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Abstract

In food webs, the degree of intervality of consumers’ diets is an indicator of the number of dimensions that are necessary to
determine the niche of a species. Previous studies modeling food-web structure have shown that real networks are compatible with
a high degree of diet contiguity. However, current models are also compatible with the opposite, namely that species’ diets have
relatively low contiguity. This is particularly true when one takes species’ body size as a proxy for niche value, in which case the
indeterminacy of diet contiguities provided by current models can be large. We propose a model that enables us to narrow down
the range of possible values of diet contiguity. According to this model, we find that diet contiguity not only can be high, but must
be high when species are ranked in ascending order of body size.

Keywords: Diet contiguity, ecological networks, food-web structure, niche dimension, species size

1. Introduction

Food webs are networks that describe trophic (consumer-
resource) interactions in communities (Cohen et al., 1990), and
regularities in their structural properties are among the most
prevalent in ecosystems (Camacho et al., 2002; Dunne et al.,
2002; Cattin et al., 2004; Camacho and Arenas, 2005; Stouffer
et al., 2005; Pascual and Dunne, 2006; Allesina et al., 2008).
The existence of systematic patterns in food webs of very dif-
ferent origin and nature has encouraged researchers to propose
models for their structure, with the aim of reproducing the ob-
served patterns from simple food web assembly rules (Cohen
and Newman, 1985; Williams and Martinez, 2000; Cattin et al.,
2004; Stouffer et al., 2006; Allesina et al., 2008; Capitan et al.,
2009; Capitan and Cuesta, 2011; Capitan et al., 2011). The de-
sign and evaluation of theoretical models for food-web structure
is crucial to understand the persistence of ecological commu-
nities and their fragility against external perturbations (Stouffer
et al., 2008; Capitan and Cuesta, 2010; Stouffer and Bascompte,
2011; Stouffer et al., 2012).

Theoretical models of food webs often rely on the concept
of ecological niche. A species’ niche was initially conceived
as the set of relevant traits that determine the trophic position
of a species in the network of trophic interactions (Hutchinson,
1957). The question of how many “niche dimensions” are rel-
evant to represent species in their communities has given rise
to a long debate in ecology (Cohen, 1977). It has been argued
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(José A. Capitán), alexandre.arenas@urv.cat (Alex Arenas),
roger.guimera@urv.cat (Roger Guimerà)

(Stouffer et al., 2006) that the structure of empirical food webs
can be fairly well explained reducing the number of traits to
simply one. If a single trait were enough to characterize the
network of feeding interactions, species could be ordered in a
way that each consumer had a contiguous diet, that is, each
species would prey upon a set of consecutive resources. Hence
consumer’s diets could be represented as intervals in a one-
dimensional niche space. A food web in which all consumers’
diets form continuous intervals along a single niche dimension
is known as a perfectly interval food web. Non-interval webs,
however, are networks such that no species ordering is possi-
ble for consumers’ diets to be perfectly contiguous. The quasi-
interval nature of real food webs has inspired the majority of
recent models for food-web structure (Williams and Martinez,
2000; Stouffer et al., 2005; Allesina et al., 2008), but some re-
searchers have pointed out that real networks are not perfectly
interval and that models that generate perfectly interval food
webs are therefore inappropriate (Cattin et al., 2004). Stouffer
et al. (2006) solved the puzzle by demonstrating quantitatively
that a small degree of diet non-contiguity is enough to generate
networks whose intervality is compatible with that of empiri-
cal food webs. The small deviation from complete intervality
suggests that a single trait or a small set of them are enough to
capture the structure of feeding interactions and species’ niches.
Other studies have proven recently that the number of niche di-
mensions in food webs is low (Eklof et al., 2013) —see, how-
ever, the work by Rossberg et al. (2010) regarding the dimen-
sionality of the niche space.

Several candidates for the trait corresponding to the niche
dimension were proposed in the past, most prominently body
size (Lawton and Warren, 1988). Based on this correspondence
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between an “abstract” niche variable and body size, other mod-
els for food-web structure have been proposed (Loeuille and
Loreau, 2005; Lewis and Law, 2007; Petchey et al., 2008). Re-
cent works (Guimerà et al., 2010; Stouffer et al., 2011; Zook
et al., 2011) have dealt with the long-standing question of what
determines the ecological niche of a species. These studies have
tried to find an empirical property or a species trait playing the
role of the niche dimension in models of food-web structure. As
potential proxies for niche value, these works have considered
species trophic position (measured in different ways) and body
size (usually measured as the average, among a certain sam-
ple of individuals, of body masses or body lengths). Species in
the network are ordered by the empirical property and the total
number of gaps in the resulting diets are compared afterwards
to a randomly ordered food web. All these works conclude that
species body size explains the degree of intervality and the con-
tiguity of diets in real food webs significantly better than ran-
dom orderings or ranking species according to other quantities
such as trophic positions.

In addition, species’ size contributes to explaining the meso-
scopic structure of ecological networks. Besides intervality,
other topological properties such as the distribution of preda-
tors and prey (Camacho et al., 2002; Stouffer et al., 2005), or
the presence of structural motifs in the network (Bascompte and
Melián, 2005; Camacho et al., 2007; Stouffer et al., 2007), are
relevant when it comes to characterizing the topology of natural
food webs. In particular, the existence of compartments (i.e.,
groups of species that interact among themselves with higher
probability than with species outside) has been put into corre-
spondence with body size (Guimerà et al., 2010). The analysis
of compartments in empirical ecological networks is best de-
scribed using body size as a proxy for niche value. In accor-
dance with previous related work, trophic level appears to be
a poor proxy for niche value (Jennings et al., 2002; Woodward
et al., 2005).

Here we show that, with existing food web models, one
cannot in principle conclude that species’ diets must be highly
contiguous —high diet contiguity is compatible with observed
data, but so is relatively low contiguity. This is particularly true
when one takes body size as a proxy for niche value. To min-
imize this problem we propose a model that extends the gen-
eralized niche model (GNM) of Stouffer et al. (2006) by al-
lowing predation on a certain range of resources whose niches
are larger than the niche value of the consumer. The rationale
behind this choice is supported by empirical evidence show-
ing that consumer-resource body-size ratios in natural ecosys-
tems are often smaller than one, i.e., consumer size is very often
smaller than resource’s size (Brose et al., 2006; Petchey et al.,
2008). Our model describes several properties of real food webs
better than previous models and, more importantly, enables us
to narrow down the range of possible values of diet contiguity.
Therefore, we show that diet contiguity, not only can be high,
but must be high when species are ranked in ascending order of
body size.
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Figure 1: (A) Scheme of the EGNM. Consumer j is allowed to prey any species
i with ni ≤ m j = n j + p(1−n j). At p = 0 we recover the GNM, and at p = 1 any
species can be consumed by j. We first draw the range r j of contiguous prey
(black circles) for consumer j. Then we randomly choose ∆k j = (1 − c)r jS
prey (squares) in the interval [0,m j] according to the probability distribution
depicted in (B), for which potential prey with ni > n j are less likely to be
selected.

2. Materials and methods

2.1. The Generalized Niche Model
The analysis of food-web intervality conducted by Stouf-

fer et al. (2006) led them to generalize the niche model (NM)
by Williams and Martinez (2000). The resulting generalized
niche model (GNM) produces interaction networks with a cer-
tain number of gaps in consumer’s diets. GNM food webs are
generated as follows. Let S be the number of species in the
web. A niche value ni drawn from a uniform distribution in the
interval [0, 1] is assigned to each species. Part of the diet of
consumer j is chosen as the subset of species that lie in the
range r j = cxn j, where x is drawn from a beta-distribution
f (x) = β(1 − x)β−1 and β =

(
S 2/2L

)
− 1, with L being the

total number of trophic interactions (links) in the network. The
center c j of the range is chosen uniformly at random in the in-
terval [r j/2, n j], and the parameter c belongs to [0, 1]. The rest
of the diet consists of ∆k j = (1 − c) r jS species chosen at ran-
dom from those species i not yet consumed by j and whose
niche values obey ni ≤ n j.

The parameter c measures diet contiguity. For c = 1 one re-
covers the original perfectly interval NM with a one-dimensional
niche space, since any species i whose niche falls within the
range r j is consumed by j. In contrast, for c < 1 the diets of
predators do not form a continuous interval. In the limit c = 0
one recovers the generalized cascade model [GCM; Stouffer
et al. (2005)], since all prey i of consumer j are randomly cho-
sen among the species for which ni ≤ n j.

2.2. Extending the Generalized Niche Model
We propose an extension of the generalized niche model

(EGNM) that allows for a predator j to have some of its non-
contiguous prey with niche values larger than n j (upward con-
sumption). To this end we introduce a new parameter p in
the model that tunes the maximum niche value m j for the non-
contiguous prey of a consumer, so that species j can consume
from niches ni ≤ m j = n j + p(1 − n j) (for p = 0 we recover
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the GNM, and for p = 1 any species is susceptible to be preyed
upon). We call this parameter “probability of upward consump-
tion”. Our model proceeds as the GNM except for the random
choice of the ∆k j non-contiguous prey. If ni ≤ n j, any prey
i (among those not already consumed in the contiguous part
of the diet) can be selected with a uniform probability, as in
the GNM. For n j < ni ≤ m j, however, we choose a (linear)
decreasing probability to randomly select a prey (see Fig. 1).
Any other decreasing function leads to similar results. This as-
sumption reflects the fact that, indeed, for a small consumer, the
larger the resource the smaller the likelihood to interact with it.
The mathematical form of this distribution is

f (ni) =


ρ, if ni ∈ [0, n j]\[c j − r j/2, c j + r j/2],

ρ
(
1 − 1

p
ni−n j

1−n j

)
, if ni ∈ [n j, n j + p(1 − n j)],

0, otherwise.
(1)

Normalization imposes the condition
∑

ni
f (ni) = 1, where the

sum is restricted to niche values not contained in [c j− r j/2, c j +

r j/2] or [m j, 1], which determines the normalization coefficient
ρ. The random choice of species according to this discrete dis-
tribution continues until ∆k j prey are assigned to the predator.

An interesting point is that, strictly speaking, the GNM is
not compatible with some empirical food webs (Allesina et al.,
2008). This is due to the fact that some of the non-contiguous
prey observed in empirical food webs cannot be accounted for
when randomly-selected prey are restricted to have niche val-
ues smaller than the niche of the predator. Our EGNM model
permits random consumption upwards in the niche axis, and
therefore removes the constraint imposed on the niches values
of non-contiguous prey. At least in the p = 1 limit, and of-
ten much before that, our model is strictly compatible with any
empirical food web.

2.3. Diet contiguity estimation

Estimating diet contiguity in empirical food webs is involved
because niche values of species are unknown. To address this
difficulty we assume, initially, that the niche values used in
niche-based models of an empirical food web can be put into
direct correspondence with the body size values reported for
that network in the form of body mass or body length. As men-
tioned, this assumption is supported by recent work addressing
how body-size-ordered food webs compare to their random-
ordered counterparts (Stouffer et al., 2011; Zook et al., 2011),
as well as the analysis of compartments in empirical food webs
(Guimerà et al., 2010). See Appendix A for a list of the empir-
ical food webs used in this work and their main properties.

In particular, for each empirical food web, we order species
from smallest to largest body size, thus yielding the ordering
P = {s1, s2, . . . sS } where body sizes obey ws1 < ws2 < · · · <
wsS . The diet contiguity for such a permutation of species la-
bels can be measured by the total number of species belonging
to gaps in consumers’ diets (Stouffer et al., 2006),

Ge = G(P) =

S∑
i=1

γi∑
j=1

gi j, (2)

where γi stands for the number of gaps in the diet of species
i and gi j is the number of species present in the j-th gap. We
list in Appendix A the empirical number of gaps Ge yielded by
the body-size ordering for all the food webs with body-size data
available.

2.4. Validation metrics

To compare the performance of both models when trying
to reproduce the structure of real food webs, we have studied
12 statistical quantities plus the number of gaps in consumers’
diets. Most of them are the usual descriptors of food webs
(Williams and Martinez, 2000). Since our EGNM is in prin-
ciple biased toward linking consumers to species with larger
niche values, we have also focused in measures like the aver-
age number of loops, the average shortest path, or the average
trophic level, which somehow should reflect this potential bias.
The set of properties we have measured is:
1–3. Species types: the fraction T of top (species with no

predators), basal (B, species with no prey) and interme-
diate (I = 1 − B − T ) species (Cohen et al., 1990).

4–5. The standard deviations of generality (GenS D) and vul-
nerability (VulS D). Normalized generality (Γi) and vul-
nerability (Υi) of species i are defined as (Schoener, 1989)

Γi =
1
z

S∑
j=1

ai j, Υi =
1
z

S∑
j=1

a ji, (3)

where ai j stand for the entries of the network’s adjacency
matrix (ai j = 1 if species i preys upon species j and zero
otherwise). The normalization with the linkage density
z = L/S force mean Γi and Υi to equal unity, hence stan-
dard deviations can be compared across different webs.

6. Trophic similarity of a pair of species (si j) measures the
overlap of in- and out-going links in the web. It is the ra-
tio between the number of common predators and prey
and the total number of predators and prey (Martinez,
1991). For each web, the maximum similarity index of
species i is averaged over the network to obtain mean
maximum similarity,

MaxS m =
1
S

S∑
i=1

max
i, j

si j. (4)

7. Average trophic level (T L): the trophic level `i of species
i has been computed as

`i = 1 +
1
ai

S∑
j=1

ai j` j, (5)

where ai =
∑S

j=1 ai j is the number of prey in the diet of
species i (Levine, 1980). It equals 1 plus the weighted av-
erage of chain lengths from a species to a basal species,
the weights being equal to ai j/ai (i.e., each predator con-
sumes equally from all its prey). Note that this quantity is
inspired in the flow of energy from bottom to top occur-
ring in the food web. The trophic position of each species
is averaged across the web to yield the quantity T L.
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8–9. Standard deviation of `i averaged across the web (T LS D)
measures the degree of trophic specialization (Levine,
1980). Omnivory [Omniv, Polis (1991)] is the fraction of
species that prey on different trophic levels (i.e., that are
connected with basal species by food chains of different
lengths).

10. Another measure of trophic position is the mean shortest
path (S hort) from each species to a basal species (Williams
and Martinez, 2004).

11. The fraction of cannibals (self-consuming species, Cannib)
quantifies the number of loops of length 1.

12. The presence of non-trivial loops is measured by the av-
erage number of triangular loops (Loops). To calculate
it, we use a matrix (B) whose entries are bi j = ai j − aii

(i.e., the adjacency matrix without cannibalistic loops).
The number of loops of length 3 starting from species i
can be obtained as the i-th diagonal element of the third
power of B. We finally average this number across the
web.

2.5. Maximum-likelihood parameter estimation

Our validation metrics is formed by 13 statistical properties.
As shown below, the observed number of gaps is normally dis-
tributed. We have also checked that the rest of statistical quan-
tities follow Gaussian distributions when averaged over enough
model realizations. For both the GNM and the EGNM we esti-
mate model’s log-likelihood as

logL = −

k∑
i=1

logσi −
1
2

k∑
i=1

z2
i , (6)

where the sum extends to the k = 13 empirical properties Xi that
we have measured for each food web, and zi = (〈Xi〉−Xi,e)/σi is
the corresponding z-score, 〈Xi〉 and σ2

i being the model average
and variance of Xi, respectively, and Xi,e the observed value of
that property in empirical networks. Mean and variance will be
certain functions of model parameters, so the likelihood func-
tion will depend implicitly on model parameters —on c for the
GNM, or on (c, p) for the EGNM. Model parameters will be
estimated maximizing the log-likelihood function. Note that
Eq. (6) assumes that all the statistical properties are indepen-
dent, which is not necessarily true. For example, the fraction of
top, intermediate and bottom species are correlated since their
sum is equal to one. Ignoring one of these three variables, how-
ever, leads to comparable estimates. For the sake of simplic-
ity, we assume that correlations between different quantities are
weak and use Eq. (6) as model’s log-likelihood estimate.

Our maximum likelihood (ML) estimation procedure fo-
cuses of network properties of ecological interest. We have not
used the likelihood function for the GNM (Allesina et al., 2008)
and its counterpart for the EGNM because, in practice, due to
inevitable mismatches between statistical models and reality, a
likelihood approach could end up concentrating on features of
the data that are actually not biologically interesting. However,
a property-based approach (Kendall et al., 1999; Reuman et al.,
2006) focuses on statistical properties of ecological interest. In

our case, properties like the number of gaps in consumers’ di-
ets, or those properties that can be altered by permitting upward
consumption (such as Loops, S hort, T L, T LS D, Omniv, etc.),
are relevant for our purposes and have been taken into account
explicitly in our estimation of log-likelihood.

Model selection follows the Akaike Information Criterion
(AIC). For each model, we have calculated the index

AIC = 2n − 2 logLmax, (7)

given the ML parameter estimates, n being the number of pa-
rameters of the model. By choosing the model with minimum
AIC index we are minimizing the information loss among all
candidate models (Akaike , 1974).

3. Results

3.1. Diet contiguity confidence intervals
In their work, Stouffer et al. (2006) were interested in de-

termining the maximum amount of diet contiguity c compati-
ble with the number of gaps observed in empirical food webs.
Accordingly, they used the ordering of species that minimizes
Eq. (2) for each empirical food web and took the maximum
value of c compatible with empirical observations. However,
realizations of the GNM with different values of the diet con-
tiguity allow for the calculation of the full 95% confidence in-
tervals of c. To obtain the confidence intervals one calculates
the cumulative probability Pr(G ≤ Ge; c) to observe a number
of gaps G smaller than the empirical value Ge as a function of
prey contiguity c. Such probability can be easily calculated be-
cause we can not reject the null hypothesis that the number of
gaps is normally distributed (Fig. 2a). The intervals are indeed
quite broad for body-size orderings (Fig. 3, first panel).

Additionally, under the assumption that body size corre-
sponds to niche value, the empirical intervality is, in general,
smaller than the maximum possible (Zook et al., 2011), and the
confidence interval grows (Fig. 2). Compared to the GNM, our
EGNM introduces more gaps in consumers’ diets, both because
it allows for larger number of gaps and because, in general, gaps
are larger. This fact can be observed in Fig. 2b, and we discuss
its implications below.

We use a collection of food webs for which body-size data
are available. Reported size data refer either to average body
masses or average body lengths of individuals (Brose et al.,
2005), so we generically use the term ‘body size’ to encom-
pass both cases. For each food web we determine the empirical
number of diet gaps Ge derived from the body-size ordering
(see Appendix A for a list of values and details about these
orderings). Then we generate stochastic realizations of our
EGNM for different values of the probability p of upward con-
sumption, i.e., the parameter that determines to what extent a
species can have non-contiguous prey with niche values higher
than itself (p ∈ [0, 1]). For each p, averages over realizations
lead to the cumulative probability Pr(G ≤ Ge; c). Fig. 3 shows
an example of such histograms for the set of empirical values
(S , z and Ge) that correspond to the Benguela marine ecosystem
(Yodzis, 1998).
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Figure 2: Diet contiguity estimation for the Benguela food web. (A) Histogram
of the number of gaps [cf., Eq. (2)] obtained for the GNM (105 model real-
izations) at three different values of diet contiguity c. The hypothesis that G
is a normally distributed variable can not be rejected (continuous lines). The
average number of gaps observed at c = 0 (GCM, 130 gaps) and the empirical
number of gaps (body size ranking, Ge = 92) are marked with vertical lines.
(B) Histograms of the number of gaps obtained for a probability of upward
consumption p = 1 and three values of prey contiguity c (105 EGNM realiza-
tions). Species number S and linkage density z are chosen to match Benguela
values. Histograms do not depart from normal distributions (continuous lines)
in a significant manner. The largest number of gaps (252 at c = 0, marked as
RND) is far larger than the empirical number of gaps (Ge = 92, body-size or-
dering, marked as BS). The distribution for c = 0.88 (whose average matches
the empirical value) scarcely overlaps with its completely random counterpart
for c = 0 —compare with (A).

Increasing the probability of upward consumption leads to
narrower 95% confidence intervals for prey contiguity c be-
cause larger values of p imply the possibility of more and larger
gaps, so the small number of gaps observed in real networks
become compatible only with high diet contiguity (see Fig. 4).
The narrowing of the range of possible values for the diet conti-
guity c is important. Indeed, Stouffer et al. (2006) showed that
a small deviation from perfect contiguity c . 1 is enough to
account for the gaps observed in real food webs, but one may
argue that very low diet contiguity in the GNM is also com-
patible with the data. For example, at a 5% confidence level,
c = 0.289 is also compatible with the number of gaps observed
in Benguela (Fig. 3, panel p = 0). The GNM is therefore com-
patible both with high and low values of diet contiguity. In
contrast, when species are allowed to have non-contiguous prey
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Figure 3: Cumulative probability Pr(G ≤ Ge; c) as a function of c for several
values of the probability of upward consumption p (105 EGNM realizations; the
number of species S and linkage density z correspond to those of Benguela).
Since the number of gaps follows a normal distribution, its z-score Z =

Ge−〈G〉
σG

yields Pr(G ≤ Ge; c) = 1
2

[
1 + erf

(
z√
2

)]
, erf being the standard error function.

The 95% confidence interval of diet contiguity is shadowed as the region for
which Pr(G ≤ Ge; c) ≥ 0.05 and Pr(G ≥ Ge; c) ≥ 0.05 simultaneously. Dotted,
horizontal lines mark the 5%, 50%, and 95% confidence levels. The bottom,
right panel depicts the dependence between p and c at the 5% (circles), 50%
(squares) and 95% (triangles) confidence levels. Observe how the 95% confi-
dence interval (shadowed region of the last panel) narrows as p increases.

anywhere in the niche space (p = 1), c must be confined to the
interval (0.789, 0.920) for the same food web. Therefore, as-
suming that our EGNM at least as accurate as the GNM (we will
focus on this assumption in the model selection section), since
the confidence interval for diet contiguity narrows and moves
towards values closer to 1, there is evidence that not only diet
contiguity could be high, as the GNM model itself predicts, but
that it must be so.

3.2. Model selection and parameter estimates

ML parameter estimation has been performed by averag-
ing each statistical property over 5, 000 model realizations ex-
cept for Caribbean Reef, Caricaie Lakes (2, 000 realizations),
and Weddell (500 realizations), the largest food webs in the
dataset. We have measured the log-likelihood on a 101 × 101
grid of equally spaced pairs (c, p) ∈ [0, 1] × [0, 1]. ML param-
eter estimates are listed in Table 1. Moreover, Table 1 shows
the AIC-index difference between the EGNM and the GNM,
∆ = AIC − AIC0. If ∆ < 0, the EGNM is expected to perform
better than the GNM. Our model is selected in 13 out of 17 em-
pirical food webs, which means that the additional parameter
we introduce produces an information loss significantly smaller
than the GNM.
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Food web c p c0 log(L/L0) ∆ e−∆/2 Selected model
Benguela 0.90 0.92 0.85 0.72 0.56 0.76 GNM
Broadstone Stream 0.88 0.34 0.88 2.92 -3.84 0.15 EGNM
Caribbean Reef 0.94 0.72 0.94 36.6 -71.1 < 10−15 EGNM
Caribbean (Small) 0.75 0.98 0.82 56.2 -110.4 < 10−23 EGNM
Caricaie Lakes 0.90 0.98 0.91 133.6 -265.3 < 10−57 EGNM
Carpinteria 0.86 0.86 0.83 0.18 1.64 0.44 GNM
Coachella 0.84 0.12 0.85 0.71 0.58 0.75 GNM
EcoWEB41 0.52 0.95 0.90 22.6 -43.2 < 10−9 EGNM
EcoWEB60 0.67 0.79 0.81 7.95 -13.9 < 10−3 EGNM
Grassland 0.82 0.85 0.81 0.70 0.61 0.74 GNM
Mill Stream 0.91 0.06 0.92 3.42 -4.84 0.09 EGNM
Scotch Broom 0.90 0.48 0.92 4.24 -6.48 0.04 EGNM
Sierra Lakes 0.92 0.38 0.94 2.54 -3.08 0.21 EGNM
Skipwith Pond 0.85 0.07 0.88 4.95 -7.90 0.02 EGNM
Tuesday Lake 0.94 0.46 0.92 7.34 -12.7 < 10−2 EGNM
Weddell 0.43 0.35 0.55 122.0 -241.9 < 10−52 EGNM
Ythan 0.69 0.99 0.82 100.5 -198.9 < 10−43 EGNM

Table 1: Parameter estimates of ML optimization for the GNM (c0) and the EGNM (c, p). Differences between GNM and EGNM log-likelihoods (logL0 and logL,
respectively) are provided, as well as the difference ∆ = AIC − AIC0 of Akaike information coefficients. The relative likelihood e−∆/2 has been listed for each
empirical food web. When the GNM is selected, relative likelihoods have been marked in boldface.

Note that using the explicit body-size ordering moves di-
ets away from perfect intervality, which in turn disfavors the
proximity to 1 of our estimation of prey contiguity. Despite
this fact, the c-estimates listed in Table 1 are rather close to 1
in most cases. Therefore, the introduction of a new parameter
controlling upward interactions in the niche axis enables us to
narrow down the range of possible values of prey contiguity c
and provides further evidence that c must indeed be close to 1.

Once one of the models has been selected, the relative likeli-
hood e−∆/2 can be interpreted as the relative probability that the
other model minimizes the (estimated) information loss. We
list relative likelihoods in Table 1. Observe that the GNM is se-
lected in 4 cases, but even for those webs the relative likelihood
that the EGNM minimizes the information loss is never neg-
ligible —it is always larger than 0.44. Conversely, when our
model is chosen, the relative likelihood is smaller than 0.21,
being negligible in most cases.

ML parameter estimates for diet contiguity and probabil-
ity of upward consumption have been plotted together with the
95% confidence intervals for diet contiguity as a function of
the probability of upward consumption in Fig. 4. Except for
EcoWEB41, all the parameter estimates lie within the interval
determined for the corresponding value of p or are above —but
close to— the maximum diet contiguity compatible with the
data at a 95% confidence level.

Figure 5 summarizes the performance of the EGNM for
each statistical property separately. Using the ML estimated
parameters, we calculate the z-score of each quantity from 105

model realizations. The model that renders the z-score Zi clos-
est to zero will explain better property i. In terms of the per-
centage of properties that are better described, EGNM’s suc-
cess ratio equals 58% —out of a total of 221 possibilities (17
food webs evaluated against 13 properties), 128 were better ex-

plained by our EGNM.
We observe a tendency for EGNM to capture some prop-

erties better than the GNM, in particular the number of gaps
in predator’s diets and the fraction of cannibals, as well as the
quantities that measure species’ trophic position (T L, T LS D,
and S hort). Note that EGNM’s potential bias toward upward
consumption in the niche axis increases trophic-level values
and shortest-path lengths. Interestingly, this bias additionally
explains why the the standard deviation of generality (GenS D)
is better accounted for by the EGNM, since fluctuations in the
number of prey of each predator will be larger when p ≈ 1. On
the other hand, although properties like the fraction of loops and
omnivory are influenced by EGNM’s bias toward upward con-
sumption, they are reasonably well represented by our model.

4. Discussion

Food web intervality has long been studied as a proxy for
the structure of the niche space, which determines the structure
of food webs in ecosystems. However, it was only recently that
Stouffer et al. (2006) provided a way to quantify, not whether
a food web is interval or not, but to what extent the network
is interval. This quantification is challenging in two respects.
First, the quantification of diet contiguity depends on the model
one uses to generate null food webs. Second, to determine the
degree of intervality of a food web one needs to order species
according to their niche “values,” which are unknown a priori.

With regard to the first challenge, we argue that with ex-
isting models low diet contiguity is also compatible with the
degree of intervality observed in real food webs. Therefore, we
propose a model whose intervality, as defined in Stouffer et al.
(2006), is much more sensitive to the parameter that controls
diet contiguity. The situation is conceptually similar to trying to
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Figure 4: Diet contiguity 95% confidence intervals as a function of the prob-
ability of upward consumption p. Note that Caribbean (Small) and Weddell
Sea webs yield an large empirical number of gaps, hence for small p we can
not reject the hypothesis that these network structures can be generated with
a random model. Black squares correspond to the (p, c) pairs yielded by ML
estimation.

estimate the value of a hidden variable in a system —one should
always choose a proxy that is very sensitive to the value of the
hidden variable. Importantly, the proxy should not be very sen-
sitive to other variables, but only to the one we are interested
in. In the context of food webs, this means that we are con-
cerned with models whose intervality changes quickly with diet
contiguity while other network properties remain close to those
observed empirically. Our extension of the generalized niche
model fulfills these requirements —as we show in Appendix B,
when the intervality of model webs stops being compatible with
empirically observed values, other network properties are still
closer to their empirical values than for the GNM averages.

With regard to the second challenge, multiple works have
pointed out that body size is at least a reasonable proxy for
niche value, and certainly the best proxy we have been able to
find. Zook et al. (2011) have compared the degree of intervality
of empirical food webs when trophic positions are chosen as
proxy for niche values. Although they conclude that body size
can not completely explain observed patterns in food webs, it
outperforms the results when compared to trophic levels (mea-
sured in three different ways). Therefore, we argue that order-
ing species by body size should yield reasonably good estimates
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Figure 5: For each food web, we mark with a full, black box the statistical prop-
erties that are better represented for EGNM webs with a non-zero probability
of upward consumption. Blank boxes denote that the GNM captures better the
empirical property.

of diet contiguity. In practice, however, using body size broad-
ens the range of estimates of diet contiguity and biases their
value down. Even then, our more sensitive model enables us to
conclude that intervality must be high.

Our EGNM produces food webs that are consistent with
empirical data when body size is chosen as a proxy for niche
values. In particular, our model solves the inconsistency of the
GNM pointed out by Allesina et al. (2008), who found some
instances for which GNM-based webs could not reproduce the
observed maximum number of non-contiguous prey per preda-
tor. This drawback is inherent to the GNM, which restricts the
random assignment of non-contiguous prey downwards in the
niche axis. Our extension relaxes this constraint and permits
species orderings that are compatible with the interaction pat-
terns observed in empirical food webs.

Despite the acknowledged relevance of parasitic interac-
tions in food webs (Lafferty et al., 2006), we have focused in
this work on networks that are almost free of them. We have
treated as equivalent both predatory and parasitic interactions
when parasites or parasitoids are present in the data (for exam-
ple, in Scotch Broom and Grassland webs). Although parasite-
parasitoid interactions are weakly dependent on body size, it
could be relevant to carry out a similar study for more realistic
data that incorporates parasitism in greater proportions (Laf-
ferty et al., 2006).

The analysis performed by Stouffer et al. (2011) reveals to
what extent body size is a significant explanatory variable ac-
counting for a single niche dimension, and this degree of signif-
icance strongly depends on the evolutionary history of species.
It seems that other latent traits are also responsible for species’
roles in food webs. Importantly, it has been demonstrated that
closely related species, in terms of their phylogeny, exhibit sim-
ilar niches. The interplay between phylogenetic and ecological
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factors may be crucial in the determination of species’ niche
values distribution within a single trophic network (Rezende
et al., 2009). The incorporation of the empirical, probably het-
erogeneous distribution of species over the niche space to mech-
anistic models of food-web structure reveals itself as a key ques-
tion to address in the future.
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Appendix A. Dataset description

We use a collection of ecological networks for which body
size (in the form of averaged body masses or averaged body
lengths of sampled individuals) has been measured and reported.
Table A.1 lists, for each food web, the reference which con-
tains the network of (binary) interactions, the reference used
to compile body-size data, the number of species S of the food
web, the linkage density z, and the empirical number of gaps Ge

obtained when species are ranked in ascending order of body
sizes.

The correspondence between species identity and body size
was not unambiguous, i.e., for most of the webs there were two
or more species recorded to have the same body size. Note
that any ordering in each group of equivalent species is com-
patible with the ranking in ascending order of sizes. In most
of the cases we can enumerate all the possible permutations
of equivalent species. Therefore we choose the ordering that
minimizes the number of gaps among all the permutations of
these subsets. There were only two webs (Grassland and Wed-
dell Sea) for which the exhaustive enumeration of all possible
permutations of each degenerate subset was numerically out of
the reach. In those cases, we randomly sample the possible
orderings by transposing pairs of species within the same de-
generate subset, and choose the minimum number of gaps after
106 species transpositions. We have checked that the variabil-
ity introduced by this degeneracy do not change dramatically
the empirical number of gaps (i.e., we have calculated the max-
imum number of gaps compatible with the reported sizes and
turns out to be comparable with the minimum value).

Body sizes have been compiled using different sources (see
Table A.1). In some cases we used data provided as online sup-
porting material in several publications. That was the case of
Caribbean Reef (Bascompte et al., 2005), Tuesday Lake1 and

1Cohen et al. (2009) provided samples of Tuesday Lake performed in 1984
and 1986. Here we chose the 1986 sample.

Ythan Estuary (Cohen et al., 2009). Most of sizes were re-
trieved from the article by Brose et al. (2005), which consti-
tutes a compilation of consumer-resource interactions includ-
ing either average body mass or average body length for dif-
ferent consumer-resource pairs. Most of the interactions listed
in Brose et al. (2005) were extracted for previously published
food webs. In many cases, the food web reported by Brose et al.
(2005) does not coincide with the web reported in the original
article. For example, although Benguela is one of the food webs
provided by Brose et al. (2005), it has some missing links when
compared with the original reference (Yodzis, 1998). We have
used the database by Brose et al. (2005) to extract the connec-
tivity structure for Broadstone Stream, Caricaie Lakes,2 Grass-
land, Mill Stream, Scotch Broom, Sierra Lakes, Skipwith Pond,
and Weddell Sea, although the number of species and linkage
density slightly differed from those originally reported.

On the other hand, the text data file provided by Brose et al.
(2005) specifies the life stage of each species in each consumer-
resource interaction. We have ignored life stages because taking
them into account does not introduce any difference in the re-
sulting network, except for Broadstone Stream, Caricaie Lakes
and Skipwith Pond. For these three webs, life stage differences
exclusively appear for the same species acting either as con-
sumer (life stage is recorded as, say, adult) or resource (life
stage is recorded as juvenile, for instance). Therefore, if differ-
ent life stages are considered as different nodes –as in Petchey
et al. (2008)–, resource life stages will be always regarded as
basal species, which obviously introduces an artifact in the re-
sulting web. Moreover, although species can exhibit different
life stages, reported body sizes are exactly the same irrespec-
tive of the life stage. Therefore we have omitted life stage dif-
ferences when constructing the networks. In those three webs,
the differences introduced by ignoring life stages in the number
of species and linkage density are small. In particular, ignoring
life stage in Skipwith Pond yields a food web with the same taxa
as reported in the original reference (Warren, 1989).

We have observed two additional issues when processing
the data files to extract each food web:

1. Brose et al. (2005) report links for Scotch Broom that
form a disconnected graph. We have maintained the gi-
ant (weakly) connected component since empirical data
are to be compared with model realizations, which yield
connected networks. We have checked that the remaining
food webs form connected graphs.

2. We have debugged the text file provided by Brose et al.
(2005) because sometimes species names contained blank
spaces. Automatic text processing can mistakenly recog-
nize as different those taxa which appear simultaneously
with and without blank spaces.

2Brose et al. (2005) report data of 8 samplings of Caricaie Lakes in different
geographical locations. We chose the sample of a triennially mown vegetation
dominated by Orchio-Schoenetum nigricantis (Cattin Blandenier, 2004).
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Food web Adjacency matrix reference Body-size reference S z Ge

Benguela Yodzis (1998) Yodzis (1998) 29 7.0 92
Broadstone Stream Woodward et al. (2005) Brose et al. (2005) 28 5.6 67
Caribbean Reef Bascompte et al. (2005) Bascompte et al. (2005) 207 9.8 6,969
Caribbean (Small) Opitz (1996) Reide (unpublished) 50 11.1 606
Caricaie Lakes Cattin Blandenier (2004) Brose et al. (2005) 135 10.0 4,640
Carpinteria Lafferty et al. (2006) Lafferty et al. (2006) 72 3.3 705
Coachella Polis (1991) Reide (unpublished) 26 8.8 75
EcoWEB41 Cohen (1989) Jonsson (1998) 19 2.7 27
EcoWEB60 Cohen (1989) Jonsson (1998) 33 2.1 114
Grassland Dawah et al. (1995) Brose et al. (2005) 55 1.6 246
Mill Stream Ledger, Edwards, and Brose et al. (2005) 74 5.0 483

Woodward (unpublished)
Scotch Broom Memmott et al. (2000) Brose et al. (2005) 47 2.0 147
Sierra Lakes Harper-Smith et al. (2005) Brose et al. (2005) 32 6.0 36
Skipwith Pond Warren (1989) Brose et al. (2005) 34 7.6 135
Tuesday Lake Cohen et al. (2009) Cohen et al. (2009) 51 4.7 170
Weddell Jacob, Brey, and Brose et al. (2005) 440 4.2 53,088

Mintenbeck (unpublished)
Ythan Hall and Raffaelli (1991) Cohen et al. (2009) 92 4.5 1,594

Table A.1: Food webs (for which body size has been reported) and their properties: number of species S , linkage density z and empirical number of gaps Ge [see
Eq. (2) of the main text]. References for binary interaction matrices are provided, as well as the references that have been used to compile body sizes in each case.
Reported data correspond to species body length for Grassland, Mill Stream, Scotch Broom, Sierra Lakes, Skipwith Pond and Weddell Sea, and to species body mass
for the remaining webs.

Appendix B. Model performance at fixed confidence level
for intervality

To check that EGNM’s intervality changes quickly with diet
contiguity c while other statistical properties remain close to
their empirical values, we have determined the values of c at
a 5% confidence level, both for the EGNM and the GNM, for
all food webs in the collection, keeping fixed the probability of
upward predation estimated with maximum likelihood (see Ta-
ble 1 of the main text and recall that p = 0 for the GNM). At
that confidence level, EGNM and GNM are expected to perform
worse. Indeed, for these values of c (which have been listed in
Table A.2), the number of gaps obtained for model networks
start to be incompatible with empirical intervalities. We look at
the remaining statistical properties and compare the EGNM and
GNM values in order to determine which model yields quanti-
ties closer to the empirical values.

Results have been reported in Fig. B.1. We have averaged
up to 105 model realizations and obtained the corresponding
z-scores for all statistical properties except the number of gaps.
Black boxes mean that the EGNM z-score is closest to zero than
the GNM z-score, and white otherwise. We measure overall
model’s performance as the fraction of properties that EGNM
closely describes when compared to GNM. Success ratio is
equal to 61% in this case. This implies that our model is very
sensitive to the parameter that controls diet contiguity, in the
sense that the remaining statistical properties remain close to
the empirical values whereas intervality has changed abruptly,
far from being close to the empirically observed values.
Akaike, H. 1974. A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19:716–723.
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Figure B.1: Statistical descriptors for each food web in the dataset. Diet con-
tiguities in model webs correspond to a 5% confidence level in the number of
gaps. Success ratio is equal to 61%. Color code is the same as in Fig. 5 of the
main text.
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Food web c c0

Benguela 0.78 0.29
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Caricaie Lakes 0.74 0.16
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Scotch Broom 0.71 0.69
Sierra Lakes 0.91 0.90
Skipwith Pond 0.55 0.50
Tuesday Lake 0.86 0.85
Weddell 0.00 0.00
Ythan 0.63 0.15

Table A.2: Values of model parameter c (diet contiguity) for the EGNM and the GNM (c0) at a 5% confidence level in the number of gaps. At that level, empirical
values of the number of gaps stop being compatible with model averages. The probability of upward consumption p has been chosen as in the main text (p = 0 for
the GNM; see Table 1 of the main text for EGNM’s estimates). Observe that, in some instances, diet contiguities are zero. In such cases, the empirical number of
gaps takes values that render these webs indistinguishable from their random counterparts, see Fig. 4 of the main text and Stouffer et al. (2006).
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Cattin, M.-F., L.-F. Bersier, C. Banašek-Richter, R. Baltensperger, and J.-P.
Gabriel. 2004. Phylogenetic constraints and adaptation explain food-web
structure. Nature 427:835–839.

Cohen, J. E. 1977. Food webs and the dimensionality of trophic niche space.
Proceedings of the National Academy of Sciences USA 74:4533–4536.

Cohen, J. E., and E. Briand. 1984. Trophic links of community food webs.
Proceedings of the National Academy of Sciences USA 81:4105–4109.

Cohen, J. E., and C. M. Newman. 1985. A stochastic theory of community food
webs. I. Models and aggregated data. Proceedings of the Royal Society B
224:421-448.

Cohen, J. E. 1989. “Ecologists Co-operative Web Bank (ECOWeBTM).” Ver-
sion 1.0. Machine Readable Data Base of Food Webs. Rockefeller Univer-
sity, NY.

Cohen, J. E., F. Briand, and C. M. Newman. 1990. Community Food Webs:
Data and Theory. Springer-Verlag, Berlin.

Cohen, J. E., D. N. Schittlerb, and D. G. Raffaelli, and D. C. Reuman. 2009.
Food webs are more than the sum of their tritrophic parts. Proceedings of

the National Academy of Sciences USA 106:22335–22340.
Dawah, H. A., B. Hawkins, and M. Claridge. 1995. Structure of the parasitoid

communities of grass-feeding chalcid wasps. Journal of Animal Ecology
64:708–720.

Dunne, J. A., R. J. Williams, and N. D. Martı́nez. 2002. Food-web structure
and network theory: The role of connectance and size. Proceedings of the
National Academy of Sciences USA 99:12917–12922.
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Stouffer, D. B., J. Camacho, R. Guimerà, C. A. Ng, and L. A. N. Amaral. 2005.
Quantitative patterns in the structure of model and empirical food webs.
Ecology 86:1301–1311.

Stouffer, D. B., J. Camacho, and L. A. N. Amaral. 2006. A robust measure
of food web intervality. Proceedings of the National Academy of Sciences
USA 103:19015–19020.

Stouffer, D. B., J. Camacho, W. Jiang, and L. A. N. Amaral. 2007. Evidence for
the existence of a robust pattern of prey selection in food webs. Proceedings
of the Royal Society B 274:1931–1940.

Stouffer, D. B., C. A. Ng, and L. A. N. Amaral. 2008. Ecological engineer-
ing and sustainability: A new opportunity for chemical engineers. AIChE
Journal 54:3040–3047.

Stouffer, D. B., E. L. Rezende, and L. A. N. Amaral. 2011. The role of body
mass in diet contiguity and food-web structure. Journal of Animal Ecology
80:632–639.

Stouffer, D. B., J. Bascompte. 2011. Compartmentalization increases food
web persistence. Proceedings of the National Academy of Sciences USA
108:3648–3652.

Stouffer, D. B., M. Sales-Pardo, M. I. Sirer, J. Bascompte. 2012. Evolutionary
conservation of species’ roles in food webs. Science 335:1489–1492.

Warren, P. H. 1989. Spatial and temporal variation in a freshwater food web.
Oikos 55:299–311.

Williams, R. J., and N. D. Martı́nez. 2000. Simple rules yield complex food
webs. Nature 404:180–183.

Williams, R. J., and N. D. Martı́nez. 2004. Limits to trophic levels and
omnivory in complex food webs: Theory and data. American Naturalist
163:458–468.

Woodward, G., B. Ebenman, M. Emmerson, J. M. Montoya, J. M. Olesen,
A. Valido, and P. H. Warren. 2005. Body size in ecological networks. Trends
in Ecology and Evolution 20:402–409.

Yodzis, P. 1982. The Compartmentation of Real and Assembled Ecosystems.
American Naturalist 120:551–570.

Yodzis, P. 1998. Local trophodynamics and the interaction of marine mam-
mals and fisheries in the Benguela ecosystem. Journal of Animal Ecology
67:635–658.
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