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H I G H L I G H T S
c Path integration (PI) is a navigation strategy widely used in nature.
c Desert ants Cataglyphis fortis use PI while searching for their nest.
c We introduce a model of this search behaviour using Bayesian statistics.
c Performs favourably against three simpler models and similar to real ant searches.
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The systematic search behaviour is a backup system that increases the chances of desert ants finding

their nest entrance after foraging when the path integrator has failed to guide them home accurately

enough. Here we present a mathematical model of the systematic search that is based on extensive

behavioural studies in North African desert ants Cataglyphis fortis. First, a simple search heuristic

utilising Bayesian inference and a probability density function is developed. This model, which

optimises the short-term nest detection probability, is then compared to three simpler search heuristics

and to recorded search patterns of Cataglyphis ants. To compare the different searches a method

to quantify search efficiency is established as well as an estimate of the error rate in the ants’ path

integrator. We demonstrate that the Bayesian search heuristic is able to automatically adapt to

increasing levels of positional uncertainty to produce broader search patterns, just as desert ants do,

and that it outperforms the three other search heuristics tested. The searches produced by it are also

arguably the most similar in appearance to the ant’s searches.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This paper introduces a Bayesian-statistical (Ellison, 2004)
model of target search where the target being searched for is a
small, non-moving object such as a nest entrance and where the
searching animal is using path integration (PI) as its only means
of navigation. PI, also known as dead reckoning, is a process
involving the continual integration of motion cues in order to
maintain a running estimate of position and is widely observed in
the animal kingdom (Mittelstaedt and Mittelstaedt, 1982; Collett
and Collett, 2000; Gallistel, 1990; Redish, 1999; Wehner and
Srinivasan, 2003; Etienne and Jeffery, 2004). We outline the
relation to existing target search models from the search and
rescue literature, and to existing search and PI models in biology.
The model presented is intended to be specifically applicable to
the nest search behaviour of desert ants, Cataglyphis fortis, a
ll rights reserved.

. Vickerstaff).
species for which the mathematically convenient assumptions
of a featureless environment, reliance on PI and the need to find a
small, inconspicuous target (the nest entrance) are very appro-
priate (Wehner, 2003). Given the available data from this species,
we take a quantitative comparison with our model as far as is
feasible, highlighting the need for further data to validate model-
ling assumptions and parameter values. Since the model is
relatively generic in nature, variations in the modelling assump-
tions and parameters would likely yield a model applicable to
other ecological contexts.

Here we introduce a Bayesian model combining target search
and PI. Given the inherent property of PI to accumulate positional
error, the animal experiences cumulative uncertainty about its
own position during the search. Since we assume less than perfect
sensory input, it also experiences uncertainty about detection of
the target. Hence the target, although stationary and at a known
set of geocentric coordinates, may have already been encountered
but not detected. We present a detailed Bayesian statistical model
of the animal’s state of knowledge about the error in its PI system
during the search in the form of a probability density function
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(PDF) of the positional error. This PDF is then used to implement a
simple search heuristic where the animal chooses its movement
for the next time step to maximise the probability of target
detection. This results in a search behaviour that outperforms
three other examined search strategies, automatically adapts to
changes in conditions (specifically, the PI error rate) and appears
to resemble the search patterns of C. fortis reasonably well.
Existing models of PI-mediated biological search (Wehner and
Srinivasan, 1981; Müller and Wehner, 1994) have not incorpo-
rated such a detailed Bayesian treatment of the task and,
conversely, the extensive Bayesian search literature does not
generally make the assumption that the search platform is subject
to the significant, cumulative positional uncertainty associated
with biological PI, since more reliable positioning methods are
generally available in a search and rescue situation, such as
periodic satellite fixes (Richardson and Stone, 1971), and it is
the target and not the searcher that is lost.

Bayesian statistical methods use a different definition of prob-
ability than the alternative frequentist interpretation (Ellison, 2004).
Frequentist probabilities express the relative frequency of events,
whereas Bayesian probabilities express the degree of belief in
hypotheses. Frequentist inference gives the probability of observing
the data if a given hypothesis is true, whereas Bayesian inference
gives the probability of a given hypothesis being true given the
observed data and relevant prior knowledge. The subjective nature
of the definition of probability and the ability to incorporate prior
knowledge make the Bayesian approach suitable for modelling the
continuously changing state of knowledge of an animal about its
position as it navigates. By using Bayesian inference it is possible to
construct a model where the animal is assumed to retain all
available information about its positional error in the form of a
PDF, representing, as it were, a perfect memory of its past experi-
ence (the higher the PI error rate the lower the spatial resolution of
the PDF required to retain all useful information). This is not
sufficient to ensure an optimal search behaviour, since this would
also require the animal to think ahead and make a perfect search
plan using the PDF, whereas the present model only plans one
movement at a time. Ideally, an optimal search strategy would be
calculated, assuming perfect memory and perfect planning, under
the constraints of noisy biological PI, and a comparison would reveal
how closely an animal’s search strategy approaches optimality. It
seems unlikely that an ant’s brain can explicitly implement such a
sophisticated mechanism, but under natural conditions a much
simpler search heuristic may be able to closely approximate it in
efficiency. Exactly what a minimal mechanism for approximating an
optimal search would be most likely depends on a range of factors,
such as the source and severity of PI errors, the availability and
reliability of nest detection cues and so on. The two extreme cases
are illustrative: if navigation errors are minimal and nest detection
is highly reliable, an optimal search is a simple Archimedean spiral
requiring neither complex memory nor planning, whereas if naviga-
tion errors are extremely high, the animal is immediately lost and
there is little ability to impose any coherent search strategy. In both
cases a simple mechanism achieves the same efficiency as a
sophisticated search, but must be selected based on the conditions
whereas an optimal search adjusts itself to the conditions. There are
similarities to the way in which cognitive maps (Tolman, 1948)
(where landmarks are learned with associated positional informa-
tion) are able to support efficient navigation behaviour, but in
practise simpler mechanisms are sufficient to explain many
observed behaviours, particularly in insects (Collett and Collett,
2006, 2009; Cruse and Wehner, 2011).

Searching for the small nest entrance in the desert ground is
the crucial final component of the foraging trips of Cataglyphis

ants. This remarkable animal has been shown to use the method
of PI to navigate in its often flat and featureless environment.
The continual integration of motion cues (directions steered and
distances covered) along its trajectory allows it to maintain a
running estimate of its location relative to its nest entrance, often
referred to as the home vector (HV), thereby enabling it to return
close to the nest after a foraging excursion (Wehner, 2003;
Vickerstaff and Di Paolo, 2005; Merkle et al., 2006a). PI is however
subject to the gradual accumulation of errors (Wehner and
Wehner, 1986; Müller and Wehner, 1988; Merkle et al., 2006b;
Merkle and Wehner, 2009a) which become greater the longer
the excursion has been (Merkle et al., 2006b; Merkle and
Wehner, 2010). Therefore PI alone may not be sufficient to lead
the ant back to the exact location of the nest entrance. Hence,
the ant will begin a specific behaviour, the systematic search, that
is characterised by a series of ever expanding loops centred upon
its best initial estimate of the nest location – to which it will
return at regular intervals – until the entrance is found (Wehner
and Srinivasan, 1981; Müller and Wehner, 1994). These regular
returns to the starting position of the search imply that PI is
active during searching as well (Müller and Wehner, 1994).
Overall, this distinctive search pattern increases the ants’ chances
of finding the nest entrance and thus surviving in the harsh desert
environment (Harkness and Wehner, 1977; Schmid-Hempel and
Schmid-Hempel, 1984). The overall searching density produced
during this behaviour is approximately a radially symmetrical
Gaussian bell shape and has been hypothesised to be a highly
efficient search strategy given the limitations of biological PI
(Wehner and Srinivasan, 1981) although it does not follow
that the optimal search density should be equal to the initial
PDF of the target’s position (Hoffmann, 1983a). Since PI continues
to be used to control the distribution of searching effort over
space, the ants are still subjected to the gradual accumulation of
PI positional uncertainty. Therefore, the most obvious search
strategy, an Archimedean spiral, is certainly not the most
effective strategy since navigation errors or nest detection failure
could lead the ant to miss the nest on the first encounter,
and an ever expanding spiral would never bring it back there
(Hoffmann, 1983a).

Recently, it has became evident that the searching behaviour
of desert ants is very flexible and adaptive (Merkle et al., 2006b;
Merkle and Wehner, 2009b, 2010). Ants take into account the
characteristics of the preceding foraging excursion by adjusting
the extension of their search patterns: the further they have
ventured out from the nest and the larger the error they have
accumulated during their trip the wider their search from the
beginning (Merkle et al., 2006b; Merkle and Wehner, 2010). That
is, they calibrate their search according to the increasing uncer-
tainty in their PI system. Not only, however, do they account for
this but they also make use of additional cues along the route or
close to the nest in order to increase their efficiency in searching
for the nest (Merkle and Wehner, 2009b). While the search
patterns of other central-place foraging insects look very similar
to the search patterns of Cataglyphis ants (e.g. ants, Fourcassie
and Traniello (1994); desert isopods, Hoffmann (1983a, 1983b);
cockroaches, Durier and Rivault (1999)), it is still unclear whether
these species are as adaptive in their search behaviour.

Completing their foraging trips and performing their search for
the nest entrance, desert ants are faced with several uncertain-
ties: the distance at which they detect their nest is quite short
(approx. 2–3 cm, personal observation Merkle) and may be
comparable to the very short, 2 cm, detection range of desert
isopods reported by Hoffmann (1983a, 1983b). Even this ability is
not completely reliable either as ants occasionally fail to detect
the entrance even when within this distance. Similarly, there
are major uncertainties in PI as errors accumulate during the
home run – the reason for the systematic search in the first
place (see above) – but also during the search itself (Müller and
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Wehner, 1994; Merkle and Wehner, 2010). PI-related errors
can arise from different subcategories: sensory (compass and
odometer) errors (e.g., Wehner and Wehner, 1986; Wehner and
Müller, 2006), errors in executing the relevant motor commands
(for example at high walking speeds, see, Delcomyn and
Usherwood, 1973) and errors in internally calculating position
(PI per se, see, for instance, Müller and Wehner, 1988; Hartmann
and Wehner, 1995).
Fig. 1. Representation of the accelerated method used to calculate the estimated

detection probability ŝk (see Section 2.7). The PDF matrix, fPkg, of the PI error is

shown centred on the animal’s estimated position, âk . The matrix form of the

detection probability, fDg, is shown centred on the position of the target, t. The dot

product of the shaded overlapping region gives the overall estimated detection

probability ŝk . The box outlines represent the spatial extent of the two matrices.

The concentric circles represent gradients within the probability values.
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Fig. 2. (a) Data collection method used to record Cataglyphis fortis search patterns. Ants

testing area as soon as they emerged from the nest. See (Merkle and Wehner, 2008) fo

(n¼10) which did not show a bias towards the expected feeder position (see Section 2.4

a feeder at 5, 10 or 20 m from the nest and during testing were displaced from the fee

function of nest-feeder distance was used as the error indicator. See Merkle et al. (2006b

the training area; F0 (fictive feeder position) and N0 (fictive nest position) are in the dista

indicate passive displacements of the ant by the experimenter.
The question of just how optimal the characteristic search
behaviour is remains unanswered and it is in fact a difficult one.
The first step to tackle it is to evaluate the relevant sensory and
neural capabilities that influence both the execution and success
rate of the search. The questions that would have to be discussed
in this regard are:
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How reliable is nest detection and over what range?

(2)
 At what rate and to what extent do the different types of

errors accumulate and thus contribute to the overall error?

(3)
 Could it be possible that the ants use other cues to locate the

nest entrance?
As to question 3, because of the flat, featureless terrain
commonly inhabited by C. fortis (Dillier and Wehner, 2004), one
could assume that virtually no usable landmarks or any other
cues are at the ants’ disposal for localisation other than their
skylight compass and odometer. It has been demonstrated though
that they are able to use, for instance, soil structure (Seidl and
Wehner, 2006; Merkle, 2009) as a cue and it is also a possibility
that they make use of the presence of nest mates to locate the
nest entrance (Merkle, personal observation). These cues, how-
ever, do not seem to be sufficient as a backup solution to guide
the animals to the nest entrance after the path integrator has
failed to do so. Moreover, in the most common experimental
paradigms ants are displaced to an unfamiliar test ground (see, for
instance, Merkle et al., 2006b; Wehner and Wehner, 1990;
Wehner et al., 2002); therefore the search is performed in an
area guaranteed to be devoid of familiar landmarks. Previous
studies were based on search patterns recorded in ants that had
returned to the vicinity of the nest entrance but had not entered
it. It is now known that such ants have not reset their path
integrator to zero, a process which actually requires entering the
nest (Knaden and Wehner, 2006). They were therefore beginning
their search pattern with the PI error accumulated from the
−2 −1 0 1 2 3 4 5 6 7

x (m)

first trained to a feeder, but for search pattern recording were displaced to the

ails. (b) combined search pattern data from experiment (a), from all searches

Data collection method used to estimate the PI error rate. Ants were trained to

a distant testing area. The position of the centre of their search pattern as a

details. Locations shown in (a) and (c): N (nest entrance) and F (feeder) are in

sting area. Solid arrows indicate normal movements of the ant. Dotted arrows
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preceding journey still present. In our approach, we instead use
searches recorded from ants which have just emerged from the
nest (Merkle and Wehner, 2008) (see Fig. 2 and Section 2.4 for
further details), and can therefore be more confident that the PI
system is zeroed at the start of search.
2. Methods

2.1. Comparison to other biological models

Nest search for a central-place forager is usually a part of its
foraging behaviour. The need to return to the nest acts to anchor
foraging to a specific location, unlike species which wander freely
in search of food. Free wandering species are known to use a
flexible combination of Brownian motion and Lévy flights
depending on prey density (Humphries et al., 2010). A variant
of the Lévy flight model, called the Lévy loop model (Reynolds,
2008), exists to model central-place foraging, and will be imple-
mented and compared in the performance to the present Bayesian
model. Here we do not model food discovery in the ant, which has
been treated elsewhere (see for example Harkness and Maroudas,
1985), but only the return of the animal to a familiar location after
some preceding excursion. The environment is assumed to
provide no cues pointing towards the target, therefore no beha-
viour resembling chemotaxis, such as one following faint odour
plumes (Vergassola et al., 2007) is possible. Landmarks are
assumed absent, hence any homing strategy linked to landmark
recognition or snapshot matching (for example Cartwright and
Collett, 1987; Lambrinos et al., 2000) is ruled out, as is any
strategy combining information from multiple cues (Cheng et al.,
2007). The task is simply to discover the target location as quickly
as possible, and we assume no trade offs of any kind exist, such
as trying to minimise exposure to predators, disguise the nest
location or accomplish any other goal.

Several mathematical models have been developed that can
accurately describe the process of PI and also factor in the errors
as described by experimental set-ups (for a review, see Vickerstaff
and Cheung, 2010), as well as model the integration of PI with
other navigation strategies (Cruse and Wehner, 2011). The sys-
tematic search behaviour of several Cataglyphis species has been
investigated and modelled by Wehner and Srinivasan (1981), who
provided a detailed analysis of the search patterns. Müller and
Wehner (1994) showed that the systematic search of C. fortis can
be simulated by spiralling trajectories that are regularly reset and
that become wider and wider. Whereas search patterns produced
by this simple algorithm closely resembled those observed in
C. fortis, they could not consider the high flexibility and adaptive-
ness of the search as discovered in recent experimental work
(Merkle et al., 2006b; Merkle and Wehner, 2010). Hoffmann
(1983a, 1983b) describes the systematic search behaviour of the
desert isopod Hemilepistus reaumuri, which occurs when the
animal has been displaced by the experimenter a short distance
from its burrow and shows that the search behaviour is approxi-
mately as efficient as an optimal search plan calculated using
search theory, and more efficient than any form of Brownian
search. Hoffmann’s analysis will be compared to the present
modelling approach in more detail in the discussion.

Cruse and Wehner (2011) present a model where PI and
landmark based navigation are combined in such a way as to
replicate major features of insect navigation without using a
cognitive map. The area concentrated search (systematic search
in our terminology) part of the model is a simple implementation
of search intended as a stand in for the more sophisticated
search capabilities of real insects, and serves to illustrate the role
played by search within the context of a more complete set of
navigational abilities than is investigated in the present account.
The search method incorporates a tendency for clockwise turns
giving it the ability to generate search loops similar to desert ants.

Directed walk (DW) theory (Cheung et al., 2007, 2008; Cheung
and Vickerstaff, 2010) provides a method to classify the way
in which different biological navigation strategies accumulate
errors, and is highly relevant to PI. A DW consists of an animal
attempting to take a series of steps of equal length and in the
same direction, referred to as the axis of intended locomotion.
Given an allothetic (externally generated) directional cue, such as
a skylight- or magnetic-compass, the walk will behave as an
allothetic directed walk (ADW) whereby it accumulates a posi-
tional deviation from the intended path at a constant mean rate. If
the animal lacks an allothetic compass, and only has idiothetic
(internally generated) directional cues, such as vestibular signals,
the walk will behave as an idiothetic directed walk (IDW), and
accumulate positional deviation from the intended path at an
accelerating rate the further it walks. The basic result of DW
theory is that an ADW can continue to make indefinite progress
along the axis of intended locomotion, whereas the expected
progress of an IDW reaches an upper limit beyond which no
further progress is made (Cheung et al., 2007, 2008). This is a
result of the IDW having no way to reset the animal’s orientation
relative to an allothetic directional cue, and therefore the orienta-
tion of the animal eventually has a random orientation relative to
the axis of intended locomotion, whereas an ADW is able to
reorient after each step taken so that, even though directional
errors are made every step, they do not accumulate. DW theory
has also been extended to apply to the behaviour of a HV being
updated by a biological PI system (Cheung and Vickerstaff, 2010).
Here the directed walk is taking place in representational space
within the animal’s nervous system. The main result of DW
theory applied to PI is that two features must be present in the
PI system in order for it to be robust to noise by accumulating
errors in the manner of an ADW rather than an IDW: it must have
an allothetic compass cue available and the HV must be stored
using an allocentric static vectorial representation (ASVR), of
which a geocentric Cartesian HV is an example. On these
(Cheung and Vickerstaff, 2010) and other, related (Vickerstaff
and Cheung, 2010) theoretical grounds this type has been pro-
posed as the most biologically plausible class of PI system and
will be referred to below as a compass-ASVR PI system.

2.2. Comparison to concepts found in search theory

Formal search theory (Benkoski et al., 1991; Frost, 1999; Stone,
1989) is a vast subject, and a comprehensive review is well
beyond the scope of the present account. Here we briefly compare
some of the common assumptions and concepts found in search
theory with the present biological search problem, motivated by
the obvious similarity between the two search tasks, as already
noted by other authors (Hoffmann, 1983a; Alt, 1995). We con-
clude that a certain class of search theoretic problem has a great
deal of similarity of PI target search provided that a compass-
ASVR class biological PI system is assumed. Lack of space
precludes a detailed mathematical treatment here, but we now
outline a suitable scheme for comparing the two model types.

Search theory includes models where the searcher tries to find
a randomly moving target, for example (Dell and Eagle, 1996). If
we could only have the randomness perturb the searcher’s
estimate of its own position instead of the target’s true position,
then we might have a ready-made model of a searcher accumu-
lating PI errors whilst looking for a fixed target. In search theory
the target’s random motion is usually assumed to have the
Markovian property whereby movements each time step are
statistically independent of all others and directed walk (DW)
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theory also makes this same assumption. As a result of this shared
assumption the noise tolerant compass-ASVR class of PI system is
expected to accumulate errors in a way closely analogous to the
way that a randomly moving Markovian target accumulates
displacement from its starting position—i.e. at a constant mean
rate, not an accelerating one.

With this similarity recognised it is straightforward to make the
connection between PI target search and moving target search
explicit by a simple change of variables. As outlined in Section 2.3,
instead of adding the PI error to the animal’s HV or position each time
step, it can be subtracted from the target position, giving a notional
randomly moving nest entrance and a notionally error free PI system
without changing the statistical behaviour of the model. This change
does not influence the outcome at all since only the relative position
of the target with respect to the searcher is important for determining
when the target is found. A remaining difference in our model is that
we assume two sources of error rather than one: errors recording
intended movements and errors physically executing them. With this
caveat in mind, we can consider moving target problems in search
theory to be of considerable similarity to PI-mediated target search,
and likely make use of results derived from the former.

A key dichotomy in search theoretic models is their formula-
tion as either optimal search density problems or optimal search
path problems (Benkoski et al., 1991). If the target’s motion is
slow or zero compared to the searcher’s, corresponding in our
case to a low or zero PI error rate, then the problem can be treated
as a search density optimisation problem. If the target motion is
comparable to the searcher’s speed, the more difficult case of
optimising the searcher’s path must be solved, generally leading
to a class of problems where optimal search paths are not
guaranteed without exhaustive checking of all possible paths
(Stone, 1989). For the latter case heuristic search methods have
been developed such as (Dell and Eagle, 1996). In the absence of
detailed data regarding the error rate, we have chosen to
formulate the ant’s search as a path optimisation problem, since
the walking ant (unlike, say, a fast moving search and rescue
vehicle) has no way of rapidly relocating its search without
traversing the intervening ground. It is therefore appropriate
to consider heuristic search optimisation methods rather than
attempt to derive a truly optimal search strategy.

2.3. Bayesian PI target search model

Symbols in bold denote vectors or matrices. Symbols with a
hat, â, indicate values estimated by the animal whereas plain
symbols indicate exact values, whether known to the animal or
not. See Tables 1 and 2 for a list of the mathematical symbols and
abbreviations used in this account. The model is constructed
using the assumption that the animal is aware of its own
capabilities and limitations, such as the error rates and target
detection probabilities. Variations in the model can easily be
imagined where, for example, the animal operates using incorrect
estimates of the true error rate parameters, or with uncertainty
about how its ability to detect the target varies with distance, but
such variations are beyond our present scope.

At time kAZ an animal is at position akAR2 within a
continuous two dimensional space containing a target object at
position tAR2. Each time step the animal chooses an intended
movement, Dakþ1AR2, with a maximum step length 9Dakþ19rl,
but when it executes the movement an additional unintended
random movement, eexe

kþ1AR2, also occurs:

akþ1 ¼ akþDakþ1þeexe
kþ1 ð1Þ

We assume that the movement execution error is drawn
from a radially symmetrical bivariate Gaussian distribution with
zero mean and a variance of s2

exe, i.e. eexe
k �Nðv0,s2

exev1Þ where
v0 ¼ ½0 0�T , v1 ¼ ½1 1�T . (To relate this formulation of PI target
search to the search theoretic model with a randomly moving
target, consider the animal’s movements to be executed without
error and a moving target at position tkþ1 ¼ tk�eexe

kþ1.) Using PI
the animal simultaneously maintains an internal estimate of its
position (i.e. a home vector (HV)), âkAR2, which is similarly
subject to a random error, erec

kþ1AR2, each time step representing
an error made by the PI system recording the movement just
performed. If an efference copy of the motor command specifying
the intended step Dakþ1 is assumed to drive PI the following
relation results:

âkþ1 ¼ âkþDakþ1þerec
kþ1 ð2Þ

where erec
k �Nðv0,s2

recv1Þ. (A slightly different equation results if
proprioceptive feedback is assumed instead of efference copy, but
this possibility is here neglected for brevity.) By allowing moves
to be executed in any direction without constraint we can neglect
the orientation of the animal’s body. This also implies that the
execution and recording errors be independent of the movement
direction. In SI units, the two error rate parameters, s2

exe and s2
rec,

are in units of m2/s. The PI error, ek, in the estimate of position is
defined as the difference between the estimated and true posi-
tions as follows:

ek ¼ âk�ak ð3Þ

Because the HV is recorded using geocentric Cartesian coordi-
nates, the modelled PI system therefore falls within the ASVR
class (Vickerstaff and Cheung, 2010; Cheung and Vickerstaff,
2010). In addition, although the animal’s orientation is not
explicitly defined, the model defined by Eqs. (1) and (2) implicitly
assumes the animal has access to an allothetic directional cue,
and hence the modelled system belongs to the noise tolerant
compass-ASVR class. To see why the model implicitly assumes a
compass, consider the animal performing a DW along the x axis,
i.e. Dakþ1 ¼ ½1 0�T ,8k. Errors occur executing and recording each
step, and âk drifts away from ak, but the model provides no way
for the mean direction of the physically executed step to drift
relative to the mean direction of the recorded step, since the exact
same vector Dakþ1 appears in both equations. Therefore the
frames of reference must remain anchored, implying that the
directional component of each error is erased each step. Were the
animal’s orientation to be explicitly modelled, then the more
realistic and detailed error model employed by DW theory could
be employed, where the animal makes a turning error and a step
length error each movement, and the compass cue could be
explicitly included or excluded as desired. However, this would
significantly complicate the present model.

As long as the animal moves without gaining any additional
positional information its PI error will increase in a straight-
forward manner as follows, assuming all errors are statistically
independent:

ek ¼ e0þ
Xk

i ¼ 1

ðerec
i �eexe

i Þ

giving the following bivariate Gaussian PDF of the error after k

steps:

ek �Nðe0,ks2
errv1Þ ð4Þ

where s2
err ¼ s2

exeþs2
rec.

Each time step the animal possesses a PDF, Pk, for the current
value of the PI error ek. Pk is defined as a column vector giving the
probability of each possible quantised value of ek:

Pk ¼ ½pk1 . . . pknz
�T

pki ¼ pð½ek� ¼ ziÞ



Table 1
List of main mathematical symbols. Note that positions and error rates are usually expressed in SI units in

the text, but always converted into units of PDF grid square widths for the simulation of the models, where

one square width¼0.1 m and one simulation time step¼1 s.

Symbol Meaning

k Time

ak Animal’s true position

âk Animal’s estimate of its true position

ek Error in animal’s estimate of true position

t True position of the target being searched for

Dakþ1 Intended movement from ak to akþ1

l Maximum length of intended movement (i.e. 9Dakþ19max)

eexe
kþ1 Error made executing movement from ak to akþ1

erec
kþ1 Error made recording movement from ak to akþ1

s2
exe

Variance of movement execution error

s2
rec

Variance of movement recording error

s2
err s2

exeþs2
rec

s2
init Variance of Gaussian positional uncertainty at start of search, usually ¼ n0s2

err

Pk PDF of ek prior to trying to detect the target (consists of pki)

pki Prior probability that ek lies within grid square zi

Q k PDF of ek after failing to detect the target (consists of qki)

qki Posterior probability that ek lies within grid square zi

nz Total number of squares in the grid

zi Integer coordinates of a square in the PDF grid

sk Probability animal will detect target at time k given not previously detected

a Probability of detecting the target at zero range

b Range at which target detection has dropped to a=2

g Parameter controlling how sharply the detection probability drops with distance

DðâkÞ Probability of target detection for each possible value of ek given âk

dki Element of DðâkÞ, probability of target detection if ek lies within square zi

ŝk Animal’s estimate of probability of target detection

v0 0

0

� �
v1 1

1

� �
½�� Indicates rounding the position to the nearest grid square

Bð Þ Bayesian update function giving Q k from Pk and DðâkÞ

T Transition probability matrix (consists of tji)

tji Probability that ½ekþ1� ¼ zj if ½ek� ¼ zi given s2
err

Fð Þ Function calculating the movement maximising target detection probability

n0 Length of foraging excursion preceding search

ns Maximum time available for searching

wk Unconditional probability of target detection at time k

wk Cumulative probability target detected at or before time k

wf Probability of failing to detect the target by the end of the search period

cf Cost of one failed search

m Mean resource accumulation rate given search of length ns

mmax Mean resource accumulation for optimal length search rns

pcentre Anchored random search: probability moving towards centre rather than randomly

cspiral Spiral search: spiral in loops separated by 2pcspiral

lmin ,lmax Lévy loop search: minimum and maximum loop lengths

b Lévy loop search: exponent parameter

Table 2
List of abbreviations.

Abbreviation Meaning

PI Path integration (also known as vector navigation, dead reckoning)

PDF Probability density function

PMF Probability mass function

HV Home vector (position of the animal with respect to the home location)

DW Directed walk

ADW Allothetic directed walk (walk made with an external directional reference)

IDW Idiothetic directed walk (walk made without any external directional reference)

ASVR Allocentric static vectorial representation (see text for meaning)
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where ½�� indicates the rounding of the vector to the nearest
member of Z2 (however, note that the error itself is not actually
rounded off in the model, otherwise the accumulation of errors of
small magnitude would be prevented), and where ziAZ2 is a
member of a set of size nz containing all the integer valued vectors
within a square of suitable size centred about the origin (speci-
fically, where the magnitudes of both coordinates of zi ¼ ½xi yi�

T

are less than or equal to a maximum emax chosen to include all
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values of ½ek� encountered with significant probability during the
simulation run giving a total of nz ¼ ð2emaxþ1Þ2). Therefore pki is
the probability that the PI error lies somewhere within square zi

at time k. During model execution the probabilities are normal-
ised to sum exactly to unity:

Pnz

i ¼ 1 pki ¼ 1,8k. After making k

steps, during which the target is not being searched for, the
distribution of ek will be given by:

pki �
1

2pks2
err

exp �
9zi9

2

2ks2
err

 !
ð5Þ

When the animal begins searching for the target it tries to
detect the target from its current position at the start of each time
step. The probability of successful detection, sk, is defined as a
function of the distance between the animal’s position, ak, and the
target, t:

sk ¼
a

1:0þexp �g 1:0�
9ak�t9

b

� �� �
where the detection probability is assumed to saturate at the
value a at close range, and to drop to zero beyond a threshold
distance b, with g controlling how sharp the drop in probability is.
In the absence of any detailed experimental data concerning this
function for C. fortis, this generic sigmoidal detection function was
chosen since, because it does not decay slowly with distance, this
allows more rapid model execution. We note however that the
proper determination of this function, or at least a ‘sweep width’
parameter characterising it, is considered to be very important in
the search theory literature (Frost, 1999), and will obviously
effect search efficiency. The assumption that detection is direc-
tionally invariant, inevitable in a model neglecting the animal’s
orientation, also may not strictly hold true for the ant. Each time
step a column vector, DðâkÞ, is calculated as a function of the
current HV, containing the probability of target detection for each
possible quantised value of the current positional error, ½ek�. The
detection probability depends on the distance to the target,
9ak�t9, which can be calculated by the animal using the relation
ak�t¼ âk�ek�t� ½âk��½ek��t:

DðâkÞ ¼ ½dk1, . . . dknz
�T

dki ¼ pðdetect9½ek� ¼ ziÞ

¼
a

1:0þexp �g 1:0�
9½âk ��zi�t9

b

� �� �

The animal’s estimate of the probability that the target will be
detected at time k is:

ŝk ¼
Xnz

i ¼ 1

pkidki ¼ Pk �DðâkÞ

where � indicates the dot product operation. The search ends
successfully as soon as the target is detected. Therefore to
continue searching given that, with presumed probability 1�ŝk,
the target was not detected, the animal must Bayesian update the
positional uncertainty. Given the prior PDF, Pk, of the positional
error, Bayesian inference is used to find the posterior PDF, Q k,
given that the target was not detected. Specifically, the probability of
hypothesis Hki, that ½ek� ¼ zi, is Bayesian updated given the evidence,
Ek, that the target was not detected at time k:

Q k ¼ ½qk1 . . . qknz
�T

Hki : ½ek� ¼ zi

pðEk9HkiÞ ¼ 1�dki
pðHkiÞ ¼ pki

pðEkÞ ¼ 1�ŝk

pðHki9EkÞ ¼
pðHkiÞpðEk9HkiÞ

pðEkÞ

qki ¼ pkið1�dkiÞ=ð1�ŝkÞ

The above Bayesian updating process will be expressed as
a vector function B giving the posterior from the prior:
Q k ¼ BðPk,DðâkÞÞ. Finally, Pkþ1, is found by matrix multiplication
(our Matlab implementation performs this step in a more efficient
way, as detailed in Section 2.7) of Q k with a transition probability
matrix, T, to reflect the increase in positional uncertainty that will
result from taking another movement step and from updating the
estimated position:

T¼

t1;1 . . . t1,nz

^ &

tnz ,1 . . . tnz ,nz

2
64

3
75

tji ¼ pð½ekþ1� ¼ zj9½ek� ¼ ziÞ

tji �
1

2ps2
err

exp �
9zj�zi9

2

2s2
err

 !

Pkþ1 ¼ TQ k

At each timestep the animal must choose which movement
command, Dakþ1, to issue. The commanded movement will be
assumed limited to a maximum distance, l, in any direction,
fA ½0;2p�. For the Bayesian search model the choice of movement
can be considered as a vector function, Dakþ1 ¼ Fðâk,Pkþ1Þ, using
the current HV and the updated PDF to choose the movement
command. The function F will now be defined verbally. The
function uses an approximate method of finding the movement
that would take the animal to the location with the highest
estimated probability, ŝ

%

kþ1, of detecting the target at the next
time step:

ŝ
%

kþ1 ¼ Pkþ1 � DðâkþDakþ1Þ

ŝ
%

kþ1 is only an estimate of the true value of ŝkþ1 (and hence a
meta-estimate of skþ1) since the animal’s new estimated position
âkþ1 will be effected by the recording error erec

kþ1. Since, in order
to approximate continuous motion, the simulation timestep is
chosen to ensure a significant overlap between successive detec-
tion areas even for steps of the maximum length, in practise it is
sufficient to assume a step of maximum length, l, and choose
only the direction f. First the number of candidate moves to be
evaluated is chosen as nmoves ¼ dcdensity2pl=2be, where cdensity40
is a density parameter (cdensity ¼ 1:5 was chosen) and d�e indicates
rounding up to the nearest whole number. A random starting
orientation, fori is chosen. nmoves candidate moves are generated
starting from fori separated by angular increments of 2p=nmoves. The
move giving the highest value of ŝ

%

kþ1 is selected. This algorithm is
intended to approximate the selection of the direction giving the
highest value of ŝ

%

kþ1 without having to evaluate an excessively
large number of candidate moves, since this part of the model
represents a very significant part of the computational cost of
running the model. The higher the value of cdensity the more densely
are the candidate moves arranged around the circle of radius l
centred on the animal’s current position, where a value of cdensity ¼ 1
would give the minimum number of evaluations such that the
candidate position’s detection functions just begin to overlap. If all
moves give a value of zero, indicating the animal is off the edge of
the current PDF, the animal instead moves directly towards the
position t, i.e. f¼ atan2ð�âkÞ. This concludes the definition of the
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movement selection function F. The Bayesian PI target search model
can now be summarised as follows (repeating and combining the
relevant equations from above for convenience):

Pkþ1 ¼ TBðPk,DðâkÞÞ

âkþ1 ¼ âkþFðâk,Pkþ1Þþerec
kþ1

akþ1 ¼ akþFðâk,Pkþ1Þþeexe
kþ1

To run the model, suitable starting values of a0, â0 and P0 must
be chosen. For the purposes of simulating an ant searching for its
nest at the end of a foraging excursion, time k¼0 will be defined
to refer to the start of search, not the moment the ant originally
left the nest. Position t refers to the true nest position. It will be
assumed that the animal has just undertaken a foraging excursion
of some given round trip distance during which the PI error, e,
was accumulating at the same rate as will apply during the
search. For a foraging excursion of n0 time steps starting at the
nest with no PI error Eq. (4) gives the PDF for the error at the start
of search as:

e0 �Nðv0,s2
initv1Þ ð6Þ

where s2
init ¼ n0s2

err, from which a value can be sampled. Using
Eq. (5) the values of P0 can also be calculated. It will be assumed
that the ant begins nest search only once it has reached the
expected nest position, i.e. when â ¼ t. Therefore, â0 ¼ t and
Eq. (3) implies a0 ¼ â0�e0.

Running the model produces a time series of sk values, giving
the conditional probability that the animal detects the target at
time k given that detection has not occurred on any previous time
step. The unconditional probability, wk, of detection occurring at
time step k is calculated as follows:

wk ¼ sk

Yk�1

i ¼ 0

ð1�siÞ

The cumulative probability, wk, that detection occurred at or
before time step k is wk ¼

Pk
i ¼ 0 wi. The probability, wf, that, after

a time limit of ns time steps the target has not been found is
wf ¼ 1�wns , i.e. this value is the probability of search failure given
a definite time limit.

In this way a single run of the simulation provides the
probability mass function (PMF) for the discrete time k that the
target is discovered. A single run effectively simulates a popula-
tion of searchers experiencing different outcomes of target
detection, but all experiencing the exact same initial PI error,
per-step movement execution errors and per-step movement
recording errors. Because detection is modelled as an all-or-
nothing event, those searchers that detect the target drop out of
the population immediately having ended their search and those
that do not all continue searching with the same state as each
other (Pk, âk and ak). The state is simply Bayesian updated to
reflect the failure to detect the target at that moment. It is
therefore straightforward to model variations in target detection
as a population rather than explicitly simulate individual searches
experiencing different detection outcomes. A single simulation
run, however, provides only one sampling of the initial PI error,
e0 and one possible sequence of the per-step execution errors
eexe

k and recording errors, erec
k . Multiple runs must therefore be

performed resampling these error sources and the resulting
values of wk averaged across samples in order to account for
these sources of uncertainty. It is not straightforward to use a PDF
describing a population of searchers experiencing different record-
ing errors since each error gets incorporated into the HV, â, and
therefore leads to attempted target detections at different per-
ceived locations, and therefore to a population with different
internal PDFs Pk.
Given the PMF of target discovery time an ecologically relevant
measure of searching performance can be formulated. For the
present case, an ant colony will be assumed to be attempting to
accumulate food items as quickly as possible. Two alternative
efficiency measures are (i) the mean rate of resource accumula-
tion, assuming that each successful target detection corresponds
to an ant carrying a food item to its nest, and (ii) the mean
number of successful foraging trips per forager life time, assum-
ing premature death upon a failed search. Both require the
estimation of additional parameters. Here we develop (i) since it
is considerably easier to calculate.

Assume a probability of wk that a search ends after exactly dk

time steps including the foraging time of n0 steps and the search
time (a maximum of ns steps), and that a reward of rk is accrued
to the nest therefore giving a reward rate of rk=dk reward units
per timestep. k¼1 denotes the start of search and dk ranges from
the minimum possible round-trip time d1 ¼ n0 (i.e. the duration
is just the foraging time, with a search time of zero) to the
maximum possible duration of dnsþ1 ¼ n0þns (where the search
time limit is reached). Considering a random timestep from a
large sample of journeys, the reward rate of the timestep will be
rk=dk with a probability wkdk=

P
jwjdj. Therefore the overall mean

reward rate per timestep is
P

kwkrk=
P

jwjdj. To handle the case
where the animal fails to find the target, assume that with
probability wf after df ¼ n0þns time steps the ant has a negligible
probability of ever finding the nest and eventually dies, and that
the nest therefore generates a new worker at some additional cost
cf in order to maintain the forager population. Assuming all
rewards rk ¼ 1 and given wf ¼ 1�

P
kwk, the mean reward rate

will be:

m¼
1�wf�wf cfP

jwjdjþwfdf

This measure of efficiency has an advantage over wns in that it
takes account of how rapidly the target is located during search,
and can therefore distinguish between two strategies where wf is
low, but one succeeds sooner than the other on average. While
wns can only increase as ns increases, m may start to decline when
the chances of finding the nest become small enough, implying
that it is no longer worth waiting for the ant to try to return
home, but rather better the pay the cost of a new forager and
begin a new foraging trip immediately. This seems appropriate for
a central place foraging context where individual survival is less
important than colony survival. Because m can begin to decline for
large ns, it is useful to define a final efficiency measure, mmax,
equal to the maximum value obtained when m is calculated for
each timestep of a search as if k¼ ns, i.e. as if each timestep were
the search time limit.
2.4. Three alternative search strategies

The three other searching models are now introduced along
with the methods used to process search patterns recorded in
C. fortis ants. The three search models differ from the Bayesian
method (model 1) in that they do not make use of the PDF of the
PI error when deciding which search movement to make, nor is
the PDF required to calculate their search performance, however,
the PDF can still be meaningfully calculated in the same manner
as for the Bayesian model and correctly shows the searcher’s
evolving state of uncertainty about the PI error.

Model 2: Anchored random movement. This method is con-
trolled by a parameter, pcentreA ½0;1�. Each time step, with prob-
ability 1�pcentre the animal selects a movement of the maximum
distance l, in a random direction fA ½0;2p�; or, with probability
pcentre selects the movement which takes it back towards the
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estimated target position (i.e. f¼ atan2ð�âkÞ). Thus pcentre ¼ 0
gives a completely random walk, whereas pcentre ¼ 1 gives motor
commands which act to maintain âk ¼ t.

Model 3: Archimedes’ spiral. The animal spirals out from the

location â0 ¼ t along an Archimedean spiral where the relationship

between the polar coordinates, rk ¼ 9âk�t9 and yk ¼ atan2ðâk�tÞ is

determined by rk ¼ cspiralyk, with initial condition y0 ¼ 0. Each time

step yk is incremented such that the spiral progresses l distance

units. Parameter cspiralðm=radÞ gives a separation between successive

loops of the spiral of 2pcspiral. The optimal choice for cspiral will

depend on the other parameters of the search problem. A spiral of the

length required for a given search time and l is first calculated

at suitable fixed increments of y (using the formula for the total

spiral length 0:5cspiralðytotal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þy2

total

q
þsinh�1ytotal), fitted with cubic

splines (using the Matlab ‘spline’ command), then resampled as a
series of positions such that each successive intended movement is of

length l. In the absence of recording errors the movement command

each time step would be Dakþ1 ¼ rkþ1½cosðykþ1Þ sinðykþ1Þ�
T�âk, i.e.

the movement required to take the animal to the next position of the
search pattern, however, due to recording errors, the current position

âk will not generally be equal to the precalculated position for time
step k, and consequently a movement command calculated in this

way may exceed the allowed distance l. To strictly enforce l,

if 9Dakþ194l the movement vector is scaled down so that

9Dakþ19¼ l. This correction is also applied in the same way to

search models 4 and 5, which are also based on replaying a
predefined search pattern in the presence of recording errors.

Model 4: Lévy loop search. The animal makes successive
straight excursions (loops) from the origin t in uniformly dis-
tributed random directions but of lengths selected from a power-
law probability distribution. At the end of each excursion
it returns to the origin along the same path. The model is
characterised by three parameters, lmin and lmax, defining the
minimum and maximum excursion length, and 1obo3, the
exponent of the power-law probability distribution. For each
excursion a loop of length l is chosen with a probability Alb where
A¼ ððb�1Þlb�1

min Þ=ð1�ðlmax=lminÞ
1�b
Þ. A search path is precalculated

using this algorithm by stepping the position along the outbound
and inbound legs of each loop at positions separated by l, each
loop length being extended to the nearest whole number of steps.
The precalculated search is then replayed in the same manner as
the spiral search.

Model 5: Ant search replay. This method replays a real C. fortis

search pattern. The search patterns that were used for the replay
were part of an experiment (Merkle and Wehner, 2008) in which
a feeder was established 10 m south of one ant colony’s nest
entrance. The area where the nest and feeder were situated was
free of landmarks. All ants had undergone intensive training (at
least one day) and had performed similar numbers of foraging and
homing trips before being tested. In the test situation (see Fig. 2a),
trained ants (n¼25) were captured immediately after leaving the
nest (so-called 0%-out ants, Merkle and Wehner, 2008) and
transferred to a remote, landmark free test area where a grid
pattern had been marked out on the desert surface. In the test
area, searches were recorded by hand for 300 s on graph paper.
Later, the hand-recorded paths were digitised using a graphics
tablet and GEDIT Graphics Editor and Run Analyser (Antonsen,
1995) to give a positional value at approximately 5 s intervals (for
full details, see Merkle and Wehner, 2008). All further data
processing of the digitised paths was performed using Matlab
(Version 7.3.0.298, R2006b).

Displacement of these ants to the test area disturbed them such
that most of them did not head towards the position of the feeder
but started searching for the nest instead. Having just emerged
from the latter, they had reset their path integrator (Knaden and
Wehner, 2006), that is, they knew the position of the nest entrance
with the minimum possible error. The search behaviour of this
group of ants therefore was best suited to base the analysing and
modelling work on rather than ants that had returned from a
feeder. The latter would have accumulated a significant error in
their path integrator (see introductory section), making it impos-
sible to be confident of the nest position assumed by the ant at the
start of its search. Under natural conditions disturbances may
be caused by predation attempts (Harkness and Wehner, 1977;
Schmid-Hempel and Schmid-Hempel, 1984) and therefore dis-
placed outbound ants trying to return to the nest rather than
continuing to forage may be employing an anti-predation response
(Merkle and Wehner, 2008).

As the search patterns from the selected ants from this
experiment could have still been biased towards the feeder
position (to which the animals had been trained), we excluded
all runs where the extension in one direction exceeded the
extension in all other directions by at least 1 m. In addition, all
runs with median or mean x- or y-values of 41:5 m from the
starting point of the search were eliminated. The resulting sample
size of suitable search patterns to use in the current analysis thus
amounted to 10 search runs. Fig. 2b shows the combined search
paths of the ten runs which produced the expected radially
symmetrical distribution.

The search data thus began as sets of (x,y) coordinates relative
to the release point (which was also the correct nest position). In
the next step, searches were interpolated with cubic splines using
the Matlab ‘spline’ command to allow total path length to be
calculated. The paths were resampled using the simulation time
step, retaining the individual speeds of the different ants. Mean
walking speed was 0.248 ms�1 with standard deviation 0.032.
The resampled paths were played back in the same manner as the
spiral and Lévy searches except that no recording or executions
errors were applied (i.e. s2

exe ¼ s2
rec ¼ 0:0), since the searches must

already contain the effects of the PI errors the ants were subject
to. The real searches began without first having performed any
preceding foraging excursion and are therefore expected to have a
minimal initial PI error. To generate an initial error (thus simulat-
ing a preceding excursion) the initial PI error, e0, was randomly
sampled in the same manner as for the other search models, see
Eq. (6), and the searches were replayed starting from â0 ¼ t and
a0 ¼ t�e0. Without some initial error the replayed ant searches,
and indeed all the search models, must always start at the true
nest position, and therefore immediately find the nest with high
probability.

2.5. Estimation of the error rate

An estimate of the PI error rate in C. fortis was obtained from
experiments where ants had walked different distances before
beginning to search for the nest (Merkle et al., 2006b). Ants were
trained to a feeder 5 m (n¼51), 10 m (n¼53) or 20 m (n¼50)
south of the nest. After at least a day of training ants were captured
at the feeder, released in the remote test area (see above), and
allowed to home and search for the nest under conditions where
PI was the only viable navigation strategy (see Fig. 2c). Three
hundred seconds of homing and search were recorded for the
5- and 10-m ants and 600 s for the 20-m ants. As described above
(see Section 2.4), these trajectories were transformed into Cartesian
coordinates. The median x and y coordinates of the entire search
pattern where taken to indicate the ants’ estimate of the nest
position. The patterns usually consist of a small number of loops
appearing to branch out from a central position, hence the median
was selected as the averaging method to reduce the influence
of individual loop directions (Merkle and Wehner, 2009b). Fig. 3
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shows the variance of the x and y coordinates as a function of the
round-trip distance walked prior to search, along with 95% con-
fidence intervals. The x coordinate indicates position orthogonal to
and the y coordinate parallel to the nest-feeder direction. Hence y

variation arises from under- or over-running the correct homing
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Section 2.6 for details). Plots show mean and 95% confidence interval of the estimated o

Archimedean spiral search, spiral rate parameter cspiral; Lévy loop search, loop length p
distance, whereas x variation arises from deviations to the left or
right of the correct position. A straight-line was fitted to the six data
points using the least-squares method. Assuming a mean walking
speed of 0.25 m/s the slope corresponds to a variance increasing at a
rate of s2

err ¼ 0:042 m2=s. The fitted variance for a journey of zero
length is �0.015 m2, i.e. close to zero as assumed by the model. We
prefer to treat this error rate estimate as more of an upper bound
than an unbiased estimate for several reasons. Firstly, an ant may
deviate from the geometrically expected search position deliber-
ately, perhaps in order to search for memorised nest cues which
are obviously absent in the test area. Secondly, positional error
should, of course, be assumed to continue accruing during a
PI-guided systematic search, but here we have fitted the straight
line to the graph as if the positional error estimated from the whole
search pattern were due only to the error accumulated during the
pre-search portion of the journey. A more accurate method would
also need to take account of the drift occurring during the search
itself.

2.6. Comparison of search methods

Unless otherwise stated, all simulated searches were con-
ducted using the following parameter values: 1 s per simulation
timestep, search duration ns¼300 s, 0.1 m per simulation distance
unit (i.e. 100 PDF values per square metre), animal speed
l¼ 0:25 m=s, maximum detection probability a¼ 0:95, detection
range b¼ 0:2 m, detection drop-off g¼ 7, pre-search foraging
time n0 ¼ 100 s (equivalent to a round trip to a feeder 12.5 m
away assuming 0.25 m/s walking speed), search failure cost cf¼5
resource units. In the absence of any relevant experimental data
to assign the error rate between execution and recording error, for
a given error rate, s2

err, the execution and recording error rates
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Fig. 5. Mean search performance plotted with 95% confidence intervals, as a

function of error rate for the four search methods: Bayesian, Lévy loop, spiral,

anchored random, and for recorded C. fortis search patterns. n¼500 searches

(Bayesian), n¼2000 (Lévy, spiral, random), n¼10 (ant search replay, each search

replayed 100 times). For search methods Lévy, spiral and random, search

parameters are set using the estimated optimal values previously obtained, see

Fig 4. Search time 300 s. Detection range 0.2 m, animal walking speed 0:25 m s�1,

mean ant walking speed 0:2479 m s�1 (with s¼ 0:0315). Resource accumulation

rate (mmax) calculated assuming: foraging time 100 s, failure cost five resource

units.
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were assigned an equal share: s2
exe ¼ s2

rec ¼ s2
err=2. There is insuf-

ficient experimental data available to accurately determine the
detection function parameters, although a range as low as 2–3 cm
would be consistent with observations of returning foragers
passing close to the nest entrance without entering it (Merkle,
personal observations). Unfortunately using a value this small
would require a spatial resolution for the PDF that would make
the Bayesian search method run extremely slowly. Instead we
have chosen a larger value which allows the model to execute at a
reasonable speed, allowing the elucidation of the search perfor-
mance over a range of error rates.

In order to compare the search efficiency of the various models
across a range of error rates, it is necessary to estimate the
optimal parameter values for models 2–4 as a function of the
error rate. For each of a series of error rates between 0 and
0.04 m2/s, optimal parameters were estimated as follows (see
Fig. 4 for the error rates tested and the parameter values
obtained).

For the two search methods requiring a single parameter to be
optimised (i.e. pcentre for anchored random search and cspiral for
spiral search), a stratified random sample of 30 parameter values
was generated by dividing the parameter range [0, 1] into 30
equal strata and picking one random value within each. The
search performances were estimated by simulating 30 searches
and taking the mean mmax for each parameter value. The value
giving the highest search performance was retained as an esti-
mate of the optimal parameter value. This whole procedure was
repeated 30 times in total, giving 30 independent estimates of the
optimal parameter value. The mean of the 30 estimates was used
as the optimal parameter value for the error rate being tested.
This averaging procedure was found to be more robust than
simply using the parameter value which gave the highest
resource accumulation rate owing to the significant influence of
noise on performance, especially for large PI error rates. Plots of
the performance against parameter values for each error
rate (data not shown) did not give any indication that the
performance curves were bimodal, and therefore the average of
multiple estimates ought to give a good approximation of the true
optimum.

For the Lévy loop search three parameters require optimisa-
tion. It would be too computationally expensive to stratify each
parameter into 30 bands and sample from all 303 regions of
parameter space, therefore a modified procedure was used.
Firstly, rough estimates of the optimal parameter values were
generated using a simplified version of the procedure for the
single parameter models: for each error rate 30 sets of the three
parameters were generated using simple random sampling
with uniform probabilities within the respective ranges (lminA
½0:001,2:0�, lmaxA ½lminþ0:1,lminþ10�, bA ½1;3�) instead of strati-
fied random sampling. The rest of the rough-estimate procedure
was the same as that just described for the single parameter
optimisation. These rough estimates enabled the parameter
ranges to be narrowed down somewhat to lminA ½0:001,2:0�,
lmaxA ½lminþ0:1,lminþ6�, bA ½1:7,2:6�. These ranges were then each
stratified into 5 bands of equal width, giving 53

¼ 125 regions of
parameter space in total. Now the procedure was followed again:
a stratified random sample of 125 parameter sets was chosen,
picking one each from the 125 regions. Search performance was
estimated by simulating 30 searches for each. The parameter set
giving the best performance was taken as an estimate of the
optimum parameter set. This sampling process was repeated 30
times in total giving 30 independent estimates of the optimum
parameter set. The mean of each parameter across these 30 sets
was taken to be the optimum.

The estimated optimum parameter values were plotted along
with a 95% confidence interval against the error rate. Fig. 4 shows
the mean and confidence interval for the estimated optimal
parameter values for the three search methods.
2.7. Implementation details

The Bayesian model (model 1) defined in Section 2.3 was
implemented in Matlab (Version 7.3.0.298, R2006b). Several
refactorisations were made in the implementation which did
not alter the behaviour of the model in anyway but allowed the
code to execute significantly faster. In order to speed up the
calculation of the dot product ŝk ¼ Pk � DðâkÞ the following
changes were made. Column vector Pk was implemented as a
two-dimensional matrix, fPkg, where position within the matrix
corresponded to the spatial coordinate of zi. Column vector
function DðâkÞ was similarly implemented as a two-dimensional
matrix, fDg, where position within the matrix corresponded to the
spatial coordinate of zi. For notational convenience D was origin-
ally defined as a function of âk, but a more efficient implementa-
tion is to take advantage of the fact that the detection
probabilities are a function of range, and simply translate around
in space as the animal moves. Therefore to avoid having to
recalculate fDg as âk changed, the values were calculated once,
corresponding to the case Dðv0Þ and the translation of the
function in space was implemented by effectively translating
fPkg relative to fDg as shown in Fig. 1. In order to calculate the
dot product ŝk ¼ Pk � DðâkÞ the correct region of overlap, if any,
between the two matrices fPkg and fDg was deduced from the
values of t and âk as shown in Fig. 1. If there was no overlap ŝk

was assigned a value of zero, otherwise the dot product was



R.J. Vickerstaff, T. Merkle / Journal of Theoretical Biology 307 (2012) 1–1912
calculated within the region of overlap only, indicated by the
shaded area, since at least one of the two matrix values must be
zero outside this area. In this manner fPkgwas treated as a PDF for
Fig. 6. The 300 s search patterns generated using the Archimedean spiral, Lévy loop

0:02 m2=s as indicated in the figure. In all cases the initial error is s2
init ¼ 100s2

err. The sm

true target location.

Fig. 7. The 300 s search patterns generated using the Bayesian search method with an

replay of a recorded C. fortis search with a simulated initial positional error consistent

search. Axes indicate position in metres from the true target location. Note that only t

execution and recording errors (see Section 2.4).
the position of âk�ek ¼ ak and fDg defined the detection cap-
ability centred on position t as if the target were detecting the
animal, but since detection is purely a function of range this gives
and anchored random search methods with an error rate of s2
err ¼ 0:0,0:002 and

all circle indicates the start of the search. Axes indicate position in metres from the

error rate of s2
err ¼ 0:0,0:002 or 0.02 m2/s as indicated in the figure, compared to a

with the same respective error rates. The small circle indicates the start of each

he starting position of the replayed ant search varies due to the lack of simulated
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the same result as for the animal detecting the target. The
indexing of elements in fPkg by spatial location must be mirrored
for both axes, since the error ek is subtracted from âk not added.

A second significant speed up of the model was achieved by
avoiding the costly matrix multiplication Pkþ1 ¼ TQ k. Instead the
two-dimensional matrix fQ kg (analogous to fPkg but for column
vector Q k) was used to calculate fPkþ1g by the convolution of
the appropriate two dimensional Gaussian blur kernel, defined
by s2

err, which was further sped up by implementation as two,
linearly separated one-dimensional blur kernel operations.
3. Results

Fig. 5 shows resource accumulation rates, mmax, with 95%
confidence intervals, plotted against the error rate for all the
Fig. 8. The animal’s internal PDF after 150 s of search with an error rate of s2
err ¼ 0:002,0

search method (also indicated in the figure) from top to bottom is: Archimedean spira
search models where models 2–4 use parameter values optimised
to the error rate. Given the large uncertainties in the correctness
of the modelling assumptions and parameters, the quantitative
values of the replayed C. fortis search resource accumulation rates
should not be considered reliable. For example, under natural
conditions a C. fortis ant can usually search for longer than 5 min
before dying of exhaustion (but this time limit is imposed by
our available data), may be able to make use of other
homing strategies than PI under some circumstances and may
find food closer to the nest than the distance here assumed etc.
The four algorithmic search models 1–4 are being compared
under exactly the same conditions, and therefore, for the para-
meter values chosen, the relative performances are correct and
meaningful. Firstly we will summarise the results of the search
models 1–4, then secondly compare these to the replayed ant
searches.
:01 or 0.04 m2/s as indicated in the figure. The width of the PDF shown is 17 m. The

l, Lévy loop, anchored random and Bayesian search.
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Fig. 5 shows, as expected, search performances start practically
the same for an error rate s2

err ¼ 0, since this entails that the
animal always starts directly on the target and need only move
away moderately slowly in order the have multiple time steps
Fig. 9. Maximum spatial extent of the Bayesian search as a function of error rate.

The distance is the maximum magnitude of the HV (âk) encountered over the first

75, 150, 225 and 300 s of search respectively. The value shown is the mean of this

value (plus 95% confidence intervals) from a sample of n¼100 searches.

Fig. 10. The 300 s search patterns recorded in nine Cataglyphis fortis ants. See Fig. 7 for t

of each search. Both axes indicate distances in metres from the release point. The sea

searches plotted as radial distances over time.
during which detection can occur with high probability. With
increasing error rate the performances spread out to generally
significantly different values, and then gradually converge
towards equal performances for the highest error rates. Bayesian
search significantly outperforms all other models for error rates
below s2

err ¼ 0:02 m2=s and its performance is never exceeded at
any error rate. With a few interesting exceptions Lévy loops are
second best, then spiral search, then anchored random search.
The anchored random method is always worst or equal worst. The
spiral method outperforms all the other non-Bayesian models at
0.002, then declines in relative performance until at 0.01 it only
exceeds the random search and at 0.03 begins to equal it. This is
consistent with the expectation that this strategy is only suitable
for low error conditions (since the efficiency of a spiral search
which never returns to the centre is predicated on the assumption
that the target will be detected on the first encounter), although
it still outperforms the random search over a large range of
error rates.

Direct comparison between search models 1–4 and the
recorded ant searches is made difficult by the uncertainties in
the parameter values best suited for modelling the ants’ PI
capabilities. The PI error rate was only estimated as an upper
bound, implying only that the correct value is likely to be
somewhere within the range tested. For technical reasons the
nest detection range has been set above the value suggested by
observations and in addition uncertainty remains as to which
cues the ant uses to localise the nest and at what range. Only
300 s of search were recorded whereas ants can continue to
search for much longer than this under natural conditions
he first search pattern of the ten-search data set. The small circle indicates the start

rches are plotted with no simulated errors of any kind. See Fig. 14 for the same
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(Müller and Wehner, 1994; Wehner and Srinivasan, 1981), there-
fore the simulation is likely to overestimate the value of wf, the
probability of search failure, and therefore exaggerate the influ-
ence of the search failure cost, cf, (itself chosen without empirical
data) on the resource accumulation rate. The pre-search foraging
time is best kept to a minimum (approximately zero) for the
purposes of recording ant search patterns, whereas the simulation
requires that the animal begins searching with some positional
error, otherwise the target will be found immediately. Therefore
the simulation adds a random positional offset at the start of the
ant search replay to simulate a preceding foraging period with
associated PI error. This has the effect that the search efficiency is
tested under conditions where the initial uncertainty is likely to
be greater than that assumed by the ant when it began its search.
An additional feature of the experimental paradigm used to
record the search patterns (Merkle and Wehner, 2008) is that
the ants were disturbed (captured and displaced) prior to begin-
ning their searches. It is clear the ants registered some distur-
bance since, otherwise, when released they would have continued
heading towards the presumed feeder position. Given the docu-
mented flexibility in the search patterns, it is plausible that any
registered disturbance is capable of causing search pattern
adaptation. Therefore, although we have endeavoured to mini-
mise the PI error initially present when search began, we do not
know how much positional uncertainty the ants have registered
or how this effects the search pattern.

We therefore consider the calculated search performance of the
recorded search patterns to be rough estimates, with significant
Fig. 11. The 300 s search patterns generated using the Bayesian search method with a

s2
init ¼ 100s2

err. The small circle indicates the start of each search. Axes indicate positio
scope for future refinement of model parameters. For error rates
above 0.006 the estimated performance is very similar to the
Bayesian method, being slightly inferior below 0.02 and slightly
superior above 0.02. Below 0.006 estimated performance is signifi-
cantly below the Bayesian method (perhaps indicating the ants are
experiencing an ongoing error rate larger than 0.006). If the nest
detection capabilities of the ant have been poorly estimated then the
Bayesian search will have an advantage since it automatically adapts
to exploit the actual detection capabilities defined by the parameters
whereas the ant searches will presumably be optimised to the actual
nest detection capabilities of the ant, resulting in either over or
under searching in the simulation.

Figs. 6 and 7 show three search patterns generated for each
search method using error rates of 0.0, 0.002 and 0.02 m2/s. For
the case of the ant search replay the same search pattern is shown
for all three error rates, in order to illustrate that the search
pattern shape is not perturbed by any additional noise during the
replay process (i.e. s2

err ¼ 0). Since the search pattern shape must
already incorporate the effects of errors the ant actually experi-
enced, only an initial positional uncertainty s2

init of equal magni-
tude to that applied to the other search models is used. Fig. 8
shows the animal’s internal PDF after 150 s of search for three
error rates of 0.002, 0.01 and 0.04 m2/s for each search method
except the ant replay (since the PDF is not meaningful here). Fig. 8
clearly shows that for the spiral search the PDF after 150 s has a
pronounced maximum at the centre, to which the animal never
returns, indicating that it has a tendency to miss the nest and
spiral out beyond it. Fig. 9 shows the automatic adaptation of the
n error rate ranging from s2
err ¼ 0:0 to s2

err ¼ 0:04 m2=s and with an initial error of

n in metres from the true target location.



Fig. 12. The 300 s search patterns generated using the Bayesian search method with an error rate ranging from s2
err ¼ 0:0 to s2

err ¼ 0:008 m2=s, all with the same initial

error of s2
init ¼ 1 m2. The small circle indicates the start of each search. Axes indicate position in metres from the true target location. The zero error rate search resembles

an Archimedean spiral with occasional changes in spiral direction.
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Bayesian search to produce broader searches as the error rate
increases. This is due to both a broader initial error PDF and to a
faster spreading out of the error PDF during search. The plot
shows the maximum value of 9âk9 encountered over the first 75,
150, 225 and 300 s of search respectively.

To facilitate visual comparison of the search patterns produced
by the Bayesian model and the ant, Fig. 10 shows the nine remaining
ant search patterns (see Fig. 7 for the first) and Fig. 11 shows nine
Bayesian model searches generated using zero initial positional
uncertainty and an error rate of s2

err ¼ 0:02. Figs. 13 and 14 also
show plots of the radial distance of the animal from the target
location over time for all four models and for the recorded ant
search patterns.

The Bayesian search has a number of interesting properties. It
automatically adapts to the error rate and the initial uncertainty level
without the need for explicit adaptation of any parameter, includ-
ing approximating an Archimedean spiral for very low error
rates (Fig. 12). Watching animations of the changing PDF a
momentum-like property becomes apparent where the search
tends to continue in the same direction despite the lack of any
explicit orientation variable in the model, due to the place it has
recently searched having the lowest probability values. The method
has no long range planning since it looks only one timestep ahead
and therefore cannot deliberately cross a low probability area to
reach a more favourable location, but ‘momentum’ appears to help
with this somewhat.
4. Discussion

A simple Bayesian search heuristic, based on maximising the
probability of finding the target during the next timestep and
employing Bayesian updating of a PDF of the PI error, has been
shown suitable for generating target searches that resemble the
systematic search patterns seen in C. fortis ants, and which auto-
matically adapt to increases in positional uncertainty to perform
wider search patterns. Since the method only considers one timestep
ahead, it is not guaranteed to generate strictly optimal searches, but is
easily able to outperform three simpler search heuristics based on the
Archimedean spiral, Lévy loops and anchored random movements. A
more complex model might plan several moves ahead, or employ a
global measure of the reduction in positional uncertainty, such as the
entropy of the error PDF (cf. Vergassola et al., 2007). However, the
model already employs a costly high spatial resolution PDF, and as
such may be considered a more elaborate system than many
biological navigators are likely to possess. In this regard it might be
useful to test whether similar models using a lower spatial resolution
PDF can still produce efficient searches, or whether some simple
movement pattern heuristic is capable of approaching the efficiency
of the present model without using a PDF at all. Three existing models
of C. fortis searching exist (Wehner and Srinivasan, 1981; Müller and
Wehner, 1994; Vickerstaff and Cheung, 2010), as well as one for H.

reaumuri (Alt, 1995), and are comparable to the three non-Bayesian
search methods investigated in this account, in that they generate
searches without the use of an explicit PDF. Using the quantitative
search efficiency methods presented in the present account, these
search models can now be systematically compared and their search
efficiency measured under a range of conditions. Further experimen-
tal measurements of the PI error rate and nest detection capabilities
of C. fortis would be beneficial, along with any data capable of testing
whether our chosen measure of search efficiency, the mean resource
accumulation rate, is biologically appropriate.

Quantitative methods for characterising and comparing search
pattern shapes would be beneficial. One obvious possibility would



Fig. 13. Plot of the true radial distance (solid line) and the animal’s estimate of the radial distance (dotted line, equal to solid line where not visible) from the target location for

the Archimedean spiral, Lévy loop, anchored random and Bayesian search methods for three different error rates s2
err ¼ 0:0,0:002 and 0.02 m2/s. In all cases s2

init ¼ 100s2
err.
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be to measure the time spent making radial versus orbital move-
ments with respect to the central nest position. In such a scheme the
Archimedean search represents the orbital extreme and the Lévy loop
model the radial with the other models intermediate. A frequency
domain analysis of the radial distance from the nest is another
possible approach. If search pattern shapes can be characterised
precisely enough perhaps a large sample of recorded search patterns
can enable a statistical comparison with model-generated patterns,
allowing the validation or falsification of models. This approach has
the advantage of requiring only the search pattern shape of the
animal under study, and does not need the direct measurement of the
target detection range or PI error rate etc in the animal. The lessons
learned from the search for Lévy flights in recordings of large scale
movements (Humphries et al.,) may be relevant, such as awareness of
the possibility that the data may represent two or more distinct
strategies.

Hoffmann’s (1983a) analysis of searching in the desert isopod
H. reaumuri makes use of an optimal search plan calculated using
search theory, based on the treatment of the problem as a
stationary-target optimal search density problem (Stone, 1989).
Such an optimal search plan is derived by assuming that searching
effort can be freely divided between spatial locations without
constraint. As such it can be considered as an upper bound on the
realisable search performance, since a real searcher can only be at
a single location at any one time (Alt, 1995), and must follow a
definite path which it executes with some degree of uncontrollable,
cumulative positional error. Given the conditions under which both
the isopod and the ant are searching, the best orientation strategy
available appears to be a compass-ASVR PI system (see Section 2.1).
Given this assumption we have outlined our reasons for thinking the
search problem is even then, in the general case, actually more akin
to the much harder moving target, optimal searcher path problem
(Stone, 1989), because (compass-ASVR) PI errors can be treated
mathematically in much the same way as a randomly moving
target. Whether the error rates encountered in nature are low
enough for the simpler stationary-target optimal search density
problem to describe the situation adequately remains to be demon-
strated. If the animal lacks a compass-ASVR PI system then,
presumably, the discrepancy between the ideal search plan and
the animal’s ability to approximate it will degrade even more
rapidly as the level of noise increases and as the search lengthens
owing to the inevitable drift between the reference frame of the
search plan and the animal’s actual position.
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Fig. 14. Plot of the true radial distance from the release point against time for nine of the recorded C. fortis search patterns. See Fig. 10 for the same searches plotted

spatially.
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