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Highlights: 

 Mathematical models are vital tools for understanding molecular regulatory networks 

 Logical models give qualitative insights but lack quantitative details 

 Piecewise-linear ODE models can be improved by smoothing the step function 

 A ‘standard component’ approach is both flexible and accurate 

 Stochastic differential equations can capture mRNA noise accurately and efficiently  
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Abstract:  

Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks 

have evolved over the last 50 years as both the knowledge of these molecular control systems 

and the power of computing resources have increased. Here, we review a number of common 

modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully 

non-linear ordinary differential equations, and stochastic models (including hybrid 

deterministic/stochastic approaches). We discuss the pro’s and con’s of each approach, to help 

novice modelers choose a modeling strategy suitable to their problem, based on the type and 

bounty of available experimental information. We illustrate different modeling strategies in 

terms of some abstract network motifs, and in the specific context of cell cycle regulation. 
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Introduction 

The physiological characteristics of living cells are governed by underlying molecular networks 

of bewildering complexity, from the well-known metabolic pathways described in biochemistry 

textbooks to the gene/protein regulatory networks available from WikiPathways (e.g., 

https://www.wikipathways.org/index.php/Pathway:WP414) and other web resources. These 

networks are, in essence, large systems of coupled biochemical reactions operating far from 

equilibrium, and, as such, they are dynamical systems, i.e., they describe how the concentrations 

of chemical species or the activities of macromolecules (genes and proteins) are changing in time 

and space within the cell.  

There is a long history of modeling (bio)chemical reaction networks as dynamical 

systems of interacting components, dating back at least to Alfred Lotka at the onset of the 20
th

 

century (Lotka, 1920). The dynamic modeling approach, however, really took flight in the 1960s 

and ‘70s, as new experimental facts drew attention to the complex dynamical properties of 

biochemical networks within living cells. Of special importance in this context were the 

recognition of (1) genetic switching in bacterial operons (Jacob and Monod, 1961; Novick and 

Weiner, 1957), (2) sustained oscillations in yeast glycolysis (Chance et al., 1964; Hess et al., 

1966) and in cyclic AMP signaling (Durston, 1974; Gerisch and Hess, 1974), and (3) temporal 

oscillations and spatial patterns in chemical reaction systems (Belousov, 1959; Winfree, 1972; 

Zhabotinsky, 1964). As the implications of these observations spread through the worldwide 

community of biochemists and physical chemists during an historical meeting in Prague in 1968 

(Chance et al., 1973), three theoretical approaches were quickly adopted to the challenges posed 

by spatiotemporal organization in chemical reaction systems. One approach—pioneered by 

Motoyosi Sugita (1963), Stuart Kauffman (1969) and Rene Thomas (1973)—modeled genetic 

control systems as networks of Boolean switches. A second approach—pursued by Joseph 

Higgins (1967), Brian Goodwin (1965; 1966), J.S. Griffith (1968a; 1968b), Albert Goldbeter 

with Rene Lefever and Lee Segel (1972; 1977), John Tyson and Hans Othmer (1978) and 

others—modeled metabolic and signaling networks by systems of nonlinear ordinary differential 

equations. The third approach—expounded by the Brussels school of physical chemists, Ilya 

Prigogine and Paul Glansdorff (1971) and Gregoire Nicolis (1971; Prigogine and Nicolis, 

1971)—used ideas from the field of non-equilibrium thermodynamics to describe the conditions 

under which chemical reaction systems can exhibit ‘dissipative structures’ (temporal oscillations, 

spatial patterns, etc.). This review article focuses on the first and second approaches; the third 

approach is reviewed by Nicolis & Nicolis in a contribution to this issue. 

Dynamical processes in biochemical reactions are governed, in general, by systems of 

coupled ‘rate’ equations describing the turnover of chemical species in time and their transport in 

space. In this review, we will restrict our attention to spatially homogeneous systems, for which 

the governing rate equations might be written as 

   (    )    ( )     ∑      (  ( )     ( ))
 
                (1) 

where Ci(t) is the concentration (or ‘activity’) at time t of the i-th chemical species in the reaction 

network, Rj(…) is the rate law of the j-th chemical reaction in the network (a function of the 
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activities of some subset of chemical species), and νij is the stoichiometric coefficient of the i-th 

chemical species in the j-th biochemical reaction (νij < 0 for reactants, νij > 0 for products, νij = 0 

for enzymes and ‘modulators’ of a reaction, and νij = 0 for all other species that do not participate 

in the j-th reaction in any way). 

There are many different ways to interpret Eq. (1). The time variable can be continuous 

(0 ≤ t < ∞) or discrete (t = 0, 1, 2, 3, …); the concentration variables can be continuous (0 ≤ Ci(t) 

≤ Ci,max) or discrete (say, Ci(t) = 0 or 1); the rate laws can be continuous or discrete functions of 

their arguments; and the model itself may be deterministic or stochastic. Table 1 catalogs some 

of these possibilities. In this review, we will discuss the properties—including the ‘pros’ and 

‘cons’—of modeling biochemical reaction networks by these different approaches. We use a few 

simple ‘network motifs’ and ‘reaction mechanisms’ to illustrate the general principles of each 

approach. 

Network Motifs and Reaction Mechanisms 

By a network motif, we have in mind the type of ‘influence’ diagram that one typically finds in 

an experimental publication (see Fig. 1A). In a network motif, the icons represent chemical 

species (genes, RNAs, proteins, metabolites), and the connectors represent the influences (barbed 

connector = activation, blunt connector = inhibition) of one species on another. These diagrams 

summarize the most basic type of experimental observations made by biochemists and molecular 

biologists: if one pushes up/down on species X and observes that species Y goes up/down, then 

one concludes that X has a positive influence (‘activation’) on Y, whereas if Y goes down/up, 

then X has a negative influence (‘inhibition’) on Y. A few simple motifs with two or three 

components, as illustrated in Fig. 1A, will provide examples for this review. For a more detailed 

review of network motifs in biochemical systems, see Tyson & Novak (2010), or the book-length 

treatment of the subject by Uri Alon (2007).  

With additional experimental evidence, the positive and negative effects cataloged on 

influence diagrams can be assigned to specific types of biochemical reactions. For example, (1) a 

metabolite X may be an allosteric modifier (an activator or inhibitor) of an enzyme E that 

synthesizes Y from a precursor biochemical. (2) The expression of gene X may induce or repress 

the expression of gene Y. (3) The transcription of an mRNA molecule Y may be repressed by the 

expression of its anti-sense counterpart YAS. (4) A transcription factor X may activate or inhibit 

the expression of the gene encoding protein Y. (5) A protein kinase X may phosphorylate a 

protein Y and thereby change the activity of Y. (6) X may be a protease that degrades Y. 

Because of this variety of possible reaction mechanism for any sort of positive or negative 

‘influence’, there are a variety of possible biochemical realizations of any particular network 

motif. For example, Fig. 1B shows four different ways to instantiate motif 1A(i) in biochemical 

reactions. 

Boolean Network Models  

One popular approach to model switching networks is to represent all gene (or protein) states by 

Boolean variables Ci. In this approach Ci =1 if gene i is being expressed (or protein i is ‘active’ 
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or ‘present’) and 0 if gene i is silent (or protein i is ‘inactive’ or ‘absent’). The update of gene (or 

protein) states happens at discrete time steps t = {0, 1, 2…} and depends on network interactions. 

For a gene (or protein) interacting with N other components, Ci is updated as 

  (   )    (  ( )   ( )     ( )) ,      (2) 

where Bi is a Boolean function (i.e., Bi evaluates to 0 or 1) of its Boolean arguments, C1, C2, …, 

CN. The final state of the regulatory network depends, of course, on the choices of the Boolean 

functions in Eq. (2). 

In Table 2, column A, we represent the double-negative feedback motif (i) in Fig. 1A in 

terms of the Boolean functions B1 = ¬C2, and B2 = ¬C1 (where ¬ is logical negation). In this case, 

the states (1,0) and (0,1) are ‘alternative’ steady states, but the states (0,0) and (1,1) flip back-

and-forth from one time step to the next. The back-and-forth solution is an artefact of the 

symmetry of the chosen Boolean functions and our choice to update both variables at the same 

time (‘synchronous’ updating). This symmetry is usually broken by assuming that only one 

variable may change in any time step (‘asynchronous’ updating). The variable that changes may 

be chosen at random (column B in Table 2) or by giving priority to updating one or the other 

variable (which is equivalent to choosing different Boolean functions, as in Columns C and D of 

Table 2). In each of these cases, the states (1,0) and (0,1) are alternative steady states, but the 

probability that the system ends up in one or the other steady state (row 3 of Table 2) depends on 

the choices we make in terms of updating the motif. 

The Boolean functions, Bi(C1, C2, …, CN) in Eq. (2), can be evaluated by ‘truth’ tables 

(https://en.wikipedia.org/wiki/Truth_table), but they are often evaluated numerically by using a 

Heaviside function,  

       (  (           ))  {
          
          

    (3A) 

with a proper choice of coefficients in the function 

       ∑       (                                  )
 
   .   (3B) 

In this context, the coefficients in the function Wi have no particular significance or 

exceptionality; they are assigned values solely for the purpose of implementing a particular 

Boolean function. For example, to compute the Boolean functions B1 = ¬C2, and B2 = ¬C1 in 

column A of Table 2, we might choose 

     B1 = Heav(ω10 – C2), B2 = Heav(ω20 – C1),      (4A) 

where ω10 and ω20 may be assigned any values in the interval (0,1). For case B in Table 2, we 

can write 

     B1 = Heav(W), B2 = Heav(−W); W = −r+C1−C2+pC1C2+q(1−C1)(1−C2).   (4B) 

In this case, p and q are fixed transition probabilities and r is a random number, drawn uniformly 

from [0,1) at each updating step. Often, in the absence of contravening evidence, people choose 
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the symmetric case p = q = 0.5. For cases C and D in Table 2, we can compute the Boolean 

functions as  

     B1 = Heav(–ω10 + ω11C1 – C2), B2 = Heav(ω20 + ω22C2 – C1), 

with appropriate values for the coefficients; for example, 

     ω10 = 0.5, ω11 = 2, ω20 = 0.5, ω22 = 0.1, for Case C;     (4C) 

     ω10 = 0.05, ω11 = 0.25, ω20 = 0.6, ω22 = 0.5, for Case D.     (4D) 

As we have said, the precise values of these coefficients have no significance, but the values we 

have chosen here will be convenient later in the review.  

Boolean models have a number of appealing features. They are relatively easy to build 

and simulate, and their dynamic properties, though they may be unexpected, are usually easy to 

understand from an intuitive perspective. The structure of the model, i.e., the choice of Boolean 

functions, may often be derived directly from the topology of the underlying regulatory network, 

i.e., the constituent signaling motifs. And there are no kinetic parameters in the model that must 

be assigned numerical values based on experimental data. Boolean modeling is especially 

expedient when we have good reasons to draw the ‘wiring diagram’ (i.e., the motif structures) of 

a regulatory network but we lack the quantitative observations necessary to build a detailed 

biochemical representation of the network’s topology (Assmann and Albert, 2009). In this sense, 

the ‘parameter-free’ nature of Boolean models is both their greatest strength and their greatest 

weakness. They can be excellent tools for developing an intuitive appreciation of the general 

characteristics of a regulatory-network hypothesis, but they are impotent to address detailed 

quantitative questions about mechanisms and cellular behaviors. 

Given a proper recognition of their strengths and weaknesses, Boolean models have been 

used extensively and profitably to investigate the properties of important biological regulatory 

networks. Some early examples of this approach are reviewed in the Proceedings of an EMBO 

course held in Brussels in 1977 (Thomas, 1979). More recent examples include: expression of 

the segment polarity genes during fruit fly embryogenesis (Albert and Othmer, 2003), T-cell 

differentiation (Mendoza and Xenarios, 2006; Naldi et al., 2010), cell cycle progression in 

budding yeast (Faure et al., 2008; Li et al., 2004) and fission yeast (Davidich and Bornholdt, 

2008; Faure and Thieffry, 2009), and signaling networks in plant stomata (Sun et al., 2014).  

Piecewise-Linear Models 

After writing Eq. (2) as 

  (   )    ( )    (  ( )   ( )     ( ))    ( )     (5) 

we introduce a new time scale,  ̂    , and continuous variables,  ̂ ( ̂), with the property that 

  ( ̂)      ( ̂ ( ̂)    ), where Heav(x) is the Heaviside function defined in Eq. (3A). The 

parameters, θi, which lie in the interval (0,1) for all i, are ‘thresholds’ that convert the continuous 

variables,  ̂ ( ̂), into discrete variables,   ( ̂), whenever a continuous variable crosses its specific 
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threshold; i.e.,   ( ̂)    whenever    ̂ ( ̂)    , and   ( ̂)    whenever     ̂ ( ̂)   . 

With these changes, Eq. (5) becomes 

 ̂ ( ̂   )   ̂ ( ̂)     [  (  ( ̂)   ( ̂)     ( ̂))   ̂ ( ̂)]    (6) 

where the multiplicative factors εγi indicate that the continuous variables  ̂ ( ̂) change very little 

over each small time step ε. After many small time steps, however, the continuous variable  ̂ ( ̂) 
will approach either 0 or 1, if the Boolean function, Bi(…), doesn’t change. Now we divide each 

side of Eq. (6) by ε and take the limit as ε → 0. To make the resulting ordinary differential 

equation more readable, we swap hats on the Ci and t variables:  

   
  

   [  ( ̂ ( )  ̂ ( )    ̂ ( ))    ( )] 

(7) 

 ̂ ( )      (  ( )    )  {
        ( )    
        ( )    

 

 

The continuous variables Ci (t) take values between 0 and 1, representing the activities of species 

i=1,…,N. Each discrete variable  ̂ ( ) adopts the value 0 or 1 at any time t, and flips between 0 

and 1 only after many small steps in the slow time variable t, when its continuous counterpart 

Ci(t) is driven by the underlying dynamics to cross the threshold θi. The rate constant i governs 

how fast the variable Ci (t) approaches its steady state value Bi(…) = 0 or 1, depending on the 

current values of all the discrete variables  ̂ ( ). 

The system of ODEs (7) is the piecewise linear version of a Boolean model, first 

introduced by (Glass and Kauffman, 1973) and studied in a series of pioneering papers (Glass, 

1975; Glass and Pasternak, 1978). The elegant results that can be derived from this approach are 

expertly reviewed in the paper by Glass & Edwards in this issue. The nice features of PWL-

ODEs have been used to advantage by many authors in addition to Leon Glass, for example, 

Henry McKean’s PWL ‘caricatures’ of Nagumo’s equation (in the theory of nerve impulse 

propagation) (McKean, 1970) and in Uri Alon’s magisterial review of molecular regulatory 

networks in systems biology (Alon, 2007). 

In the PWL-ODE (7), the threshold surfaces, Ci(t) = θi, divide state space into 2
N
 

orthants, and within each orthant we are solving a set of linear ODEs, where some of the 

variables are tending toward 0 and some toward 1. The system evolves along these trajectories 

until it hits a boundary of the orthant, where it abruptly changes direction (see Figs. 2A,B for 

examples). The flow of trajectories in state space bears a dual relation to the state-transitions 

observed in the discrete Boolean version of the model (compare Fig. 2A to Table 2, column D). 

In the particular case of Fig. 2A, if we were to sample initial conditions uniformly distributed 

over the unit square [0,1][0,1], then the probability of ending in the state (1,0) would be 0.276 

and the probability of ending in the state (0,1) would be 0.724. These probabilities are 

comparable to an asynchronous Boolean model (Table 2, column B) with p+q = 0.1. 
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For the special case when all γi’s are identical, the trajectories are straight lines (as in Fig. 

2A), and full solutions of the PWL-ODEs can be evaluated analytically by solving a set of linear 

algebraic equations that piece together these linear trajectories across the discontinuities on the 

orthant boundaries. If the γi’s are different, then the trajectories are curved (as in Fig. 2B), and 

the piecing-together of solutions involves solving sets of transcendental algebraic equations at 

the orthant boundaries.  

An alternative way to write a PWL-ODE model is to replace the Boolean function of 

Boolean variables,   ( ̂   ̂     ̂ ( )) in Eq. (7), by a Heaviside function of a linear function of 

the continuous variables: 

   
  

   *    (  (  ( )   ( )     ( )))    ( )+ (8) 

where Wi is given by Eq. (3). In this case, there is no longer a constant threshold, θi for each 

variable, where  ̂ ( ) flips between 0 and 1, but rather a ‘null’ hyperplane, Wi(C1,C2,…,CN) = 0 

for each variable, where dCi/dt changes sign between −  (Ci decreasing toward 0) and + (Ci 

increasing toward 1). For example, in Fig. 2B we show the phase plane portrait for the ‘Case C’ 

realization of Motif 1A(i) that we introduced in Table 2, column C, using Eq. (8) to implement 

the PWL model. Notice that the lines along which Wi(C1,C2) = 0 play the role of ‘nullclines’ in 

the PWL-ODEs. In this case, if we were to take a sample of initial conditions uniformly 

distributed over the unit square [0,1][0,1], then the probability of ending in the state (1,0) would 

be 0.51 and the probability of ending in the state (0,1) would be 0.49. 

Nonlinear ODE Models  

Traditional ODE Models. The traditional approach to ODE modeling of molecular interaction 

networks is to use the basic principles of biochemical reaction kinetics to write a set of nonlinear 

ODEs for each time-dependent variable in the reaction network. On the right-hand-side of each 

ODE is a sum of terms representing the rates of accumulation and the rates of removal of each 

substance; something like this: 

   

  
        (    )         (    )           (    )         (    )    (9) 

where ν1j is the stoichiometric coefficient of species C1 in the j-th reaction, kj is the rate constant 

of the j-th reaction, and fj(C1,…) is the rate law for the j-th reaction (e.g., mass-action rate law, 

Michaelis-Menten rate law, Hill function, etc.). In the case of Eq. (9) we are assuming that C1 is 

a product of reactions 1,2,… (i.e., in the reaction network diagram there is a reaction arrow that 

points toward C1) and a reactant of reactions 3,4,… (an arrow that points away from C1 in the 

reaction network diagram). From modest beginnings in the 1960’s, there are now thousands of 

such models in the molecular-cell biology literature. The field has been thoroughly reviewed in 

research monographs by Segel (1980), Murray (1989), Goldbeter (1996), Keener and Sneyd 

(2009), and in textbooks by Edelstein-Keshet (1988), Klipp (2009), Ingalls (2013), DiStefano 

(2014), and Voit (2018). 
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The major goal of these models has been to understand how the coupling of basic 

biochemical interactions can yield the complex types of ‘information processing’ exhibited by 

living cells. Examples include (1) ‘perfect adaptation’ of signaling networks (Barkai and Leibler, 

1997; Bray et al., 1993; Levchenko and Iglesias, 2002; Segel et al., 1986; Tang and Othmer, 

1994), (2) ‘alternative fates’ of differentiating cells (Busse et al., 2010; Hong et al., 2015b; Tian 

et al., 2013; Wang et al., 2014), (3) ‘oscillatory’ hormone secretion (Goldbeter et al., 2000; 

Khadra and Li, 2006; Martiel and Goldbeter, 1987; Pratap et al., 2017; Vidal and Clement, 

2010), and (4) ‘autonomous oscillations’ in circadian rhythms (Forger and Peskin, 2003; 

Goldbeter, 1995; Kim and Forger, 2012; Leloup and Goldbeter, 2003; Leloup and Goldbeter, 

1998; Relogio et al., 2011; Tyson et al., 1999). From decades of modeling with traditional 

biochemical rate laws, some basic principles of complex signal-processing by molecular 

regulatory networks have become clear (Novak and Tyson, 2008). First of all, the topology of the 

reaction network is crucial; for example, incoherent feedforward loops for perfect adaptation, 

positive feedback (mutual activation or mutual inhibition) for multiple stable steady states, 

negative feedback loops for oscillations. Secondly, the molecular interactions in these networks 

must be ‘sufficiently’ nonlinear. For example, a sufficiently steep sigmoidal function for gene 

expression may be described by a Hill function with a large exponent (say, n ≥ 4). Substrate 

processing described by Michaelis-Menten rate laws exhibits ‘ultrasensitivity’ when the 

Michaelis constants are small with respect to the substrate concentration (the so-called 

Goldbeter-Koshland function) (Goldbeter and Koshland Jr., 1981). Protein activation can exhibit 

steep sigmoidal responses when the protein is phosphorylated on multiple amino acid sites 

(Kapuy et al., 2009; Salazar and Hofer, 2007). Third, the rate constants and binding constants 

governing the rates of these constituent reactions must be set within distinct limits to yield the 

desired outcomes.  

 

There is essentially no limitation to the breadth and molecular detail that can be 

represented by models of this type, when the reaction network, kinetic rate laws, and rate 

constant values are known in sufficient detail. These models can be extremely powerful and 

informative. Nevertheless, they can be difficult to build, to parametrize and to comprehend. 

Some simpler approaches that strike a balance between the intuitive appeal—but limited 

applicability—of Boolean-type models and the limitless potential—but demanding constraints—

of comprehensive biochemical models may be warranted. 

Soft-Heaviside ODE Models. PWL-ODE models occupy this middle ground, but the 

discontinuities inherent in the piecewise-linear approach preclude the application of many 

analytical methods from the theory of (continuous) nonlinear ODEs. To take advantage of the 

powerful tools of nonlinear dynamical systems, we need to smooth out the discontinuities of 

PWL-ODE models; for example, by replacing the Heaviside function, Heav(Wi) in Eq. (8), by a 

smooth sigmoidal function, H(Wi),  

   

  
   * (  (  ( )   ( )     ( )))    ( )+     (10) 
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where Wi is given by Eq. (3B) (usually linear terms suffice). In developmental biology, this 

‘connectionist’ approach was pioneered by Mjolness et al. (1991). A convenient ‘smooth 

sigmoidal function’ to use in this approach is the ‘soft Heaviside’ function 

  (    )  
 

     (     )
 .        (11) 

The redundant parameter σi is introduced to modulate the ‘steepness’ of the soft Heaviside 

function, independently of the parameters defining Wi.  

An advantage of the soft-Heaviside function is that it can be parametrized to closely 

resemble the nonlinearity of a Hill function or zero-order ultrasensitivity or multisite 

phosphorylation. Hence, a soft-Heaviside model can be expected to give results comparable to 

traditional modeling of standard biochemical reaction mechanisms. In situations where the origin 

of nonlinearity in a mechanism is not obvious, then it is as reasonable to use a soft-Heaviside 

function as a Hill function or a Goldbeter-Koshland function. Indeed, it may be desirable to use a 

generic sigmoidal function, like Eq. (11), rather than a specific function like Hill or Goldbeter-

Koshland. Notice that H(σiWi) approaches the discontinuous Heaviside function in Eq. (8) in the 

limit as σi → ∞.  

In this formalism, the coefficients in the function Wi take on a new meaning. They are no 

longer somewhat arbitrary numbers introduced simply to generate a Boolean function of the Ci’s 

when Wi is run through the Heaviside filter. Now they can be interpreted as ‘model parameters’ 

whose values characterize the topology of the regulatory motif and the strengths of the 

interactions. Thus, ωij > 0 if species j activates species i, ωij < 0 if species j inhibits species i, ωij = 

0 if species j has no effect on species i. The magnitudes of the ωij’s indicate the relative strengths 

of the interactions. The value of ωi0 determines whether species i is active or inactive when it is 

receiving no inputs from any species in the network.  

The PWL models of Motif 1A(i) in Figs. 2A, B are compared in Figs. 2C, D with the 

soft-Heaviside (‘soft-H’ hereafter) versions of the same models. The soft-H models smooth out 

the ‘kinks’ in the PWL models. In Fig. 3A, B we present soft-H models of Motifs 1A(ii) and 

1A(iii).  

Motif 1A(ii) is often used to model cell-differentiation processes e.g., Hong et al. (2011; 

2012), where the alternative stable steady states (C1≈1, C2≈0 and C1≈0, C2≈1) represent two 

alternative differentiated states (e.g., epithelial vs mesenchymal cells, or granulocytes vs 

monocytes). Typically, this motif has two other (potentially stable) steady states: a naïve, 

undifferentiated state (C1≈0, C2≈0) and a hybrid, dual-expressing state (C1≈1, C2≈1). When a 

naïve, undifferentiated stem cell is exposed to a certain cocktail of signaling molecules, it can be 

induced to differentiate into one or another of the three terminally differentiated states. In the 

example in Fig. 3A, a population of naïve cells (in the lower left corner) is exposed to a strong 

differentiation signal that supports three stably differentiated states. The fate of any particular 

naïve cell depends (in the case of this deterministic model) on its precise initial conditions. 

Under other assumptions, the fate may depend on small differences in parameter values in 
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individual cells, or on stochastic fluctuations in molecular abundances during the differentiation 

process.  

By modeling molecular regulatory networks with continuous, nonlinear ODEs, such as a 

soft-H model, we gain access to all the powerful analytical tools of dynamical systems theory  

(Edelstein-Keshet, 1988; Kuznetsov, 1995; Strogatz, 1994), such as phase-plane analysis (as in 

Figs. 3A,B) and bifurcation diagrams. These tools reveal how the dynamical properties of a 

model depend on the values of numerical parameters in the model. One of the most powerful of 

these tools is the one-parameter bifurcation diagram, which displays the dependence of the 

asymptotic states of a dynamical variable (both steady-state and periodic solutions) on the value 

of a ‘bifurcation parameter’ in the model. Typically, the bifurcation parameter is chosen to be a 

quantity that is under experimental control (such as the concentration of an ‘inducer’ in the 

bathing medium of the cells, or the level of expression of a gene with an inducible or repressible 

promoter), and the dynamical variable is chosen to be a protein with a major controlling 

influence on cell behavior (such as a ‘master’ transcription factor or a ‘checkpoint’ protein). The 

one-parameter bifurcation diagram shows how the output—the ‘response’—of the control system 

(the activity of major controlling protein) depends on the input—the ‘signal’—to the control 

system. In this interpretation, a one-parameter bifurcation diagram is the precise mathematical 

representation of a typical ‘signal-response’ curve measured experimentally. 

To illustrate the utility of one-parameter bifurcation diagrams we use them to characterize 

the behaviors of Motifs 1A(ii) and 1A(iii) in Figs. 3C, D. In Fig. 3C we show how the steady-

state activity of the response protein, C1, depends on the strength of the differentiation signal, S.  

At S=0, the only stable state is the naïve state (both C1 and C2 small). As S increases, two 

alternatively differentiated states (C1 large, C2 small; and C1 small, C2 large) are created at 

saddle-node bifurcations (at S=0.04), but initially the naïve state is very stable to perturbations. 

(For a brief description of some common types of bifurcation points, see Table 4.) Only when the 

naïve state disappears, at a pitchfork bifurcation at S=0.28, will the stem cells be forced to 

differentiate to one or the other of the alternatively differentiated states. (In this simulation, 

because of the symmetry of the parameter values we have chosen, the naïve cells have a 50:50 

chance of going in one direction or the other.) For larger values of signal strength (S > 0.43), a 

stable dual-expressing state (both C1 and C2 large) appears, and the phase-plane portrait of the 

system has the appearance of panel A, until S exceeds 0.67, after which the only stable steady 

state is the dual-expressing state. The soft-H modeling approach has the advantage of being able 

to trace out, using one-parameter bifurcation diagrams, all the subtle relations among 

differentiated states and signal strengths, and to explore the effects of broken symmetries on the 

behavior of the regulatory network (Hong et al., 2011; 2012). Two-parameter bifurcation 

diagrams can be used to illustrate the response of a control system to the simultaneous 

manipulation of two signals, for example, a primary differentiation signal, S1, and a secondary 

‘polarizing’ signal, S2, as in Hong et al. (2015a). 

Motif 1A(iii) is often used to model spontaneous oscillations (e.g., Fig. 3B) in systems 

with positive and negative feedback loops (Novak and Tyson, 2008; Tsai et al., 2008). In Fig. 3D 

we use a one-parameter bifurcation diagram to show a typical scenario for the ‘onset’ and 
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‘demise’ of oscillations in motif 1A(iii). As signal strength, S, increases, stable limit cycle 

oscillations arise at a Hopf bifurcation at S=0.825. The oscillations quickly grow to large 

amplitude and persist until S=1.3, where the limit cycle is extinguished at a saddle-node 

homoclinic bifurcation, where the period of the oscillation goes to infinity. Motif 1A(iii) is 

especially prone to exhibit bistability as well as oscillations, and to a host of complex bifurcation 

scenarios generated by potential interactions between bistability and oscillations. For example, 

the complex ‘tableau’ of phase-plane portraits presented by Guckenheimer (1986) in his figures 

7 and 8 are readily recreated by this soft-H model. 

Soft-H models have many advantages over Boolean and PWL-ODE models. They are 

readily formulated, because the structure of the ODEs is derived directly from the topology of 

the motif through the Wi functions. The ωij parameters now have a biophysical meaning in terms 

of the relative strengths of the interactions between species i and j. These parameter values can 

now be adjusted to fit the output of the model to quantitative and qualitative experimental data 

(e.g., measured time courses of certain species Ci(t), or phenotypes of genetically mutated 

strains). Once the parameter values have been estimated from experimental data, the model can 

be used to make quantitative predictions about the outcome of novel experiments.  

Soft-H models of this sort have been used by many investigators in the past. In an early, 

innovative approach, Mendoza and Xenarios (2006) combined discrete dynamical modeling (a 

Boolean network) with continuous ODEs (with soft-H nonlinearities) to study a complex model 

of T-cell differentiation. Nelander et al. (2008) and Molinelli et al. (2013) used soft-H models in 

their ambitious study of signaling networks in cancer cell lines. Fu et al. (2012) used soft-H 

ODEs to dissect the topologies of molecular networks that underlie priming and tolerance of  

cells of the innate immune system. 

Soft-H models need not be limited to the form of Eq. (10), with a single soft-Heaviside 

function H(σiWi). It is certainly within the ‘spirit’ of soft-H modeling to employ multiple soft-

Heaviside functions as sums and/or products to represent more complex network topologies. 

Nonetheless, there are certain limitations to this formalism that are addressed in the next section. 

‘Standard-Component’ Models. A disadvantage of Soft-H models is that each component of the 

model is described by an ODE of the form Eq. (10), which is an unnecessarily restrictive 

constraint. There is no reason why we cannot mix soft-H ODEs with more traditional 

biochemical rate equations, such as ODEs for protein synthesis and degradation (→ Xj →): 

  
   

  
       (     )        (     )          (12) 

or ODEs for bimolecular complex formation and dissociation (Xj + Xk ↔ Zjk):  

  
    

  
                               (13) 

We call this sort of hybrid model, mixing ODEs of the form of Eqs. (10), (12) and (13), a 

‘standard-component’ model (SCM) (Laomettachit et al., 2016). (Note: it is not the modeling 

approach itself that is ‘standard’ but the components of the model that are ‘standardized’.) 

Underlying the idea of an SCM is the notion of a natural separation of time scales: that protein 
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synthesis and degradation, Eq. (12), occurs on a longer time scale (10 min, say) than post-

translational protein modifications (1 min or less), as described by Eq. (10), which in turn are 

slower than the formation of protein complexes, Eq. (13), which associate and dissociate in 

seconds. 

In the SCM paradigm, we often treat complex formation by a pre-equilibrium 

assumption: 

                       ,          (14) 

which we can write as 

  (       )(       )       ,         (15) 

where XjT = Xj + Zjk, XkT = Xk + Zjk, and Kd = kdissoc/kassoc is the ‘dissociation constant’ for the 

complex Zjk. Equation (13) is a quadratic equation in Zjk, whose solution is  

      
 

 
(           √(          )

 
        )  .  (16) 

In the limit of very strong binding, Kd << min(XjT, XkT), we can approximate Eq. (16) by 

  Zjk = min(XjT, XkT) .        (17) 

To illustrate the SCM approach, we study a simple motif (Fig. 4A) for regulation of entry 

into and exit from mitosis in eukaryotic cells. The model has four components: ‘CycB’ is the 

regulatory subunit of cyclin B-dependent protein kinase, the principal driver of mitosis; ‘Cdh1’ is 

a regulatory subunit of the Cyclosome, which degrades CycB as cells exit mitosis; 

Cdh1:Cyclosome remains active throughout G1 phase of the cell cycle; ‘CAP’ is a generic 

‘counter-acting phosphatase’ that must be activated to turn on Cdh1; and ‘INH’ is a generic 

stoichiometric ‘inhibitor’ of CAP. Notice that CycB and Cdh1 are locked in a mutually 

antagonistic ‘embrace’ (motif 1A(i)), which creates a bistable switch (Cdh1 ON and CycB OFF in 

G1 phase, CycB ON and Cdh1 OFF in S-G2-M phase of the cell cycle). Furthermore, CycB ---| 

INH ---| CAP → Cdh1 ---| CycB is a 4-component negative feedback loop, rather like motif 

1A(iv). Based on general properties of these four components in the eukaryotic cell-cycle control 

network (Barik et al., 2010), we use Eq. (12) to describe the synthesis and degradation of CycB, 

Eq. (10) to describe the phosphorylation and dephosphorylation of Cdh1 and INH, and Eq. (17) 

to describe the formation of stoichiometric complex between INH and CAP (Fig. 4B). 

Simulations of this SCM are illustrated in Fig. 4C, and more details are given in the legend. The 

bifurcation diagram in Fig. 4D shows how oscillations and bistability in this network depend on 

cell size, M(t). A small, newborn cell (Mbirth ≈ 1) is captured by the G1 steady state (Cdh1 ON and 

CycB OFF) and persists therein until it grows to a mass of 1.34, where the G1 steady state is lost 

at a saddle-node bifurcation. Thereafter, the cell skips onto a large amplitude limit cycle 

oscillation in CycB(t), which drives the cell through S and G2 phases into M phase. As the cell 

comes out of mitosis, CycB(t) drops below a threshold value, CycB(t) = 0.3, and the cell divides, 

(Mdivision≈2) → (Mbirth≈1), and the newborn cell resets to G1 phase.  
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More elaborate versions of the SCM approach have been used to model, in great detail, 

the molecular mechanism regulating cell cycle progression in budding yeast (Kraikivski et al., 

2015; Laomettachit et al., 2016). It is instructive to compare the SCM approach to this problem 

to other deterministic approaches: (1) Boolean models in Li et al. (2004), Davidich and 

Bornholdt (2008), and Faure et al. (2009); (2) traditional, nonlinear ODE models in Novak and 

Tyson (1993), Qu et al. (2003), Chen et al. (2004), Csikasz-Nagy et al. (2006), Gerard and 

Goldbeter (2009); and (3) a hybrid Boolean-ODE approach by Singhania et al. (2011). 

Stochastic Models  

Whenever we model molecular interaction networks within cells, we must eventually come to 

terms with the fact that living cells are very small, with limited numbers of macromolecules: one 

or two genes per cell, 5-50 mRNA molecules per gene per cell, and 500-5000 or more specific 

types of protein molecules per cell. Furthermore, living cells are spatially non-uniform 

environments, with distinct compartments (nucleus, organelles, cortex, membranes, cytoskeleton, 

etc.). Consequently, ODEs are not a realistic mathematical framework, ultimately, for modeling 

network dynamics and cell physiology. Spatial non-uniformities must be modeled with distinct 

compartments and intracellular transport processes (diffusion, advection, motor proteins, nuclear 

and cytoplasmic localization signals, etc.), and thermal fluctuations among small numbers of 

molecules must be modeled by stochastic equations. Spatial non-uniformities are beyond the 

scope of this review, but we will make a few observations about stochastic modeling. 

The most accurate way to handle stochastic fluctuations in chemical reaction systems is 

by Gillespie’s stochastic simulation algorithm (SSA) (Gillespie, 1976; Gillespie, 1977). In this 

formalism, mass-action kinetic terms are no longer treated as ‘deterministic rates of reaction’ but 

rather as ‘stochastic propensities for a reaction to occur over a small interval of time’. Given 

these propensities for an arbitrarily complex reaction network and a particular starting point in 

terms of the number of molecules of each species Ci(t) in the network at time t, Gillespie’s SSA 

computes the time interval Δt until the next reaction occurs, and the identity of the next reaction 

to occur (i.e., its index j). With this information, the network state is updated according to Ci(t + 

Δt) = Ci(t) + νij , and the procedure is repeated.  

Strictly speaking, Gillespie’s SSA is valid only for elementary reaction mechanisms 

expressed in terms of mass-action rate laws. Nonetheless, some authors (ourselves included) 

have applied SSA to non-elementary reaction steps because phenomenological rate laws (like 

Michaelis-Menten and/or Hill functions) are commonly used in deterministic models and it is 

tempting to turn a deterministic simulation into a stochastic realization simply by reinterpreting 

the kinetic rate law as a propensity of reaction. Rao and Arkin (2003) have carefully studied the 

conditions under which this ‘reinterpretation’ gives sufficiently accurate results. They found that 

the Michaelis-Menten rate law can be reinterpreted in this way under conditions under which it is 

a valid approximation in the deterministic setting, i.e., when total enzyme concentration is much 

less than total substrate concentration, [E]0 << [S]0. But the approximation is very misleading 

when [E]0 ≥ [S]0. Similarly, in a gene-expression model (autoactivation of the Cro transcription 

factor) with a Hill-like function for promoter occupancy, Rao and Arkin found that the statistics 
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of gene expression were well approximated by the reinterpretation method when dimerization of 

Cro was rapid (~seconds) compared to protein synthesis (~min) but not if the dimerization rates 

were comparable to the protein synthesis rate. These observations are especially relevant to gene-

protein interaction networks, where ‘enzymes’ and ‘substrates’ are often proteins of comparable 

concentrations in a cell, and the rates of transcription factor interactions with each other and with 

binding sequences on DNA are often unknown and unlikely to exhibit the requisite separation of 

time scales. Indeed, in our studies of gene-protein regulatory networks (Barik et al., 2008; 

Ciliberto et al., 2007; Kapuy et al., 2009; Kar et al., 2009; Sabouri-Ghomi et al., 2008), we have 

run into these problems time and time again, and we have come to the conclusion that it is not 

prudent to use these phenomenological modeling-and-simulation approximations at all, because 

the risk of computing unreliable results far outweighs the modest gains in computational 

efficiency. We recommend ‘unpacking’ phenomenological rate laws into elementary reaction 

steps before applying Gillespie’s SSA to compute realizations of a stochastic chemical reaction 

network.  

The drawbacks of Gillespie’s method are manifold. Most seriously, one must have a 

detailed biochemical reaction mechanism in terms of elementary steps, one must know the rate 

constant characterizing each step, and one must know the numbers of molecules of every species 

in the reaction mechanism. This sort of detailed knowledge is rarely available. Furthermore, 

Gillespie’s method is computationally intensive because it spends most of its time computing 

fluctuations of the fastest reactions in the network, which are often the least informative (e.g., 

rapid association and dissociation of protein complexes to establish a state of pseudo-

equilibrium). Nonetheless, we have been able to carry out ‘brute force’ Gillespie simulations of a 

detailed model of the molecular mechanism governing progression through the budding yeast 

cell cycle, with very satisfying results (Barik et al., 2016). 

Seeking a reasonable way to speed up SSA calculations without sacrificing accuracy, we 

make note of the fact that stochastic fluctuations are most likely to affect the numbers of mRNA 

molecules in a cell, because they are present at levels (N = 5-50 molecules per gene per cell) that 

are most susceptible to thermal fluctuations (standard deviation ≈ N
1/2

 ≈ 2-7). The number of 

genes per cell, though small, is not subject to stochastic fluctuations, and the numbers of protein 

molecules per cell may be large enough to buffer thermal noise, although we must consider that 

protein abundances will magnify fluctuations in mRNA numbers. To see how this comes about, 

consider the effects of thermal noise on mRNA turnover in a living cell. If mRNA synthesis and 

degradation, → mRNA → , is governed by a simple birth-death process (ks = rate of synthesis, 

molecule second
−1

; kd = rate of degradation, second
−1

), then the distribution of mRNA molecules, 

NM, in a cell follows a Poisson distribution (Thattai, 2016), 

 (    )  
     

  
       (18) 

where λ = ks/kd. For a Poisson distribution, mean = <NM> = λ and var = <NM
2
> − <NM>

2
 = λ; 

hence, the coefficient of variation of NM = var
½

/mean = mean
−½

. Accurate counts of mRNA 

molecules in budding yeast cells give mean ≈ 5-10 molecules per cell (Ball et al., 2013; 

Zenklusen et al., 2008); hence, the CV for mRNA expression in yeast cells is expected to be 32-
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45%. The referenced experimental papers show that, in budding yeast cells, for genes that are 

constitutively expressed, mRNA counts indeed obey a Poisson distribution. 

The corresponding case for protein molecules per cell (mean = 500-5000) would give a 

CV for protein expression of 1.4-4.5%. This expectation, however, is not valid, because protein 

turnover is not governed by a simple birth-death process. Rather, the rate of synthesis of protein 

molecules is dependent on the abundance of mRNA molecules in a cell, and mRNA numbers are 

themselves fluctuating, as described in the previous paragraph. As a result of transcription-

translation coupling (Pedraza and Paulsson, 2008; Swain et al., 2002), the expected CV of 

protein numbers in a cell is 

    √
 

〈  〉
 

  

     

 

〈  〉
      (19) 

where τM and τP are the half-lives of these particular mRNA and protein molecules in the cell. 

Taking representative numbers for a budding yeast cell (<NP> = 2000, <NM> = 5-10), we find a 

tolerable value for protein-number fluctuations, CVP ≈ 20%, if 0.25 < τM/τP < 0.67, i.e., if mRNA 

molecules are significantly less stable than protein molecules in a yeast cell (as we might 

expect). 

Equation (19) suggests that we must include mRNA dynamics in our molecular 

mechanism of a regulatory network, in order to get an accurate estimate of protein fluctuations in 

a cell and, consequently, to get a realistic appraisal of the effects of thermal noise on the 

behavior of the regulatory network. Models that are expressed solely in terms of protein 

interactions (folding gene expression terms and mRNA levels into the rate of synthesis of the 

encoded protein) will underestimate the magnitude of protein-number fluctuations and will give 

completely unreliable predictions about the effects of noise on the physiological properties of 

single cells. It is not difficult, of course, to add mRNA variables to a protein interaction network, 

but doing so exacerbates the computational demands of Gillespie’s SSA. 

We have proposed two ways to circumvent this problem. The first is a ‘hybrid’ 

computational approach, following the lead of Hazeltine & Rawlings (2002). Our basic idea (Liu 

et al., 2012) is to use Gillespie’s SSA to simulate stochastic fluctuations in species that are in low 

abundance and participate in ‘slow’ (i.e., infrequent) reactions, and to approximate the dynamics 

of ‘fast’, high-abundance species by nonlinear ODEs. For gene-mRNA-protein regulatory 

networks, an effective ‘partitioning’ strategy is to simulate mRNA synthesis and degradation by 

SSA and all subsequent protein-interaction processes by nonlinear ODEs. We have shown 

(Ahmadian et al., 2017; Liu et al., 2012; Wang et al., 2016) that this approach is 50-100 times 

faster than ‘brute force’ SSA, without sacrificing accuracy of the stochastic results.  

The second approach adopts the strategy of a chemical Langevin equation (Gillespie, 

2000), with the additive ‘white noise’ terms designed to account for transcription-translation 

coupling. Within the context of an SCM, we write (Laomettachit et al., 2016) 

  
   

  
         √        

  

√  
   √

   

〈  〉
 

  

       
 
  

√  
     (20) 
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   [ (    )    ( )]      (21) 

   Zjk = min(XjT, XkT) .       (22) 

In Eq. (20), which is derived in Suppl. Text S2 of (Laomettachit et al., 2016), ξ1 and ξ2 are 

independent random variables, each chosen from a normal distribution with mean = 0 and 

variance = 1. The two ‘noise’ terms correspond to random fluctuations at the protein level (ξ1) 

and at the mRNA level (ξ2). In the ‘mRNA-inherited’ noise term, kdmj is the rate constant for 

degradation of the mRNA encoding protein Xj, and <mj> = ksmj/kdmj = mean number of these 

mRNA molecules (which may be time-dependent, if the expression of the gene encoding Xj is 

regulated by the reaction mechanism). We do not add ‘noise’ terms to Eqs. (21) and (22) because 

we assume that these reactions are fast enough to average over any molecular fluctuations. 

 We illustrate the second approach with a stochastic simulation of the ‘cell cycle control 

system’ in Fig. 4A. The xpp.ode file for this stochastic model is given in the Appendix, and a 

representative simulation is provided in Fig. 4E. In this model, the total abundances of Cdh1 and 

INH are fluctuating around their steady state levels of 1000 and 3000 molecules, respectively 

(due to transcription-translation coupling). From Eq. (19) we calculate that CVCdh1T = 22% and 

CVINHT = 13%, which values agree quite well with the magnitudes of the fluctuations observed in 

the turquoise curves in Fig. 4E. 

Conclusions 

In this review article we have described a number of different strategies for building 

mathematical models of the temporal dynamics of molecular regulatory networks in living cells. 

This is a problem of fundamental importance in cell biology, because the physiology of a living 

cell is determined by its underlying molecular control systems, and these control systems are 

staggeringly complex and defy understanding by informal, intuitive reasoning. Accurate 

mathematical models are necessary to deduce the consequences of our hypotheses about the 

molecular components and interactions of these control networks. By comparing quantitative and 

qualitative consequences of the mathematical models to the observed behavior of real cells under 

a variety of conditions and perturbations, we can assess the reliability of our network hypotheses, 

identify weaknesses in our understanding, improve on our models, and eventually come to an 

understanding of molecular control processes that is satisfying in its scope, accuracy and 

predictive power. Accurate mathematical modeling is the tool that makes these deductions 

possible.  

The challenge to mathematical modeling is that different aspects of cell physiology are 

characterized, at an experimental level, in widely divergent details. In some cases (e.g., the cell 

division cycle in budding yeast), the molecular control system is known in great detail and there 

is a wealth of qualitative and quantitative observations about cell cycle progression in wild-type 

and mutant yeast cells, in single cells as well as cell populations, under a variety of unperturbed 

and perturbed conditions. In this happy circumstance, we can build detailed, accurate, reliable 

mathematical models of the cell cycle control system. In other cases (e.g., the growth, 

proliferation and spread of cancer cells in mammals), the control systems are much more 
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complex and the experimental details much less comprehensive and reliable. Under these 

circumstances, it is difficult to build trustworthy mathematical models, but modeling can still be 

a useful tool in testing and refining our admittedly incomplete hypotheses about the underlying 

molecular control systems.  

The ‘art’ of modeling is to choose the right approach to the biological problem under 

consideration. Poorly characterized systems should be modeled by methods that can be 

implemented quickly, with minimal requirements for mechanistic details, and that provide 

general, qualitative insights that can be useful in guiding our intuition about the control system 

and designing the next set of experiments to be pursued. Well characterized systems should be 

modeled by accurate methods that provide reliable, quantitative behaviors of the hypothetical 

control systems; properties that can be compared in detail to observed cellular behaviors and that 

provide rigorous, testable predictions for future experiments.  

To provide a context in which the next generation of molecular cell biologists can 

practice this art of mathematical modeling, we have described a selection of mathematical 

approaches for modeling the temporal dynamics of molecular regulatory systems. We have 

selected approaches that have proved, over the past 50 years, to be useful in a variety of 

circumstances, and we have described how these approaches are related to each other in a 

sequence of increasing complexity (more molecular details, more requirements for quantitative 

experimental data, and more potential for accurate qualitative and quantitative predictions). The 

methods we have discussed, along with their major advantages and disadvantages, are 

summarized in Table 5. We sincerely hope that this overview will be useful to newcomers to the 

field of molecular systems/computational biology, and we encourage you to use these tools 

wisely and effectively in your future studies. 
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Table 1. Variant models of the dynamic properties of biochemical reaction networks*. 

Deterministic Models   

Time Concen/Activ Rate Laws System of Rate Equations 

Discrete Discrete (0,1) Discrete Boolean:   (   )    (  ( )     ( )) 

Continuous Continuous Discrete 

Piecewise-linear ODEs: 
   
  

    [  ( ̂ ( )    ̂ ( ))    ( )] 

Continuous Continuous Continuous  

Nonlinear ODEs: 

   
  

 ∑     (       )

 

   

 

Stochastic Models  

Time Concen/Activ Rate Laws System of Rate Equations 

Continuous Continuous Discrete 

Piecewise-linear SDE: 
   
  

   [  ( ̂ ( )    ̂ ( ))    ( )]     
  

√  
 

Continuous Continuous Continuous  

Nonlinear SDEs (Langevin formalism): 

   
  

 ∑     (       )

 

   

 [∑|   |  

 

   

]

   

  

√  
 

Continuous Discrete Continuous  

Gillespie SSA: 

  (    )    ( )         where Δt is the time 

interval until the next reaction and j is the index of 

the next reaction 

    

*Explanatory footnotes to Table 1. 

Abbreviations: ODE, ordinary differential equation; SDE, stochastic differential equation; SSA, 

stochastic simulation algorithm; PWL, piecewise linear. 

Bi(C1, C2, …, CN) is a Boolean function (i.e., 0 or 1) of Boolean variables. 

 ̂ ( )            ( )                   ( )     
Rj(C1, C2, …, CN) is a continuous function (rate law) of continuous variables. 

νij is the stoichiometric coefficient of species i in reaction j. 

γi > 0 are rate constants that govern the rate at which species i approaches its steady-state value, 

Ci = Bi(…). 

ξi is a random number chosen from a Gaussian distribution with mean = 0 and variance = 1. 

σi > 0 are amplitudes for the white-noise terms in the PWL-SDEs.  
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Table 2. Boolean Realizations of Motif 1A(i) 

 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27 
 

Table 3. Parameter values for ODE models of motifs in Fig. 1A. 

Fig. # 

Motif # 

γ1 

γ2 

σ1 

σ2 

ω10 

ω20 

ω11 

ω21 

ω12 

ω22 

2A 

1A(i):A 

1 

1 

- 

- 

0.4 

0.6 

0 

−1 

−1 

0 

2B 

1A(i):C 

1 

2 
- 

- 
−0.5 

0.5 
2 

−1 
−1 

0.1 

2C 

1A(i):A 

1 

1 
15 

15 

0.4 

0.6 

0 

−1 

−1 

0 

2D 

1A(i):C 

1 

2 
8 

8 

−0.5 

0.5 
2 

−1 
−1 

0.1 

3A, C 

1A(ii) 

1 

1 

5 

5 

−0.9+1.4S 

−0.9+1.4S 

1.4 

−0.6 

−0.6 

1.4 

3B, D 

1A(iii) 

1 

0.2 

10 

20 
0.4+0.1S 

0.3 

1.1 

1 

−0.5 

0 
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Table 4. Common types of bifurcation points 

Name Defining characteristics 

Saddle-node (SN) 

The coalescence of a stable node and a saddle point, leading to the 

annihilation of both steady states, forcing the system to evolve to 

some other attractor, e.g., a different stable node. Examples: Fig. 3C 

at S≈0.04 and S≈0.67; Fig. 3D at S≈1.30 and S≈3.64 (where the 

saddle point coalesces with an unstable node). Close to an SN point, 

the speed at which the dynamical system departs from the vicinity of 

the recently annihilated steady states is very slow; an experimentally 

noticeable trait called ‘critical slowing down’. 

Pitchfork bifurcation 

(PF) 

The point where a steady-state solution exchanges stability with a 

pair of alternative steady-state solutions. Close to PF point the loci 

of the three steady states has the appearance of a ‘pitchfork’. 

Examples: Fig. 3C at S≈0.28 and S≈0.43. PF bifurcations are 

indicative of ‘symmetries’ in the dynamical system’s governing 

equations. If the symmetry is broken, the pitchfork splits into a 

continuous branch of steady states and a SN bifurcation connecting 

the two other ‘tines’ of the pitchfork.  

Hopf bifurcation (HB) 

The point where a steady state changes from slowly damped 

oscillations to oscillations of increasing amplitude that are 

‘captured’ by a periodic limit cycle oscillation. Close to an HB 

point, the amplitude of the periodic solutions is small, and the 

frequency of the oscillations is nearly constant. Example: Fig. 3D at 

S≈0.825 (in this case the amplitude does indeed start off at zero but 

rapidly increases as S increases above 0.825).  

Saddle-node on an 

invariant circle (SNIC) 

The coalescence of a stable node and a saddle point that are 

connected by a trajectory (an ‘invariant circle’) that proceeds out of 

the saddle point, makes a long loop through the state space and 

comes back to the saddle-node along one of its attracting directions. 

Example: Fig. 3D at S≈1.30 (where the large amplitude limit cycle 

oscillations end precisely at the SN bifurcation point). Close to a 

SNIC bifurcation, the amplitude of the limit cycle oscillations is 

large and nearly constant, and the frequency of the oscillations is 

small (i.e., the period approaches infinity). Hence, the ‘signatures’ 

of limit cycle oscillations arising from HB’s and SNIC’s are 

precisely opposite to each other.  
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Table 5. Summary of modeling strategies: advantages/disadvantages 

Method Variables Time Advantages Disadvantages 

Boolean 

networks 
0 or 1 t = 0,1,2,… 

Easy to implement. 

Easy to understand. 

No quantitative 

details. 

ODEs 
Real positive 

numbers 

t = real 

number 

Quantitative details. 

Predictive potential. 

Powerful tools for 

simulation & analysis. 

Rate constants must 

be estimated from 

quantitative 

experimental data. 

Stochastic 
Positive 

integers 

t = real 

number 

Effects of molecular 

noise in single cells. 

SSA is an accurate, 

reliable simulation 

algorithm. 

Requires even more 

quantitative 

experimental data. 

Computationally 

intensive. 

Hybrid 

Det/Stoch 

Real positive 

numbers 

t = real 

number 

Computationally 

efficient and sufficiently 

accurate.  

Not very ‘intuitive’. 

Partitioning must be 

done correctly. 
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Figure Legends 

 

 

Figure 1. Regulatory network diagrams. (A) Five representative topological motifs. X, Y and Z 

are proteins. A barbed connector represents the ‘activation’ of one protein by another (perhaps 

by itself). A blunt connector represents ‘inhibition’. (B) Four possible biochemical reaction 

mechanisms that implement motif (i) in panel A. In the first case, X and Y inhibit each other’s 

production. In the second case, Y is a protease that degrades X, whereas X is a kinase that 

phosphorylates and inactivates Y. In the third case, two kinases phosphorylate and inactive each 

other. In the fourth case, X inhibits the production of Y and Y activates the degradation of X. 
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Figure 2. Phase-plane portraits of piece-wise linear (PWL) and smooth, nonlinear (soft-H) ODE 

models of motifs discussed in the text. (A) PWL model of Motif 1A(i)-Case A, with γ1 = γ2. (B) 

PWL model of Motif 1A(i)-Case C, with γ2 = 2γ1. (C) Soft-H model of Motif 1A(i)-Case A, with 

γ1 = γ2. (D) Soft-H model of Motif 1A(i)-Case C, with γ2 = 2γ1. Parameter values are given in 

Table 3. In all four panels, the black lines are ‘trajectories’ starting from a variety of initial 

locations in state space and proceeding to one or the other of two stable steady states, at C1=1, 

C2=0 or at C1=0, C2=1. In cases C and D, the red curve is the C1-nullcline (where dC1/dt = 0) and 

the green curve is the C2-nullcline (where dC2/dt = 0). The red and green curves intersect at the 

third steady state, an unstable saddle point, in the interior of the unit square. The curve passing 

through the saddle point (yellow in panel C) separates the ‘domains of attraction’ of the two 

stable steady states.  
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Figure 3. Phase-plane portraits (A, B) and one-parameter bifurcation diagrams (C, D) of soft-H 

ODE models of Motifs 1A(ii) (panels A and C) and 1A(iii) (panels B and D). Parameter values 

are given in Table 3; (A) S = 0.5, (B) S = 1, (C and D) S is the bifurcation parameter. In panel C 

we plot the steady state value of C1 as a function of S. At S = 0, there is a single steady state (the 

‘naïve’ state) at C1 = C2 ≈ 0. At S = 0.04, the system undergoes a pair of saddle-node bifurcations 

that create two new, ‘differentiated’ states (one at C1 ≈ 0.82, C2 ≈ 0 and the other at C1 ≈ 0, C2 ≈ 

0.82) in addition to the naïve state. At S = 0.28, the naïve state is lost at a pitchfork bifurcation. 

The two differentiated states persist for 0.04 < S < 0.67; however, at S = 0.43, a second pitchfork 

bifurcation creates a new, stable steady state (called a ‘dual expressing’ state) for which C1 = C2 

> 0.88. In panel D the system executes stable limit cycle oscillations for signal strengths between 

the Hopf bifurcation at S = 0.825 and a saddle-node-on-an-invariant-circle (SNIC) bifurcation at 

S = 1.30. There is a second saddle-node bifurcation at S = 3.64, but the node is unstable so the 

bifurcation is unobservable in experiments. (For a brief explanation of the terminology of 

bifurcation points, see Table 4.) 
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Figure 4. Standard component model of mitotic control in a ‘generic’ eukaryotic cell. (A) 

Generic model. CycB = cyclin B-dependent kinase, which drives cell into mitosis; Cdh1 = active 

form of the cyclosome, which degrades cyclin B and drives cell out of mitosis; CAP = counter-

acting phosphatase, which activates Cdh1 during exit from mitosis and entry into G1 phase; INH 

= a stoichiometric inhibitor of CAP. (B) XPP-ode file for an SCM implementation of the generic 

model in panel A. CycB is governed by an ODE like Eq. (12); Cdh1 and INH are governed by 

ODEs like Eq. (10); and CAP is given by a tight-binding approximation like Eq. (17). 

Progression through the cell cycle (G1-S-G2-M) is driven by growth. The variable M(t) is cell 
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mass, which increases exponentially at a specific growth rate ‘mu’. The mass-doubling time for a 

cell is 0.693/mu. The cell divides (M → M/2) when CycB level drops below a threshold, theta. 

(C) Simulation of the SCM for the parameter values given in panel B. The simulated cell 

undergoes periodic divisions every 58 time units, which is exactly the mass-doubling time. The 

simulated cell persists in G1 phase for ~38 time units, and then proceeds through S-G2-M in ~20 

time units. For a mammalian cell, we might take 1 time unit ≈ 20 min; for a yeast cell, we might 

take 1 time unit ≈ 2 min. (D) One-parameter bifurcation diagram (schematic) for the SCM, 

treating ‘mass’ as a parameter instead of a variable. Saddle-node bifurcations at M = 0.6055 and 

1.3355 bound a region of bistability. Limit cycle oscillations are evident between a saddle-loop 

bifurcation at M ≈ 1.3 and a Hopf bifurcation at M ≈ 7.4. (E) Stochastic simulation of the model 

studied by a deterministic SCM in panel C. The turquoise curves show stochastic fluctuations in 

Cdh1total and INHtotal; the orange curve, CAPT. The red curve is CycB abundance. The black 

curve shows the fluctuating activity of Cdh1 (high in G1 phase, low in S-G2-M), and the blue 

curve shows how CAP is released from binding to INH as the cell exits mitosis. The saw-tooth 

black curve is 1000mass. Notice that cell size at division and cell cycle time are stochastic 

properties of cell cycle progression in this model.  
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Appendix: XPP.ode file for stochastic simulation of SCM for CycB-Cdh1-INH-CAP model. 

# SCM example of stochastic simulation of cell cycle progression. 

 

# First, compute fluctuating levels of total Cdh, INH, and CAP. 

wiener wienH 

wiener wienI 

wiener wienP 

sigmaH = CdhT*sqrt((2*kdH/mRNAH)*(kdH/(kdH+kdmH))) 

sigmaI = INHT*sqrt((2*kdI/mRNAI)*(kdI/(kdI+kdmI))) 

sigmaP = CAPT*sqrt((2*kdP/mRNAP)*(kdP/(kdP+kdmP))) 

dCdhT/dt = ksH*mRNAH - kdh*CdhT + sigmaH*wienH 

dINHT/dt = ksI*mRNAI - kdI*INHT + sigmaH*wienI 

dCAPT/dt = ksP*mRNAP - kdP*CAPT + SigmaP*wienP 

 

# Then solve the SCM of CycB, Cdh, INH and CAP. 

wiener wienB 

FB = ksb*mRNAB*M 

GB = kdB*(edB+Cdh/1000) 

sigmaB = CycB*sqrt((2*GB/mRNAB)*(GB/(GB+kdmB))) 

dCycB/dt = FB - GB*CycB + sigmaB*wienB 

softH(x) = 1/(1+exp(-x)) 

WH = wH0 - wHB*CycB/1000 + wHP*CAP/1000 

WI = wI0 - wIB*CycB/1000 

dCdh/dt = gH*( CdhT*softH(sH*WH) - Cdh ) 

dINH/dt = gI*( INHT*softH(sI*WI) - INH ) 

CAP = max(0,CAPT-INH) 

 

# Cell grows exponentially and divides when Cdh activity rises above a  

# threshold as cell exits mitosis. 

dM/dt = mu*M 

global +1 {Cdh-theta} {M=M/2} 

 

# Define auxiliary variables for plotting. 

aux CAP=CAP 

aux mass=1000*M 

 

# Set parameter values. 

par ksH=250, kdH=1, ksI=250, kdI=1, ksP=250, kdP=1 

par mRNAH=4, kdmH=4, mRNAI=12, kdmI=4, mRNAP=8, kdmP=4 

par gH=.2, sH=15, gI=.2, sI=15 

par wH0=.2, wHB=1, wHP=1 

par wI0=.7, wIB=1 

par ksb=167, kdb=11, edB=.1, mRNAB=6, kdmB=10 

par theta=400, mu=0.012 

 

# Set initial conditions. 

init CdhT=1000, INHT=3000, CAPT=2000, CDH=700, INH=3000 

init CycB=100, M=1.3 

 

# Euler’s method is used to solve the Langevin equations. 

@ meth=euler, dt=.01 

done 


