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A quantitative theory is developed for the relationship between stimulus and the resulting blood
oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal, including both
spatial and temporal dynamics for the first time. The brain tissue is modeled as a porous elastic
medium, whose interconnected pores represent the vasculature. The model explicitly incorporates
conservation of blood mass, interconversion of oxygenated and deoxygenated hemoglobin, force
balance within the blood and of blood pressure with vessel walls, and blood flow modulation due to
neuronal activity. In appropriate limits it is shown to reproduce prior Balloon models of hemodynamic
response, which do not include spatial variations. The regime of validity of such models is thereby
clarified by elucidating their assumptions, and when these break down, for example when voxel sizes
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1. Introduction

The purpose of this paper is to develop a model that accounts
for both the spatial and temporal dynamics underlying hemody-
namic responses that determine the blood oxygen level depen-
dent (BOLD) signal used in functional magnetic resonance
imaging (fMRI). Hemodynamic modeling based on physiological
processes will also provide new constraints and priors for use in
conjunction with empirical BOLD analysis methods. In this paper
we thus build a model to explicitly model spatiotemporal BOLD
responses. We also clarify how Balloon models emerge as limiting
cases of this model.

The BOLD signal is an indirect measure of neuronal activity
since a number of physical hemodynamic processes interact to
determine the BOLD signal and these processes must be modeled
to relate neuronal activity to observed BOLD signals more
precisely (Buxton et al.,, 1998; Friston et al., 2000; Logothetis
et al, 2001; Nair, 2005). Moreover, interpretation of BOLD
measurements is often impeded by poor signal to noise ratios
(e.g., Lund et al., 2005; Long et al., 2005) and by incomplete
understanding of the hemodynamics and its coupling with
neuronal activity. In this context, improved modeling can provide
additional constraints on the dynamics which can be used to
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improve signal to noise ratios and enable new tests of underlying
mechanisms.

Among, the benefits of a spatiotemporal hemodynamic model
are that it will allow the derivation of spatiotemporal hemody-
namic response functions and allow better understanding of the
spatial aspects of hemodynamic response and their links to
underlying neural activity. Imposing spatial consistency in
building the model also has benefits aside from modeling the
spatial dependence of BOLD: because the spatial and temporal
aspects of BOLD are intimately connected, it will aid in clarifying
the interaction between flow and volume relationships in BOLD,
which are still active areas of research (Nair, 2005). Moreover,
voxels are becoming smaller with advances in technology, so
connections between the hemodynamics of adjacent voxels are
likely to become increasingly important, an effect not included in
purely temporal models of BOLD response. The present model can
assist in understanding such effects, and is thus formulated on a
physical basis independent of instrumental factors such as an
assumed voxel size.

The Balloon model of Buxton et al. (1998) has been influential
in physiological BOLD modeling. Numerous refinements and
variations have been made to the original model so that a
considerable number of Balloon models have now been proposed
(e.g., Buxton et al., 1998; Friston et al., 2003; Mandeville et al.,
1999; Kong et al., 2004; Zheng et al., 2005). Balloon models
incorporate the common feature that adjacent voxels are
hemodynamically independent and each voxel contains one or
more vascular “balloons”. Consequently, spatial aspects of
hemodynamic response are not directly modeled in Balloon
models. We note, historically Balloon models consider the
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mapping between blood flow and observed signal, while hemo-
dynamic models complete Balloon models by pre-pending a
model of neurovascular coupling. In this paper we use the
terminology Balloon model descriptively rather than categorically
so that if the model contains a constituent component which is
equivalent to a “balloon” structure we term it a Balloon model.
Thus, for example, in this paper the hemodynamic model of
Friston et al. (2003) is described a Balloon model since one
component of the model includes a “balloon” structure.

In order to model the vasculature in this paper, we use a so
called poroelastic approach in which the brain tissue is modeled
as an elastic medium with interconnected pores representing the
vasculature. Such models are akin to poroelastic models of
geophysical fluid dynamics (Wang, 2000). In Section 3, a neuronal
signal equation is derived that governs how a change in neural
activity leads to a change in flow. The relationship between blood
flow and blood volume, as governed by conservation of blood
mass, is then derived in Section 4. The blood deoxygenation
process, which conserves hemoglobin while describing the
conversion of oxygenated to deoxygenated hemoglobin, is
governed by an equation derived in Section 5. A force balance
equation which describes the interaction between blood vessel
walls and the blood, and the internal pressures within the blood is
then derived in Section 6. Section 7 recasts a recently published
relation between BOLD signal, blood volume and deoxygenation
for use in the present model. Section 8 discusses the boundary
conditions for the model. Section 9 demonstrates that the present
model reproduces the Friston et al. (2003) Balloon model as a
limiting case. This clarifies the conditions of validity of this and
similar Balloon models and immediately implies that the present
model can reproduce at least the range of phenomena explained
by such Balloon models to date, including the main temporal
features of the hemodynamic response and BOLD signal.

2. Overview of model

In this paper we develop a 2D spatiotemporal poroelastic
model of hemodynamic response. Poroelastic models were
originally introduced in geophysics for fluid flow in porous
materials (Wang, 2000). Currently the descending and ascending
vessels of the vasculature are not fully resolved by fMRI studies as
the vessels are significantly finer than the voxel size. The fine
structure of the interconnecting vessels can only be resolved by
invasive means. Consequently, in order to model the vasculature,
we approximate the tissue as a porous elastic medium in which
the vessels are represented as “pores” of the medium. We justify
this approach with reference to Figures 26-29 of Duvernoy and
Vannson (1981), which show cross-sectional slices through the
corteX, including ascending and descending vessels and the
vasculature between. This structure is schematically represented
in Fig. 1, which does not show the full density of connecting
vessels. From anatomical studies (Duvernoy and Vannson, 1981)
it is known large vessels are located on the outer surface of the
cortex, then intracortical arteries descend into cortex, and are
connected via arterioles, capillaries, and venules to intracortical
veins ascending back to the surface, as shown schematically in
Fig. 1. When viewed from above, a star-like formation of input and
output points can be seen as in Fig. 2 (adapted from Fig. 61 of
Duvernoy and Vannson, 1981). In view of the extreme density and
fineness of the actual vascular network connecting the
intracortical arteries and veins, we thus approximate this
network as a set of interconnected pores in an elastic matrix.

Before proceeding it is important to clarify how tissue
properties are averaged over different types of vasculature.
Specifically, our model is a one-compartment model in which we
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Fig. 1. Schematic cross-section of the cortical gray matter showing approximately
vertical descending arteries and ascending veins. The arterioles, capillaries, and
venules form a dense network connecting these vessels. The shaded rectangle
highlights the blood inflow region which is examined in more detail in Section 8.
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Fig. 2. Schematic view from the pial side of descending intracortical arteries and
ascending intracortical veins. Descending arteries (crosses) are positioned around
ascending veins (dots) with arteries outnumbering veins approximately 5 or 10-1
(Duvernoy and Vannson, 1981). Lateral branches connecting to ascending veins
are shown. One flow regulation site r; is marked and the approximate area of
neural connectivity to that site is shaded.

model the weighted averaged properties of the arterioles,
capillaries, venules, and intra-gray matter venous vessels. Single
compartment Balloon models are common and able to approx-
imate the major features of the temporal response. Multi-
compartment Balloon models have been proposed to account
for fine structure of temporal response (e.g., Zheng et al., 2005;
Mandeville et al., 1999) and experimental measures of the relative
differences between the hemodynamics of different compart-
ments is described by Vanzetta et al. (2005). Within multi-
compartment models the different vascular components
arterioles, capillaries etc. are separated into one or more averaged
components yielding improved modelling of temporal response. It
should be noted that though each distinct type of vasculature
necessarily occupies distinct spatial locations though this is not
directly related to the spatial dimensions considered in the
present model which represent spatial dimensions on the cortical
sheet. It is beyond the scope of the present paper to model the
vascular compartments separately, although such a refinement
could be added in the future.

The cortical sheet has a layered structure with the anatomy of
the vasculature differing between layers, while the layers
themselves are comparatively very similar across the cortex. It
is unclear from anatomical studies whether input blood flow is
separately regulated as it passes between the cortical layers
(Smirnakis et al., 2007). Experimental results of Smirnakis et al.
(2007) suggest that BOLD is unlikely to have interlayer specificity,
whereas Shmuel et al. (2006) showed increased BOLD response
near layers 4 and 5. It is possible that the increased BOLD
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response near layers 4 and 5 may be due to variation in vascular
density (Shmuel et al., 2006) rather than flow regulation between
layers, consistent with the findings of Smirnakis et al. (2007). For
these reasons, this paper implements a 2D spatial model, which
aggregates over the cortical depth, rather than a 3D model; more
detailed anatomical studies and/or clearer interlayer BOLD
measurements would motivate future modeling of the spatial
dependence of the BOLD response versus cortical depth.

A number of physical processes are included in our poroelastic
model and their interactions are shown in Fig. 3. These are that:
(i) a change in neural activity causes a change in blood inflow; (ii)
the change in blood inflow leads to changes in the cerebral blood
volume; (iii) simultaneously, deoxygenation of the blood in the
capillaries leads to variation in the dHB content of the blood; and
(iv) the relative changes in blood volume and dHB content
contribute to changes in the detected BOLD signal. The model thus
involves four primary governing equations, one for each of these
processes. There is also an equation that relates the observed
BOLD signal to the underlying hemodynamic quantities.

Balloon models have been successful in accounting for the
main aspects of temporal BOLD response (Buxton et al., 1998;
Mandeville et al., 1999; Kong et al, 2004). We show our
spatiotemporal model reproduces a Balloon model in a certain
limit, thereby clarifying the conditions for validity of Balloon
models. By reproducing a Balloon model, in the appropriate limit
the present model can reproduce at least the range of phenomena
explained by that model. Since our main aim is to model spatial
BOLD we do not exhaustively survey the various refinements to
Balloon models that have been proposed in the literature,
although some are mentioned at relevant points.
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Fig. 3. Block diagram showing the major physical processes modeled in the
poroelastic model. Neuronal activity causes (i) changes in flow regulation via
neuronal signal equation, (ii) forces between blood and tissue and within the
blood are governed by a force balance equation, (iii) blood flows are governed by
blood mass conservation equation, (iv) deoxygenation of blood governed by
hemoglobin conservation equation, and (v) generation of BOLD signal response
occurs via changes in blood volume and deoxygenation as described by a BOLD
signal equation. The arrows mark components of the model that depend on the
same physical quantities. The direction of the arrows represents causal links in
these physical quantities.

3. Coupling of neuronal activity and blood flow

In this section an equation is derived to describe how a change
in neuronal activity causes a change in blood inflow. The details of
this coupling are not fully understood and constitute an area of
active research (Reira et al., 2006; Bennett et al., 2007). However,
it is widely agreed that astrocytes mediate the signal from
neurons that causes dilation of arterioles and a resulting increase
in blood flow (Zonta et al., 2003; Haydon and Carmignoto, 2006);
hence, we model this link at this level.

In developing a spatial model it is necessary to determine
where the blood flow control occurs. Duvernoy and Vannson
(1981) suggested flow control of blood inflow into the cortex was
in arteriole zone and sphincter-like constrictions on arterioles
might operate as the flow control points. The constrictions
Duvernoy and Vannson (1981) observed were at the limits of
resolvability but Harrison et al. (2002) resolved sphincter muscles
on arterioles and vascular pericytes near capillary junctions
with arterioles and identified them as sites of blood inflow
control. Our 2D spatial model does not depend critically on the
exact site of flow control, except that it is assumed to be located
within the cortex in an arteriole inflow zone; for definiteness we
assume it to lie near descending arteries, as argued by Harrison
et al. (2002).

In order to model the spatial dependence of the coupling of
neural activity to flow we note that a signal requiring the change
in flow caused by the activity of neurons must propagate from the
neurons to the regulation/constriction sites on the blood vessels.
This signal is believed to be originated by astrocytes (Zonta et al.,
2003), probably by activation of glutamatergic (AMPA) receptors.
These cells then generate a vaso-dilatory signal (nitric oxide or
NO), which diffuses rapidly and locally to act as an endothelium
relaxing factor and increase blood flow. In the present model we
neglect the time delay for this propagation relative to the time
scales of the other physical processes.

The temporal dynamics of the regulation of flow control must
be modeled. Experiments have measured flow control response to
sudden changes in neuronal activity via MRI, optical, and
ultrasound Doppler methods. For modeling purposes it is
important to know whether the flow can undershoot its
equilibrium value after a sudden fall in neuronal activity. Conrad
and Klingelhofer (1989) observed flow undershoot using ultra-
sound Doppler measurement. The results of Conrad and Klin-
gelhofer (1989) are particularly persuasive since ultrasound
Doppler measurement is preferentially sensitive to the largest
flow velocities and so is less contaminated by flow velocity
further down the vascular tree. In light of the experimental
evidence for flow undershoot we generalize the temporal flow
control mechanism introduced by Friston et al. (2003) to account
for spatially regulated flow control. Friston et al. (2003) modeled
the flow control as having dynamics analogous to a damped
harmonic oscillator (DHO), thus incorporating a flow undershoot
(Robinson et al., 2006).

For a particular regulation site r;j the flow control in the present
model is given by

d?F(r;,t)
dt*

dF(r;,t
D ool = [ e, @

where F is the flow, k is the flow signal decay rate (i.e., the rate at
which signal decreases after neural activity ceases.), y is the flow-
dependent elimination constant (/7 is the inverse of the
characteristic time for autoregulatory feedback from blood flow).
The quantity h[z(r—r;)] is a weight function that reflects the
contribution of neural activity z from r to driving flow regulation
at r;. This function falls off over a nonzero characteristic range that



P.M. Drysdale et al. / Journal of Theoretical Biology 265 (2010) 524-534 527

reflects the finite range of astrocytic projections (Zonta et al.,
2003; Haydon and Carmignoto, 2006).
A number of aspects of Eq. (1) merit further discussion:

(i) The distribution h[z(r—r;)] of effective connectivity between
neurons and flow regulation points has not been measured
experimentally but is an area of significant research interest.
Models of this effective connectivity have been proposed (see
e.g. Friston, 1995). The incorporation of such a model is a
possible future refinement of the present model.

Nair (2005) reviewed the uncertainty and disagreement in
the literature as to whether a flow undershoot is of
significance in generating observed undershoots in BOLD
response. In modeling the coupling of neural activity to flow
control our aim is to accurately characterize the flow control
in this component of the model. Although we include the
possibility of an undershoot in flow (which would correspond
to small k), we do not examine its role in generating BOLD
undershoots here.

On the left hand side of Eq. (1) the final term is y(F—Fy) where
Fo is the equilibrium flow. Thus the oscillation of the flow is
about this equilibrium value. The form of this term was
proposed and explained by Friston et al. (2000) and
motivated by slow fluctuations observed in fMRI and optical
imaging. It should be noted that our equilibrium flow is a
dimensional quantity in contrast to the normalized equili-
brium flow of Friston et al. (2003). Recently numerous
studies have considered what have been termed “resting”
or “default” networks, in which it has been shown that there
is fluctuating activity even in what has been termed the
“resting brain” (e.g., Raichle et al., 2001; Fox and Raichle,
2007; Damoiseaux et al., 2006). Building a model which
incorporates a equilibrium flow is not inconsistent with such
studies. since we impose no requirement that prestimulus
flow be at the equilibrium level. Indeed it is likely that flow
never remains exactly at equilibrium, rather it is constantly
perturbed about this value due to ever present fluctuating
neural drives arising from the continual flow of external
stimuli and, probably, self-generated neural activity.

(ii

—

(i

—

4. Mass conservation of cerebral blood flow

In this section we derive a governing equation of our
poroelastic model that incorporates the physical constraint that
blood mass must be conserved. Mass conservation of blood
requires that for any volume element of brain tissue the net flux
of blood through its boundaries must be balanced by changes in
the amount of blood stored within its pores, as shown in Fig. 4.
Mathematically this can be expressed for an arbitrary volume

blood
vessels

Fig. 4. Schematic showing inflow and outflow of blood through pores in an
arbitrary 3D volume element. Differences between inflow and outflow are
balanced by changes in blood storage within the volume element. Direction of
blood flow is marked with arrows.

element V, as

dMy
T_f/avpfvdA, )

where My is the mass of blood within the volume element, Ps the
density of blood, and v the blood velocity and 6V, is the surface of V,,.
In this case the change in blood storage is represented by the left
hand side, while the right hand side expresses the flux of blood into
V.. We define the blood mass content per unit volume ¢ to be

- peVs My

7 VA
where Vyis the blood volume, py is the density of blood, and V;, is the
volume of the volume element. Applying Gauss’s divergence
theorem and using Eq. (3) yields

d\vv)
adp _/vafv‘zdv. “

Eq. (4) can be converted to differential form (Griffiths, 1989),
yielding

o&(r,t)

at
where we have restored the arguments r and t for clarity. In this
form, the left hand side expresses the change in fractional blood
storage in the pores while the right hand side expresses the net flux
inward of blood per unit volume.

3

—p;V - v(r,b), )

5. Conservation of hemoglobin

In this section we derive an equation to describe the
spatiotemporal evolution of deoxyhemoglobin (dHB) concentra-
tion. This equation can be derived from hemoglobin conservation
since, analogously to blood mass, hemoglobin is conserved when
input and output flows are accounted for. The conserved total
hemoglobin (HB) is the sum of oxygenated hemoglobin (oHB) and
dHB components. Neither oHB or dHB is separately conserved
because the metabolic demands of the tissue convert oHB to dHB.
Conservation requires

Q(r' t) + C(rv t) = B(r) t)v (6)

where Q(r,t) is the local concentration of unoccupied oxygen sites
on hemoglobin molecules in erythrocytes in the blood, C(r,t) is the
local concentration of occupied oxygen sites on hemoglobin
molecules in erythrocytes in the blood, and B(r,t) is the total local
concentration of oxygen sites, both occupied and unoccupied, on
erythrocytes. Further, B(r,t) can be written as B(r,t) = &(r, )y,
where / is the concentration of oxygen sites per unit mass of
blood and ¢ is the fractional blood mass content defined in Section
4. The conservation relation (6) then becomes

Q(r,t)+C(r,t) = (1, ). )

The conversion of oHB to dHB can be modeled by considering
the oxygen dissociation curve (ODC), which relates the oxygen
saturation of HB to the partial pressure of dissolved oxygen in the
blood (Hoffbrand et al., 2004). The ODC is approximately linear for
the partial pressures of dissolved oxygen typical in capillaries and
veins (Hoffbrand et al., 2004). Further, assuming that diffusion is
passive between oxygen dissolved in the blood and the surround-
ing tissue the rate of conversion of oHB to dHB can be
approximated as being proportional to oHB concentration. The
conversion of oHB to dHB is then given by

dQo_a((rt) _
o = e ®)

=IOy —Q(rD), )
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where 7 is the fractional rate of oxygen consumption. By analogy
with mass conservation, the total change in dHB sites in a volume
element is equal to the sum of the net inward flux dHB sites and
the rate of production of dHB sites within the element via
deoxygenation; i.e.,

6Q —_ — . —
/‘/Edv_ /EVQV dA+'/V17(£xp Q)dv, (10)

where the term on the left hand side represents total rate of
change in deoxyhemoglobin content, the first term on the right
hand side (including the minus sign) represents the flow rate of
deoxyhemoglobin into the volume element and the second term
incorporates the rate of production of deoxyhemoglobin via
deoxygenation. Applying Gauss’s divergence theorem and con-
verting to differential form (Griffiths, 1989) then yields

aQ

o ==V Qv)+WE-Q)n. a

This equation expresses the conservation of hemoglobin. In fluid
dynamics and classical mechanics literature it is customary to
express equations of this type in a more familiar form in terms of
the material derivative (Acheson, 1990). The material derivative is
a derivative taken with the underlying flow and formally defined
by

— =—_+Vv- VA (12)

To re-express Eq. (11) in terms of the material derivative of Q, the
vector identity V- (fA)=f(V-A)+A - (Vf) is applied to the first
term on the right hand side (Griffiths, 1989), and the chain rule of
differentiation is used to give

DQ

DL~ Qv vt (13)

This equation is analogous to the mass conservation Eq. (5) but
includes the source term (Y¢—Q)n, where (WE—Q) is the
concentration of oxygenated hemoglobin and # is the fractional
oxygen consumption rate.

Further refinements to the deoxygenation modeling could
easily be implemented in this framework. For example, experi-
ments by Vanzetta et al. (2005) are suggestive that deoxygenation
may be an active process rather than acting by passive diffusion
resulting from the gradient in oxygenation between vasculature
and tissue. An active diffusion process could be implemented in
this model by making # depend on neuronal activity.

6. Forces between blood and brain matrix and within the
blood

In order to describe the dilation of blood vessels due to blood
pressure the force balances within the blood and between blood
and brain tissue must be modeled. This section derives the force
balance condition. In the poroelastic literature (Wang, 2000),
force balance relationships are typically obtained by analyzing
momentum conservation and we follow this approach here.

We first review experimental understanding of the mechanical
properties of the skull contents. The skull contents include the
brain and cerebral spinal fluid (CSF), both of which are extremely
incompressible due to their high water content. In neurology, the
incompressibility of skull contents is known as the Monro-Kellie
Principle (Barash et al., 2009). It might naively be expected that
increasing cerebral blood volume would introduce enormous
pressures and stresses in the brain since relatively incompressible
tissue could not otherwise accommodate the increasing cerebral
blood volume. However, the incompressibility of skull contents is
likely not as significant a problem as it first appears since the

Monro-Kellie Principle also states there is some compliance
(predominantly via elasticity of some tissues surrounding the
spinal compartment) to accommodate small volume changes in
the skull contents. Consistent with this, there has been no
experimental observation of rises in internal pressures in normal
brain tissue due to neurally induced hemodynamics (e.g. Turner
and Thomas, 2006).

In the present model any hemodynamically induced increase
in pressure is accommodated via the brain tissue moving within
the CSF to redistribute any stresses. The redistribution of stresses
via pressure coupling between brain tissue and CSF is likely to be
very efficient due to similar incompressibility of both media. Any
pressure waves in the CSF will be transmitted away at the speed
of sound (=~ 1500 ms~') to where small volume changes (e.g., due
to net expansion of brain tissue whose blood content has
increased) can be accommodated in the surrounds of the spinal
tissue. The brain tissue also has a low shear modulus (due to its
high water content) so shear stresses are rapidly accommodated.
As the present model is 2D we do not explicitly model the
mechanical boundary between brain tissue and CSF, and instead
assume that stresses are accommodated via the above mechan-
ism. Thus the model presented here transmits forces via pressure
only and is a so called uncoupled poroelastic model (Bear, 1972),
in contrast with poroelastic models of other biological tissues
described in Fung (1993) where significant stresses are trans-
mitted through solid tissues.

As described above, the model is assumed an uncoupled
poroelastic model so that it is unnecessary to introduce a stress
tensor to describe the bulk brain matrix. In this case the blood
acceleration ov/ét is proportional to the sum of the blood pressure
gradient and a viscous resistance term; i.e.,

ov
Prae =—<C1VP+ %V), (14)

where p is the dynamic viscosity of blood, ¢ is the tissue porosity
and x is the permeability of the tissue. Eq. (14) is known as a
momentum evolution equation (Wang, 2000). Eq. (14) is derived
from the Navier-Stokes equation by assuming a viscous resistance
term analogous to the one that yields Darcy’s Law (Darcy, 1856;
Bear, 1972). Further insight into Eq. (14) can be gained by
comparison of this equation with unsteady Poiseuille flow which
was originally derived as an approximation of blood flow in a
single vessel (Poiseuille, 1846; Acheson, 1990; Bear, 1972). Eq.
(14) has the same functional form as aggregated (over many
vessels) unsteady Poiseuille flows and thus can be interpreted as a
momentum evolution equation describing an aggregate of blood
vessels.

In addition to a momentum evolution equation, modeling force
balance requires a relationship between pore volume and blood
pressure—a constituent equation (Wang, 2000). The simplest
possible constituent equation is the linear or Hookean elastic
type where pore pressure and fluid volume are linearly related.
However, for hemodynamic modeling a more complex constitu-
ent relationship is required, with

P=c, &P, (15)

where f# <1 is termed the hyperelasticity coefficient (=1 is the
Hookean case) and c; is a proportionality constant. A constituent
relationship is termed hyperelastic if doubling the pore pressure
causes more than a doubling in fluid volume (Fung, 1993).
Although in situ verification is very difficult, ex situ measures of
vessels demonstrate that larger blood vessels, especially veins, are
hyperelastic (Fung, 1993). Such measures may overestimate
in vivo hyperelasticity as they neglect the opposing effects of
the tissue around the vessels (Fung, 1993), although in brain
tissue we argue that these effects are small. In our model we
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follow the traditional convention of measuring blood pressure
relative to atmospheric pressure.

We note that our assumptions on stresses confine our force
balance modeling to cases where intracranial pressure is not
already elevated or cerebrospinal compliance is not compromised.
For example, the administration of halothane anesthetic has been
known to induce hemodynamic changes in CBF sufficient to cause
rises in intracranial pressure outside clinical guidelines. This has
been an issue when considering halothane as anesthetic for
patients where cerebrospinal compliance may be limited (Barash
et al., 2009).

In Section 9 we show that f=1/a where o is termed Grubb’s
constant (Grubb et al., 1974). Mandeville et al. (1999) recognized
that for some MRI purposes a time dependence of « can also be
important, yielding “delayed compliance”. Delayed compliance is
the property wherein, after a sudden pressure increase, a vessel
continues to expand for some time after the pressure leveled off,
due to relaxation of the vessel wall structure. For simplicity, we do
not incorporate delayed compliance in the present work, although
it could be included by dividing ¢ in Eq. (15) by a time dependent
compliance parameter in a manner analogous to Kong et al.
(2004).

7. BOLD signal equation

The BOLD signal is related to deoxyhemoglobin content and
blood volume via an equation that we term the BOLD signal
equation. Recently Stephan et al. (2007) derived a BOLD signal
equation for Balloon models which had superior performance to
other BOLD signal equations on their comparison data. In the
present notation this relation is

y=Vo {kl (1—%) +ko (1—QQP£¥O>+I<3 (1-/}}3{))}, (16)

where Vj is the equilibrium fractional blood volume content (i.e.,
the equilibrium value of V4V, in the notation of Section 4), Qo is
the equilibrium deoxyhemoglobin concentration, £/p;Vo is the
dimensionless normalized blood volume (i.e., V{Vy in the
notation of Section 4), ky,ko,ks are the signal equation coefficients
derived by Obata et al. (2004) whose estimation in the context of
dynamic causal modelling was analyzed by Stephan et al. (2007).

8. Boundary conditions

To solve the set of hemodynamic equations derived in Sections
3-6 in real systems, appropriate boundary conditions must be
specified, prescribing how blood enters and leaves the tissue.
Separate inflow and outflow conditions are thus described in this
section.

8.1. Inflow boundary condition

The neuronal signal Eq. (1) describes the scalar input flow
modulation and this must be matched to the blood flow velocity
field v at the boundary. As described in Section 1, when viewed
from outside the cortical sheet the inflow arteries are well
separated from one another and enter approximately perpendi-
cular to the cortical sheet. Fig. 5 shows the assumed geometry of
inflow region; i.e., we assume each inflow region has a cylindrical
boundary with the cortical tissue and that blood flow is axially
symmetric out of each inflow region.

inflow F l

Inflow

- region

C_Orncal where
thlckLness regflx?;{ion vasculature

occurs

represented by a porous
medium

Fig. 5. Schematic showing blood inflow zone, a magnification of the boxed area in
Fig. 1. Total blood inflow F into the cortex is shown. The approximately cylindrical
blood inflow region forms the boundary to the poroelastic model. The geometric
relationship between F, and v the blood velocity at the boundary, can be seen. The
radius of the cylindrical inflow region is rip.

The local rate of blood volume inflow is given by

dvy

a4 =F a7)
where 1, is the radius of the inflow region, as shown in Fig. 5.
Since the inflow must be equal to the flux out of the curved
surface of the cylinder A;, we have

/.v~dA=F. (18)
Ja,

Assuming axial symmetry yields an equation relating the flow F in
Eq. (1) to the blood flow velocity field v; i.e.,

1 .
v=F—r, 19
ZTmL ( )
where F is a unit radial vector pointing outwards that spreads the
flow from the center of the inflow cylinder.

An alternative to specifying inflow via the above boundary
condition is to specify inflow within an inflow region via the mass
conservation Eq. (5). The mass conservation equation with source
terms added is
& \Y% FH,,(r)F 20
2= Pr - V+FHy, (nr, (20)
where the second term on the right hand side represents inflow
that is spread the flow over the inflow region and where H;(r) is
defined by

1
Hpy(r)= el 21
0

for r < rg, with H; (r) =0 for r > ro.
8.2. Outflow boundary condition

The outflow condition incorporates the physical process in
which blood outflow occurs due to the higher blood pressure
pushing blood into vessels downstream. Thus in our model the
speed of blood outflow is proportional to the pressure difference
between the outflow region and the ascending vein, and is
assumed to be in a direction normal to the boundary of the
outflow region. Hence,

Vout = C3 (P_PV) (22)
~ 3P, 23)

where c; is the proportionality constant and where Eq. (23)
implicitly assumes that the blood pressure in the ascending vein
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Py can be neglected. As noted in Section 6, the zero reference point
of pressure is atmospheric pressure. The neglect of Py is justified
by considering Lipowsky (2005) who provided experimental
measure of pressure in rat cerebral microvasculature that showed
a fourfold difference between arteriole and venule blood pressure.
A similar pressure difference in human cerebral microvasculature
would justify neglecting Py relative to P in obtaining (23) from
(22).

In the outflow region the blood flow is partially obstructed. We
now demonstrate that the boundary condition (23) can be
expressed in a form that shows it describes a partially obstructive
barrier to the fluid and thus acts to inflate the vessels with blood.
Near an output boundary where we define x along the normal to
the outflow boundary the mass conservation Eq. (5) can be
expressed as

o _ OVout

i Pr X (24)
Using the outflow condition (23) yields

a¢ opP

E ——C3pf&. (25)

Applying the constituent relation (15) then yields
o _ o
= —C3C2pf§v (26)

where c; is the proportionality constant in Eq. (15). Finally by
approximating the right hand side of Eq. (26) to first order in &
near the boundary, we find

C3C2.0f/356F1 % + % =0, (27)
where ¢ is the equilibrium value of £. The boundary condition
(27) mathematically describes a partially obstructing boundary
(Higdon, 1986) which impedes the outflow of blood from the
cortical tissue. Such an obstruction of blood outflow will lead to
inflation of the cortical vasculature as inflow of blood will exceed
outflow until the pressure rises in the cortical vasculature
sufficiently to establish a balance. Thus our model predicts
inflation of the cortical vasculature, the basis of Balloon model
approximations. It should be noted the present outflow condition
is slightly different from the corresponding Balloon model outflow
condition: here outflow is dictated by the pressure near the
outflow point, whereas in the Balloon model it is the pressure in
the balloon (i.e., an average pressure over a region of brain) that
dictates the outflow. We discuss this point further in the next
section where we show they are equivalent under certain
conditions.

Further insight into the behavior at the boundary can be
established by comparing with a mathematically equivalent but
physically quite distinct example of this type of boundary
condition. Higdon (1986) considered optical reflection and
showed that in two dimensions a perfectly absorbing boundary
condition for an optical wave ¢ propagating with speed v at an
angle o to the normal to a right boundary is given by

o | &
veosa — + Fria 0. (28)
Waves propagating with angles different from « at a boundary
condition (28) are partially reflected (the hemodynamic analog is
partial obstruction of outflow) and the extent of reflection of the
wave at the boundary depends only on cosa. The mathematical
equivalence with our model can now be established. For our
boundary condition (27), the disturbance in & propagates normal
to the outflow boundary. Comparison of (27) and (28) shows that
by analogy to the optical case, & is partially obstructed at the
boundary. The extent of obstruction depends only on the product

c3czpf[3g“g" (cosa in the optical case). Obstruction will be perfect
in the physiologically unrealistic case Cgczpfﬁg’g’l — 0, implying
that either c; »0 or c3 —»0. Note that c; »0 corresponds to the
unphysical case of perfectly rigid brain tissue and c3 —0 to brain
tissue without outflow vessels.

9. Poroelastic temporal dynamics and the Balloon model as a
limiting case

In this section we demonstrate that our spatiotemporal model
reproduces a widely used Balloon model in an appropriate limit.
By showing this correspondence we clarify the conditions for
validity of this Balloon model (and thus of other similar ones, at
least approximately), and also clarify implicit assumptions under-
lying such models. Our demonstration of the correspondence
between the present model and a Balloon model immediately
implies that our model can at least reproduce all experimentally
verified successes of this Balloon model, including the major
temporal characteristics of observed hemodynamic responses.

The specific Balloon model which we demonstrate to be
reproduced by our model in the appropriate limit is the Friston
et al. (2003) model (hereafter simply referred to as the Balloon
model), whose temporal properties have previously been analy-
tically investigated in detail (e.g., Robinson et al., 2006). A similar
approach would clarify the relationships of our spatiotemporal
model to other Balloon models.

In order to show that our model reproduces the Balloon model,
the following simplifying assumptions must be made, and the
following limits taken: (i) The BOLD response is averaged over the
entire voxel and each voxel is independent and fixed in size. (ii)
One blood inflow and one blood outflow point exist for each voxel.
(iii) The vasculature can be unrolled into a linear tube without
disturbing the predicted hemodynamic response within a voxel.
(iv) The Balloon model neuronal activity zg (called z by Friston
et al,, 2003) is the total neuronal activity in the voxel. (v) The
characteristic time for neuronal flow modulation is longer than
the blood transit time through the voxel. Fig. 6 shows a schematic
representation of the vasculature, as approximated in the Balloon
model.

In the following subsections we show that the present model
reproduces the Balloon model in the appropriate limit. Our model
equations do not have a one to one correspondence with those of
the Friston et al. (2003) model; rather, we show that the Balloon
model is reproduced by taking appropriate limits and performing
changes of variables into the notation of Friston et al. (2003). The
state variables of the Balloon model are normalized total or
average quantities for a voxel and are suffixed B for Balloon below
to clearly distinguish them from the dimensional variables of the
present model. In the following subsections the volume element

inflow Fiy outflow Foyt

cortical
«— tissue
ballooning )
vasculature i >
.7 T voxel
boundary

Fig. 6. Schematic of the balloon within a voxel assumed in balloon models. The
major structural features are shown including blood inflow, CBV content within
the balloon, and blood outflow. The vasculature is assumed to be able to be
unrolled into to a linear tube without disturbing the predicted hemodynamic
response. The balloon is approximated as a single unit to allow blood within it is
be approximated as well mixed.
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under consideration in our model will be the voxel, in accord with
the Balloon model assumption (i) above.

9.1. Neuronal signal

Two equations of the Friston et al. (2003) model describe
neuronal signalling and can be reproduced from the neuronal Eq.
(1). Friston et al. (2003) defined Fgz to be a normalized blood
volume inflow

Fy =F/F, (29)

where Fy is the equilibrium flow. Furthermore they defined sg

implicitly via

dFp(t)
dt

Substituting both these relations into Eq. (1) and dividing by Fy
yields

=sp(b). (30)

dss +KSp+7(Fg—1) = l/ h(z,xr)dr, (€3]
dt Fo

where the integral on the right hand side sums neuronal activity
in the voxel. The Balloon model activity zp of Friston et al. (2003)
is the total activity within a voxel divided by Fy,

Zg = Flo/ h(z,r)dr. (32)

Egs. (31) and (32) then yield

ds
d_tB =zg—KSp—Y(Fg—1). 33)
Egs. (30) and (33) are exactly the first two Balloon model

equations of Friston et al. (2003).

9.2. Blood volume evolution

The Balloon model contains an equation governing the
evolution of blood volume on a voxel. We now show that this is
reproduced by the present model, in the appropriate limit, by
combining the mass conservation Eq. (4), the constituent Eq. (15),
and the output boundary condition (23).

At the output boundary, the outflow is dependent on the
vascular pressure given by Eq. (23). Using the constituent relation
(15) the blood outflow is then given by

Fout = Cs / c,¢PdA, (34)
outflow

where Fo,; is the integral over the outflow surface. Now
considering mass conservation and applying Gauss’s theorem to
Eq. (5) over the entire vascular volume V, within the voxel yields

S
/v at We==J, Py A 35)

where V, is the voxel under consideration. Interchanging the
order of integration and differentiation on the left hand side of
(35) then yields

Vi, / v-dA, (36)
surface

Prae =

where Vris the blood volume in the voxel. Splitting the right hand
side surface integral into inflowing and outflowing flux zones
then yields

dv;

dt = Fin*Fouty (37)

where Fj, and F,; are the total blood volume inflow and outflow,
respectively. Substituting Eq. (34) into Eq. (37) then gives

dv
L =Fn—cacs / & da, (38)
Joutflow

where 1 is the outward pointing normal vector to the surface A.
Friston et al. (2003) defined the Balloon model state variable vg to
be the normalized volume

Vg = Vf/V(), (39)

where v is the equilibrium cerebral blood volume in the voxel
and inflow to be given as given by Eq. (29). The hemodynamic
transit time

= vo/Fo, (40)

is the characteristic time taken for a voxel to refill. Substituting Fj
into Eq. (38) and dividing by Fy yields

r—:F——/ b da. 41
dt B outﬂowé ( )

The second term on the right hand side can be expressed in a
normalized form by noting that at equilibrium Eq. (41) yields the
following relation between steady state parameters:

=2
FO =0 C3€0Aout| (42)

where &, is the equilibrium blood mass content per unit volume
averaged over the outflow area and A, is the total area of the
ouflow surface. Thus Eq. (41) can be expressed as

=B

S

_/j ’
<o

dl/B _

Tar =

(43)

where € is the blood mass content per unit volume averaged over
the outflow area.

We now consider the second term on the right hand side
which is the normalized outflow from the voxel. In our case the
term is proportional to the normalized & averaged over the
outflow area. In the Balloon Model the outflow term is propor-
tional to vy/*. We next show the two are the same in the
appropriate limit.

As mentioned earlier f has not been measured in situ, none-
theless we may identify =1/a linking the small scale mechan-
ical properties of vasculature described by  with the definition of
o measured and derived by Grubb et al. (1974) from the steady
state relation between flow and volume. Experimentally f is
known to satisfy 1< <5 (Fung, 1993) and o~ 0.32 (Friston
et al, 2003) so that this identification is consistent with
experimental measures (o~ 0.32 corresponds to f§~3.1). This
identification makes explicit the connections between micro-
scopic mechanical properties and macroscopic properties which
were implicit in work such as that of Grubb et al. (1974) and
Mandeville et al. (1999).

Naively it might be assumed that, since pressure would be
uniform inside the balloon, the term in Eq. (38) would be
proportional v;/“ and in the Balloon limit the equations would
correspond directly. Unfortunately, this is inadequate since it is
generally not the case that our model has uniform pressure within
the vascular volume. Hence, for the vasculature to reproduce
balloon behavior, the neuronal flow modulation characteristic
time must be longer than the blood transit time so that
modulations in ¢ are slowly varying; experimental measures by
Buxton et al. (1998) suggest it is a factor of ~ 2 longer. In this
case, the vasculature will tend to inflate approximately as a single
unit without fine spatial structure in & thus ensuring the
normalized " (with average evaluated over the outflow surface)

is proportional to Vé/“. Thus we may identify the normalized
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outflow as
Jout OCV;;/OCY (44)

so the latter right hand side term of Eq. (38) will be proportional
to v!/%, and the volume relation given by

dvg 1
i =Fg—vy/*, (45)

is reproduced.
9.3. Hemoglobin dynamics

The deoxyhemoglobin equation of the Balloon model is
reproduced by the present model in the appropriate limit which
we now show. The deoxyhemoglobin equation of the Balloon
model was adopted directly from the Buxton and Frank (1997)
model. Before proceeding, we note that in our model conversion
of oHB to dHB is proportional to oHB concentration, similarly to
Buxton and Frank (1997), except that they spatially aggregated its
effects by integrating along blood vessels. Nonetheless the two
models differ in an essential way: in the present model the BOLD
signal arises from dHB in the single vascular compartment
(i.e., from both capillaries and veins), while in the Balloon model
it is assumed that the BOLD signal arises only from the venous
balloon. In order to reduce the present model to the Balloon
model we will further impose the Balloon model assumptions that
all deoxygenation occurs in the capillary bed whence the blood
flows into the venous balloon where BOLD signal arises.

The rate of change of the Q in a voxel can be found by
integrating Eq. (13) over the interior vascular volume V, and
applying Gauss’s theorem, which yields
[ Zave=-[ av-an+ [ we-anav., (46)

vy Jov, vy
which can be simplified by evaluating the first integral and
spitting the second integral into averaged flows in and out of the
voxel, to yield

d
d% = QinFin*QoutFout +/Vv (lﬂfo)ﬂ dvev (47)

where q is the deoxyhemoglobin content within the voxel
(whereas upper case Q s denote concentrations). The first and
third terms on the right hand are the inflow of Q and consumption
of Q within the voxel. In order to assume all deoxygenation occurs
in the capillary bed we must determine an expression for the dHB
content after the blood exits the capillary bed. For a capillary bed
with input flow F and no deoxygenated hemoglobin at the inflow
point, Buxton and Frank (1997) showed that the deoxygenated
hemoglobin flux leaving the capillary bed is given by

FQ = FC4E(F3,p), (48)

where C, is the arterial oxygen concentration and E(Fg,p) is
defined by them as the net extraction of oxygen (i.e., the fraction
of oxygen extracted after the blood passes through the capillary
bed). The first and third right hand side terms of Eq. (47) may be
replaced by the right hand side of Eq. (48) and, by further
adopting the Buxton and Frank (1997) approximation of a well
mixed venous balloon, we obtain

dq

dr = FCAE(Fp, p)~QoutFout. (49)

Buxton and Frank (1997) showed that C4 can be expressed in
terms of the steady state parameters as

Ca=4qo/(Vopo), (50)

where qq is the equilibrium deoxyhemoglobin content, vg the
equilibrium blood volume in the voxel and p, is the equilibrium

oxygen extraction fraction (i.e., the equilibrium fraction of oxygen
extracted after the blood passes through the capillary bed). Thus
Eq. (49) can be expressed as

d

at = Frope B0~ QouFous 51)
Buxton et al. (1998) assumed that the balloon was well mixed so
that the outflowing deoxyhemoglobin concentration equalled the
average concentration i.e. the total hemoglobin content of the
voxel dividing by the blood volume within the voxel:

Qout =q/(VoVa). (52)

Friston et al. (2003) expressed their results in terms of a
normalized deoxyhemoglobin content of the voxel

ds=4/qo- (53)

Expressing Eq. (51) in terms of g, Fp, and vg, and applying Eq. (52)
for the outflowing Q yields

dqg _ qo dods
QOW —FOFBT%E(FB:P)—WFQ&U& (54)
whence using Eq. (40) for 7 and Eq. (44) for fo, yields
dqs _ FsE(Fs.p) qsvg”
[ ©

which is the final Balloon model equation of Friston et al. (2003).

10. Summary and discussion

We have developed a spatiotemporal poroelastic hemody-
namic model for use in BOLD signal analysis and fMRI, to establish
a quantitative physiologically based foundation for understanding
hemodynamic responses, making new predictions for comparison
with experiment, and for calculating quantities such as the
hemodynamic response function and improved priors for statis-
tical analyses (e.g., in dynamic causal modelling).

The main results are:

(a) The spatiotemporal hemodynamic model developed incorpo-
rates the physical principles of mass conservation, force
balance, total hemoglobin conservation, and neuronal flow
regulation. The main governing equations are Egs. (1), (5),
(13) and (14). Together with Eqs. (15) and (16) these
constitute a closed set of hemodynamic equations that will
enable the hemodynamic response to given neural activity to
be obtained by applying standard methods for solving fluid
dynamics equations of this broad class.

(b) The present model gives a description of hemodynamic
response that is independent of instrumental features such
as voxel size. Since voxel sizes are decreasing with advances
in technology, hemodynamic coupling between voxels is
becoming a significant issue. Hence, our hemodynamic
theory, which is independent of measurement apparatus,
provides an essential foundation for understanding observed
spatial hemodynamic responses. Further our spatiotemporal
model can describe the coupling between adjacent voxels and
can thus provide mutual constraints on their BOLD signals for
use in fMRI.

(c) The model predicts cortical vessel inflation in regions where
neuronal activity increases. This occurs due to an increase in
blood content that cannot exit from the cortical vasculature at
arate equal to its inflow. In the present model this arises from
the fact that the outflow rate of blood is proportional to the
blood pressure difference between capillaries and venules,
and ascending veins, leading to a partially obstructing
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boundary condition. Thus the central approximation of
Balloon models (i.e. the ballooning of the vasculature) is
predicted and elucidated as a consequence of the physiolo-
gical properties incorporated in the present model.

(d) Our model directly includes both the spatial and temporal
aspects of BOLD, in contrast to prior Balloon models, which
described only temporal aspects of the BOLD response.
Further, the poroelastic model reproduces the Friston et al.
(2003) Balloon model in the appropriate limit.

(e) The poroelastic model clarifies many of the assumptions of
Balloon models and thus quantifies the regimes of validity of
Balloon models. The assumptions which are required to
reproduce a Balloon model from the present model are (see
Section 9 for more details): (i) The BOLD response is averaged
over the entire voxel and each voxel is independent and fixed
in size. (ii) One blood inflow and one blood outflow point exist
for each voxel. (iii) The vasculature can be unrolled into a
linear tube without disturbing the predicted hemodynamic
response within a voxel. (iv) The Balloon model neuronal
activity zg (called z by Friston et al., 2003) is the total neuronal
activity in the voxel. (v) The characteristic time for neuronal
flow modulation is longer than the blood transit time through
the voxel. Assumptions (i)-(iv) are expressed or strongly
implied in the existing literature on Balloon models, but we
have not found any discussion of (v) in the literature.
However in relation to (v), we note most studies suggest
there is an upper bound of about 2 s on the transit time. Given
the prevalence of slow oscillations (periods > 105s) in resting
state hemodynamics it is likely that the characteristic time for
neuronal flow modulation is longer than blood transit time,
under physiological conditions. Balloon models have been
successful in describing hemodynamic response when voxel
sizes are moderately large. In order to model the spatial
aspects of BOLD these restrictive assumptions must be
relaxed when voxel sizes are sufficiently small that voxels
become interdependent.

(f) The present model reproduces the Friston et al. (2003 ) Balloon
model as a limiting case. Hence it can immediately reproduce
at least the range of phenomena explained by that earlier
model, including the main features of the temporal dynamics
of BOLD.

In summary, the model developed here is closely based on
known physiological and anatomical properties of cortical tissue
and vasculature and is expressed in terms of blood velocities,
forces, and elastic properties. Hence, it clarifies how relations such
as the Grubb relation (44) relate to assumptions about the
underlying physiological properties of the system. Experimental
literature describing cerebral blood flow and volume tends to
relate these quantities in an averaged sense, but rarely are these
described in terms of tissue properties. As spatial properties of
BOLD response are investigated in increasing detail in the future,
measures of CBF and CBV may provide insights into mechanisms
and structures, especially when combined with interpretations
via modelling. Further, different measurement techniques average
CBV and CBF in different ways and the model can help us
understand averaging implicit in observations, e.g., by imple-
menting equivalent averaging in the model and comparing these
results with observations.

Overall, the present model thus provides a basis for further
analysis, applications, and for making new predictions for
comparison with experiment. For example it can be coupled to
neural activity to allow the derivation of a spatiotemporal HRF.
Such an HRF and its properties will be published in future work,
along with comparison with experimental high spatial resolution
BOLD measurements. Since spatial and temporal responses are

intimately connected, the model will also provide further
constraints and priors for empirical inverse modeling of BOLD
responses so that signal to noise ratios can be improved in high
spatial resolution fMRI. The present model could also be extended
to explicitly include a third spatial dimension (cortical depth and
layering) and refinements such as delayed compliance and
multiple compartments.
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