-
sitoids in biological control could increase.

With regard to size-advantage effects that could lead to
evolutionary-trap escape, we have assumed that T. basalis para-
sitoids that successfully develop from H. halys eggs gain positive
fitness-related benefits. It is well known that size is often a good
proxy for fitness; see, for example, Roitberg et al. (2001), Boivin
(2010) and Cusumano et al. (2016). Because there is a direct link
between foraging capacities and fitness in parasitoid wasps, larger
individuals could possess higher host-searching capacities or
higher attack rates and thus be more efficient in suppressing the
pest population of native and invasive stink bug hosts.

Finally, we must keep in mind that well designed models are, of
necessity, deliberate simplifications of reality. As Maynard Smith
noted, ‘‘all good models in science leave out a lot. A model which
included everything would be too complicated to analyze”
(Maynard Smith, 1972, p. 21). As Field et al. (1997) noted, in T.
basalis there is a pay-off due to superparasitism and the offspring
of a superparasitizing female can survive at relatively high rates.
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Field et al. (1997) argued that such advantages were mainly due to
adjustment in the sex ratio (males develop faster than females and
might thus have an advantage in competition). As noted in Sec-
tion 2, however, to incorporate this effect in our model would have
defeated its purpose by adding too much complexity.

In conclusion, our model has explored the combined survival
disadvantages of developing in unnatural hosts with the size-
related competitive advantages experienced by survivors. The fact
that surviving individuals are large can be sufficient to alleviate the
risk of developmental mortality and thus enhanced body size pro-
vides one means of potential escape from the evolutionary trap set
by the presence of a novel and developmentally unsuitable host.
While our model was constructed with particular regard to current
interactions between invasive stinkbugs and their native natural
enemies, it has wider applicability. For instance, an analogous sit-
uation exists in Pacific salmon in which larger and more directly
competitive males at spawning grounds have also had to survive
greater mortality risks whilst at sea than smaller males that did
not migrate from their natal rivers (Gross, 1985; Hammerstein
et al., 2006). Here again, both developmental mortality and the
competitive ability of survivors play key roles in understanding
the selective values of the alternatives and that the observed eco-
logical scenario is influenced by anthropogenically induced change
(Gross, 1991).
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Appendix A. Fitness calculation

We begin by computing a focal C-strategist’s expected number
of offspring from a suitable host, conditional on discovery at time
T; for a C-strategist, suitable host means natural host. We denote
this conditional payoff by wC Tð Þ. The host is either guarded or
unguarded. Thus wC Tð Þ is a sum of two contributions, the first con-
ditioned on the host being guarded and the second conditioned on
the host being unguarded. Let these contributions be wCg Tð Þ and
wCu Tð Þ, respectively. That is,
wC Tð Þ ¼ wCg Tð Þ þwCu Tð Þ: ðA:1Þ
We deal with each contribution in turn.

If the host is guarded, then the host has already been discovered
by another individual, which happens with probability Z Tð Þ,
defined by (7); the focal C-strategist is an intruder; and the owner
is either another C-strategist or a U-strategist, because a D-
strategist that discovers a natural host does not guard it. So, condi-
tional on the host being guarded, the focal individual will have fit-
ness 1 if either the owner is another C-strategist and the focal
animal wins against the other C-strategist or the owner is a U-
strategist and the focal animal wins against the U-strategist; other-
wise, the fitness is zero. The probability of winning as an intruder
against another C-strategist is qI , defined by (3), because both indi-
viduals have the same size. The probability of winning as an intru-
der against a U-strategist depends on whether it is larger or of
equal size. The owner is larger if it emerged from a more deadly
host, which happens with probability xL, defined by (1), and then
the intruding C-strategist wins with only the reduced probability
qIN , defined by (4); whereas if the U-strategist emerged from a
natural host, which happens with probability xN , then the focal
individual’s probability of victory is qI , as before. The owner is a
C-strategist with probability x1 and a U-strategist with probability
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x3. Thus, conditional on the host being guarded at time T, the prob-
ability that the focal individual succeeds in acquiring it is
qI � x1 þ xL � qIN þxN � qIð Þ � x3, implying

wCg Tð Þ ¼ 1 � Z Tð Þ � qI � x1 þ xL � qIN þxN � qIð Þ � x3f g: ðA:2Þ
If the host is unguarded, then the focal C-strategist becomes its

owner. The host is unguarded if either it has been discovered by
time T and the first discoverer is a D-strategist or the host has
not been discovered by time T, that is, with probability
Z Tð Þ � x2 þ 1� Z Tð Þ. With (conditional) probability 1� Y Tð Þ, where
Y Tð Þ is defined by (7), the host is not subsequently discovered,
the protagonist remains the owner and its payoff is therefore 1.
With probability Y Tð Þ, however, the C-strategist is subsequently
intruded upon. Conditional thereon, with probability x2 the intru-
der is a D-strategist and the focal C-strategist remains the owner
(with fitness 1), because the host is a natural one. But a contest
ensues if the intruder is either a C- or a U-strategist. If the intruder
is a C-strategist and hence has the same size, which happens with
probability x1, then the focal C-strategist wins the contest with
probability qO; whereas if the intruder is a U-strategist, which hap-
pens with probability x3, then the focal C-strategist wins the con-
test with probability qO if the intruder is normal or with
probability qON if the intruder is large, that is, with probability
qO �xN þ qON �xL. That is, the focal individual wins the contest
with probability qO � x1 þ qO �xN þ qON �xLð Þx3. Thus

wCu Tð Þ ¼ Z Tð Þ � x2 þ 1� Z Tð Þf g � 1� Y Tð Þf g � 1þf
Y Tð Þ x1 � qO þ x2 � 1þ x3 xL � qON þxN � qOð Þf gg; ðA:3Þ

and the payoff from a host located at time T is

wC Tð Þ ¼ kþ x1 � qI þ x3 xL � qIN þxN � qIð Þf gZ Tð Þ
þx2Z Tð Þ 1� Y Tð Þf g þ
þ x1 � qO þ x2 þ x3 xL � qON þxN � qOð Þf g
x2Z Tð ÞY Tð Þ þ 1� Z Tð Þf gY Tð Þf g

ðA:4Þ

on using (A.1)–(A.3) and (6). But T is a random variable, and so we
compute the expected value of wC Tð Þ over the distribution of T to
obtain the fitness W1 to a C-strategist:

W1 ¼E wC Tð Þ½ �
¼ kþ x1 �qIþx3 xL �qINþxN �qIð Þf gE Z Tð Þ½ � þx2E Z Tð Þ 1�Y Tð Þf g½ �
þ x1 �qOþx2þx3 xL �qONþxN �qOð Þf g x2E Z Tð ÞY Tð Þ½ �þE 1�Z Tð Þf gY Tð Þ½ �f g

ðA:5Þ
from (A.4), where E denotes expected value. But from (7) and (9) we
obtain

E Z Tð Þ½ � ¼ 1� c
E Y Tð Þ½ � ¼ R p

0
1
p Y tð Þdt ¼ 1þ 1�k

ln kð Þ ¼ 1� c

E Z Tð Þ 1� Y Tð gf � ¼ R p
0

1
p Z tð Þ 1� Y tð gdt ¼ k�1

ln kð Þ � k ¼ c� k
nh

E 1� Z Tð gY Tð Þf � ¼ R p
0

1
p Y tð Þ 1� Z tð gdt ¼ k�1

ln kð Þ � k ¼ c� k
nh

E Z Tð ÞY Tð g½ � ¼
Z p

0

1
p Z tð ÞY tð Þdt ¼ 1þ kþ 2 1�kð Þ

ln kð Þ ¼ 1� 2cþ k:

ðA:6Þ
Note that 0 < k < 1 ensures 0 < k < c < 1

2 1þ kð Þ < 1 with

lim
k!0

c ¼ 0; lim
k!1

c ¼ 1 ðA:7Þ

so that all expressions in (A.6) are positive. Substituting from (A.6)
into (A.5), the fitness to a C-strategist is given by
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W1¼ kþ x1 �qIþx3 xL �qINþxN �qIð Þf g 1�cð Þ þx2 c�kð Þþ
x1 �qOþx2þx3 xL �qONþxN �qOð Þf g x2 1�2cþkð Þþ c�kð Þf g;

ðA:8Þ
which is a function of the strategy proportions and five dimension-
less parameters, namely, a; h; k;q and k.

Next we compute a focal D-strategist’s expected number of off-
spring from a suitable host, conditional on discovery at time T; for
a D-strategist, suitable host means a more deadly host yielding fit-
ness a. We denote this conditional payoff by wD Tð Þ. With probabil-
ity Z Tð Þ, the host has already been discovered by another
individual. With probability x1, the first discoverer is a C-
strategist, and so the host is unguarded. With probability x2, the
first discoverer is another D-strategist. In that case, there ensues
a contest between equals, which the intruding D-strategist wins
with probability qI , defined by (3). With probability x3, the first dis-
coverer is a U-strategist. It is large if it emerged from a more deadly
host, which happens with probability xL, defined by (1), and then
the intruding D-strategist again wins with probability qI; whereas
if the first discoverer emerged from a natural host, which happens
with probability xN , then the intruding D-strategist wins with the
larger probability qIL defined by (5).

From above, the probability that the host is guarded at time T is
Z Tð Þ � x2 þ x3ð Þ. The host is unguarded if either the first discoverer is
a C-strategist or the host has not been discovered by time T, that is,
with probability Z Tð Þ � x1 þ 1� Z Tð Þ. In that case, the focal D-
strategist becomes the owner. With (conditional) probability
1� Y Tð Þ, the host is not subsequently discovered, the protagonist
remains the owner, and its payoff is therefore a. With probability
Y Tð Þ, however, the D-strategist is subsequently intruded upon.
Conditional thereon, with probability x1 the intruder is a C-
strategist and the focal D-strategist remains the owner, because
the host is not a natural one. But a contest ensues if the intruder
is either a D- or a U-strategist. The focal D-strategist wins this con-
test with probability qO if the intruder is large, which happens if
the intruder is a D strategist or with probability xL if the intruder
is a U-strategist, and with probability qON if the intruder is normal,
which happens with probabilityxN if the intruder is a U-strategist.
Thus the payoff from a host located at time T is

wD Tð Þ ¼ Z Tð Þ � x2 � qI þ x3 xL � qI þxN � qILð Þf ga þ
Z Tð Þ � x1 þ 1� Z Tð Þf g � 1� Y Tð Þf g � 1 þf

Y Tð Þ x1 � 1þ x2 � qO þ x3 xL � qO þxN � qOLð Þf gga;
ðA:9Þ

implying

wD Tð Þ ¼ kþ x2 �qIþx3 xL �qIþxN �qILð Þf gZ Tð Þþx1Z Tð Þ 1�Y Tð Þf gþð
þ x1þx2 �qOþx3 xL �qOþxN �qOLð Þf g x1Z Tð ÞY Tð Þþ 1�Z Tð Þf gY Tð Þf gÞa

ðA:10Þ

on using (6). But T is a random variable, and so we compute the
expected value of wC Tð Þ over the distribution of T to obtain the fit-
ness W2 to a D-strategist; on using (A.6), we obtain

W2 ¼E wD Tð Þ½ �
¼ kþ x2 �qIþx3 xL �qIþxN �qILð Þf g 1�cð Þþx1 c�kð Þþð
þ x1þx2 �qOþx3 xL �qOþxN �qOLð Þf g x1 1�2cþkð Þþ c�kð Þf gÞa;

ðA:11Þ
which is again a function of the strategy proportions and five
dimensionless parameters, namely, a; h; k, q and k.

Lastly we compute a focal U-strategist’s expected number of
offspring from a suitable host, conditional on discovery at time T;
for a U-strategist, a suitable host means any host. We denote this
conditional payoff by wU Tð Þ. We first compute a focal U-
14
strategist’s expected number of offspring from a more deadly host,
calling this payoff wUL Tð Þ; then we compute a focal U-strategist’s
expected number of offspring from a natural host, calling this pay-
off wUN Tð Þ. Then because more deadly and natural hosts are found
in proportions h and 1� h, respectively, we compute wU Tð Þ as
wU Tð Þ ¼ hwUL Tð Þ þ 1� hð ÞwUN Tð Þ: ðA:12Þ

So we first assume that the suitable host is more deadly host.
With probability Z Tð Þ, this host has already been discovered by
another individual. With probability x1, the first discoverer is a C-
strategist, and so the host is unguarded. With probability x2, the
first discoverer is a D-strategist. In that case, there ensues a con-
test, which the intruding U-strategist wins with probability qI if
large and qIN if normal. With probability x3, the first discoverer is
a U-strategist, and the intruding U-strategist wins the ensuing con-
test with probability xL � qI þxN � qIN if the first discoverer is large
but with probability xL � qIL þxN � qI if the first discoverer is nor-
mal; that is, the intruding U-strategist wins with probability

qA ¼ xL � xLqI þxNqINð Þ þxN � xLqIL þxNqIð Þ
¼ qI x2

L þx2
N

� �þ qIL þ qINf gxLxN :
ðA:13Þ

From above, the probability that the more deadly host is
guarded at time T is Z Tð Þ � x2 þ x3ð Þ. The host is unguarded if either
the first discoverer is a C-strategist or the host has not been discov-
ered by time T, that is, with probability Z Tð Þ � x1 þ 1� Z Tð Þ. In that
case, the focal U-strategist becomes the owner. With (conditional)
probability 1� Y Tð Þ, the host is not subsequently discovered, the
protagonist remains the owner, and its payoff is therefore a. With
probability Y Tð Þ, however, the U-strategist is subsequently
intruded upon. Conditional thereon, with probability x1 the intru-
der is a C-strategist and the focal U-strategist remains the owner,
because the host is not a natural one. But a contest ensues if the
intruder is either a D- or a U-strategist. If the intruder is a D-
strategist, then the focal U-strategist wins with probability qO if
large and qON if normal, i.e., with probability xL � qO þxN � qON . If
the intruder is a U-strategist, then by analogy with (A.13), the focal
U-strategist wins the contest with probability

qB ¼ xL � xLqO þxNqOLð Þ þxN � xLqON þxNqOð Þ
¼ qO x2

L þx2
N

� �þ qOL þ qONf gxLxN:
ðA:14Þ

Thus the payoff from a more deadly host located at time T is

wUL Tð Þ ¼Z Tð Þ � x2 � xL �qIþxN �qINð Þþx3 �qAf gaþ
Z Tð Þ �x1þ1�Z Tð Þf g � 1�Y Tð Þf g �1þf

Y Tð Þ x1þx2 xLqOþxNqONð Þþx3qBf gga
ðA:15Þ

where qA and qB are defined by (A.13) and (A.14), respectively,
implying

wUL Tð Þ ¼ kþ x2 � xL �qIþxN �qINð Þþx3 �qAf gZ Tð Þþx1Z Tð Þ 1�Y Tð Þf gþð
þ x1þx2 xLqOþxNqONð Þþx3qBf g x1Z Tð ÞY Tð Þþ 1�Z Tð Þf gY Tð Þf gÞa

ðA:16Þ

on using (6).
We now assume that the suitable host is a natural host. With

probability Z Tð Þ, this host has already been discovered by another
individual. With probability x1, the first discoverer is a C-strategist.
In that case, there ensues a contest, which the intruding U-
strategist wins with probability qIL if large and qI if normal, that
is, with probability xL � qIL þxN � qI . With probability x2, the first
discoverer is a D-strategist, and so the host is unguarded. With
probability x3, the first discoverer is another U-strategist, and the
intruding U-strategist wins the ensuing contest with probability
xL � qI þxN � qIN if the first discoverer is large but with probability
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xL � qIL þxN � qI if the first discoverer is normal; that is, the intrud-
ing U-strategist wins with probability qA defined by (A.13).

From above, the probability that the natural host is guarded at
time T is Z Tð Þ � x1 þ x3ð Þ. The host is unguarded if either the first
discoverer is a D-strategist or the host has not been discovered
by time T, that is, with probability Z Tð Þ � x2 þ 1� Z Tð Þ. Then the
focal U-strategist becomes the owner. With (conditional) probabil-
ity 1� Y Tð Þ, the host is not subsequently discovered, the protago-
nist remains the owner, and its payoff is therefore 1. With
probability Y Tð Þ, however, the U-strategist is subsequently
intruded upon. Conditional thereon, with probability x2 the intru-
der is a D-strategist and the focal U-strategist remains the owner,
because the host is not a stink bug. But a contest ensues if the
intruder is either a C- or a U-strategist. If the intruder is a C-
strategist, then the focal U-strategist wins with probability qOL if
large and qO if normal, i.e., with probability xL � qOL þxN � qO. If
the intruder is a U-strategist, then by analogy with (A.14), the focal
U-strategist wins the contest with probability qB. Thus the payoff
from a natural host located at time T is

wUN Tð Þ ¼Z Tð Þ � x1 � xL �qILþxN �qIð Þþx3 �qAf gþ
Z Tð Þ �x2þ1�Z Tð Þf g � 1�Y Tð Þf g �1þf

Y Tð Þ x1 xL �qOLþxN �qOð Þþx2þx3qBf gg
ðA:17Þ

where qA and qB are defined by (A.13) and (A.14), respectively,
implying

wUN Tð Þ ¼ kþ x1 � xL �qILþxN �qIð Þþx3 �qAf gZ Tð Þþx2Z Tð Þ 1�Y Tð Þf gþð
þ x1 xL �qOLþxN �qOð Þþx2þx3qBf g x2Z Tð ÞY Tð Þþ 1�Z Tð Þf gY Tð Þf gÞ

ðA:18Þ

on using (6). Substitution from (A.16) and (A.18) into (A.12) now
yields WU Tð Þ. But T is a random variable, and so we compute the
expected value of wU Tð Þ over the distribution of T to obtain the fit-
ness W3 to a D-strategist; on using (A.6), we obtain

W3 ¼E wU Tð Þ½ �¼hE wUL Tð Þ½ �þ 1�hð ÞE wUN Tð Þ½ �
¼h kþ x2 � xL �qIþxN �qINð Þþx3 �qAf g 1�cð Þþx1 c�kð Þþð

x1þx2 xLqOþxNqONð Þþx3qBf g x1 1�2cþkð Þþc�kf gÞaþ
1�hð Þ kþ x1 � xL �qILþxN �qIð Þþx3 �qAf g 1�cð Þþx2 c�kð Þþð
x1 xL �qOLþxN �qOð Þþx2þx3qBf g x2 1�2cþkð Þþc�kf gÞ

ðA:19Þ
which is again a function of the strategy proportions and five
dimensionless parameters, namely, a; h; k, q and k.

Appendix B. Fitnesses in the limit as a ! ‘

The expressions for the fitnesses simplify greatly in the limit as
a ! 1 and hence k ! 0 in (8), so that also c! 0 by (9). From (A.8),
(A.11) and (A.19), we obtain

W1 ¼ x1 � qI þ x3 xL � qIN þxN � qIð Þ
þ x1 � qO þ x2 þ x3 xL � qON þxN � qOð Þf gx2; ðB:1Þ

W2¼ x2 �qIþx3 xL �qIþxN �qILð Þþ x1þx2 �qOþx3a xL �qOþxN �qOLð Þf gx1ð Þ
ðB:2Þ

and

W3 ¼ h x2 � xL � qI þxN � qINð Þ þ x3 � qA þð
x1 þ x2 xLqO þxNqONð Þ þ x3qBf gx1Þa þ
1� hð Þ x1 � xL � qIL þxN � qIð Þ þ x3 � qA þð

x1 xL � qOL þxN � qOð Þ þ x2 þ x3qBf gx2Þ:

ðB:3Þ
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When (14) holds, these expressions further reduce to

W1 ¼ 1
2

1þ x2ð Þ x1 þxNx3ð Þ þ x22 ðB:4Þ

W2 ¼ 1
2

1þ x1ð Þ x2 þ 1þxNf gx3ð Þ þ x21

� �
a ðB:5Þ

and

W3 ¼ h 1
2 1þ x1ð Þ x3 þxLx2ð Þ þ x21
� �

aþ
1� hð Þ 1

2 1þ x2ð Þ x3 þ 1þxLf gx1ð Þ þ x22
� � ðB:6Þ

because xL þxN ¼ 1 by (1), and so (14) implies

qA ¼ qB ¼ 1
2 xL þxNð Þ2 ¼ 1

2 by (A.13) and (A.14).

Appendix C. The strategy mix without U-strategists for
k ! ‘; q ¼ 0; k ! ‘

When x3 ¼ 0, the third equation in (10) becomes an identity;
the second becomes superfluous, because x2 ¼ 1� x1 by (12);
and because W1 �W ¼ 1 �W1 �W ¼ x1 þ x2ð ÞW1�
x1W1 þ x2W2f g ¼ x2 W1 �W2ð Þ, when (14) holds the first equation
reduces to

dx1
dt

¼ 1
2
x1x2 1� x1ð Þ2 � a 1þ x21

� �þ 1
n o

:

If a < 1
2, then the term in squiggly brackets is strictly positive,

implying x1 ! 1; x2 ! 0 as t ! 1. If 1
2 < a < 1, however, it becomes

negative for 1
2 < x1r < x1 < 1, implying x1 ! x1r; x2 ! x2r as t ! 1

where x1r ¼ 1� x2r and

x2r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 1� að Þ2

q
� a

1� a
ðC:2Þ

(which increases from 0 to 1
2 as a increases from 1

2 towards 1). We
note in passing that 1

2 < x2r < 1 for 1 < a < 2 and D goes to fixation
for a > 2 because the term in squiggly brackets in (C.1) becomes
strictly negative—in perfect accord with intuition, but also irrele-
vant, because a < 1 is an assumption of our analysis. The equilib-
rium x1r; x2rð Þ remains an equilibrium when U is introduced to the
strategy mix but is no longer an attractor: it becomes an unstable
saddle point on the roof-edge of D, as illustrated by Fig. 3(b).

Appendix D. Phase-plane analysis for k ¼ 0; q ¼ 0; k ! ‘

The phase plane is analyzed by standard techniques of nonlin-
ear analysis (e.g., Strogatz, 2014; Layek, 2015). In particular, the
equilibrium points are classified as described by Mesterton-
Gibbons (2019, p. 93). In general, if ~x1; ~x2ð Þ is an equilibrium point
of the dynamical system

dx1
dt

¼ G1 x1; x2ð Þ; dx2
dt

¼ G2 x1; x2ð Þ; ðD:1Þ

that is if G1 ~x1; ~x2ð Þ ¼ 0 ¼ G2 ~x1; ~x2ð Þ, then its type is determined by
the eigenvalues of the Jacobian matrix J ~x1; ~x2ð Þ having
gij ~x1; ~x2ð Þ ¼ @Gi=@xjjx1¼~x1 ;x2¼~x2

in row i and column j, and hence by
the roots—termed r1 ~x1; ~x2ð Þ and r2 ~x1; ~x2ð Þ—of its characteristic equa-
tion r2 � g11 ~x1; ~x2ð Þþf g22 ~x1; ~x2ð Þgr þ g11 ~x1; ~x2ð Þg22 ~x1; ~x2ð Þ
�g12 ~x1; ~x2ð Þg21 ~x1; ~x2ð Þ ¼ 0. Those roots are real whenever the
discriminant

dCE ~x1; ~x2ð Þ ¼ g11 ~x1; ~x2ð Þ � g22 ~x1; ~x2f Þg2 þ 4g12 ~x1; ~x2ð Þg21 ~x1; ~x2ð Þ
�

ðD:2Þ
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of the characteristic equation is positive, and in particular when
g12 ~x1; ~x2ð Þ and g21 ~x1; ~x2ð Þ have the same sign (or at least one of them
is zero, as at all three vertices of the phase triangle D). The equilib-
rium is stable if both roots have a negative real part, and otherwise
it is unstable. For real roots, ~x1; ~x2ð Þ is a stable node, an unstable
node or a saddle point according to whether the eigenvalues are
both negative, both positive or have opposite signs; and for complex
conjugate roots, ~x1; ~x2ð Þ is an unstable or stable focus, according to
whether the eigenvalues have a positive or negative real part. We
note in passing that these classification criteria do not apply to
non–hyperbolic equilibrium points at which the real part of an
eigenvalue is zero, but they suffice for our purposes because we
make the generic payoffs assumption (Broom and Rychtář, 2013,
p. 21; Mesterton-Gibbons, 2019, p. 13), and non–hyperbolic equilib-
ria are non-generic.

We now proceed with identifying all equilibria. It is clear from
inspection of (16) that 0;0ð Þ; 1;0ð Þ and 0;1ð Þ are all equilibrium
points because /1 1;0ð Þ ¼ /2 0;1ð Þ ¼ 0. On setting
G1 x1; x2ð Þ ¼ x1/1 x1; x2ð Þ and G2 x1; x2ð Þ ¼ x2/2 x1; x2ð Þ in (D.1), we
find that the eigenvalues at 0;0ð Þ are

r1 0;0ð Þ ¼ �1
2
xN r0b a; hð Þ; r2 0;0ð Þ ¼ 1

2a
xL r0b a; hð Þ ðD:3Þ

where r0b is defined by (D.8) below. Because they have opposite
signs, 0;0ð Þ is invariably a saddle point. Similarly, the eigenvalues
at 0;1ð Þ are

r1 0;1ð Þ ¼ 1
2

2� að Þ;

r2 0;1ð Þ ¼ 1
2

1� hð Þ 1� að ÞxL þ 2� að ÞxNf g: ðD:4Þ

Both are positive, hence 0;1ð Þ is invariably an unstable node.
The eigenvalues at 1;0ð Þ are

r1 1;0ð Þ ¼ �1
2

1� 2að Þ; r2 1;0ð Þ ¼ � 1
2a

xL r1b a; hð Þ: ðD:5Þ

The first eigenvalue is negative for a < 1
2 and positive for a > 1

2. The
second eigenvalue is negative to the left of the curve separating
region iv [ v from region i [ ii [ iii [ vi in Fig. 1, and r2 > 0 to the
right of this curve. Thus 1;0ð Þ is a stable node when a; hð Þ lies in
region iv [ v, a saddle point when a; hð Þ lies in region ii [ iii [ vi
and an unstable node when a; hð Þ lies in region i. We note in passing
that 1;0ð Þ is non–hyperbolic where r1b ¼ 0 or a ¼ 1

2; these points
form a set of measure zero, and hence are non-generic. Such a
non–hyperbolic equilibrium is exemplified by 1;0ð Þ in Fig. 4, for
which nonlinear terms in the Taylor expansion of (16) about this
point can be used to classify it as a saddle-node equilibrium
(Layek, 2015); however, trajectories in its vicinity still resemble
those near a saddle point, as Fig. 4 illustrates.

A roof-edge equilibrium x1r; x2rð Þ on the hypotenuse of D has
already been identified in C; it exists as long as 1

2 < a < 1, that is,
when a; hð Þ lies in region i of Fig. 1, as illustrated by Fig. 3(a).
Because r1 x1r ; x2rð Þ and r2 x1r ; x2rð Þ are the roots of a quadratic equa-
tion, explicit expressions for them, their product
r1 x1r; x2rð Þr2 x1r ; x2rð Þ and the discriminant dCE x1r ; x2rð Þ are easily
determined. They are continuous functions of a and h, but they
are too cumbersome for useful analysis. A much more efficient
way to determine their signs inside a region is to use constrained
numerical optimization (e.g., Bertsekas, 2016; Aragón et al., 2019,
for which powerful and reliable mathematical packages are now
widely available. If a discriminant dCE ~x1; ~x2ð Þ has a minimum of
zero over some region, then the associated eigenvalues must be
real on that region. If, further, the eigenvalue product
r1 ~x1; ~x2ð Þr2 ~x1; ~x2ð Þ has a maximum of 0 on the boundary of the
16
region, then it must be negative inside the region, and so ~x1; ~x2ð Þ
must be a saddle point; whereas if both the product
r1 ~x1; ~x2ð Þr2 ~x1; ~x2ð Þ has a minimum of zero on the boundary and
the sum r1 ~x1; ~x2ð Þ þ r2 ~x1; ~x2ð Þ has either a maximum of zero or a
minimum of zero on the boundary, then ~x1; ~x2ð Þ must be either a
stable or an unstable node, respectively. The requisite properties
can all be readily established by numerical optimization.

In the case of x1r; x2rð Þ, over region i in Fig. 1 we find that
dCE x1r ; x2rð Þ has a minimum of 0 at both 1

2 ;0
� �

and 1
2 ;1
� �

; and that
r1 x1r ; x2rð Þr2 x1r ; x2rð Þ has a maximum of 0, which occurs all the
way around the boundary for h ¼ 0;a ! 1; h ¼ 1 and a ¼ 1

2. For all
a; hð Þ satisfying 1

2 < a < 1;0 < h < 1, therefore, r1 x1r ; x2rð Þr2 x1r; x2rð Þ
< 0. Hence x1r ; x2rð Þ is invariably a saddle point, the boundary of
region I being excluded by (2).

Let us now turn our attention to the possibility of equilibria on
the base edge of D where 0 < x1 < 1; x2 ¼ 0 or on the side edge
where x1 ¼ 0;0 < x2 < 1. From (16) we find that

/1 x1;0ð Þ ¼ 1� x1ð ÞQ1 x1ð Þ; /2 0; x2ð Þ ¼ 1� x2ð ÞQ2 x2ð Þ ðD:6Þ
where Q1 and Q2 are quadratic polynomials defined by

Q1 x1ð Þ ¼ 1
2 h 1� a 1þ x21

� �þxLx1
� ��xL

� �
Q2 x2ð Þ ¼ 1

2 2� h�xLð Þa� 1� hð Þ 1þ x22 þ 1�xLð Þax2
� �� �

ðD:7Þ
with xL defined by (1). A base-edge equilibrium occurs where
Q1 x1ð Þ ¼ 0, and a side-edge equilibrium occurs where Q2 x2ð Þ ¼ 0.
We deal with base-edge equilibria first.

In that regard, the signs of Q1 0ð Þ and Q1 1ð Þ are determined by
r0b and r1b, respectively, where we define

r0b a; hð Þ ¼ 1� hð Þ 1� 2að Þ � a2h;

r1b a; hð Þ ¼ 2ah 2� að Þ � 3a� hþ 1: ðD:8Þ
The quadratic equation Q1 x1ð Þ ¼ 0 has two real roots whenever the
discriminant d1b is positive, where we define

db a; hð Þ ¼ a2h4 þ 4ah2 1� hþ ahð Þr0b a; hð Þ: ðD:9Þ
In Fig. 1, r0b is positive in region v [ vi and negative in region
i [ ii [ iii [ iv, whereas r1b is positive in region iv [ v and negative
in region i [ ii [ iii [ vi; and db is positive in region iii [ iv [ v [ vi
but negative in region i [ ii. Thus, because Q1 x1ð Þ ¼ 0 implies
x1 < 0 or x1 > 1 if Q1 0ð Þ and Q1 1ð Þ are both positive and db < 0
implies Q x1ð Þ < 0 for all x1, no point either in i [ ii or in region v
of Fig. 1 corresponds to a base-edge equilibrium. Any point in region
iv [ vi corresponds to a unique base-edge equilibrium because
Q1 0ð Þ and Q1 1ð Þ have opposite signs: Q1 0ð Þ < 0;Q1 1ð Þ > 0 in region
iv, whereas Q1 0ð Þ > 0;Q1 1ð Þ < 0 in region vi. In region iii,
however, there are always two base-edge equilibria because the
whole of region iii lies below the curve from 1

2 ;1
� �

to 0; 23
� �

with
equation h ¼ 2= 3� 2af g (not shown in Fig. 1), implying that
xL < 2a and hence that @Q1=@x2jx2¼0 ¼ 1

2 hxL > 0 and

@Q1=@x2jx2¼1 ¼ 1
2 h xL � 2að Þ < 0 have opposite signs, and so the pos-

itive maximum of Q1 must occur within 0;1ð Þ. The dot indicates
such a point in region iii, corresponding to two base-edge equilibria.
Here a ¼ 0:42 and h ¼ 0:7, implying r0b a; hð Þ ¼ �0:7548� 10�1,
r1b a; hð Þ ¼ �0:3096� 10�1 and db a; hð Þ ¼ 0:5445� 10�2. The corre-
sponding equilibria are a saddle point at 0:3779;0ð Þ and a globally
attracting stable node at 0:8005; 0ð Þ, as illustrated by Fig. 2(b).

If x1b;0ð Þ denotes a base-edge equilibrium, then Q1 x1ð Þ ¼ 0
implies

x�1b ¼
xL �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a 1� a�xL=hð Þ þx2

L

q
2a

ðD:10Þ
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by (D.7), where the square-root sign is positive for the base-edge
equilibrium that exists throughout region iii [ iv [ vi and negative
for the additional equilibrium that exists only in region iii. As
before, because r1 x�1b;0

� �
and r2 x�1b;0

� �
are the roots of a quadratic

equation, explicit expressions for them, their product
r1 x�1b; 0
� �

r2 x�1b;0
� �

and dCE x�1b;0
� �

are easily determined as (ex-
tremely cumbersome) continuous functions of a and h on using
(1). The minimum value of dCE xþ1b; 0

� �
over region iv of Fig. 1 is 0

at 1=2;1ð Þ, so the eigenvalues are real. The maximum value of
r1 xþ1b; 0
� �

r2 xþ1b;0
� �

over region IV is 0; it occurs along the boundary
with region iii between ac; hcð Þ and 1

2 ;1
� �

, and along the upper edge
between 1

2 ;1
� �

and 0;1ð Þ. For all a; hð Þ in the interior of region iv,
however, r1 xþ1b;0

� �
r2 xþ1b;0
� �

< 0, and so xþ1b; 0
� �

is always a saddle
point in region iv. The eigenvalues are likewise real on region vi
of Fig. 1, since the minimum value of dCE xþ1b;0

� �
over region vi is 0

at 1=2;0ð Þ. The minimum value of r1 xþ1b;0
� �

r2 xþ1b;0
� �

over region vi
is 0; it occurs along the boundary with region v between ac; hcð Þ
and 1

3 ; 0
� �

, and along the lower edge between 1
3 ;0
� �

and 1
2 ;0
� �

. For
all a; hð Þ in the interior of region vi, however,r1 xþ1b; 0

� �
r2 xþ1b;0
� �

> 0.
Furthermore, the sum of eigenvalues r1 xþ1b;0

� �þ r2 xþ1b;0
� �

has a
maximum over region vi of 0, uniquely at 1

2 ;0
� �

, implying that the
sum of eigenvalues is always negative within region vi. So xþ1b;0

� �
is always a stable node in region vi.

Over region iii of Fig. 1, the eigenvalues are still real because the
minimum value of dCE xþ1b;0

� �
over region iii is still 0 at 1=2;0ð Þ, the

same as for region vi. If the negative sign is taken in (D.10), then
over region iii the eigenvalue product r1 x�1b;0

� �
r2 x�1b;0
� �

has a max-
imum of 0 along the boundary from ac; hcð Þ to 1

2 ;0
� �

that separates
region iii from region vi, implying that the additional base-edge
equilibrium is always a saddle point. If instead the positive sign
is taken in (D.10), then the eigenvalue product r1 xþ1b;0

� �
r2 xþ1b;0
� �

over region iii has a minimum of 0 along the curve from 1
2 ;0
� �

to
1
2 ;1
� �

where db a; hð Þ ¼ 0 and along the curve from 1
2 ;1
� �

to ac; hcð Þ
where r1b a; hð Þ ¼ 0; these two curves separate region iii from
region ii and region iv, respectively. Moreover, the eigenvalue
sum r1 xþ1b;0

� �þ r2 xþ1b;0
� �

has a maximum of 0 at 1
2 ;0
� �

and
1
2 ;1
� �

; it also has a local maximum of approximately �0:0356 at
the point where the curve db a; hð Þ ¼ 0 separating region ii from
region iii has a vertical tangent, which we denote by a	; h	ð Þ.
Because the eigenvalues have a positive product and negative
sum throughout the interior of region iii, we conclude that
xþ1b;0
� �

is invariably a stable node. Note that a	 is the only zero
between 0 and 1 of the cubic equation

a3 � 2a2 þ 3a� 1 ¼ 0: ðD:11Þ
Thus a	 � 0:4302 with h	 � 0:691.

The second polynomial is more straightforward to deal with. It
is easily verified that Q2 0ð Þ must have the sign of r0s ¼ �r0b, that
is, the opposite sign from Q1 0ð Þ; whereas Q2 1ð Þ must have the sign
of � 2� að Þ 1� hð Þ þ 1� að Þahf g, which is always negative. The
equation Q2 x2ð Þ ¼ 0 has two real roots whenever the discriminant
ds is positive, where

ds a; hð Þ ¼ a2 1� hð Þ2 þ 4 1� 1� að Þhf g
� 1þ a2� �

hþ 2a 1� hð Þ � 1
� �

: ðD:12Þ

So there is a narrow subset of region v [ vi in Fig. 1(a)(a) to the right
of the dashed curve where Q2 0ð Þ < 0;Q2 1ð Þ < 0 and ds > 0,
implying that Q2 x2ð Þ ¼ 0 has two real solutions. Points within this
narrow region do not, however, correspond to a pair of side-edge
equilibria because @Q2=@x2jx2¼0 ¼ � 1

2a 1� hð Þ 1�xLð Þ and

@Q2=@x2jx2¼1 ¼ � 1
2 1� hð Þ 2þ a 1�xLð Þf g are both negative, imply-
17
ing that Q2 x2ð Þ ¼ 0 where x2 < �1. Thus no point in region v [ vi
of Fig. 1 corresponds to a side-edge equilibrium. A side-edge equi-
librium 0; x2sð Þ does exist for every a; hð Þ in region i [ ii [ iii [ iv,
and dCE 0; x2sð Þ has a minimum of 0 along its boundary with region
v [ vi, establishing that the eigenvalues are real; but the product
of eigenvalues has a maximum of 0 on the same curve, as well on
the line joining 0;1ð Þ to 1;1ð Þ where h ¼ 0. So
r1 0; x2sð Þr2 0; x2sð Þ < 0 within region i [ ii [ iii [ iv, implying that
0; x2sð Þ is invariably a saddle point. We do not present the explicit
expression for x2s as a function of a and h because it is so surpris-
ingly cumbersome.

We have now classified all possible equilibrium points on the
boundary of D. Any other equilibrium point must lie in its interior
and therefore satisfy /1 x1; x2ð Þ ¼ 0 ¼ /2 x1; x2ð Þ. We have not been
able to establish analytically that /1 x1; x2ð Þ ¼ 0 ¼ /2 x1; x2ð Þ and
x1; x2ð Þ 2 D imply x1 ¼ x2 when q ¼ 0, but an exhaustive numerical
search of the parameter square S reveals that all interior equilib-
rium points do in fact lie on the open line segment K defined by
(18). Let p; pð Þ 2 K be such an equilibrium point, and define

Q pð Þ ¼ r0b þ 3af gp2 þ apþ r0b ðD:13Þ
where r0b is defined by (D.8). Then

2 1� hþ ahð Þ/1 p;pð Þ ¼ pþ h 1� 2pð Þf gQ pð Þ
2 1� hþ ahð Þ/2 p;pð ÞÞ ¼ � 1� hð Þ 1� pð Þ þ hpf gQ pð Þ; ðD:14Þ

and because p; pð Þ 2 K guarantees that pþ h 1� 2pð Þ and
1� hð Þ 1� pð Þ þ hp are both positive, it follows from
/1 p;pð Þ ¼ 0 ¼ /2 p; pð Þ that Q pð Þ ¼ 0.

Note that Q 1
2

� �¼5
4 1�að Þ 1�hþahð Þ;@Q=@pjp¼1

2
¼ 2þ 2�að Þhf gaþ

1�h and @Q=@pjp¼0¼a are all positive. If also Q 0ð Þ>0, that is, if

a;hð Þ lies in region III of Fig. 1(b), then Q pð Þ>0 for all 06p61
2

and there is no interior equilibrium. Elsewhere, however, that is
for a;hð Þ in region I[II of Fig. 1(b), Q 0ð Þ<0<Q 1

2

� �
implies that an

interior equilibrium p	;p	ð Þ2K must exist, where

p	 ¼
�2r0bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 4r0b r0b þ 3af g
p

þ a
ðD:15Þ

with r0b defined by (D.8). Note that the term inside the square root
sign must be positive, because r0b is negative for all a; hð Þ in region
I [ II while r0b þ 3a is positive for all a; hð Þ 2 S.

As before, an explicit expression for dCE p	; p	ð Þ as a continuous
function of a and h is straightforward to obtain, but it is far too
unwieldy for its presentation to serve any useful purpose. The
function assumes the value zero on the closed curve shown in
Fig. 1(b). Inside the curve, throughout region II; dCE p	;p	ð Þ < 0
implies that the eigenvalues are complex, and so p	; p	ð Þ must be
a focus. Outside the curve, in both (disconnected) subregions of
region I; dCE p	;p	ð Þ > 0 implies that the eigenvalues are real. But
the eigenvalue product r1 p	; p	ð Þr2 p	; p	ð Þ has a minimum over
region I [ II in Fig. 1(b) of zero, all the way along the boundary
between 1=2;0ð Þ to 0;1ð Þ that separates region I [ II from region
III. So r1 p	; p	ð Þr2 p	; p	ð Þ is never negative, implying that an interior
equilibrium is never a saddle point. Hence p	; p	ð Þ is a node in
region I and a focus in region II.

The eigenvalue sum r1 p	; p	ð Þ þ r2 p	; p	ð Þ assumes the value zero
along the curve in Fig. 1(b) that extends from the point
a2;0ð Þ � 0:628;0ð Þ where region II touches the line h ¼ 1 to the

point
ffiffiffi
2

p
� 1; 12

� �
� 0:414;0ð Þ where region II touches region III.

Below this curve, r1 p	; p	ð Þ þ r2 p	; p	ð Þ is negative (with a minimum
of � 1

4 along the line a ¼ 1); above the curve, r1 p	; p	ð Þ þ r2 p	; p	ð Þ is
positive (with a maximum of about 0:0662 where a � 0:304 and
h ¼ 1). Hence p	; p	ð Þ is a stable node in region Ia, a stable focus
in region IIa, an unstable focus in region IIb and an unstable node
in region Ib.
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We have now in effect determined the final destination of
x1 tð Þ; x2 tð Þð Þ for all a; hð Þ 2 S. For a; hð Þ in region III of Fig. 1(b), the
unique local attractor is a stable node that lies at 1;0ð Þ in D for
a; hð Þ to the left of the dashed curve and at x1b;0ð Þ in D for a; hð Þ
to the right of the dashed curve; because this node is the only local
attractor, it must also be the global attractor. So the population
evolves to either a monomorphism of C or a polymorphism of C
and U as indicated in Fig. 5.

For region Ia [ IIa in Fig. 1(b), if a; hð Þ lies to the right of the
dashed curve from 1

2 ;0
� �

to 1
2 ;1
� �

bounding region iii, the unique
local attractor is p	; p	ð Þ, which is a stable node for region Ia and
a stable focus for region IIa. A unique local attractor is also the glo-

bal attractor, so x1 1ð Þ; x2 1ð Þ ¼ p	; p	ð Þðð for region IIa \ iii, whose
phase plane is illustrated by Fig. 3(a): the population evolves to a
polymorphism of all three strategies. The phase plane for region
Ia \ iii is similar, the main difference being that trajectories are
straighter near a node than near a focus (as illustrated by Fig. 6
(a)). For a; hð Þ on the left of the dashed curve, however, in a narrow
wedge sandwiched between the dashed lines converging on 1

2 ;0
� �

and bounded above by the solid curve where
r1 p	; p	ð Þ þ r2 p	; p	ð Þ ¼ 0, the base-edge equilibrium x1b;0ð Þ is also
a local attractor. Here x1 0ð Þ; x2 0ð Þð Þ determines which local attrac-
tor corresponds to x1 1ð Þ; x2 1ð Þð Þ. Regardless of whether p	; p	ð Þ is
a node or a focus, it lies between the origin and a separatrix that
joins the unstable node at 0;1ð Þ to a saddle point at x�1b; 0

� �
. If

x1 0ð Þ; x2 0ð Þð Þ lies to the left of this separatrix, then
x1 1ð Þ; x2 1ð Þð Þ ¼ p	; p	ð Þ; if x1 0ð Þ; x2 0ð Þð Þ lies to the right of the sep-
aratrix, then x1 1ð Þ; x2 1ð Þð Þ ¼ xþ1b;0

� �
instead. This outcome is

illustrated by Fig. 3(b).
We have already established that 1; 0ð Þ and x1b;0ð Þ are stable

nodes in regions iv and iii, respectively; they are also unique local
attractors in these regions. They are therefore also globally attract-
ing, that is, x1 1ð Þ; x2 1ð Þð Þ ¼ 1;0ð Þ for a; hð Þ in region iv and
x1 1ð Þ; x2 1ð Þð Þ ¼ x1b;0ð Þ for a; hð Þ in region iii, as illustrated by
Fig. 2(a) and Fig. 2(b), respectively. It remains only to determine
the final destination of x1 tð Þ; x2 tð Þð Þ for a; hð Þ in the intersection of
regions i [ ii and Ib [ IIb. For this subset of S, the only equilibrium
point—either on the boundary of D or in its interior—is an unstable
node (in a tiny subset of region Ib) or an unstable focus (in a much
larger subset of region IIb), and x1 tð Þ; x2 tð Þð Þ approaches a limit
cycle surrounding the unstable source at p	; p	ð Þ as t ! 1. Strategy
D persists, but within a periodic polymorphism of all three strate-
gies, as opposed to one in which the three proportions are fixed.
For illustration, see Fig. 4.
Appendix E. Effects of allowing k; k and q to depart from their
reduced-model values

In Section 3 we focused on our reduced model by assuming
extreme parasitoid density (a ! 1 or k ¼ 0), perfectly decisive
size advantage (k ! 1Þ and no owner advantage (q ¼ 0). In Sec-
tion 4 we considered effects of relaxing those assumptions by
allowing the relevant parameters to depart from their limiting
values in Section 3, but we provided few details, especially con-
cerning the effect of increasing k or decreasing k, so that we could
focus on the more important effect of increasing q. Here we pre-
sent those details, considering each of k; k and q in turn. First we
consider k.
E.1. q ¼ 0; k ! 1; k > 0

When parasitoid density is not extreme (k – 0) but there con-
tinues to be no owner advantage (q ¼ 0) and size advantage
remains perfectly decisive (k ! 1), for sufficiently large a there
18
still exists an interior equilibrium p	; p	ð Þ that allows strategy D
to persist either statically or dynamically, although its strength is
lower than for k ¼ 0. This result is illustrated by Fig. 4(b), where
k has increased from 0 to 5� 10�7 but all other parameter values
are unchanged from Section 3. It may be surprising that a small
increase in k induces so marked a reduction in the amplitude of
the limit cycle, but the larger and unsurprising point that is that
increasing k reduces the strength of strategy D in the polymor-
phism (from 0:245 to 0:23): intuitively, size advantage in a contest
is less likely to be favoured if a contest is less likely in the first
place. When the value of k is further increased, the strength of D
decreases further and the amplitude of the limit cycle continues
to shrink around the unstable focus until it eventually morphs into
a stable focus at k � 7:03� 10�5 (with p	 � 0:223). Although
p	; p	ð Þ remains a stable focus until k � 0:206, at which it morphs
back into an unstable focus surrounded by a small-amplitude limit
cycle, it remains the global attractor only until k � 0:142, at which
value 1;0ð Þ morphs from a saddle point into a second local attrac-
tor, this time a stable node. As k increases from k � 0:142 to
k ¼ 0:25;D persists only if x1 0ð Þ; x2 0ð Þð Þ lies in a steadily shrinking
region between 0;0ð Þ and a separatrix that joins a base-edge saddle
point to a side-edge saddle point; and at k � 0:25; p	; p	ð Þ disap-
pears entirely by merging with the saddle point at 0;0ð Þ as 1;0ð Þ
becomes the global attractor. Thus, in this instance, strategy D is
bound to persist only if the probability that a host is never found
does not exceed about 14%; and if it exceeds 25%, then it is guar-
anteed to be extinguished instead.

Although the effect of increasing k is similar for other (suffi-
ciently large) values of a, the complexity of changes to phase-
plane topology we have just described is not typical, being a con-
sequence of a; hð Þ lying in region E of Fig. 5; for a; hð Þ in region D,
the progression is far simpler. Suppose, for example, that
a ¼ 0:6 ¼ h, corresponding to Fig. 3(a). Then as k is steadily
increased from 0; p	; p	ð Þ remains a stable node as it moves steadily
along K towards the origin, merging with the saddle point there at
k ¼ 37

113 � 0:327 as a stable node emerges from 0;0ð Þ to progress
along the base edge of D as k increases further. This base-edge
equilibrium remains the new global attractor until k � 0:392, at
which it reaches 1;0ð Þ. Thus, in this instance, strategy D is bound
to persist as long as the probability that a host is never found does
not exceed about 33%; if it is larger than that, but less than about
39%, then a polymorphism of C and U takes over; and if it exceeds
that higher value, then only C persists. An analytical expression for
the critical value kc at which strategy D disappears is
kc ¼ �r0b a; hð Þ= 1� hþ 2� að Þahf g, where r0b is defined by (D.3);
note that kc must be positive, because r0b < 0 for all a; hð Þ lying
in region D [ E of Fig. 5 (D).

Note also that kc increases with a. The essence of the above
discussion is that increasing k decreases the strength of strategy
D by shifting p	; p	ð Þ along K until it becomes unstable, ultimately
to be absorbed by the origin. Note, however, that this description
presumes q ¼ 0. When q > 0, as discussed in Section 4, increasing
k still shifts p	; p	ð Þ towards the origin, but it is no longer con-
strained to lie in K. For an illustration of this point, compare
Fig. 6(b) to Fig. 6(d).

E.2. q ¼ 0; k < 1; k ¼ 0

Now we consider k. When q ¼ 0 ¼ k but k is finite, in place of
(D.14) we obtain

2 1þ kð Þ 1� hþ ahð Þ/1 p;pð Þ ¼ � pþ h 1� 2pð Þf gR pð Þ

2 1þ kð Þ 1� hþ ahð Þ/2 p;pð ÞÞ ¼ 1� hð Þ 1� pð Þ þ hpf gR pð Þ
ðE:1Þ
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where

R pð Þ ¼ 4a� 1þ kð Þ 3aþ r0bf gð Þp2 þ a 1� kð Þp� kr0b þ 1� að Þ2h� 1

¼ a� r0bð Þp2 þ apþ 1� að Þ2h� 1� kQ pð Þ
ðE:2Þ

with Q and r0b defined by (D.13) and (D.8), respectively. For
p;pð Þ 2 K to be an interior equilibrium, we must have
/1 p;pð Þ ¼ 0 ¼ /2 p;pð Þ, implying R pð Þ ¼ 0. Because
R 1

2

� � ¼ � 5
4 1þ kð Þ 1� að Þ 1� hþ ahð Þ and @R=@pjp¼0 ¼ a 1� kð Þ are

both negative, a zero in 0; 12
� �

requires a large enough k to ensure
P 0ð Þ > 0, implying in particular that r0b < 0. So a; hð Þ must lie in
region I [ II of Fig. 1(b), and the interior equilibrium is absorbed
by the origin when P 0ð Þ ¼ 0 or

k ¼ 1� að Þ2h� 1
r0b

: ðE:3Þ

As long as k exceeds this value, however, an interior equilibrium
p	;p	ð Þ 2 K will exist, where p	 is the only zero of Q pð on 0; 12

� �
;

an explicit expression for p	 can be found, but it is too unwieldy
to be useful. Note that R pð Þ ¼ 0 implies Q pð Þ ¼ 0 in the limit as
k ! 1.

For illustration, again consider a ¼ 0:6 ¼ h, corresponding to
Fig. 3(a). Here, as k is steadily reduced, p	; p	ð Þ remains a stable
node as it moves steadily down the line x1 ¼ x2 towards the origin,
and the strength of strategy D in the associated polymorphism of
all three strategies does not differ appreciably from its value in
the limit as k ! 1 until k reaches double figures; for example,
p	 ¼ 0:282 for k ¼ 99 and p	 ¼ 0:229 for k ¼ 9 (as compared to
p	 ¼ 0:287 in the limit as k ! 1). The decrease of p	 then acceler-
ates, but p	; p	ð Þ remains the global attractor until at

k ¼ 2213þ 1140
ffiffiffiffiffiffi
19

p� �
=2137 � 3:36 it morphs from a stable focus

into an unstable one, as a saddle point and a stable node emerge
together at x1 � 0:214 on the base edge of D. As k is further
reduced, p	; p	ð Þ continues down x1 ¼ x2 towards the origin as the
saddle point moves to the left, while the stable node becomes
the global attractor and moves to the right; both the saddle point
and p	; p	ð Þ are absorbed by the origin at k � 3:05, in agreement
with (E.3). The phase-plane topology resembles that of Fig. 2(b),
except that there is an extra saddle point on the roof edge of D
and 1;0ð Þ is an unstable node. Subsequently, the base-edge node
remains the global attractor for all k > 1.

For a second illustration, again consider a ¼ 0:5; h ¼ 0:8, corre-
sponding to Fig. 4(a). Here, as k is steadily reduced, p	; p	ð Þ remains
an unstable node surrounded by a globally attracting limit cycle
until k ¼ 7, at which a saddle point and a stable node emerge
together at x1 ¼ 1

2 on the base edge of D. As k is further reduced,
p	; p	ð Þ continues down x1 ¼ x2 towards the origin, morphing from
an unstable focus into an unstable node at k � 5:19, while the sad-
dle point moves to the left and the stable node becomes the global
attractor and moves to the right; both the saddle point and p	; p	ð Þ
are absorbed by the origin at k ¼ 4, in agreement with (E.3). Subse-
quently, the base-edge node remains the global attractor for all
k > 1.

E.3. q > 0; k ! 1; k ¼ 0

Finally we consider q. In Section 4 we made the point that
although a side-edge equilibrium corresponding to a; hð Þ in region
v [ vi of Fig. 1 is impossible if q ¼ 0, for q ¼ 0 sufficiently large q
may induce a side-edge global attractor. In this regard, it is instruc-
tive to consider the limit as q! 1. From (16) we find that
/2 0; x2ð Þ ¼ 1� x2ð ÞQ2 x2ð Þ, where in place of the expression in
(D.7), obtained for q ¼ 0, the quadratic polynomial Q2 is now
defined by
19
Q2 x2ð Þ ¼ axN 1�xLhð Þ 1� x2ð Þ � 1� hð Þ
� xLxN 1þ x22

� �þ xL
2 þx2

N

� �
x2

� � ðE:4Þ
with xL and xN defined by (1). Since Q2 0ð Þ ¼ a 1� hð ÞxN > 0 and
Q2 1ð Þ ¼ h� 1 < 0, there must exist precisely one x2s 2 0;1ð Þ such
that Q2 x2sð Þ ¼ 0. So a side-edge equilibrium 0; x2sð Þ exists. Expres-
sions for x2s and hence r1 0; x2sð Þ; r2 0; x2sð Þ as explicit functions of a
and h are again too cumbersome for presentation. As in Appendix
D, however, we can show that both eigenvalues are always negative
inside S. So 0; x2sð Þ not only always exists in the limit as q ! 1, but
also is always a stable node.

Appendix F. Ownership asymmetry in the absence of size
asymmetry

Here we present some analytical results obtained for the limit-
ing case in which q > 0 but k ¼ 1 and k ¼ 0, so that ownership
asymmetry obtains at high parasitoid density without size asym-
metry. With k ¼ 1, (10)-(14) and (B.1)–(B.3) now imply

dx1
dt ¼ 1

2 x1 h 1� x1 � x2ð Þ þ x2f gS x1; x2ð Þ
dx2
dt ¼ � 1

2 x1 hx1 þ 1� hð Þ 1� x2ð Þf gS x1; x2ð Þ
ðF:1Þ

where

S x1; x2ð Þ ¼ aq 1� x1ð Þ2 þ 1� qð Þ 1� x2ð Þ2 þ 2x2 � a 1þ x21
� �

: ðF:2Þ
Because the terms in squiggly brackets in (F.1) are both positive

inside D, any stationary points other than the three vertices of D
must lie on an arc of the hyperbola with equation S ¼ 0. This curve
intersects the interior of D only if 2aþ q > 1, and then always
intersects x2 ¼ 0 to the right of the origin. Hence there are no inte-
rior or side-edge stationary points (other than the vertices) if
2aþ q < 1, in which case, 1;0ð Þ is the global attractor; whereas if
2aþ q > 1, then every point within D on the curve S ¼ 0 is a sta-
tionary point. In this case, as t ! 1; x1 tð Þ; x2 tð Þð Þ will approach
the curve from above or below according to whether
x1 0ð Þ; x1 0ð Þð Þ lies above or below the curve, since dx1

dt is positive or
negative according to whether x1; x2ð Þ lies above or below the curve
while the signs are reversed for dx2

dt . Hence strategy C invariably per-
sists in the absence of size asymmetry, whereas both strategy D
and strategy U risk elimination through random drift, since every
point along S ¼ 0 is only metastable. Note that h becomes irrele-
vant in the absence of size asymmetry.

Appendix G. Phase-plane analysis for h ¼ 1
2 with k ¼ 0; k ! ‘

Proceeding as in Appendix D and using the same methods, in
place of (D.3)-(D.5) we obtain

4 1þ að Þr1 0;0ð Þ ¼ c a;qð Þ; r2 0;0ð Þ ¼ �r1 0;0ð Þ
4 1þ að Þr1 0;1ð Þ ¼ 2� 1� qð Þa2 þ 2aq; 2r2 0;1ð Þ ¼ 2� a 1� qð Þ
4 1þ að Þr1 1; 0ð Þ ¼ 2a aþ qþ 1ð Þ � 1þ q; 2r2 1; 0ð Þ ¼ 2aþ q� 1

ðG:1Þ
where

c a;qð Þ ¼ 2a� 1� qð Þ 1� a2� � ðG:2Þ
and 0 < a;q < 1; the curve c ¼ 0 forms the right-hand boundary of
the unshaded region 2 in Fig. 8. Inspection of (G.1) shows that 0;0ð Þ
is invariably a saddle point, 0;1ð Þ is invariably an unstable node and
1; 0ð Þ is a stable node, an unstable node or a saddle point according
to whether

a <
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 3

p
� q� 1

n o
; ðG:3Þ
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a > 1
2 1� qð Þ or a lies between these bounds. In particular, 1; 0ð Þ is

an attractor when a;qð Þ lies in region 1 of Fig. 8. It is also the global
attractor for that region.

A roof-edge equilibrium x1r ; x2rð Þ with
/1 x1r ; x2rð Þ ¼ 0 ¼ /2 x1r; x2rð Þ and x1r þ x2r ¼ 1 exists whenever
a > 1

2 1� qð Þ; here /1 and /2 are defined by (17). When it exists
(that is, when 1;0ð Þ is an unstable node), this equilibrium is invari-
ably a saddle point because r1 x1r ; x2rð Þr2 x1r ; x2rð Þ < 0 throughout
the relevant region.

For equilibria on the base edge of D where 0 < x1 < 1; x2 ¼ 0 or
on the side edge where x1 ¼ 0;0 < x2 < 1, (D.6) continues to hold
but with

4 1þ að Þ2Q1 x1ð Þ ¼ a 1þ a2
� �

q� 1þ að Þ2
n o

x21
n

� 2a2qþ 1þ að Þ 3q� 1ð Þ� �
x1
�� 1þ að Þc a;qð Þ

4 1þ að Þ2Q2 x2ð Þ ¼ � 2aþ 1� qð Þ 1þ a2
� �� �

x22
� 2qþ a 1þ að Þ 1þ 3qð Þf g þ 1þ að Þc a;qð Þ

ðG:4Þ

in place of (D.7). A base-edge equilibrium occurs where Q1 x1ð Þ ¼ 0
for x1 2 0;1ð Þ. Because @Q1=@x1jx1¼1 is invariably negative, no such
equilibrium is possible if Q1 0ð Þ and Q1 1ð Þ are either both positive
or both negative with @Q1=@x1jx1¼0 < 0. These constraints alone

exclude much of the parameter square eS in Fig. 8; and much of what
remains is excluded by the constraint that if Q1 0ð Þ and Q1 1ð Þ are
both negative with @Q1=@x1jx1¼0 > 0, then the equilibrium exists
only if Q1 x1ð Þ has a positive maximum, that is, only if a;qð Þ lies to
the left of the curve with equation

a 2a2qþ 1þ að Þ 3q� 1ð Þ� �2 ¼ 4 1þ að Þc a;qð Þ
� 1þ að Þ2 � 1þ a2� �

q
n o

; ðG:5Þ

in which case there exists a pair of base-edge equilibria, x�1b;0
� �

.
Thus a base edge-equilibrium xþ1b;0

� �
exists when a;qð Þ lies in

either the unshaded region 2 of Fig. 8 or in the tiny region 5, where
a second base-edge equilibrium x�1b;0

� �
also exists. Because

r1 xþ1b; 0
� �

r2 xþ1b;0
� �

has a minimum of 0 while r1 xþ1b; 0
� �þ r2 xþ1b;0

� �
has a maximum of 0, xþ1b;0

� �
is always a stable node; it is also the

global attractor in region 2. It continues to be a stable node in region
5 and typically remains the final destination of x1 tð Þ; x2 tð Þð Þ, but in
this region there also exists either a stable side-edge node or a
stable interior focus (according to whether region 5 intersects
region 3 or region 4); whereas r1 x�1b;0

� �
is always a saddle point.

A side-edge equilibrium 0; x2ð Þ ¼ 0; x2sð Þ occurs where
Q2 x2ð Þ ¼ 0 for x2 2 0;1ð Þ. Because @Q2=@x2jx2¼0; @Q2=@x2jx2¼1 and
Q2 1ð Þ are all invariably negative, the condition for such an equilib-
rium to occur is Q2 0ð Þ > 0 or c a;qð Þ > 0. Thus a side-edge equilib-
rium 0; x2sð Þ occurs when a;qð Þ lies in either region 3 or region 4 of
Fig. 8; however, it is a stable node only when a;qð Þ lies in region 3,
since it is only here that r1 0; x1sð Þr2 0; x1sð Þ has a minimum of 0
while r1 0; x1sð Þ þ r2 0; x1sð Þ has a maximum of 0. Except where
region 3 intersects region 5, 0; x2sð Þ is also the global attractor for

region 3. For a;qð Þ in Region 4 of eS there always exists an interior
equilibrium p	; q	ð Þ 2 D such that /1 p	; q	ð Þ ¼ 0 ¼ /2 p	; q	ð Þ. Its
boundary is the curve with equation d ¼ 0, where

d a;qð Þ ¼ /1 0; x2sð Þ ðG:6Þ
is an extremely cumbersome expression that we do not present.

This boundary extends from ad;0ð Þ ¼
ffiffiffi
2

p
� 1;0

� �
� 0:414;0ð Þ to

1;qdð Þ � 1;0:52ð Þ in Fig. 8, and it divides region 5 into a left-hand
part that intersects with region 3 and a right-hand part that inter-
sects with region 4. In both parts, there are two local attractors.
In the left-hand part, these attractors are both stable nodes, one
20
on the side edge and one on the base edge of D; in the right-hand
part, the attractors are a stable base-edge node and a stable interior
focus; and in both parts of region 5 there is a second base-edge
equilibrium, a saddle point, which attracts a separatrix emanating
from the unstable node at 0;1ð Þ, as in Fig. 3(b). In both cases, the
equilibrium to the left of this separatrix (either the side-edge node
or the interior focus) has only a very small basin of attraction, and
unless x1 0ð Þ; x2 0ð Þð Þ lies within this tiny region, x1 1ð Þ; x2 1ð Þð Þ is
the base-edge node to the right of the separatrix. To illustrate, we
pick a point in each part, each represented by a dot in Fig. 8. For

a;qð Þ ¼ 0:39;0:1ð Þ, the attractors are nodes at 0:2472� 10�1;0
� �

and 0:4442;0ð Þ, with the separatix ending at 0:7459� 10�1;0
� �

;

and for a;qð Þ ¼ 0:42;0:02ð Þ, the attractors are a focus at

0:2394� 10�1;0:4131� 10�1
� �

and a node at 0:5681;0ð Þ, with the

separatix ending at 0:9817� 10�1;0
� �

.
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