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In this paper an advanced, clinically oriented multiscale cancer model of breast tumor response to

chemotherapy is presented. The paradigm of early breast cancer treated by epirubicin according to a

branch of an actual clinical trial (the Trial of Principle, TOP trial) has been addressed. The model,

stemming from previous work of the In Silico Oncology Group, National Technical University of Athens,

is characterized by several crucial new features, such as the explicit distinction of proliferating cells into

stem cells of infinite mitotic potential and cells of limited proliferative capacity, an advanced generic

cytokinetic model and an improved tumor constitution initialization technique. A sensitivity analysis

regarding critical parameters of the model has revealed their effect on the behavior of the biological

system. The favorable outcome of an initial step towards the clinical adaptation and validation of the

simulation model, based on the use of anonymized data from the TOP clinical trial, is presented and

discussed. Two real clinical cases from the TOP trial with variable molecular profile have been

simulated. A realistic time course of the tumor diameter and a reduction in tumor size in agreement

with the clinical data has been achieved for both cases by selection of reasonable model parameter

values, thus demonstrating a possible adaptation process of the model to real clinical trial data.

Available imaging, histological, molecular and treatment data are exploited by the model in order to

strengthen patient individualization modeling. The expected use of the model following thorough

clinical adaptation, optimization and validation is to simulate either several candidate treatment

schemes for a particular patient and support the selection of the optimal one or to simulate the

expected extent of tumor shrinkage for a given time instant and decide on the adequacy or not of the

simulated scheme.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last years it has become clear that in order to
understand both the disease and the complex natural phenom-
enon of cancer in a quantitative way sophisticated multiscale
models are needed. Furthermore, multiscale cancer models are
expected to substantially support treatment optimization in the
patient individualized context. To this end several research
groups have been working on this field on the global level. The
major modeling approaches can be distinguished into the
following three categories: continuous mathematics based mod-
els, discrete mathematics based models and hybrid models.

Continuous mathematics based models rely primarily on
the diffusion equation, which is applied in order to describe the
diffusion of molecules such as oxygen and glucose and/or the
invasion of tumor cells into the surrounding tissue(s) in the case
ll rights reserved.

atakos).
of diffusive tumors (e.g. glioblastoma) (Murray, 2003; Swanson
et al., 2002; Breward et al., 2003; Clatz et al., 2005; Frieboes et al.,
2006; Guiot et al., 2006; Enderling et al., 2007). In many cases
continuous equations are solved by finite difference methods such
as the Crank–Nicholson method. Discrete mathematics based
models rely primarily on the consideration of several discrete
states in which cells may be found (e.g. cell cycle phases, stem cell
state, etc.) and the transitions between states (e.g. cell necrosis
following a prolonged residence of a tumor cell in the G0 phase,
etc.) (Duechting and Vogelsaenger, 1981; Ginsberg et al., 1993;
Stamatakos et al., 2002, 2006a, 2006b, 2007; Dionysiou et al.,
2004, 2006; Dionysiou and Stamatakos, 2006; Deisboeck et al.,
2009). State transitions can be decided by making use of several
possible ‘‘decision calculators’’ such as cytokinetic diagrams,
agent-based techniques, etc.

Hybrid methods exploit the potential of both continuous and
discrete methods, in order to address in more detail several tumor
dynamics mechanisms. A clinically oriented example of the latter
is the combination of pharmacokinetics differential equations
with discrete state/event simulations in order to simulate the
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response of large imageable tumors to chemotherapeutic treat-
ment (Stamatakos et al., 2006b). A further example refers to the
modeling of cancer cell invasion to tissue (Ramis-Conde et al.,
2008). As more and more biological mechanisms are being
quantitatively understood, most new models tend to fall in this
category i.e. to make use of a combination of continuous and
discrete mathematics. In that way the particular advantages of
both approaches are exploited and therefore mechanisms of both
predominantly continuous and predominantly discrete mechan-
isms can be addressed.

Hybrid models with a strong discrete character have been
shown to be particularly adequate for the simulation of the
response of large imageable clinical tumors to therapeutic
interventions such as radiotherapy and chemotherapy (Stamatakos
et al., 2002, 2006a, 2006b, 2007; Dionysiou et al., 2004, 2006,
2008). Since clinical validation is a sine qua non-necessity for
clinically oriented multiscale cancer models, this paper presents
an actual clinical trial driven model concerning the response of
early breast cancer to epirubicin. A branch of the trial of principle
(TOP: Topoisomerase II Alpha Gene Amplification and Protein
Overexpression Predicting Efficacy of Epirubicin) trial (TOP trial)
has been addressed as a paradigm of a chemotherapy optimiza-
tion targeted clinicogenomic trial.

Carcinoma of the breast is the most commonly diagnosed
cancer in women. Even though a variety of effective treatments
exists, their benefits and adverse effects vary considerably. Early
results indicate that gene expression profiles may contribute to
predicting response to breast cancer treatment (Potti et al., 2006).
A number of clinical trials are running with the aim to identify
gene expressions that correlate with chemotherapy results. The
TOP trial, which is also part of the ACGT European project (ACGT),
addresses a particular molecular subgroup of breast cancer
patients and aims to determine the predictive rate of a single
class of chemotherapeutic agent. More specifically, this study
aims to evaluate the topoisomerase II alpha gene amplification
and protein overexpression as markers predicting the efficacy of
epirubicin monotherapy in the primary treatment of breast cancer
patients. Inclusion criteria are non-metastatic, early breast cancer
patients with estrogen receptor (ER)-negative tumors with a
maximum dimension larger than 2 cm as defined by ultrasound.
The patients are treated with single-agent epirubicin as
neo-adjuvant treatment, followed by surgery and adjuvant
chemotherapy (Durbecq et al., 2004).

The model presented, although having its roots in previous
work done and published by the In Silico Oncology Group,
National Technical University of Athens (In Silico Oncology
Group) is characterized by several crucial new features such as
an advanced generic cytokinetic model for the response of a
tumor cell to chemotherapeutic treatment, the explicit distinction
of proliferating cells into stem cells and cells of limited mitotic
potential and the adaptation of the relative populations of
the various cell categories/phases to the cell category/phase
transition rates (a novel tumor initialization strategy aiming at
avoiding abnormal patterns of free tumor growth as described in
subsequent paragraphs). Available imaging-based, histological,
molecular and treatment data are exploited by the model, in order
to strengthen patient individualization modeling and in the future
patient individualized treatment optimization. The expected use
of the model following thorough clinical adaptation, optimization
and validation is to simulate either several candidate treatment
schemes for a particular patient and support the selection of the
optimal one for him or her or to simulate the expected extent of
tumor shrinkage for a given time instant and decide on the
adequacy or not of the simulated scheme. The integrated
simulation system has been termed ‘‘Oncosimulator’’ (Stamatakos
et al., 2007). Two ‘‘oncosimulators’’ are currently being developed,
clinically adapted using real clinical trial multiscale data and
clinically validated within the framework of the EC funded
projects ACGT (ACGT) and ContraCancrum.

The structure of the paper is as follows. First the cytokinetic
model proposed and adopted is presented. Subsequently the basic
algorithms of the spatiotemporal discretization of the tumor are
provided, followed by the tumor initialization strategy. Con-
siderations on the pharmacokinetics and pharmacodynamics of
epirubicin are presented. A description of the model parameters is
provided. A sensitivity analysis of the model regarding the effect
of critical parameters on the dynamics of the biological system is
presented, followed by the description of an initial step towards
the clinical adaptation and validation of the model. Simulations
for two real case studies from the TOP trial are presented and
discussed. The paper concludes with a discussion of the main
points and the conclusions of the work.
2. The discrete state–discrete event cytokinetic model

The simulation model presented is based on the well
documented assumption that tumor sustenance is due to the
existence of stem cells i.e. cells with theoretically unlimited
mitotic potential. Most cancers comprise a heterogeneous
population of cells with differences in their proliferative potential.
Cancer stem cells are generally thought to represent a small
portion of the total tumor cell population (Stingl and Carlos,
2007). They possess the ability of self-renewal, i.e. the ability to
give birth to more stem cells. Two types of stem cell division are
possible: symmetric and asymmetric. An asymmetric stem cell
division gives rise to one daughter cell with stem cell fate and one
daughter cell (limited mitotic potential or committed progenitor
cell) that follows the path towards differentiation. A symmetric

stem cell division gives rise to two daughter cells both with a
stem cell fate (Morisson and Kimble, 2006).

Specifically, the following five categories of cancer cells are
considered in the model:
i.
 Stem cells.

ii.
 Limited mitotic potential (LIMP) or restricted/committed

progenitor cells: cells able to perform a limited number of
divisions before becoming terminally differentiated.
iii.
 Differentiated cells: terminally differentiated cells.

iv.
 Apoptotic cells: cells that have died through apoptosis.

v.
 Necrotic cells: cells that have died through necrosis.

Stem, LIMP and differentiated cells constitute three categories
with distinct mitotic potential.

Fig. 1 depicts the generic cytokinetic model proposed for the
case of tumor growth and response to chemotherapy. A
cytokinetic model limited to free tumor growth has been
presented in a previous publication (Kolokotroni et al., 2008).

Proliferating cells, including stem and LIMP cells, go through
the four phases of the cell cycle: gap 1 (G1) phase, DNA synthesis
(S) phase, gap 2 (G2) phase and mitosis (M) phase. Depending on
the nutrient and oxygen supply level of the local environment, the
daughter cells may re-enter the cell cycle at G1 phase or enter
the dormant (resting) G0 phase following mitosis. Cells that are
dormant due to insufficient nutrient supply and oxygenation can
survive for a limited period of time. Subsequently, they die
through necrosis, unless in the meantime the local metabolic
conditions regarding nutrition and oxygenation have become
adequate. In the latter case dormant cells re-enter the G1 phase.
Proliferating, dormant and differentiated cells may die due to
aging and spontaneous apoptosis. Differentiated cells may also die
through necrosis.



Fig. 1. Generic cytokinetic model (cell category/phase transition diagram) for tumor response to chemotherapy. Abbreviations: STEM: stem cell. LIMP: LImited Mitotic

Potential tumor cell (also called committed or restricted progenitor cell). DIFF: terminally DIFFerentiated tumor cell. G1: Gap 1 cell cycle phase. S: DNA synthesis phase.

G2: Gap 2 phase. M: Mitosis phase. G0: dormant, resting phase. Chemo: chemotherapeutic treatment. Hit: cells lethally hit by the drug. The position of the exit arrow of

drug-hit cells from the rudimentary cell cycles has been adjusted to reflect epirubicin pharmacodynamics.
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When a tumor is chemotherapeutically treated, a fraction of
cancer cells are lethally hit by the drug or its metabolites. Lethally
hit cycling tumor cells enter a rudimentary cell cycle that leads to
apoptotic death via a specific phase dictated by the action
mechanism of the chemotherapeutic agent used. Similarly, in
the case of cell cycle non-specific drugs, lethally hit dormant (G0)
cells enter the G0hit phase. Marking of a cell as hit by the drug is
assumed to take place at the instant of drug administration,
although its actual time of death is dictated by the specific
pharmacokinetics and pharmacodynamics of the drug. For the
special case of epirubicin treatment, the fraction of cells marked
as hit by the chemotherapeutic agent is considered the same for
all cell cycle phases and the G0 phase since epirubicin is a cell
cycle non-specific drug as well as a cell cycle phase non-specific
drug (FDA, 1999). It is pointed out however that cell cycle phase
specific drugs can be readily modeled by the cytokinetic model
shown in Fig. 1 by appropriately selecting the ‘‘Chemo’’ induced
exit from the normal cell cycle for both cases of stem and LIMP
cells.
3. Spatiotemporal discretization of the tumor

Although macroscopically inhomogeneous tumors of generic
shapes can be simulated by the full version of the model
developed, in this paper the special case of a macroscopically
homogeneous tumor of generic shape is presented. The applica-
tion examples, however, concern the even simpler case of a
macroscopically homogeneous spherical tumor since this has
been the best approximation to the imaging data available from
the TOP trial (TOP trial). Such a spatially simple tumor model is a
reasonable first approximation to the modeling of a wide range of
breast cancer tumors. The latter is supported by both the rather
homogeneous normal soft tissue biomechanics of the breast and
the accumulated clinical experience regarding breast tumors. In
fact the tumor size as reported in the case report forms (CRFs) of
the TOP trial is defined as the maximum diameter based on
ultrasound examination. It should also be noted that macroscopic
spatial homogeneity implies that the model parameter values
used refer actually to their spatial average throughout the tumor.

In contrast with its spatial simplicity the model is character-
ized by a rather high complexity regarding the number of mitotic
potential cell categories and cycling phases considered, as well as
the corresponding transitions. A three dimensional (3-D) cubic
discretizing mesh is superimposed upon the anatomical region of
interest. The elementary cube of the mesh is called geometrical
cell (GC) and in the cases considered in this paper its size is
1 mm3. Each GC occupied by the tumor is assumed to initially
contain a Number of Biological Cells (NBC) (see also Section 6(i)).
The biological cells residing within each geometrical cell of the
mesh are distributed into the five categories mentioned above i.e.
the stem, LIMP, differentiated, apoptotic and necrotic categories.
From the mathematical standpoint each cell category defines an
equivalence class. Distribution of the cells into the five equiva-
lence classes creates one level of biological cell population
partitioning within each GC. At each given instant each stem or
LIMP cell can be either proliferating or dormant. Proliferation or
dormancy creates another level of cell population partitioning.
Cell cycle phases (G1, S, G2, M) introduce a finer partitioning of
proliferating cells (stem and LIMP) into subclasses. A further
partitioner in the case of therapeutic intervention is treatment
hitting i.e. a boolean variable denoting whether a biological cell
has been hit by treatment. The relative population (expressed as
the fraction of the total tumor cell population) of each
equivalence class and its equivalence subclasses is initialized
based on cell category and cell phase transition rates as described
in Section 4 and Appendix A.

The initial distribution of the proliferating cells throughout the
cell cycle phases is assumed analogous to the corresponding cell
cycle phase durations (see also Section 6(ii)). In order to tackle
computing power limitations, a number of carefully chosen
quantizations are introduced. Time is discretized. The time unit
in the practical cases considered in this paper is taken one hour
since this is approximately the duration of mitosis, the shortest
cell cycle phase (Bast et al., 2000). For any given instant the
biological cells belonging to the same cell category and cell cycle
phase within a given GC are assumed synchronized. However,
biological cells belonging to different GCs or to different
categories and cell cycle phases within the same GC are not
assumed synchronized. From the computational standpoint a
sufficient number of registers are used to describe the state of
each GC occupied by the tumor. They include the number
of biological cells residing in each equivalence class and
subclass and the time spent at each subclass. Mean time spent
by the biological cells of a given equivalence subclass in the
same subclass is initialized using a random number generator
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(Monte Carlo technique). The time under consideration can vary
between 0 and the maximum time of the corresponding phase.

At each time step i.e. every hour the discretizing mesh
covering the anatomical region of interest is virtually scanned in
order to apply the basic metabolic, cytokinetic, pharmacokinetic/
pharmacodynamic and mechanical rules that govern the spatio-
temporal evolution of the tumor system. For practical reasons
each complete virtual scan can be viewed as consisting of two
mesh scans. A brief outline of the scanning procedure is given
below.

(i) First scan

The first scan aims at updating the state of each GC according
to the proposed and adopted cytokinetic model of Fig. 1. The time
registers of the various cell subclasses within each geometrical
cell are updated and the cytokinetic diagram is applied within
each GC as follows. Spontaneous apoptosis induced cell loss from
each non-treatment perturbed cell cycle phase and the G0 phase
is calculated for each cell category based on the spontaneous
apoptotic rates assumed. Any necessary transitions between
equivalence subclasses (G1-S, S-G2, G2-M, M-G1 or M-

G0) take place for biological cells clustered in the same subclass.
If the mean time that the clustered cells have spent in the
corresponding phase has become equal to or larger than the phase
duration, then the cells enter a new phase and equivalence
subclass.

In any one of the cases of dormant (including stem and LIMP),
differentiated, necrotic and apoptotic cells a fraction of the
corresponding subclass(es) population may be transferred to
another subclass or disappear from the tumor at each time step
according to the cytokinetic model (Fig. 1). Therefore the
following transitions may take place. For stem and LIMP cells:
G0-G1 or G0-Necrosis or G0-Apoptosis. For differentiated

cells: Differentiated-Necrosis or Differentiated-Apoptosis. For

dead cells of any mitotic potential category: Apoptosis-Cell
disappearance, Necrosis-Cell disappearance. Most of the corre-
sponding rates are parameters of the model (see Table 1 and
Section 6(iii),6(iv)).

As far as chemotherapy is concerned, at any time instant
corresponding to drug administration, the numbers of proliferat-
ing and dormant cells belonging to each one of the phases G1, S,
G2, M or G0 and to each one of the stem or LIMP mitotic potential
categories that are designated as hit by the drug are computed.
The latter is achieved through the utilization of the cell kill ratio

(CKR) parameter that corresponds to the drug and dose (per m2 of
the patient surface) considered. In terms of the simulation
model’s parameters the cell kill ratio is the percentage of LIMP
and stem cells hit by the chemotherapeutic agent after each drug
administration. The above mentioned cell numbers are added to
the corresponding cell numbers of the drug affected equivalence
subclasses, designated as ‘‘phase’’hit e.g. G1hit in the cytokinetic
diagram of Fig. 1. A general strategy for the calculation of the cell

kill ratio for the case of epirubicin is described in Section 5.
(ii) Second Scan

The second scan aims to preserve a roughly uniform cell
density throughout the tumor volume. To this end, adequately
shaped morphological rules are introduced, which may lead to
tumor expansion, as is the case in free tumor growth, or no
change in tumor volume or tumor shrinkage as is usually the case
after treatment administration.

More specifically, at any given time point the total cell
population that can be accommodated in each GC is allowed to
fluctuate between a minimum (0.9nNBC) and a maximum
(1.1nNBC) value. If the total population exceeds the maximum
value of 1.1nNBC, then a procedure is initiated that attempts to
unload the total GC population minus NBC to neighboring GCs (26
GC neighborhood is considered) possessing empty space i.e. GCs
with total cell population less than NBC. The procedure starts from
the neighboring GC possessing the maximum free space. If two or
more neighboring GCs possess the same free space, then a random
number generator is used so as to select the visiting order of the
GCs. The procedure is repeated until all the excess cells have been
transferred if possible. If the procedure fails to reduce the total
population of the GC under consideration below the upper limit
(maximum value), then an adjacent GC is freed from its contents
which are moved outwards. The latter push the contents of a
chain of geometrical cells outwards too. The excess contents of
the GC under consideration are placed into the newly freed
adjacent GC. The previous process leads to differential tumor
expansion. The position of the GC to be freed from its contents
relative to the GC with the excess contents is determined using a
random number generator. The shifting of the chain of GCs
mentioned above can take place along any randomly selected
direction.

On the other hand if the GC’s total cell population is below the
minimum value then a similar procedure attempts to unload all
cells to neighboring GCs possessing free space. If the GC becomes
empty, then a chain of GC contents is shifted towards the GC under
consideration so as to fill the vacuum generated. The latter leads
to differential tumor shrinkage. Shifting of the GC content chain
takes place in a way analogous to the previously described one.

The above procedure, however, may give rise to the following
‘‘side effects’’. (a) Premature extensive tumor fragmentation: some
GCs belonging to the tumor become artificially separated from the
main tumor mass. (b) Vacuum enclosures: holes that correspond to
empty GCs are created inside the tumor. The algorithm developed
in order to avoid the occurrence of the above side effects is given
in Appendix B. It should be noted that explicit information
regarding tumor fragmentation induced by chemotherapy is
rather scarce in the relevant literature. It is possible to expect
that in some cases some degree of fragmentation will result,
although pressure from adjacent normal tissue is one possible
counter-acting mechanism. The available post-chemotherapy
data from the TOP trial are in the form of tumors’ maximum
dimension, which led us to the assumption that at least the
particular breast cancer tumors remained fairly cohesive.

The ‘‘second scan’’ algorithms introduced into the simulation
model ensure uniform tumor cell density throughout the tumor
volume (in the absence of any special information) and conformal
tumor shrinkage, as depicted e.g. in Perez and Brady (1998). Our
primary concern is to avoid artificial tumor fragmentation,
namely an extensive premature fragmentation caused by the
very procedure of shifting chains of adjacent geometrical cells
along randomly selected directions. There is still the possibility to
have geometrical cells with less or more than the typical cell
content (currently used margin¼0.1ntypical number of cells in a
geometrical cell) and this flexibility in cell number actually
‘‘incorporates’’ the phenomenon of tumor ‘‘fragmentation’’, in the
sense that when chemotherapy is simulated geometrical cells
become emptier over time. The above mentioned margin has been
adjusted in order to achieve a rather uniform cell density
throughout the tumor volume, but may be for example increased
to permit a more extensive fragmentation in case that relevant
information is available. These algorithms relate to geometrical
aspects of the simulation and may be easily omitted from
simulation runs in cases of macroscopically homogeneous tumors
(such as those addressed in this paper) as they have no effect on
(biological) cell numbers. The latter is the most critical aspect of
the simulation both in case of untreated tumor growth and in
tumor shrinkage induced by chemotherapy treatment.

A simplified flowchart of the entire simulation procedure
pertaining to a macroscopically homogeneous solid tumor of
arbitrary shape is provided in Fig. 2.



Table 1
Model parameters.

Parameter symbol Description Value range and/or
specific values

considered

References

Cell phase durations
Tc[class] classA{stem,

LIMPa}

Cell cycle durationb 20–96 h Sterin et al. (2001), Cos et al. (1996), Descamps

et al. (1998), Barnes et al. (2001), Meyer et al.

(1984)

TG1[class] classA{stem,

LIMPa}

G1 phase durationb 0.41 (Tc�TM) Salmon and Sartorelli (2001) in conjunction with

Bast et al. (2000) (slight adaptation performed)

TS[class] classA{stem,

LIMPa}

DNA synthesis phase (S) durationb 0.41 (Tc�TM) Salmon and Sartorelli (2001) in conjunction with

Bast et al. (2000)

TG2[class] classA{stem,

LIMPa}

G2 phase durationb 0.18 (Tc�TM) Salmon and Sartorelli (2001) in conjunction with

Bast et al. (2000) (slight adaptation performed)

TM[class] classA{stem,

LIMPa}

Mitosis (M) phase durationb 1 h Bast et al. (2000)

TG0[class] classA{stem,

LIMPa}

G0 (dormant phase) durationb i.e. time interval before a dormant

cell enters necrosis

96–240 h Maseide and Rofstad, 2000

TN[region]

regionA{proliferating,

necrotic}

Time needed for both necrosis to be completed and its lysis

products to be removed from the tumorc

20 h (0–100 h) Duechting et al. (1992), Wein et al. (2000)

TA[region]

regionA{proliferating,

necrotic}

Time needed for both apoptosis to be completed and its products to

be removed from the tumorc

6 h (0–25 h) Ribba et al. (2006), Dewey et al. (1995)

Cell category/phase transition rates
RA Apoptosis rate of living stem and LIMP tumor cells (fraction of cells

dying through apoptosis per h)

0.0–1.0 h�1

RNDiff Necrosis rate of differentiated tumor cells per hour 0.0–1.0 h�1

RADiff Apoptosis rate of differentiated tumor cells per hour 0.0–1.0 h�1

PG0toG1[region]

regionA{proliferating,

necrotic}

Fraction of stem and LIMP cells having just left the G0

compartment that re-enter the cell cycle

0.0–1.0 h�1

Psleep[region]

regionA{proliferating,

necrotic}

Fraction of cells entering the G0 phase following mitosisc 0.0–0.5

Psym[region]

regionA{proliferating,

necrotic}

Fraction of stem cells that perform symmetric divisionc 0.0–1.0

Miscellaneous parameters
NBC Number of biological cells normally contained within a geometrical

cell of the mesh

106 Begg and Steel, 2002

NLIMP Number of mitoses performed by LIMP cells before becoming

differentiated

1–10

Margin_percent Acceptable temporary over-loading or under-loading of each

geometrical cell as a fraction of unity

0.0–0.5

Color_criterion Minimum percentage of tumor cells that should be dead in order to

denote (‘‘paint’’) the corresponding geometrical cell as necrotic

0.9–0.999

Distance_factor[region]

regionA{proliferating,

necrotic}

Factor adapting the cell killing probability as estimated by

pharmacodynamics to each tumor region

0.0–1.0

xdim, ydim, zdim Number of geometrical cells along the x, y, z axis respectively Depends on tumor size

and computing

resources

tumor _length,

tumor_breadth,

tumor_width

Dimensions of the three tumor axes in numbers of geometrical cells

(GCs) in the case a triaxial ellipsoidal tumor is considered

Depends on tumor

imageable

characteristics

necrotic _length,

necrotic _breadth,

necrotic _width

Dimensions of the necrotic region along the three axes in GCs in

case a triaxial ellipsoidal tumor is considered

Depends on tumor

imageable

characteristics

Epirubicin drug administration parameters

D Dose 100 mg/m2 TOP triald

T1st,adm Time point of the first drug administration since pretreatment scan

(simulation initialization)

0–300 h TOP triald

T2nd,adm Interval between the 1st and the 2nd administration of epirubicin Around 504 h (21 d) TOP triald

T3rd,adm Interval between the 2nd and the 3rd administration of epirubicin Around 504 h (21 d) TOP triald

T4th,adm Interval between the 3rd and the 4th administration of epirubicin Around 504 h (21 d) TOP triald

Tstop Time interval between the last administration and the simulation

completion time (h)

0–300 h TOP triald

CKR Cell kill ratio 0.0–1.0

a A LIMP tumor cell denotes a limited mitotic potential tumor cell (also referred to as LIMP or committed progenitor tumor cell). It leads to a terminally differentiated

tumor cell.
b Phase durations can be defined separately for the stem and the LIMP tumor cell category.
c Defined separately for the proliferating and the necrotic region of the tumor, for spatially inhomogeneous tumor cases.
d http://clinicaltrials.gov/ct2/show/NCT00162812 last visited on 13 June 2009.
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Fig. 2. Simplified flow chart of the simulation procedure for a macroscopically homogeneous solid tumor of arbitrary shape. Abbreviations: GC: geometrical cell. NBC:

number of Biological Cells normally contained within a geometrical cell of the mesh, t: simulation time step.
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The core output of the simulation code is a number of matrices
corresponding to the discretization mesh of the anatomic region
of interest for a series of time points. These matrices contain all
the necessary biological information to be used for the 3D
metabolic, kinetic etc. reconstruction of the tumor at several time
points or the creation of several diagrams describing tumor
dynamics and response to therapy as a function of space and/or
time.

It should be noted that the full model (not presented in this
paper) supports the division of tumor area into different
metabolic regions (e.g. necrotic and proliferative) and the
handling of each region separately. In this case, GCs are initially
characterized as necrotic or proliferative based on pertinent
imaging data available and a process of image segmentation,
interpolation and 3-D reconstruction. Different values of specific
model parameters can be assigned to each region. A special
procedure has been devised in order to conformally expand or
shrink any internal necrotic region(s) during tumor evolution.
4. Tumor constitution initialization

If tumor GCs are initialized with arbitrary values of tumor cell
populations belonging to the various mitotic potential categories
and phases (stem, LIMP, differentiated, dead, proliferating,
dormant, etc.), whereas at the same time specific category / phase
transition rates are used, it is very likely to observe an abnormal
free tumor growth behavior. A decrease in tumor volume followed
by a volume increase is a very common pattern (Kolokotroni et al.,
2008). In order to avoid such artificial behavior the concept of a
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nomogram linking cell category/phase relative populations with
cell category/phase transition rates was initially introduced
(Kolokotroni et al., 2008). However, due to its shortcomings the
nomogram method has been replaced by a new, more efficient
and flexible technique, described in Appendix A.

4.1. Condition for monotonic free growth

As far as untreated tumor growth simulations are concerned,
depending on the values assigned to the code input parameters, a
tumor that grows over time (which is normally the expected case)
or a tumor that gradually diminishes (and therefore is usually
biologically irrelevant) may result. The outcome strongly depends
on the properties and the resulting behavior of the stem
proliferating cells. In order to create a growing tumor the number
of stem cells must increase over time and the following inequality
must hold:

ð1�RAÞ
TC ð1þPsymÞð1�PsleepÞZ1 ð1Þ

where Tc is the cell cycle duration, RA the apoptosis rate of cancer
stem cells, Psym the fraction of stem cells that perform symmetric
division and Psleep the fraction of newborn cells that enter G0
phase (Table 1). The rationale behind the above inequality, which
holds true for the majority of cases, can be found in a previous
publication (Kolokotroni et al., 2008). Further analysis concerning
free tumor growth preconditions is underway.
5. Pharmacokinetics and pharmacodynamics of the
chemotherapeutic agent

Epirubicin is an anthracycline chemotherapeutic agent, deri-
vative of doxorubicin. It exerts its cytotoxic action through
various mechanisms; the most established one is intercalation
between bases of double stranded DNA, thereby inhibiting nucleic
acid (DNA–RNA) and protein synthesis. It also interferes with DNA
replication and transcription, blocks helicase activity, inhibits
DNA cleavage by topoisomerase II, and forms toxic oxygen-free
radicals causing DNA and cell damage (FDA, 1999). In specific
cases epirubicin is favored over other anthracycline drugs
(doxorubicin), as it appears to cause fewer side effects due to its
less toxic nature at equivalent therapeutic doses. Epirubicin is
considered a cell cycle non-specific as well as a cell cycle phase

non-specific drug (FDA, 1999).
In the simulation model tumor cells are assumed to absorb the

drug (to be treatment hit) at all cycling phases as well as at G0,
whereas apoptotic death of hit cells is assumed to occur at the end
of S phase (i.e. between S and G2 phases). The latter is supported
by the observation that the maximal cytotoxic effect of epirubicin
has been observed on S and G2 phases (FDA, 1999, p. 40).

Following intravenous administration, epirubicin is rapidly
and widely distributed into tissues. Its higher concentration is
observed in liver, spleen, kidney and small intestine. Epirubicin
undergoes extensive hepatic metabolism (Danesi et al., 2002) and
is also metabolized by other organs and cells, including red blood
cells. It is eliminated mainly through biliary excretion and, to a
lesser extent, by urinary excretion (FDA, 1999).

Epirubicin pharmacokinetics has been described in various
studies by an open three-compartment model with elimination
from the central compartment (Danesi et al., 2002; FDA, 1999). If
a specific value of CKR was to be used in a simulation run, then
based on the parameter values of such a model and making use of
e.g. the SAAM pharmacokinetics software (SAAM II, 2009) various
pharmacokinetic quantities of interest could be estimated such as
the Area Under Curve (AUC) for a given drug dose.
Subsequently, a reasonably good initial approximation would
be to compute the survival fraction for epirubicin treated tumor
cells on the basis of experimental FDA data concerning
the pharmacodynamics of epirubicin, and more specifically the
in vitro cytotoxicity of epirubicin on HeLa cells (FDA, 1999). The
survival fraction for any realistic dose for which no experimental
data are available could be approximately calculated through
linear interpolation. A lower CKR might be expected for the in vivo

case due to imperfect vascularization, unless the particular
genetic profile of a specific tumor somehow increases respon-
siveness to epirubicin treatment. It is noted that in cases of
human breast cancer steep concentration gradients have been
shown for the highly relevant drug doxorubicin in pertinent
studies (Lankelma et al., 1999).

In the simulations presented in the following sections of the
paper, the suggested value of the CKR for each case study (the
‘‘apparent’’ CKR) is the CKR that produces good agreement
between the evolution of the simulated tumor and that of the
real tumor according to the clinical data. The individual patient’s
genetic profile data, if available, could be used to perturb the
population based mean cell survival fraction. In this way an
appropriate molecular signature of the patient will be exploited
and therefore further individualization of the treatment plan will
be achieved.
6. Description of the model parameters

Table 1 presents the simulation model’s input parameters and
their range of values according to pertinent literature or based on
logical assumptions supported by basic science or clinical
experience in case of lack of literature data. In the following a
summarizing description of the model’s parameters and their
adopted values is provided for reasons of clarity.

(i) NBC

As has been described previously, this parameter refers to the
number of biological cells initially occupying each GC belonging
to the tumor. In order to preserve a roughly constant mean cell
density throughout the tumor volume, the NBC parameter is
allowed to fluctuate between a minimum and a maximum value.
Therefore, as described in previous paragraphs, accordingly
shaped morphological rules governing the special evolution of
the tumor have been introduced. A typical value of tumor cell
density found in literature is 106 biological cells/mm3 (Begg and
Steel, 2002, p. 9), which corresponds to 106 biological cells per
occupied GC since the considered GCs’ dimensions for the
simulations that have been performed so far is 1 mm�1 mm�1
mm.

(ii) Cell cycle phases duration

According to literature the duration of the various cell cycle
phases follows a normal distribution. Although this observation
has been explicitly taken into account in an in vitro tumor growth
and treatment response model by our group (Zacharaki et al.,
2004), in the present model cell cycle phase durations are
considered constant and equal to their literature based mean
values in order to accelerate executions. It is pointed out however
that algorithmically constructing a normal distribution of phase
durations is a pretty simple task.

Based on literature, breast cancer cell cycle duration may vary
from approximately 20 to 96 h (Sterin et al., 2001; Cos et al., 1996;
Descamps et al., 1998; Barnes et al., 2001; Meyer et al., 1984). The
duration of mitosis is considered constant and equal to 1 h (Bast
et al., 2000). The rest of the cell cycle phases durations are
computed based on Salmon and Sartorelli (2001), after having
taken into consideration the above assumption regarding the
constant duration of mitosis. More specifically, the following
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equations are used: TG1¼TS¼0.41(Tc�TM), TG2¼0.18(Tc�TM),
TM¼1 h.

(iii) Duration of G0, duration of apoptosis and necrosis

According to literature dormant cells resting in G0 phase can
survive under hypoxic conditions for 4–10 days (Maseide and
Rofstad, 2000). Tumor apoptotic cells are generally considered to
be rapidly phagocytosed in vivo (Dewey et al., 1995), contrary to
the time-consuming process of necrosis products removal.

(iv) Cell category/phase transition rates/fractions

The values of these parameters have been selected based on
both qualitative or semi-quantitative information and the dictates
of the accumulated basic science and clinical experience.
Systematic use of TOP clinical trial data is expected to permit a
quantitative refinement of the initial assumptions.

(v) Number of mitotic divisions that LIMP (committed progenitor)

cells undergo before they become terminally differentiated (also

called LIMP mitotic stages)

By varying the number of LIMP mitotic stages (assumed range
1 to 10) tumors characterized by different differentiation degrees
can be simulated. To the best of our knowledge, there exists no
specific information regarding possible values for this parameter
in the pertinent literature. Nevertheless, the choice of its value is
governed by the need to achieve specific relative percentages of
stem and LIMP cells (which is also a reflection of a tumor’s degree
of differentiation). A larger number in this interval leads to lower
percentages of stem cells.
7. Sensitivity analysis

The presented model is characterized by a considerable
number of input parameters as presented in the previous section
and summarized in Table 2. A number of parametric studies have
been performed in order to study the model’s behavior in relation
to the value of each input parameter for tumor free growth and
chemotherapeutic response simulations and thereby detect the
most critical parameters of the model. An extensive sensitivity
analysis has been performed and reported in the ACGT project
deliverable D8.3 ‘Report on the Refinement and Optimization of
the Algorithms and Codes, and the Initial Clinical Validation
and Adaptation of the ‘‘Oncosimulator’’. The following section
presents indicative results. A detailed sensitivity analysis
involving the role of several model parameters on tumor free
growth and response to therapy will be the topic of a separate
paper (to appear). A characteristic approach that will be presented
in this separate paper is to adopt a�10% variation around a
Table 2
Model parameter values used for the sensitivity analysis.

Parameter Study of the effect of Psleep Study of the effect of P

Tc 30, 60, 90 h 30, 60, 90 h

TG1 0.41(Tc�TM) 0.41(Tc�TM)

TS 0.41(Tc�TM) 0.41(Tc�TM)

TG2 0.18(Tc�TM) 0.18(Tc�TM)

TM (h) 1 1

TG0 (h) 96 96

TN (h) 20 20

TA (h) 6 6

NLIMP 7 7

RA (h�1) 0.001 0.001

RNDiff 0.01 0.01

RADiff (h�1) 0.001 0.001

PG0toG1 (h�1) 0.01 0.01

Psleep (h�1) 0–0.5 0.1

Psym 0.7 0–1

CKR – –
reference value of each model parameter and the inspection of the
variation in the output. Such analyses permit for example a
sorting of the model’s parameters according to the magnitude of
their effect on the output.

Table 2 presents the values assigned to the model’s input
parameters for the indicative sensitivity analyses presented in
this paper.

7.1. Tumor free growth parametric studies

7.1.1. Doubling time

Different types of tumors with respect to the degree of
aggressiveness can be simulated by assigning suitable values to
the model’s parameters. In the following, an indicative number of
exploratory simulations are presented. These have been performed
in order to study the effect of various input parameters on tumor
growth rate. The model’s parameters considered in these simulation
studies are the fraction of cells entering the G0 phase following
mitosis (sleep fraction, Psleep), the fraction of stem cells that perform
symmetric division (symmetric division fraction, Psym) and the
necrosis rate of differentiated tumor cells (RNDiff,) (see Table 1).

For the analyses presented below, homogeneous tumors have
been considered, consisting of a single proliferating region with
no distinguishable necrotic or other areas. This assumption has
been dictated by the availability of only volumetric and not
necrosis distribution data in the TOP trial. This implies that
microscopic necrotic regions which are primarily due to imperfect
neovascularization of the tumor are postulated, rather homo-
geneously distributed over the entire tumor.

The cell category transition rates are assumed to be constant.
Such an approximation is considered applicable for a relatively
short time interval compared to the tumor lifetime (for example
during the chemotherapeutic treatment course), and the constant
values are assumed to reflect the means of the actual cell category
transition rates over the interval. The use of the means of several
tumor dynamics parameters over a substantial time interval is
quite customary in radiobiology Begg and Steel, 2002, pp. 14–16).
Such a tumor would be characterized by a grossly exponential
growth pattern which in fact approximates a segment of the
Gompertzian curve (Begg and Steel, 2002, p. 10; Zoubek et al.,
1999; Graf and Hoppe, 2006). Therefore for a short time interval
the population of the various cell categories evolves over time
according to the equation:

NðtÞ ¼Noeat ð2Þ
sym Study of the effect of RNDiff Study of the effect of CKR

30, 60, 90 h 30, 60, 90 h

0.41(Tc�TM) 0.41(Tc�TM)

0.41(Tc�TM) 0.41(Tc�TM)

0.18(Tc�TM) 0.18(Tc�TM)

1 1

96 96

20 20

6 6

7 7

0.001 0.001

0–1 0.01

0.001 0.001

0.01 0.01

0.1 0.1

0.4 0.22

– 0.0–1.0
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where No is the population at time 0 and a is the growth rate
constant.

Only for theoretical purposes in certain simulation cases is the
considered time interval deliberately extended beyond what
would seem a short segment of the Gompertzian curve.

The doubling time, Td, defined as the period of time required
for the total tumor cell population to double, is a widely used
parameter characteristic of the growth rate of a tumor. Under the
previous restrictions the following equation holds:

Td ¼ ðln2Þ=a ð3Þ

The doubling time is the same for all cell category populations
and can be computed based on the following relationship:

Td ¼ ðln2Þ�ðt2�t1Þ=lnðN2=N1Þ ð4Þ

where N1 and N2 are the populations at times t1 and t2,
respectively.

The effect of the parameters considered on tumor doubling
time is revealed in Fig. 3. The following remarks can be made:
(a)
Fig.
(c) t

inpu
Fraction of cells entering the G0 phase after mitosis (Sleep

fraction, Psleep): For low values of the sleep fraction, the
simulated tumor is characterized by a small doubling time of
a few days implying a rather aggressive tumor. As Psleep

increases, the doubling time increases as well, initially slowly
for a wide range of values, and then rapidly towards infinity.
There exists an upper limit of the sleep fraction that
corresponds to the equality in (1). This limit depends on the
cell cycle duration and corresponds to a tumor that remains
constant over time. As the cell cycle duration increases, the
permitted value range of the sleep fraction narrows, since the
upper limit decreases. Values of Psleep larger than the upper
limit result in a tumor that diminishes over time (Fig. 3a).
(b)
 Fraction of stem cells that perform symmetric division (Sym-

metric division fraction, Psym): In contrast to the sleep fraction,
in the case of the symmetric division fraction there exists a
lower limit that corresponds to the equality in (1) and
3. The effects of (a) the fraction of cells entering the G0 phase following mitosis (Pslee

he necrosis rate of differentiated cells (RNDiff) on the tumor doubling time for variable cel

t parameters are reported in Table 2.
increases as the cell cycle duration increases. As Psym

decreases, the doubling time approaches this limit asympto-
tically (Fig. 3b).
(c)
 Necrosis rate of differentiated cells (RNDiff): According to the
simulations that have been performed, this parameter appears
to have no noticeable effect on tumor doubling time. There
exists no upper or lower limit for its values, as the necrosis
rate of differentiated cells does not appear in (1) (Fig. 3c).
(d)
 Cell cycle duration (Tc): Higher values of Tc are associated with
slowly evolving tumors and higher values of doubling time, on
the condition that the rest of the model parameters are kept
constant. However, the same doubling time can result from
different values of cell cycle duration after proper adjustment
of the rest of the model parameters.
7.1.2. Relative cell category populations

As far as the effect of the model’s parameters on the relative
populations of cells of various categories is concerned, Psleep and Tc

have been chosen as characteristic parameters for such a study. A
presentation of a more detailed analysis covering all the model’s
parameters is out of the scope of the present paper. Based on
Fig. 4 the following observations can be made:
(i)
p

l

It is expected that variations in the value of the fraction of
cells that enter G0 phase after mitosis would mainly result in
a redistribution of LIMP and stem cells in the dormant and
the proliferative cell cycle phases. Indeed, according to our
simulation results, as Psleep increases the percentage of
proliferating cells (proliferating LIMP and stem cells residing
in the various proliferative cell cycle phases) decreases
whereas the percentage of cells resting in G0 phase (dormant
LIMP and stem cells) increases.
(ii)
 Increasing cell cycle duration Tc results in an increase of
proliferating cells (the sum of LIMP proliferating and stem
proliferating cells) at the expense of mainly the G0 and dead
cell populations.
), (b) the fraction of stem cells that perform symmetric division (Psym), and

cycle durations (Tc¼30, 60, 90 h). The values assigned to the rest of the code



Fig. 4. The effect of the fraction of cells entering the G0 phase following mitosis

(Psleep) on the relative populations of the proliferating, dormant (G0), terminally

differentiated and dead cells for several cell cycle durations (Tc¼30, 60, 90 h). The

values assigned to the rest of the code input parameters are included in Table 2.

Fig. 5. The effect of cell kill ratio (CKR) on tumor volume and tumor diameter.

Three cell cycle durations (Tc) have been considered. The values assigned to the

model parameters are included in Table 2. Higher values of cell cycle duration

correspond to more slowly evolving tumors, hence tumors with larger doubling

time.
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(iii)
 The effect of Psleep on differentiated cells relative population
appears to be insignificant. For higher values of the cell cycle
duration there is a slight increase in the population, whereas
for low values of the cell cycle duration the differentiated
cells relative population slightly decreases with the increase
of Psleep (in the order of 10�3 for the whole range of Psleep).
(iv)
 For high values of the sleep fraction the population of dead
cells increases. This is due to the increase of necrotic cells, a
class that is populated by cells formerly residing in the G0
phase.
(v)
 The relative population (fraction) of stem to LIMP cells
remains unaffected by the parameter Psleep (results not
shown).
(vi)
 The sum of LIMP and stem cells relative populations
decreases slightly as Psleep increases (in the order of 10�2)
to account for the increase of necrotic cells relative popula-
tion (results not shown).
7.2. Response to chemotherapy parametric studies

The effect of the cell kill ratio (i.e. the percentage of LIMP and
stem cells hit by the chemotherapeutic agent after each drug
administration) on the tumor’s volume and diameter is shown in
Fig. 5 for various cell cycle durations. The simulation algorithms
address the case of primary chemotherapy (‘‘neo-adjuvant’’
chemotherapy) with single-agent epirubicin (administration
once every 3 weeks for 4 consecutive cycles) for early breast
cancer patients, in accordance with the TOP trial. The simulated
tumor grows freely for 3 weeks after the end of chemotherapy.
The percentage decrease in tumor volume/diameter is calculated
based on the following equation:

Percentage decrease¼ ððXinitial�XfinalÞ � 100%Þ=Xinitial ð5Þ

where X refers to tumor volume or diameter.
The following observations can be noted:
(i)
 Obviously the outcome of a chemotherapeutic scheme
strongly depends on the pharmacodynamics of the che-
motherapeutic agent used. The model successfully simulates
the shrinkage of a tumor to a higher degree as the cell kill
ratio increases. The value of the cell kill ratio could be
thought of as summarizing important genetic determinants
influencing a particular patient’s tumor response to che-
motherapy.
(ii)
 The free growth volume doubling time of a tumor is expected
to influence the effectiveness of a chemotherapeutic fractio-
nation scheme. In general, the time for tumor volume to
double (volume doubling time) is determined by three main
factors: the cell cycle duration, Tc, the growth fraction, GF,
which is the percentage of actively proliferating cells, and the
rate of cell loss (e.g. through necrosis or apoptosis) (Begg and
Steel, 2002). Our simulation studies involved the cell cycle
duration, as a determinant of tumor doubling time. By
increasing the value of the cell cycle duration, while keeping
the rest of the model parameters constant, a slower evolving
tumor can be simulated. The effectiveness of the chemother-
apeutic scheme is pronounced for tumors with higher
doubling times, due to the restrained repopulation of the
tumor between two therapeutic sessions.
(iii)
 There exists a limit in the cell kill ratio values, below which
the specific therapeutic scheme fails to shrink the tumor. This
limit depends on the tumor’s doubling time. As doubling time
increases (due to an increase in the cell cycle duration) this
limit decreases.
8. Mimicking a branch of the Trial Of Principle (TOP) trial.
Towards clinical adaptation of the simulation model

As presented in previous paragraphs, the model’s behavior
substantiates its potential to serve as the basis of a treatment
optimization system, following a successful completion of the
clinical adaptation and validation process, which will rely on the
use of anonymized real data before and after chemotherapeutic
treatment for the case of the TOP breast cancer clinical trial. The
TOP trial aims to evaluate the topoisomerase II alpha gene
amplification and protein overexpression as markers predicting
the efficacy of epirubicin in the primary treatment of breast
cancer patients. Regarding the correlation of topoisomerase II
alpha (TOP2A) amplification/ expression with response to anthra-
cyclines, and epirubicin in particular, controversial results have
been reported by several investigators during the last decade (e.g.
Knoop et al., 2005; Gennari et al., 2008; Pritchard et al., 2008).

The presented simulation model is characterized by the
ability to incorporate actual molecular data in order to predict
the outcome of a chemotherapeutic treatment in a patient-
individualized context. The effect of a patient’s molecular
profile on its tumor’s response to chemotherapy can be modeled
through adequate adaptation of the parameters related to the
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pharmacodynamics of the chemotherapeutic agent. Depending on
the status and expression of critical genes such as topo II a, p53
HER-2/neu, etc., the drug pharmacodynamics is expected to vary
around its population based mean value.

In the present work, two real clinical cases from the TOP trial with
variable molecular profile (including topo II a amplification status)
have been simulated. More specifically, the patient specific data that
have been provided and utilized by the model are the following:
(i)
Fig. 6
Maximum dimension of the initial tumor before the begin-
ning of the therapy as measured by ultrasound examination
and the date that the above examination was performed.
(ii)
 Maximum dimension of the tumor during or after the
completion of chemotherapy (depending on the available
data) as measured by ultrasound examination and the date
that the above examination was performed.
(iii)
 Chemotherapeutic scheme (number of therapeutic sessions,
time and dose of epirubicin administration).
(iv)
 Molecular profile information, including topo II a gene
amplification status as measured by FISH (fluorescent
in situ hybridization). Amplification of the gene was defined
as a relative copy number ratio Z2.
(v)
 Tumor histological grade (determining the degree of tumor’s
differentiation). A tumor is described in TOP trial’s CRF forms
as poorly, moderately or well differentiated according to the
the Elston–Ellis grade system (Elston and Ellis, 1991).
Table 3
Parameter values used for the clinical cases’ simulations and resulting tumor

characteristics.

Model parameter Value

Tc (h) 90

TG1 (h) 36

TS (h) 36

TG2 (h) 17

TM (h) 1
Fig. 6 describes each case study in terms of the above
presented data. The date of the initial tumor measurement is
considered as the time point reference (time t¼0) and all time
data refer to elapsed time from this reference time point.

Due to non-availability of all desirable clinical details at this
early phase of the clinical validation process, specific assumptions
had to be made regarding tumor shape and size. The data
available (till the completion of the preparation of the present
paper) included the maximum dimension of the tumor as
measured by ultrasound examination. No MRI data have been
provided as yet. Therefore a refined 3D reconstruction of the
tumor or the consideration of internal metabolic regions could not
be made at this stage. Based on the above, a spatially
homogeneous tumor of spherical shape has been assumed with
a diameter of the given size. Therefore, various model parameters,
which would otherwise change their values according to the
metabolic region considered, now take an identical value
throughout the entire tumor. The consideration of spherical
tumors is a first approximation based on accumulated clinical
experience regarding the shape of breast cancer tumors. More
general shapes and metabolically inhomogeneous tumor struc-
tures will be addressed in subsequent versions of the model.
. The epirubicin administration schedules considered in case studies A and B.
In our simulations different tumor differentiation degrees are
reflected in the relative percentage of proliferating (stem and
LIMP) cells. For both case studies A and B, the tumor is
characterized as poorly differentiated, which according to the
Elston–Ellis system (Elston and Ellis, 1991) can be grossly
translated into a tumor with percentage of proliferating cells
larger than 75%, whereas a moderately differentiated tumor
would have a percentage of proliferating cells between 10% and
75%. Well differentiated tumors are assumed to possess a growth
fraction less than 10%. Based on preceding sensitivity analyses the
model parameters cell cycle duration (Tc), symmetric division
fraction (Psym) and apoptotic rate of differentiated cells (RADiff)
have been appropriately adjusted to achieve the above population
percentages. LIMP cells have been considered undergoing seven
mitoses before becoming terminally differentiated, in order to
acquire relative percentages of stem and LIMP cells supported by
the currently available literature.

The values assigned to the code input parameters and the
resulting tumor characteristics are presented in Table 3. Critical
properties of the resulting tumor, such as doubling time
(232days) and percentage of proliferating cells (2.6%) are in
accordance with breast cancer literature data (e.g. Spratt et al.,
1981; Al-Hajj et al., 2003; Liu et al., 2005; Stingl and Carlos, 2007).

For each case study one possible combination of the model
input parameter values that successfully simulates the clinical
case i.e. predicts the actual tumor volume shrinkage and satisfies
several biological boundary conditions is reported below. Fig. 7
shows the time course of the following quantities of interest for
the two clinical cases: population of proliferating cells (stem and
LIMP) and total cell population (Fig. 7a), and tumor diameter
(Fig. 7b). The above populations include both intact cells and cells
affected by the drug (and therefore destined to die) but not yet
actually dead. Qualitatively a fairly expected and reasonable
tumor dynamics behavior can be easily noticed. Shrinkage of
the tumor after each chemotherapeutic session and tumor
repopulation are successfully demonstrated. Most importantly
though, in quantitative terms, a reduction in tumor size in
agreement with the clinical data has been achieved in both cases.
According to the clinical data the tumors in case A and B have a
TG0 (h) 96

TN (h) 20

TA (h) 6

NLIMP 7

RA (h�1) 0.001

RNDiff (h�1) 0.01

RADiff (h�1) 0.03

PG0toG1 0.01

Psleep 0.1

Psym 0.228

Tumor characteristic Value
Doubling time 232 days

Relative population of tumor stem cells 0.026

Relative population of tumor LIMP (committed progenitor) Cells 0.761

Relative population of terminally differentiated tumor cells 0.145

Relative population of dead cells 0.068

Growth fraction 0.71

Dormant cells fraction 0.078
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maximum diameter of 12 mm in day 62 and 15 mm in day 111
respectively, which is clearly reproduced by the simulation results
(Fig. 7b and Table 4).

The values assigned to the cell kill ratio are shown in Table 5.
The value of the CKR that produced good agreement with the
Fig. 7. Simulated time course of the population of proliferating cells and total cell

population (a) and tumor diameter (b) for the case studies A and B. The simulated

tumor’s diameter at the time point for which the second set of imaging data is

available is indicated for each clinical case.

Table 4
Comparison of maximum tumor dimension between clinical trial data and

simulation results (two case studies).

Day Clinical data (mm) Simulation (mm)

Initial tumor maximum dimension
Case study A 0 35 35.07

Case study B 0 17 16.96

Final tumor maximum dimension
Case study A 111 15 15.06

Case study B 62 12 12.10

Table 5
Cell kill ratio (CKR) values used for the adaptation of the model to clinical trial data (t

Differentiation grade

Case study A Poorly differentiated tumor

Case study B Poorly differentiated tumor
clinical data is reported as the suggested ‘‘apparent CKR’’ for each
particular clinical case, which can be thought of as summarizing
important genetic determinants influencing the tumor’s
response to epirubicin monotherapy. Table 5 includes topo II a
amplification status for demonstration purposes (since topo II a
amplification status has a particular role in the TOP trial), but the
apparent CKR value incorporates the effect of all critical genetic
factors constituting the tumor’s molecular profile. It is noted that
no statistical conclusions can be drawn concerning specifically the
effect of topo II a amplification status on the therapeutic outcome,
a study that is out of the scope of the present work. In conclusion,
by properly adjusting the pharmacodynamics of epirubicin as
reflected in the cell kill ratio value, the patient’s molecular profile
data (including topo II a amplification status) can be taken into
account. The relevant methodology is to be refined according to
the details provided by the TOP trial clinical cases.
9. Discussion

The model presented in this paper, having its roots in previous
work of the In Silico Oncology Group, National Technical
University of Athens (In Silico Oncology Group) is an actual
clinical trial driven model concerning the response of early breast
cancer to epirubicin monotherapy. Available imaging-based,
histological, molecular and treatment data are exploited in order
to strengthen patient individualization modeling and in the future
patient individualized treatment optimization. Clinical validation
constitutes an undeviating prerequisite for clinically oriented
multiscale cancer models. A branch of the Trial of Principle (TOP)
trial has been addressed as a paradigm of a chemotherapy
optimization targeted clinicogenomic trial.

A basic feature of the simulation model is the explicit
consideration of cells of distinct mitotic potential, i.e. stem cells
of infinite proliferative potential, LIMP (or committed progenitor)
cells of limited proliferative activity and terminally differentiated
cells. It is well documented in the relevant literature that tumor
sustenance is due to the existence of stem cells, which generally
represent a small but potentially critical portion of the total tumor
cell population (Dean et al., 2005). Cancer stem cells may be
naturally resistant to chemotherapy; indeed considerable evi-
dence exists for many types of tumors, including breast cancer
(Dean et al., 2005; Diehn et al., 2007; Fillmore and Kuperwasser,
2008). A major advantage of the present model is the fact that
such a diversification of chemotherapeutic resistance is facilitated
by its discrete nature and the characteristics of the particular
cytokinetic model adopted.

A further prominent feature of the model is the introduction of
an improved tumor initialization technique, which dispenses
shortcomings of previously used methods and is now incorpo-
rated into the hard code, thereby offering high flexibility to the
user of the model. This is of particular importance since the
clinically oriented nature of the model implies that the evolution
of already fully developed clinical tumors is to be simulated.
Proper tumor initialization excludes the possibility of artificial
tumor behavior which could interfere with the interpretation of
the simulation results.
wo case studies).

Topoisomerase II a gene
deletion/amplification status

Adapted CKR

Deleted 0.51

Amplified 0.45
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A number of parametric studies have been performed in order
to study the model’s behavior in relation to the value of each
chosen input parameter with the primary aim to deepen and
advance quantification of our understanding of tumor response to
chemotherapeutic treatment in the breast cancer and more
specifically the TOP trial context. Similar studies are to be
performed for all code parameters in order to thoroughly analyze
the sensitivity of the model’s behavior to its parameters
variations. An extensive use of the clinical trial data is expected
to crucially support this procedure, while pertinent optimization
techniques such as artificial neural networks, genetic algorithms,
etc. have been planned to be used in this context.

By using real medical data in conjunction with plausible values
for the model parameters a reasonable prediction of the actual
tumor volume shrinkage for two clinical cases of the TOP trial has
been made possible. The value of the cell kill ratio parameter that
produced good agreement with the clinical data is suggested as
the ‘‘apparent CKR’’ for each particular clinical case, which can be
thought of as summarizing important genetic determinants
influencing the tumor’s response to epirubicin monotherapy.
The whole system can be seen as a paradigmal case of hybridizing
clinicogenomics trials with multiscale computer modeling
primarily focused on the cell and higher levels.

For each clinical case one possible combination of the model
input parameter values that successfully predicts the actual
tumor volume shrinkage has been reported. It should be pointed
out that the large number of inherent biological boundary
conditions (e.g. monotonic increase of all tumor cell class
populations for an imageable freely and smoothly growing tumor)
dramatically limits the number of possible solutions (i.e. sets of
parameter values that are able to predict real tumor shrinkage
following treatment). This is particularly important, since such
limitations drastically facilitate the approach to the solution best
representing clinical reality for each given medical data case.

The model has been developed to support and incorporate
individualized clinical data such as imaging data (e.g., CT, MRI,
PET slices, possibly fused) (e.g. Marias et al., 2007), including the
definition of the tumor contour and internal tumor regions
(proliferating, necrotic), histopathologic (e.g., type of tumor) and
the genetic data (e.g., p53 status, if available). The use of
anonymized real data before and after chemotherapeutic treat-
ment for the case of the TOP breast cancer clinical trials constitute
the basis of the clinical adaptation and validation process.
Obviously as more and more sets of medical data are exploited
the reliability of the model ‘‘tuning’’ is expected to increase.

Finally, a detailed description of various technical issues
involved in the present work (such as image processing, grid
execution and visualization techniques) will be the topic of a
dedicated paper.
10. Conclusions

An advanced multiscale model of clinical tumor response to
chemotherapy has been presented. The paradigm of early breast
cancer treated by epirubicin according to a branch of the TOP
(Topoisomerase II Alpha Gene Amplification and Protein Over-
expression Predicting Efficacy of Epirubicin) trial has been
addressed. The model, stemming from previous work of our
research group, is characterized by several crucial new features
such as an advanced generic cytokinetic model for the response of
a tumor cell to chemotherapeutic treatment, the explicit distinc-
tion of proliferating cells into stem cells and committed
progenitor cells of limited proliferative capacity and the adapta-
tion of the relative populations of the various cell categories/
phases to the cell category/phase transition rates for free tumor
growth, which constitutes an important novel tumor initialization
strategy.

A sensitivity analysis regarding critical parameters of the
model has revealed their effect on the behavior of the biological
system. In particular, the joint effect of the cell cycle duration and
the fraction of newborn tumor cells that enter the G0 phase on the
relative cell category populations, the joint effect of the cell cycle
duration and the fraction of cells that perform symmetric division
on the doubling time and the joint effect of the cell cycle duration
and the necrosis rate of differentiated cells on the tumor doubling
time have been studied. Furthermore, the joint effect of the cell
kill ratio and the cell cycle duration on the therapeutic outcome
(volume and diameter decrease percentages) has been also
presented. Finally, a realistic time course of the tumor diameter
for two clinical cases of the TOP trial has been achieved by
selection of reasonable model parameter values, thus demon-
strating a possible adaptation process of the model to real clinical
trial data. The above studies and their results support the
potential of the model to serve as both a theoretical investigation
and a patient specific treatment optimization tool following
completion of an ongoing clinical adaptation, optimization and
validation process.
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Appendix A

The principle of the tumor constitution initialization technique
is to start with a small number of stem cells and with specific cell
category transition rates that are assumed to hold true for a
relatively small time interval about the treatment baseline.
Specific values are assigned to the phase durations and transition
rates. Gradually, all cell categories and phases become populated
and after sufficient time the relative cell categories populations
tend to reach an equilibrium state. If in subsequent simulations
the GCs are initialized using the cell category/phase relative
population values corresponding to this equilibrium state, a
mathematically monotonous and biologically normal free growth
behavior will be achieved. The challenge is to successfully locate
the point beyond which equilibrium has been achieved and use
the relative populations (or ‘‘fractions of populations’’) after that
point for the correct initialization of the tumor. Certain combina-
tions of category/phase transition rates cannot sustain tumor
growth (see Section 4 for the condition for monotonic free
growth). In such cases the method will correctly fail to create the
initial tumor and a relevant warning message will be issued by
the simulation system.

More specifically, the technique consists in the following:
A limited number of geometrical cells NGCs are considered. Each
GC initially contains a small number of stem cells, e.g. 100,
residing in the various cell cycle phases (G1, S, G2, M) and the G0
phase. Time initialization, i.e. the time already spent by clustered
stem cells in the phase they reside, is assigned using a pseudo-
random generator. Different random number sets are assigned to
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different GCs. The aim is to avoid artificial synchronizations which
would result in the group of GCs considered behaving as one big
GC. The system is left to evolve and produce all cell category
populations (distributed to the various cell phases). The code
execution has to continue until equilibrium is reached and the
various cell categories population percentages have been stabi-
lized. The equilibrium condition applied is described by the
following inequality:
Pn
time step i ¼ n�Nþ1ðcell category relat: population at time step i=NÞ�

Pn�M
time step j ¼ ðn�MÞ�Nþ1ðcell category rel: population at time step j=NÞ

Pn�M
time step j ¼ ðn�MÞ�Nþ1ðcell category rel: population at time step j=NÞ

�
�
�
�
�

�
�
�
�
�
re

for k consecutive averages ðA:1Þ
In words, the average of N consecutive values of the relative
population of cells clustered in a given mitotic potential category
is calculated every M time steps (hours). The variation of the
average is also calculated. If the variation of the average is less
than e, where e is a small positive real number, for k consequent
average values, equilibrium has been reached. The condition must
be true for all cell category relative populations.

In order to check the efficiency of the equilibrium condition
and determine the most effective values of the parameters NGCs,
M, N, e and k for the achievement of convergence a number of
exploratory executions have been performed. The conclusions
reached for each parameter are given below:

(a) Number of geometrical cells (NGCs) used for the initialization of

the tumor constitution

Fig. A1 presents the relative population of proliferating stem
cells calculated for various values of NGCs. For NGCs¼1 the
technique produces the highest value of the relative population.
As more and more GCs are considered, the relative population of
stem cells decreases fast towards a steady value. Similar
observations have been made for the rest of the mitotic
potential cell categories for various proliferation statuses. Taking
into consideration the dependence of the execution time on the
number of GCs considered, the selection of NGCs¼64 has shown to
ensure good convergence, while at the same time keep the code
execution time for the tumor constitution initialization
reasonably low. The previous observations hold true at least for
the breast cancer parameter value subspace.

(b) Number of N consecutive values of the relative population of

cells clustered in a given mitotic potential category

It appears that the optimal value of N coincides with the cell
cycle duration (in hours). This is shown in Fig. A2, which depicts
the example of the relative population of proliferating stem cells
Fig. A1. Study of the model convergence. Relative population of proliferating stem

cells as a function of the number of geometrical cells considered. The method

described in Section 4 has been applied. M¼Tc, N¼Tc, e¼10�5, k¼10.
along with its average value as a function of time for N ¼ Tc

(in hours) ¼ 96 and N ¼50 consecutive values. The relative
population time course seems to follow a repeated pattern with a
period equal to the cell cycle duration (Tc) of the tumor under
consideration. On the other hand the average value over N¼Tc

values of stem cell relative population follows a rather smooth
course. Regarding the source of fluctuations the various quanti-
zations of the model must play a major role. Nevertheless, the
maximum fluctuation is about 2% of the stabilized average value,
which can be considered insignificant, when taking into account
the uncertainties of the medical data to be used by the model.

(c) Time interval M between consecutive calculations of the

average values of the relative population of cells clustered in a given

mitotic potential category

The average value of N consecutive values of the relative
population of cells clustered in a given mitotic potential category
is compared with its predecessor every M time steps (hours). It
has been shown again that the most effective M value so that good
convergence is achieved, is the value of the cell cycle duration in h
(Fig. A3). Fig. A3 triangles shows the exemplary case of the relative
variation of the average of N¼Tc (¼96) consecutive instantaneous
values of the relative population of stem cells, taken every M¼Tc

(¼96) time steps (hours) over time. The curve is fairly smooth and
tends to zero. On the contrary, Fig. A3 circles depicts the same case
in which M has not been set to Tc. A small fluctuation of the
relative variation over time (about 2%) is apparent. Here again the
fluctuation is still not significant.

(d) The small positive real number e
Ideally, equilibrium of the relative cell populations has been

reached when the relative variation of the average of N

consecutive values of the relative population of each cell
equivalence subclass over time has become zero. Since this may
happen at infinity due to small quantization errors, the small real
positive value of e ¼ 0.00001 ¼ 10-5 has been adopted. The latter
has been shown to ensure convergence in the breast cancer
parameter subspace considered.

(e) The number k of consecutive average values considered

Satisfaction of the equilibrium condition for k¼10 consecutive
averages has been proved to ensure convergence in the parameter
subspace considered.
Fig. A2. Study of the model convergence. Fluctuation of the relative population of

proliferating stem cells and its average value over time for N¼Tc (in h)¼96 and

N¼50 consecutive values. Tc denotes the duration of the cell cycle.



Fig. A3. Study of the model convergence. Relative variation of the average of

N¼Tc¼96 consecutive instantaneous values of the relative population of stem

cells taken every M time steps (hours) over time. Triangles correspond to M equal

to the numerical value of the cell cycle duration (96 h). Circles correspond to

M¼50. Both curves correspond to the same tumor. The convergence of this

parameter to zero is essential for the equilibrium condition described in Appendix

A to be applied.
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In summary, the optimal parameter values for achieving
convergence in the tumor constitution initialization procedure,
for the specific parameter subspace considered in this paper, are
NGCs¼64, N¼Tc, M¼Tc, e¼10�5 and k¼10. It is noted that the
initialization code execution time ranges from a few fractions of a
second to a few seconds on a standard laptop, depending on the
particular characteristics of the tumor (e.g. cell cycle duration,
fraction of cells entering the G0 phase following mitosis, etc.).
Appendix B

The algorithm developed for the avoidance of premature
extensive fragmentation and vacuum enclosures artifacts:

(I) detects tumor occupied GCs that are surrounded by empty
GCs in a ‘‘6-GCs Neighborhood’’ and moves their contents (by one
GC at each time step) towards the tumor’s center of mass. The
direction of movement is chosen based on the minimum distance
of the GC under consideration from the center of mass along the x,
y, z coordinates. The corresponding quantity to be calculated each
time is the following:

minfabsðGC:x�center:xÞ, absðGC:y�center:yÞ, absðGC:z�center:zÞg

where abs() denotes absolute value, GC.x, GC.y and GC.z are the x,
y and z coordinates of the GC respectively and center.x, center.y
and center.z are the x, y and z coordinates of the tumor’s center of
mass, respectively.

If more than one direction is characterized by the same
minimum distance then a random number generator is used for
the selection of the movement direction.

(II) detects empty GCs that are surrounded by occupied GCs in
a ‘‘6-GCs Neighborhood’’ and fills them with the contents of
adjacent GCs by applying the tumor shrinkage procedure
described above.
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