
Journal of Theoretical Biology 481 (2019) 61–74 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtb 

A free boundary model of epithelial dynamics 

Ruth E Baker a , ∗, Andrew Parker a , Matthew J Simpson 

b 

a Mathematical Institute, University of Oxford, Oxford, UK 
b School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia 

a r t i c l e i n f o 

Article history: 

Received 16 September 2018 

Revised 11 December 2018 

Accepted 18 December 2018 

Available online 19 December 2018 

Keywords: 

Cell-based model 

Individual-based model 

Mechanical model 

Cell migration 

Cell proliferation 

Free boundary problem 

Moving boundary problem 

a b s t r a c t 

In this work we analyse a one-dimensional, cell-based model of an epithelial sheet. In the model, cells 

interact with their nearest neighbouring cells and move deterministically. Cells also proliferate stochas- 

tically, with the rate of proliferation specified as a function of the cell length. This mechanical model 

of cell dynamics gives rise to a free boundary problem. We construct a corresponding continuum-limit 

description where the variables in the continuum limit description are expanded in powers of the small 

parameter 1/ N , where N is the number of cells in the population. By carefully constructing the contin- 

uum limit description we obtain a free boundary partial differential equation description governing the 

density of the cells within the evolving domain, as well as a free boundary condition that governs the 

evolution of the domain. We show that care must be taken to arrive at a free boundary condition that 

conserves mass. By comparing averaged realisations of the cell-based model with the numerical solution 

of the free boundary partial differential equation, we show that the new mass-conserving boundary con- 

dition enables the coarse-grained partial differential equation model to provide very accurate predictions 

of the behaviour of the cell-based model, including both evolution of the cell density, and the position 

of the free boundary, across a range of interaction potentials and proliferation functions in the cell based 

model. 

© 2019 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Cell biology experiments typically produce complex, quantita-

ive experimental data that can include both cellular-level and

issue-level information ( Jin et al., 2016; Maini et al., 2004a;

004b; Treloar et al., 2014 ). However, it can often difficult to in-

egrate these multi-scale data to give new insights. This chal-

enge provides a clear motivation for the use of mathematical

odels where individual, cell-based mechanisms can be imple-

ented and explored in a computational framework ( Anderson

nd Chaplain, 1998; Osborne et al., 2017; Simpson et al., 2013;

urner et al., 2004 ). This approach can allow us to qualitatively

xplore the relationship between individual-level properties and

opulation-level outcomes using repeated computational simula-

ions as well as comparing predictions of different models that act

t different scales ( Murray et al., 2011; Pathmanathan et al., 2009 ).

urthermore, it is possible to provide a quantitative, more rigor-

us mathematical connection between the individual-level proper-

ies and population-level outcomes by using coarse-graining tech-
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iques to derive an approximate continuum-limit description of

he individual-level description ( Murray et al., 2009; 2012; O’Dea

nd King, 2012 ). 

Depending on the biological context, there are many different

inds of individual-based models that can be used to simulate

ell biology processes including random walk frameworks involv-

ng point particles ( Browning et al., 2018; Cai et al., 2007 ) or ran-

om walk frameworks based on an exclusion process that explic-

tly account for excluded volume effects as well as the shape and

ize of the individuals in the system ( Jin et al., 2018; Parker et al.,

018 ). While discrete models based on point particles and exclu-

ion processes have been successfully applied to study many cell

iology phenomena, these models do not include any mechanical

ffects that are known to be important in a host of applications.

or example, tissue stiffness is known to play a key role in ep-

thelial cancer progression, with different rates of invasion associ-

ted with different tissue stiffness conditions ( Samuel et al., 2011 ).

ancer detection is another clinical application where tissue me-

hanics and tissue stiffness, in terms of mammographic density, is

hought to be associated with breast cancer risk ( Huo et al., 2014 ).

herefore, for certain applications, it is relevant to use a mechan-

cal framework to study the motion and interaction of individual

ells rather than focusing on a random walk framework. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic of the cell-based model where the cells are here represented by springs and nodes the points where two cells touch. There are N cells, and node positions 

are denoted by x i , for i = 0 , 1 , . . . , N, with the left boundary of the first cell ( i.e. node 0) fixed at the origin so that x 0 ( t ) ≡ 0. 
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1 Throughout this work, we will assume F int 
i, j 

= −F int 
j,i 

. 
In this work we re-examine a mechanical model of epithelial

tissue mechanics first presented by Murray et al. (2009, 2012) . The

model describes, for example, the one-dimensional cross-section of

apical surfaces of a population of N epithelial cells, where nearest

neighbour cells interact through a force potential and the motion

of each individual is governed by an overdamped, deterministic

equation of motion. Like Murray et al. (2009, 2012) , we consider

the case where the left-most boundary of the population of cells

is fixed at x = 0 , and the right-most boundary is a free boundary,

x = L (τ ) , where τ is time. In the first part of our work we con-

sider a non-proliferative population where individual cells undergo

movement only. In this context the cell-based model is determin-

istic and the evolution of the free boundary is the net result of the

deterministic interactions between the N individuals. In the second

part of our work we consider a population of cells that is both pro-

liferative and motile, and in this context the individual cell based

model is stochastic. Here the evolution of the cell density and the

position of the free boundary is the net result of a combination of

the deterministic motility mechanism and stochastic proliferation

events, where the rate of proliferation is taken to be a function of

the length of each cell in the stochastic simulations. In all cases

considered we study expanding populations where L ( τ ) is an in-

creasing function of time. 

The key focus of this work is the derivation of a continuum-

limit partial differential equations (PDE) description of the

individual-based model that provides an accurate description of

both the macroscopic density of cells within the domain, as well

the movement of the free boundary, L ( τ ). We make progress by

defining continuous functions by expanding in powers of the small

parameter 1/ N , so that, formally, our continuum limit description

is accurate in the limit, N → ∞ ( Fozard et al., 2009 ). By carefully

neglecting terms of O(1 /N 

2 ) , we derive a free boundary problem

that describes the spatial and temporal evolution of the cell den-

sity within the domain, 0 < x < L ( τ ), as well as the temporal evolu-

tion of the free boundary, L ( τ ). We show that our new free bound-

ary condition conserves mass. Comparing averaged data from cell-

based simulations with the numerical solution of the continuum

limit PDE description of the free boundary problem confirms that

the new mass-conserving boundary condition provides an accurate

description of the dynamics of the cell-based model across a range

of different individual-based mechanisms. 

2. A discrete model of cell dynamics in one dimension 

In this work, we consider one of the simplest cell-based, off-

lattice models of a one-dimensional cross-section of apical surfaces

of an epithelial cell population that captures cell-cell adhesion in-

teractions and bulk cellular elasticity. Cells occupy volume and can

undergo deformation, neighbouring cells come into contact with

each other at node points ( Fig. 1 ), and they interact with each

other and the local microenvironment ( Murray et al., 2009 ). We

formulate a mathematical description of the dynamics of the cell

population using x i to denote the position of node i ( Fig. 1 ). From

Newton’s second law of motion 

m i 

d 

2 
x i 

d t 2 
= 

∑ 

j � = i 
F int 

i, j + F visc 
i , i = 0 , 1 , . . . , N, (1)
here F int 
i, j 

, the force node j exerts on node i , represents the com-

ined effects of cellular bulk elasticity (leading to crowding and

nite size effects) and cell-cell adhesion 

1 , F visc 
i 

is the viscous force

cting on the i th node, and m i is the mass associated with the i th 

ode. 

We now make a number of further assumptions to simplify

q. (1) . Firstly, we assume that cells interact with only their near-

st neighbours, so that F int 
i, j 

= 0 for j � = i ± 1, that cells cannot ex-

hange neighbours, and that node zero is pinned at the origin. This

ntails 0 = x 0 (t) < x 1 (t) < . . . < x N−1 (t) < x N (t) . Secondly, we fol-

ow Murray et al. (2009) and assume that the viscous force, F visc 
i 

,

hich is generated by cell-matrix interactions, is proportional to

elocity, d x i /d t , with viscosity coefficient η. Thirdly, cells move in

issipative environments, so we assume m i d 

2 x i / d t 2 = 0 . Finally, we

ssume the cell population is homogeneous, so that m i = m for

 = 0 , 1 , . . . , N, and cells respond and generate forces according to

he same physical law. As a result, the dynamics of the population

an be modelled using the following system of ODEs: 

 0 (t) = 0 ; (2)

d x i 
d t 

= F i,i −1 + F i,i +1 , i = 1 , . . . , N − 1 ; (3)

d x N 
d t 

= F N,N−1 . (4)

ote that we have suppressed the superscript in F int 
i, j 

for clarity

rom this point onwards. The system is closed by specifying ap-

ropriate initial conditions, x i (0) = x 0 
i 

for i = 1 , . . . , N. To provide

 simple exposition, in the initial stages of this work we will as-

ume that cells can be modelled as linear springs; extension to

ore general cases is provided in Section 4 . 

. Linear force law model 

We first assume that the interaction force between cells i and

 ± 1 can be modelled using a linear force law with constant k > 0

nd equilibrium length a > 0, as in Murray et al. (2009) , so that 

 i,i ±1 = k ( a − | x i − x i ±1 | ) x i − x i ±1 

| x i − x i ±1 | . (5)

etting α = k/η we have 

 0 (t) = 0 , (6)

d x i 
d t 

= α[ x i −1 − 2 x i + x i +1 ] , i = 1 , . . . , N − 1 , (7)

d x N 
d t 

= α[ x N−1 − x N + a ] , (8)

ith initial conditions, x i (0) = x 0 
i 

for i = 1 , . . . , N. 
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Fig. 2. Comparison of the leading edge position, L ( τ ), and cell density, q ( x, τ ), predicted by the cell-based model, Eqs. (6) –(8) , and the coarse-grained PDE model, Eqs. (29) –

(33) , as the cell number, N , is varied. In each case, aN = 45 and α/N 2 = 135 are kept constant. On the left-hand side, the leading edge position, L ( τ ), predicted by the 

cell-based model with N = 15 is plotted using purple asterisks, whilst the prediction of the PDE model using the boundary conditions derived in Section 3.1 and stated in 

Eq. (23) is plotted as a dashed blue line. For comparison, the leading edge position predicted using the boundary conditions of Murray et al. (2009) is plotted as a solid 

blue line. On the right-hand side, the error in the predictions of the coarse-grained model are shown for both the boundary conditions stated in Eq. (23) (dashed lines), and 

those derived by Murray et al. (2009) (solid lines), for a range of values of cell number, N . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Eqs. (6) –(8) can be solved analytically. However, since in this

ork our aim is to extend to more general (analytically intractable)

ases where nonlinear force terms are used to model cellular dy-

amics, we solve for the position of each node, x i , numerically

sing a simple forward Euler method with time-step �t = 0 . 001 .

xemplar results for the model are shown in Fig. 2 , where we

emonstrate how the leading edge and cell density of an initially

ompressed population of cells evolves over time. 

.1. Continuum approximation 

To make progress in deriving an equivalent continuum, coarse-

rained model, with a slight abuse of notation 

2 we will ex-

end node position, x i ( t ), which is only defined for discrete i ∈
 0 , . . . , N} , to a smooth function, x ( i, t ), which is defined for i ∈ [0,

 ]. The function x ( i, t ) will approximate x i when i is an integer: 

 i (t) ≈ x (i, t) , i = 0 , 1 , . . . , N. (9)

To facilitate coarse graining, we first non-dimensionalise the

odel specified in Eqs. (6) –(8) using the scalings 

˜ 
 = 

i 

N 

, ˜ x = 

x 

aN 

, ˜ t = 

αt 

N 

2 
= 

kt 

ηN 

2 
, (10)

o that ˜ i ∈ { 0 , 1 /N, 2 /N, . . . , 1 } and ˜ x ∼ O(1) . The model equations

re then 

˜ 
 (0 , ̃  t ) = 0 , (11) 

∂ ̃  x ( ̃ i , ̃  t ) 

∂ ̃  t 
= N 

2 
[

˜ x ( ̃ i − 1 /N, ̃  t ) − 2 ̃

 x ( ̃ i , ̃  t ) + 

˜ x ( ̃ i + 1 /N, ̃  t ) 
]
, (12) 

∂ ̃  x (1 , ̃  t ) = N 

2 
[

˜ x (1 − 1 /N, ̃  t ) − ˜ x (1 , ̃  t ) + 1 /N 

]
, (13) 
∂t 

2 Note that x ( i, t ) is a continuous variable representing position, has dimensions 

f length, and ranges between 0 and N × a when cells are at equilibrium. 

0  

s  

l

here Eq. (12) holds for ˜ i = 1 /N, . . . , 1 − 1 /N, and we have cor-

esponding initial conditions of the form ˜ x ( ̃ i , 0) = ˜ x 0 
i 

for i =
 /N, . . . , 1 . 

Performing a Taylor expansion about ˜ i within Eq. (12) gives, on

eglecting terms that are O 

(
1 / N 

2 
)
, 

∂ ̃  x 

∂ ̃  t 
= 

∂ 2 ˜ x 

∂ ̃  i 2 
, ˜ i ∈ (0 , 1) . (14)

he left-hand boundary condition is simply ˜ x (0 , ̃  t ) = 0 . To derive

he right-hand boundary condition, we again Taylor expand and

eglect terms that are O 

(
1 / N 

2 
)

to give, at ˜ i = 1 , 

1 

N 

∂ ̃  x 

∂ ̃  t 
= N 

[
˜ x − 1 

N 

∂ ̃  x 

∂ ̃  i 
+ 

1 

2 N 

2 

∂ 2 ˜ x 

∂ ̃  i 2 
+ . . . − ˜ x + 

1 

N 

]

= 1 − ∂ ̃  x 

∂ ̃  i 
+ 

1 

2 N 

∂ 2 ˜ x 

∂ ̃  i 2 
. (15) 

n terms of the dimensional variables, the coarse-grained model is

herefore 

∂x 

∂t 
= α

∂ 2 x 

∂ i 2 
, i ∈ (0 , N) , (16)

ith boundary conditions 

 (0 , t) = 0 and 

∂x 

∂t 

∣∣∣∣
i = N 

= α

[
a − ∂x 

∂ i 
+ 

1 

2 

∂ 2 x 

∂ i 2 

]∣∣∣∣
i = N 

. (17)

nitial conditions can be specified by extending the discrete initial

onditions, x i (0) = x 0 
i 

for i = 1 , . . . , N, to a continuous function x ( i ,

) such that x (i, 0) = x 0 
i 

for i = 1 , . . . , N. Throughout this work, for

implicity we extend the discrete initial condition to a piecewise

inear continuous function. 
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3.2. Derivation of the corresponding cell density model 

Cell density per unit length, q ( x, t ), can be defined implicitly

using the relation 

i (x, t) = 

∫ x 

0 

q (y, t) d y, (18)

where i is the cell index. This equation describes the fact that

the position of node index i depends on the cell density to the

left of the node. Eq. (18) is equivalent to q (x, t) = ∂ i (x, t) / ∂x , and

it ensures i = 0 at the left-hand boundary, x = 0 . To reformulate

Eqs. (16) and (17) in terms of variation in cell density with posi-

tion, x , and time, t , we follow ( Murray et al., 2009 ) and perform a

change of variables from ( i, t ) to ( x, τ ) where i and x are related

through Eq. (18) and t = τ . 

Noting that ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂x 

∂ i 

∣∣∣
t 

∂x 

∂t 

∣∣∣
i 

∂τ

∂ i 

∣∣∣
t 

∂τ

∂t 

∣∣∣
i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂ i 

∂x 

∣∣∣
τ

∂ i 

∂τ

∣∣∣
x 

∂t 

∂x 

∣∣∣
τ

∂t 

∂τ

∣∣∣
x 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

−1 

= 

1 

∂ i 

∂x 

∣∣∣
τ

∂t 

∂τ

∣∣∣
x 

− ∂ i 

∂τ

∣∣∣
x 

∂t 

∂x 

∣∣∣
τ

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂t 

∂τ

∣∣∣
x 

− ∂ i 

∂τ

∣∣∣
x 

− ∂t 

∂x 

∣∣∣
τ

∂ i 

∂x 

∣∣∣
τ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

we have 

∂x 

∂ i 
= 

(
∂ i 

∂x 

)−1 

= 

1 

q 
, (19)

∂x 

∂t 
= −

(
∂ i 

∂x 

)−1 
∂ i 

∂τ
= −1 

q 

∂ i 

∂τ
. (20)

Substituting Eqs. (19) and (20) into the right-hand side of

Eq. (16) gives 

∂x 

∂τ
= − α

q 3 
∂q 

∂x 
, x ∈ [0 , L (τ )] . (21)

Eq. (21) is the characteristic equation and it represents how the

domain evolves over time through tracking constant node index,

i . After rearrangement, multiplying by q and differentiating with

respect to x , we have 

∂q 

∂τ
= 

∂ 

∂x 

(
α

q 2 
∂q 

∂x 

)
, x ∈ (0 , L (τ )) . (22)

The same change of variables applied to the boundary conditions

in Eq. (17) yields 3 

∂q 

∂x 

∣∣∣∣
x =0 

= 0 and 

(
1 

2 q 2 
∂q 

∂x 
+ aq − 1 

)∣∣∣∣
x = L (τ ) 

= 0 . (23)

As a check on the validity of the derived boundary conditions, we

note that the system must conserve total cell density, i.e. 

d 

d τ

∫ L (τ ) 

0 

q (x, τ ) d x = 0 . (24)

Evaluating the above expression gives (again, using the character-

istic Eq. (21) ) 

d 

d τ

∫ L (τ ) 

0 

q (x, τ ) d x = 

d L (τ ) 

d τ
q (L (τ ) , τ ) + 

∫ L (τ ) 

0 

∂q 

∂τ
(x, τ ) d x 
3 Note that the boundary condition at x = L (τ ) is derived using the characteristic 

Eq. (21) , see Appendix A for more details. 

s

 

= 

d L (τ ) 

d τ
q (L (τ ) , τ ) + 

∫ L (τ ) 

0 

∂ 

∂x 

[
α

q 2 
∂q 

∂x 

]
d x 

= 

[
− α

q 3 
∂q 

∂x 
q + 

α

q 2 
∂q 

∂x 

]∣∣∣∣
x = L (τ ) 

− α

q 2 
∂q 

∂x 

∣∣∣∣∣
x =0 

= 0 . (25)

herefore total density is conserved using the derived bound-

ry conditions. Note that the boundary condition applied at the

ree, right-hand boundary, L ( τ ), is slightly different to that derived

n Murray et al. (2009) , where the boundary condition was derived

y neglecting terms that are O(1 /N) and is of the form q = 1 /a for

 = L (τ ) . 

To establish initial conditions, we use Eq. (18) together with a

nite difference approximation to write 

= (i + 1) − (i − 1) 

= 

∫ x 0 
i +1 

x 0 
i −1 

q (x, 0) d x ≈
(
x 0 i +1 − x 0 i −1 

)
q 0 
(
x 0 i 

)
, i = 1 , . . . , N − 1 , (26)

hich can be rearranged to give 

 0 

(
x 0 i 

)
= 

2 

x 0 
i +1 

− x 0 
i −1 

, i = 1 , . . . , N − 1 . (27)

 similar finite difference approximation applied at the left- and

ight-hand boundaries gives 

 0 (0) = 

1 

x 0 
1 

and q 0 (x 0 N ) = 

1 

x 0 
N 

− x 0 
N−1 

. (28)

e treat q 0 ( x ) as piecewise linear between node positions. 

.2.1. Numerical solution 

In summary, the coarse-grained model consists of a PDE for the

volution of cell density 

∂q 

∂τ
= 

∂ 

∂x 

(
α

q 2 
∂q 

∂x 

)
, x ∈ (0 , L (τ )) , (29)

ogether with boundary conditions 

∂q 

∂x 

∣∣∣∣
x =0 

= 0 and 

(
1 

2 q 2 
∂q 

∂x 
+ aq − 1 

)∣∣∣∣
x = L (τ ) 

= 0 , (30)

nd initial condition 

 (x, 0) = q 0 (x ) , x ∈ (0 , L (0)) . (31)

he characteristic equation is 

∂x 

∂τ
= − α

q 3 
∂q 

∂x 
, x ∈ [0 , L (τ )] , (32)

nd we can use the characteristics to specify the evolution of the

omain with time. In particular, we have 

d L (τ ) 

d τ
= 

(
− α

q 3 
∂q 

∂x 

)∣∣∣∣
L (τ ) 

. (33)

In order to solve Eqs. (29) –(33) numerically we employ a La-

rangian transformation to map the free boundary problem to a

xed domain. We let τ = T and 

x = �(X, T ) with X = �(X, 0) , 0 = �(0 , T ) , 

 (T ) = �(L (0) , T ) , (34)

o that 

∂ 

∂x 
= 

1 

�X 

∂ 

∂X 

and 

∂ 

∂τ
= 

∂ 

∂T 
− 1 

�X 

∂�

∂T 

∂ 

∂T 
, (35)



R.E. Baker, A. Parker and M.J. Simpson / Journal of Theoretical Biology 481 (2019) 61–74 65 

w  

i  

t

T  

E

t

q  

W  

m

3

 

o  

a  

w  

o  

i  

m  

F  

t  

α  

f  

i  

x

 

i  

b  

f  

r  

o  

O

4

 

g  

e  

E  

a

F

f  

l  

n  

c  

r  

o

x

η

η

w  

i  

s  

m  

a  

d  

t

4

 

o  

t  

l

i

s  

f

F  

 

p  

i  

t

 

T  

b  

p

R  

P

η  

T

x

A  

d  

o  

s  

l

4

 

w  

a  

f

η  
here we have adopted the notation ∂�/ ∂X = �X . Substitution

nto equations Eqs. (29) and (33) yields equations for evolution of

he domain and the density therein: 

∂�

∂T 
= − α

q 3 
1 

�X 

∂q 

∂X 

, X ∈ (0 , L (0)) ; (36) 

∂q 

∂T 
− 1 

�X 

∂�

∂T 

∂q 

∂X 

= 

1 

�X 

∂ 

∂X 

(
α

q 2 
1 

�X 

∂q 

∂X 

)
, X ∈ (0 , L (0)) . (37) 

he initial and boundary conditions for �( X, T ) are specified in

q. (34) , and for q ( X, T ) we have 

∂q 

∂X 

∣∣∣∣
X=0 

= 0 and 

(
1 

2 q 2 
1 

�X 

∂q 

∂X 

+ aq − 1 

)∣∣∣∣
X= L (0) 

= 0 , 

(38) 

ogether with 

 (X, 0) = q 0 (X ) X ∈ (0 , L (0)) . (39)

e solve the model numerically using an implicit finite difference

ethod with Picard iteration. Full details are given in Appendix B . 

.3. Results 

The coarse-grained PDE model is very accurate in its prediction

f both evolution of the cell density, q ( x, τ ), and the free boundary

t x = L (τ ) (see Fig. 2 ), even for relatively low cell numbers (here

e show results for cell numbers as low as N = 15 ). The accuracy

f the PDE model increases as the cell number, N , increases; this is

n line with expectations since the error of the coarse-grained PDE

odel is O(1 /N 

2 ) . To ensure sensible comparisons, the results in

ig. 2 were generated by initialising N cells with equal lengths in

he interval x ∈ (0, 30) and varying the model parameters such that

= 15(N/ 45) 2 and a = 45 /N. This choice ensures that the scalings

or x and τ do not change with increasing N . In each case, cells are

nitially compressed but will eventually expand to fill the domain

 ∈ (0, 45). 

We also compare the results of our model against those derived

n Murray et al. (2009) , where the boundary condition at the free

oundary was derived by neglecting terms O(1 /N) and is of the

orm q = 1 /a for x = L (τ ) . As expected, the boundary condition de-

ived here leads to a more accurate prediction of the dynamics

f the cell-based model because we neglect only terms that are

(1 /N 

2 ) rather than O(1 /N) . 

. General force law model 

In this section we follow the work of Murray et al. (2012) and

eneralise the 1D cell-based model to account for a more gen-

ral force law, F i, i ± 1 , between neighbouring nodes, i and i ± 1, in

qs. (2) –(4) . For concreteness, in our examples we will work with

 force law of the form ( Murray et al., 2012 ) 

 i,i ±1 = F (| x i − x i ±1 | ) x i − x i ±1 

| x i − x i ±1 | = k (a − | x i − x i ±1 | ) n x i − x i ±1 

| x i − x i ±1 | , 
(40) 

or some real valued exponent, n , where n = 1 gives a linear force

aw, as considered in Section 3 , n = 3 gives a cubic force law, and

 = 3 / 2 gives the Hertz force law (see Fig. 3 ). These force laws are

hosen to cover a wide range of potential cell interactions and / or

epresent different mechanical properties of cells. The nodes evolve

ver time according to 

 0 (t) = 0 , (41) 
d x i 
d t 

= F (x i − x i −1 ) − F (x i +1 − x i ) , i = 1 , . . . , N − 1 , (42) 

d x N 
d t 

= F (x N − x N−1 ) , (43) 

here F (x ) = k (a − x ) n . The initial conditions are x i (0) = x 0 
i 

for

 = 1 , . . . , N. As for the linear force law case, we solve for the po-

ition of each node, x i , numerically using a simple forward Euler

ethod with time-step �t = 0 . 001 . Exemplar results for the model

re shown in Fig. 4 , where we show how the leading edge and cell

ensity of an initially compressed population of cells evolves over

ime for the three different force laws. 

.1. Continuum approximation 

To derive a coarse-grained model we again, with a slight abuse

f notation, extend node positions, x i ( t ), to a smooth function x ( i,

 ), for i ∈ [0, N ], and non-dimensionalise Eqs. (41) –(43) using simi-

ar scalings to the simple linear case, 

˜ 
 = 

i 

N 

, ˜ x = 

x 

aN 

, ˜ t = 

αa n −1 t 

N 

2 
= 

k a n −1 t 

ηN 

2 
, 

o that ̃  i ∼ O(1) and ˜ x ∼ O(1) . We also define the non-dimensional

orce function to be 

˜ 
 (·) = (1 − ·) n . (44)

To derive an equivalent coarse-grained continuum model we

roceed as in Section 3.1 , performing a Taylor expansion about
˜ 
 within the non-dimensionalised system to give, on neglecting

erms which are O(1 /N 

2 ) , 

∂ ̃  x 

∂ ̃  t 
= − ˜ F ′ 

(
∂ ̃  x 

∂ ̃  i 

)
∂ 2 ˜ x 

∂ ̃  i 2 
, ˜ i ∈ (0 , 1) . (45)

he left-hand boundary condition remains as ˜ x (0 , ̃  t ) = 0 and, as

efore, to derive the right-hand boundary condition we Taylor ex-

and and neglect terms which are O(1 /N 

2 ) to give, at ˜ i = 1 , 

1 

N 

∂ ̃  x 

∂ ̃  t 
= 

˜ F 

(
∂ ̃  x 

∂ ̃  i 

)
− 1 

2 N 

˜ F ′ 
(

∂ ̃  x 

∂ ̃  i 

)
∂ 2 ˜ x 

∂ ̃  i 2 
. (46) 

ewriting in terms of dimensional variables we have the following

DE for x ( i, t ): 

∂x 

∂t 
= −F ′ 

(
∂x 

∂ i 

)
∂ 2 x 

∂ i 2 
, i ∈ (0 , N) . (47)

he boundary conditions are 

 (0 , t) = 0 and η
∂x 

∂t 

∣∣∣∣
i = N 

= 

[
F 

(
∂x 

∂ i 

)
− 1 

2 

∂ 2 x 

∂ i 2 
F ′ 
(

∂x 

∂ i 

)]∣∣∣∣
i = N 

. 

(48) 

s before, the initial conditions can be specified by extending the

iscrete initial conditions, x i (0) = x 0 
i 

for i = 1 , . . . , N, to a continu-

us function x ( i , 0) such that x (i, 0) = x 0 
i 

for i = 1 , . . . , N. As a con-

istency check, we note that when n = 1 , as for the linear force

aw, Eqs. (47) and (48) reduce to Eqs. (16) and (17) . 

.2. Derivation of the corresponding cell density model 

We can establish a PDE describing the evolution of cell density

ith position, x , and time, t , by making the same change of vari-

bles as in Section 3.2 . Following a simple substitution of terms

rom Eqs. (19) and (20) into Eq. (47) we obtain the PDE 

∂x 

∂τ
= 

1 

q 3 
F ′ 
(

1 

q 

)
∂q 

∂x 
, x ∈ [0 , L (τ )] , (49)



66 R.E. Baker, A. Parker and M.J. Simpson / Journal of Theoretical Biology 481 (2019) 61–74 

Fig. 3. The force laws, F ( x ), and the corresponding diffusion coefficient, D ( q ), considered in Section 4.1 . 

Fig. 4. Comparison of the leading edge position, L ( τ ), and cell density, q ( x, τ ), predicted by the cell-based model, Eqs. (41) –(43) with the force law as defined in (40) (purple 

asterisks), and the coarse-grained PDE model, Eq. (55) –(59) (blue dashed line), as the force law is varied (see Fig. 3 ). In each case, N = 45 cells are initialised uniformly in 

x ∈ (0, 30), and aN = 45 and α/a 1 −n N 2 = 135 are fixed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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hich represents how the domain, x , evolves along characteristics

ith constant index. Substitution of Eqs. (19) and (20) , and a sim-

le rearrangement (multiplying by q and differentiating with re-

pect to x , identical to earlier arguments), results in a PDE for the

ell density of the form 

∂q 

∂τ
= 

∂ 

∂x 

(
D (q ) 

∂q 

∂x 

)
, x ∈ (0 , L (τ )) , (50)

here the diffusion coefficient, D ( q ), is defined as 

 (q ) = − 1 

ηq 2 
F ′ 
(

1 

q 

)
. (51)

he characteristic Eq. (49) can then be rewritten as 

∂x 

∂τ
= −1 

q 
D (q ) 

∂q 

∂x 
, x ∈ [0 , L (τ )] . (52)

nder the same change of variables, boundary conditions become

∂q 

∂x 

∣∣∣∣
x =0 

= 0 and 

(
1 

η
F 

(
1 

q 

)
+ 

1 

2 q 
D (q ) 

∂q 

∂x 

)∣∣∣∣
x = L (τ ) 

= 0 . 

(53) 

s in Section 3.2 , we note that the system conserves total cell den-

ity: 

d 

d τ

∫ L (τ ) 

0 

q (x, τ ) d x = 

d L (τ ) 

d τ
q (L (τ ) , τ ) + 

∫ L (τ ) 

0 

∂q 

∂τ
(x, τ ) d x 

= 

d L (τ ) 

d τ
q (L (τ ) , τ ) + 

∫ L (τ ) 

0 

∂ 

∂x 

[
D (q ) 

∂q 

∂x 

]
d x 

= 

[
−1 

q 
D (q ) 

∂q 

∂x 
q + D (q ) 

∂q 

∂x 

]∣∣∣∣
x = L (τ ) 

− D (q ) 
∂q 

∂x 

∣∣∣∣∣
x =0 

= 0 , (54) 

here the final result is established using Eq. (52) . 

.2.1. Numerical solution 

In summary, the coarse-grained model consists of a PDE for the

volution of cell density, 

∂q 

∂τ
= 

∂ 

∂x 

[
D (q ) 

∂q 

∂x 

]
, x ∈ (0 , L (τ )) , (55)

ogether with the boundary conditions 

∂q 

∂x 

∣∣∣∣
x =0 

= 0 and 

[
1 

η
F 

(
1 

q 

)
+ 

D (q ) 

2 q 

∂q 

∂x 

]∣∣∣∣
x = L (τ ) 

= 0 , (56)

nd initial condition 

 (x, 0) = q 0 (x ) , x ∈ (0 , L (0)) . (57)

he characteristic equation is 

∂x 

∂τ
= −1 

q 
D (q ) 

∂q 

∂x 
. x ∈ [0 , L (τ )] , (58)

nd we can use it to specify the evolution of the domain with time.

n particular, we have 

d L (τ ) 

d τ
= 

(
−1 

q 
D (q ) 

∂q 

∂x 

)∣∣∣∣
L (τ ) 

. (59) 

As in Section 3.2.1 , in order to solve the coarse-grained model

umerically, we employ a Lagrangian transformation to map the

ree boundary problem to a fixed domain: we let τ = T and 

x = �(X, T ) with X = �(X, 0) , 

p  
 = �(0 , T ) , L (T ) = �(L (0) , T ) , (60) 

o give 

∂�

∂T 
= −D (q ) 

q �X 

∂q 

∂X 

, X ∈ (0 , L (0)) , (61) 

∂q 

∂T 
− 1 

�X 

∂�

∂T 

∂q 

∂X 

= 

1 

�X 

∂ 

∂X 

(
D (q ) 

�X 

∂q 

∂X 

)
, X ∈ (0 , L (0)) . (62) 

The initial and boundary conditions for �( X, T ) are specified in

q. (34) , and for q ( X, T ) we have 

∂q 

∂X 

∣∣∣∣
X=0 

= 0 and 

[
1 

η
F 

(
1 

q 

)
+ 

D (q ) 

2 q �X 

∂q 

∂X 

]∣∣∣∣
X= L (0) 

= 0 , (63)

ogether with 

 (X, 0) = q 0 (X ) X ∈ (0 , L (0)) . (64)

e solve the model numerically using an implicit finite difference

ethod with Picard iteration. Full details are given in Appendix B . 

.3. Results 

Across all force laws tested, the coarse-grained PDE model is

ery accurate in its prediction of both evolution of the cell density,

 ( x, τ ), and the free boundary at x = L (τ ) (see Fig. 4 ). The only

inor deviation in the predictions of the models is found at the

eading edge, where the gradient in the cell density is largest. Note

hat in this region the approximation of the density in the cell-

ased model is lower order in N , so this deviation could perhaps

e reasonably expected. 

. Introducing proliferation into the model 

In this section, we extend the model to include proliferation.

he mechanism that we incorporate is stochastic, with each cell

ividing with a defined rate per unit time. We derive a coarse-

rained PDE model to describe the evolution of the domain, and

ell density therein, over time, and demonstrate the validity of the

oarse-grained model by comparing its solution to averaged results

rom the cell-based model. 

.1. Proliferation mechanism 

To extend the model to include proliferation, we assume that

ach cell proliferates stochastically at a rate per unit time that is a

unction of its length. That is, the probability that cell i divides in

he time interval [ t , t + d t ) is G i d t where G i = G (| x i − x i −1 | ) . When

 cell proliferates, a new node is introduced at its centre to es-

ablish the daughter cells, and we relabel the node indices to en-

ure their order, that is, x i (t) < x i +1 (t) for i = 0 , . . . , N(t) and t ≥ 0.

ubsequently, when a new node (and cell) is introduced due to

he proliferation of the i th cell, we relabel the nodes with indices

j = i + 1 , . . . , N using j �→ j + 1 , as shown in Fig. 5 . In this work,

e explore the dynamics introduced by three different types of

roliferation mechanism: (i) cells proliferate at constant rate; (ii)

ells proliferate at rate proportional to their length; and (iii) cells

re more likely to proliferate as they approach a target length. Spe-

ific functional forms for the proliferation rates we consider in this

ork are provided in Fig. 6 . 

To generate individual realisations of this discrete stochastic

odel we use a constant time-step algorithm, with time-step �t =
 . 001 . At each step, we first update the position of each node, x i ,

 = 1 , . . . , N, by using a simple forward Euler method to integrate

qs. (41) –(43) numerically, then we check to see whether a cell

roliferation event occurs (and, if so, which cell proliferates). A cell
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Fig. 5. Proliferation of cell i entails the introduction of a new node at the cell centre, and relevant nodes and cells are then relabelled to ensure x j < x j+1 for j ∈ { 0 , 1 , . . . , N} . 

Fig. 6. The proliferation laws considered in Section 5 . Here, as before, the natural cell length is a , and β represents the intrinsic proliferation rate. 
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proliferation event occurs with probability 
∑ N 

j=0 G j �t and, given

a cell proliferation event occurs, the probability that cell i prolif-

erates is G i / 
∑ N 

j=0 G j , i = 1 , . . . , N. In each case, we use rejection

sampling to implement the decision ( Gelman et al., 2013 ), and if a

cell proliferation occurs, we update the node indices as indicated

in Fig. 5 . Note that this algorithm enforces the condition that at

most one cell can proliferate per time-step; this is a reasonable

approximation for the parameters used in this work. 

5.2. Derivation of cell density model with proliferation 

As the proliferation mechanism we have introduced is stochas-

tic, we now consider evolution of the expected positions of the

nodes over time. We make progress by considering the system

over an infinitesimally small time interval [ t , t + d t ) and condition

whether cell proliferation takes place during that time interval. The

position of each node after a small time interval will depend on if

and where cell proliferation occurs and the resulting forces exerted

by neighbouring cells. We write, for i = 1 , . . . , N − 1 , 

x N i (t + d t) = 

(
x N i (t) + d t 

F N 
i,i −1 

− F N 
i,i +1 

η

)
×1 { no proliferation in [ t , t + d t ) } (

x N−1 
i 

(t) + d t 
F N−1 

i,i −1 
− F N−1 

i,i +1 

η

)
×1 { proliferation to the right of cell i in [ t , t + d t ) } 
+ 

1 

2 

[(
x N−1 

i 
(t) + d t 

F N−1 
i,i −1 

− F N−1 
i,i +1 

η

)

+ 

(
x N−1 

i −1 
(t) + d t 

F N−1 
i −1 ,i −2 

− F N−1 
i −1 ,i 

η

)]
×1 { proliferation of cell i in [ t , t + d t ) } 
+ 

(
x N−1 

i −1 
(t) + d t 

F N−1 
i −1 ,i −2 

− F N−1 
i −1 ,i 

η

)
×1 { proliferation to the left of cell i in [ t , t + d t ) } 
+ ( position of cell i if more than one proliferation 

event in [ t , t + d t ) ) 

×1 

{ 
more than one cell proliferation event 

in [ t , t + d t ) 
} 
, (65)

nd 

 

N 
N (t + d t) = 

(
x N N (t) + d t 

F N N,N−1 

η

)
×1 { no proliferation in [ t , t + d t ) } (

x N−1 
N (t) + d t 

F N−1 
N,N−1 

η

)
×1 { proliferation to the right of cell N in [ t , t + d t ) }
+ 

1 

2 

[ (
x N−1 

N (t) + d t 
F N−1 

N,N−1 

η

)

+ 

(
x N−1 

N−1 (t) + d t 
F N−1 

N −1 ,N −2 
− F N−1 

N−1 ,N 

η

)] 
×1 { proliferation of cell N in [ t , t + d t ) } 
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T  
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p  
+ 

(
x N−1 

N−1 (t) + d t 
F N−1 

N −1 ,N −2 
− F N−1 

N−1 ,N 

η

)
×1 { proliferation to the left of cell N in [ t , t + d t ) } 
+ 

(
position of cell N if more than one 

proliferation event in [ t , t + d t ) 
)

×1 

{ 
more than one cell proliferation event in 

[ t , t + d t ) 
} 
. (66)

n Eqs. (65) and (66) and 1 is the indicator function and X N 
i 
(t) is

he position of cell i at time t when there are N cells. The super-

cript N on the force terms, F i, j , indicate that they are evaluated

sing the positions of cells i and j when there are N cells. 

The required probabilities to specify the indicator functions are

 ( no proliferation in [ t , t + d t ) ) = 1 − d t 

N ∑ 

j=1 

G 

(
x j − x j−1 

)
, (67)

 ( proliferation to the right of cell i in [ t , t + d t ) ) 

= 

⎧ ⎨ 

⎩ 

d t 

N ∑ 

j= i +1 

G 

(
x j − x j−1 

)
j � = N, 

0 j = N, 

(68) 

 ( proliferation of cell i in [ t , t + d t ) ) = d t G ( x i − x i −1 ) , (69)

 ( proliferation to the left of cell i in [ t , t + d t ) ) 

= 

⎧ ⎨ 

⎩ 

d t 

i −1 ∑ 

j=1 

G 

(
x j − x j−1 

)
j � = 1 , 

0 j = 1 , 

(70) 

nd 

 ( more than one cell proliferation event in [ t , t + d t ) ) = O 

(
d t 2 
)
. (71) 

e now take expectations on both sides of Eqs. (65) and (66) , denoting

y 
〈
x N 

i 
(t) 
〉

the expected position of node i at time t when there are N

odes. We then make two simplifying assumptions: (i) that 
〈
x N 

i 
(t) 
〉

is

 continuous function of time; and (ii) that 
〈
F 
(
x N 

i 
(t) 
)〉

= F 
(〈

x N 
i 
(t) 
〉)

and

G 

(
x N 

i 
(t) 
)〉

= G 

(〈
x N 

i 
(t) 
〉)

. The former assumes that the cell size is small

elative to the tissue, and allows us to rearrange and take the limit as

 t → 0 and, together with the latter (the standard mean-field approxi-

ation), we have 

x N 0 (t) 
〉

= 0 , (72) 

d 

d t 

〈
x N i (t) 

〉
= F 

(〈
x N i (t) 

〉
−
〈
x N i −1 (t) 

〉)
− F 

(〈
x N i +1 (t) 

〉
−
〈
x N i (t) 

〉)

−η
〈
x N−1 

i 
(t) 
〉 i ∑ 

j=1 

G 

(〈
x N−1 

j 
(t) 
〉
−
〈
x N−1 

j−1 
(t) 
〉)

+ 

η

2 

(〈
x N−1 

i 
(t) 
〉
+ 

〈
x N−1 

i −1 
(t) 
〉)

G 

(〈
x N−1 

i 
(t) 
〉
−
〈
x N−1 

i −1 
(t) 
〉)

+ η
〈
x N−1 

i −1 
(t) 
〉 i −1 ∑ 

j=1 

G 

(〈
x N−1 

j 
(t) 
〉
−
〈
x N−1 

j−1 
(t) 
〉)

, 

i = 1 , . . . , N − 1 , (73) 
d 

d t 

〈
x N N (t) 

〉
= F 

(〈
x N N (t) 

〉
−
〈
x N N−1 (t) 

〉)
−η
〈
x N−1 

N (t) 
〉 N ∑ 

j=1 

G 

(〈
x N−1 

j 
(t) 
〉
−
〈
x N−1 

j−1 
(t) 
〉)

+ 

η

2 

(〈
x N−1 

N (t) 
〉
+ 

〈
x N−1 

N−1 (t) 
〉)

G 

(〈
x N−1 

N (t) 
〉
−
〈
x N−1 

N−1 (t) 
〉)

+ η
〈
x N−1 

N−1 (t) 
〉 N−1 ∑ 

j=1 

G 

(〈
x N−1 

j 
(t) 
〉
−
〈
x N−1 

j−1 
(t) 
〉)

. (74) 

.3. Continuum approximation 

To enable a continuum approximation to be formulated we

ake the further approximation 

〈
x N 

i 
(t) 
〉
= 

〈
x N−1 

i 
(t) 
〉
, and to simplify

xposition going forward, we will drop use of the angle brackets.

fter algebraic simplification, we have 

 0 (t) = 0 , (75) 

d x i 
d t 

= F ( x i − x i −1 ) − F ( x i +1 − x i ) 

−η( x i − x i −1 ) 

[ 

i −1 ∑ 

j=1 

G 

(
x j − x j−1 

)
+ 

1 

2 

G ( x i −x i −1 ) 

] 

, 

i = 1 , . . . , N − 1 , (76) 

d x N 
d t 

= F ( x N − x N−1 ) 

−η( x N − x N−1 ) 

[ 

N−1 ∑ 

j=1 

G 

(
x j − x j−1 

)
+ 

1 

2 

G ( x N − x N−1 ) 

] 

. (77) 

o make progress in deriving an equivalent continuum, coarse-

rained model, we proceed as before: we extend node posi-

ion, x i ( t ), to a smooth function x ( i, t ) for i ∈ [0, N ( t )], and non-

imensionalise using the scalings 

˜ 
 = 

i 

N 0 

, ˜ x = 

x 

aN 0 

, ˜ N = 

N 

N 0 

, ˜ t = 

tka n −1 

ηN 

2 
0 

, 

here N 0 = N(0) , the number of nodes at t = 0 . We also define

he non-dimensional proliferation function such that 

˜ 
 (·) = 

ηN 0 

ka n −1 
G (a ·) , (78)

nd the non-dimensional force function is as specified in Eq. (44) . 

We then work in the same manner as before, using Taylor ex-

ansion together with quadrature approximations of the form 

i −1 
 

j=1 

G 

(
x j − x j−1 

)
+ 

1 

2 

G ( x i − x i −1 ) ≈
∫ i 

j=0 

G 

(
x j − x j−1 

)
d j, (79)

o give, upon neglecting terms that are O(1 /N 

2 
0 
) , 

∂ ̃  x 

∂ ̃  t 
+ 

∂ ̃  x 

∂ ̃  i 

∫ ˜ i 

0 

˜ G 

(
∂ ̃  x 

∂ ̃  j 

)
d ̃

 j = − ˜ F ′ 
(

∂ ̃  x 

∂ ̃  i 

)
∂ 2 ˜ x 

∂ ̃  i 2 

+ 

1 

2 N 0 

∂ 2 ˜ x 

∂ ̃  i 2 

∫ ˜ i 

0 

˜ G 

(
∂ ̃  x 

∂ ̃  j 

)
d ̃

 j , ˜ i ∈ [0 , ˜ N ( ̃ t )] . (80) 

he left-hand boundary condition remains as ˜ x (0 , ̃  t ) = 0 and, once

gain, we derive the right-hand boundary condition by Taylor ex-

anding and neglecting terms that are O(1 /N 

2 ) to give, at ˜ i = 

˜ N ( ̃ t ) ,
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a

q  
1 

N 0 

∂ ̃  x 

∂ ̃  t 
= 

˜ F 

(
∂ ̃  x 

∂ ̃  i 

)
− 1 

2 N 0 

˜ F ′ 
(

∂ ̃  x 

∂ ̃  i 

)
∂ 2 ˜ x 

∂ ̃  i 2 
− 1 

N 0 

∂ ̃  x 

∂ ̃  i 

∫ ˜ N 

0 

˜ G 

(
∂ ̃  x 

∂ ̃  j 

)
d ̃

 j . 

(81)

Rewriting Eq. (80) in terms of the dimensional variables we have

the following PDE for x ( i, t ): 

η
∂x 

∂t 
+ η

∂x 

∂ i 

∫ i 

0 

G 

(
∂x 

∂ j 

)
d j 

= −F ′ 
(

∂x 

∂ i 

)
∂ 2 x 

∂ i 2 
+ 

η

2 

∂ 2 x 

∂ i 2 

∫ i 

0 

G 

(
∂x 

∂ i 

)
d j i ∈ (0 , N(t)) . (82)

The boundary conditions are 

x (0 , t) = 0 and η
∂x 

∂t 

∣∣∣∣
i = N(t) 

= 

[
F 

(
∂x 

∂ i 

)
− 1 

2 

∂ 2 x 

∂ i 2 
F ′ 
(

∂x 

∂ i 

)

−η
∂x 

∂ i 

∫ i 

0 

G 

(
∂x 

∂ j 

)
d j 

]∣∣∣∣
i = N(t) 

. (83)

As before, the initial conditions can be specified by extending the

discrete initial conditions, x i (0) = x 0 
i 

for i = 1 , . . . , N(0) , to a con-

tinuous function x ( i , 0) such that x (i, 0) = x 0 
i 

for i = 1 , . . . , N(0) . 

5.4. Derivation of the corresponding cell density model 

We now establish a PDE describing the evolution of cell den-

sity with position, x , and time, t , for a proliferative cell population

with general force and proliferation laws. Changing variables from

( i, t ) to ( x, τ ), as before, with a simple substitution of terms from

Eqs. (19) and (20) into Eq. (82) we obtain the PDE 

η
∂x 

∂τ
+ 

η

q 

∫ x 

0 

q G 

(
1 

q 

)
d y 

= 

1 

q 3 
F ′ 
(

1 

q 

)
∂q 

∂x 
− η

2 q 3 
∂q 

∂x 

∫ x 

0 

q G 

(
1 

q 

)
d y, x ∈ [0 , L (τ )] , (84)

which represents how the domain evolves along the characteris-

tics. Note that, due to proliferation, this is no longer equivalent to

following constant cell index, i . 

After further rearrangement, as before, we have 

∂q 

∂τ
= 

∂ 

∂x 

([ 
D (q ) + E(q ) 

] 
∂q 

∂x 

)
+ q G 

(
1 

q 

)
, x ∈ (0 , L (τ )) , 

(85)

where 

D (q ) = − 1 

ηq 2 
F ′ 
(

1 

q 

)
and E(q ) = 

1 

2 q 2 

∫ x 

0 

q G 

(
1 

q 

)
d y. (86)

Under the same change of variables, the boundary conditions be-

come 

∂q 

∂x 

∣∣∣∣
x =0 

= 0 and 

[
1 

η
F 

(
1 

q 

)
+ 

(
D (q ) 

2 q 
+ 

E(q ) 

q 

)
∂q 

∂x 

]∣∣∣∣
x = L (τ ) 

= 0 , 

(87)

and the initial conditions, computed as in Section 3.1 , are 

q (x, 0) = q 0 (x ) , x ∈ (0 , L (0)) . (88)

Using Eq. (86) , characteristic Eq. (84) can be re-written as 

D x 

D τ
= 

∂x 

∂τ
+ 

1 

q 

∫ x 

0 

q G 

(
1 

q 

)
d y = −1 

q 

[ 
D (q ) + E(q ) 

] 
∂q 

∂x 
, x ∈ [0 , L (τ )] ,

(89)
hat the left-hand side of Eq. (89) constitutes a material deriva-

ive can be seen by following a small “tissue element” as the cell

opulation grows and divides. We have x = x (i (t ) , t ) with 

D x 

D τ
= 

∂x 

∂τ
+ 

∂x 

∂ i 

∂ i 

∂τ
= 

∂x 

∂τ
+ 

1 

q 

∫ x 

0 

q G 

(
1 

q 

)
d y, (90)

here we have used the fact that the rate of change of cell index

s equal to the rate of cell proliferation in the region to the left of

he cell i.e. 

∂ i 

∂τ
= 

∫ x 

0 

q G 

(
1 

q 

)
d y. (91)

inally, using Eq. (89) we can specify the rate of growth of the do-

ain over time as 

d L (τ ) 

d τ
= 

(
−1 

q 

[ 
D (q ) + E(q ) 

] 
∂q 

∂x 

)∣∣∣∣
L (τ ) 

. (92)

.5. Evolution of cell number 

Note that, since cell proliferation is now present in the model,

he cell number changes over time and the system does not con-

erve mass. The cell number at time τ is specified by Eq. (18) as

(τ ) = 

∫ L (τ ) 

0 

q (x, τ ) d x. (93)

ifferentiating with respect to τ and using the left-hand boundary

ondition (97) gives 

d N 

d τ
= 

d L 

d τ
q (L (τ ) , τ ) + 

∫ L (τ ) 

0 

∂q 

∂τ
(x, τ ) d x, 

= 

d L 

d τ
q (L (τ ) , τ ) 

+ 

∫ L (τ ) 

0 

{
∂ 

∂x 

([ 
D (q ) + E(q ) 

] 
∂q 

∂x 

)
+ q G 

(
1 

q 

)}
d x, 

= 

[
d L 

d τ
q + 

[ 
D (q ) + E(q ) 

] 
∂q 

∂x 

]∣∣∣∣
x = L (τ ) 

+ 

∫ L (τ ) 

0 

q G 

(
1 

q 

)
d x, (94)

ubstituting Eq. (92) into Eq. (94) gives the rate of change of cell

umber over time as 

d N 

d τ
= 

∫ L (τ ) 

0 

q G 

(
1 

q 

)
d y. (95)

his equation states simply and intuitively that the rate of change

f cell number is simply equal to the sum of the proliferation rates

f each cell. 

.6. Numerical solution 

In summary, the coarse-grained model consists of a PDE for the

volution of cell density 

∂q 

∂τ
= 

∂ 

∂x 

([ 
D (q ) + E(q ) 

] 
∂q 

∂x 

)
+ q G 

(
1 

q 

)
, x ∈ (0 , L (τ )) , 

(96)

ogether with boundary conditions 

∂q 

∂x 

∣∣∣∣
x =0 

= 0 and 

[
1 

η
F 

(
1 

q 

)
+ 

(
D (q ) 

2 q 
+ 

E(q ) 

q 

)
∂q 

∂x 

]∣∣∣∣
x = L (τ ) 

= 0 , 

(97)

nd initial condition 

 (x, 0) = q 0 (x ) , x ∈ (0 , L (0)) . (98)
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Fig. 7. Comparison of the number of cells, N ( τ ), predicted by the cell-based model described in Section 5.1 (purple asterisks, and accompanying error bars (mean ± one 

standard deviation)), and the coarse-grained model, Eqs. (96) –(100) (blue dashed line), for varying force laws and proliferation functions. Each row represents a different 

force law, whereas each column represents a different proliferation function. Each force law is defined and visualised in Fig. 3 , and each proliferation function is defined and 

visualised in Fig. 6 . In each case, we display averaged results from 100 realisations of the stochastic model, N = 30 cells are initialised uniformly in x ∈ (0, 30) and a = 1 , 

α = 15 , and β = 0 . 001 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4 For example, the agreement of the models for varying α/ β (doubled and 

halved) is also excellent (results not shown). 
he characteristic equation is 

D x 

D τ
= 

∂x 

∂τ
+ 

1 

q 

∫ x 

0 

q G 

(
1 

q 

)
d y = −1 

q 

[ 
D (q ) + E(q ) 

] 
∂q 

∂x 
, x ∈ [0 , L (τ )] ,

(99) 

nd we have 

d L (τ ) 

d τ
= 

(
−1 

q 

[ 
D (q ) + E(q ) 

] 
∂q 

∂x 

)∣∣∣∣
L (τ ) 

. (100) 

As in Sections 3.2.1 and 4.2.1 , in order to solve the coarse-

rained model numerically, we employ a Lagrangian transforma-

ion to map the free boundary problem to a fixed domain: we let

= T and 

 = �(X, T ) with X = �(X, 0) , 0 = �(0 , T ) , L (T ) = �(L (0) , T ) ,

(101) 

o give 

∂�

∂T 
= −D (q ) + E(q ) 

q �X 

∂q 

∂X 

, X ∈ (0 , L (0)) , (102) 

∂q 

∂T 
− 1 

�X 

∂�

∂T 

∂q 

∂X 

= 

1 

�X 

∂ 

∂X 

(
D (q ) + E(q ) 

�X 

∂q 

∂X 

)
+ q G 

(
1 

q 

)
, 

X ∈ (0 , L (0)) . (103) 
he initial and boundary conditions for �( X, T ) are specified in

q. (101) , and for q ( X, T ) we have 

∂q 

∂X 

∣∣∣∣
X=0 

= 0 and [
1 

η
F 

(
1 

q 

)
+ 

1 

q �X 

(
D (q ) 

2 

+ E(q ) 

)
∂q 

∂X 

]∣∣∣∣
X= L (0) 

= 0 , (104) 

ogether with 

 (X, 0) = q 0 (X ) X ∈ (0 , L (0)) . (105)

e solve the model numerically using an implicit finite difference

ethod with Picard iteration. Full details are given in Appendix B . 

.7. Results 

To demonstrate the validity of the coarse-grained model, we

ompare the solution of the PDE system, Eqs. (96) –(100) , with 100

veraged realisations of the discrete, stochastic model. Across all

orce laws and proliferation functions tested, the coarse-grained

DE model is very accurate in its prediction of both evolution of

he mean cell number, N ( τ ), and the mean position of the free

oundary at x = L (τ ) (see Figs. 7 and 8 , respectively). 4 The differ-
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Fig. 8. Comparison of the leading edge position, L ( τ ), predicted by the cell-based model described in Section 5.1 (purple asterisks, and accompanying error bars (mean ±
one standard deviation)), and the coarse-grained model, Eqs. (96) –(100) (blue dashed line), for varying force laws and proliferation functions. Each row represents a different 

force law, whereas each column represents a different proliferation function. Each force law is defined and visualised in Fig. 3 , and each proliferation function is defined and 

visualised in Fig. 6 . In each case, we display averaged results from 100 realisations of the stochastic model, N = 30 cells are initialised uniformly in x ∈ (0, 30) and a = 1 , 

α = 15 , and β = 0 . 001 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ent force laws and proliferation functions result in quite different

behaviours, in particular how quickly the leading edge expands or

how rapidly the number of cells increases. 

6. Discussion and outlook 

In this work we study a one-dimensional cell-based model of

an epithelial sheet of cells where individual cells move deter-

ministically and proliferate stochastically. This cell-based mechan-

ical model gives rise to a moving boundary problem on the do-

main 0 < x < L ( τ ), where τ is time. We construct a continuum-limit

description of the cell-based model, leading to a novel moving

boundary PDE description governing the density of the cells within

the evolving domain, 0 < x < L ( τ ), as well as a moving boundary

condition governing the evolution of L ( τ ). Our results show that

care must be taken to arrive at a moving boundary condition that

conserves mass appropriately. 

There are many ways that our modelling approach can be ex-

tended, both from a theoretical point of view and a biological point

of view. In all cases considered, we always study problems lead-

ing to an expanding population of cells where L ( τ ) is an increas-

ing function of time. While these sets of problems are biologi-

cally relevant since they correspond to growing tissues, an interest-

ing extension of our work would be to consider incorporating cell
eath and cell extrusion so that the model can be used to study

oth tissue growth and tissue shrinkage ( Yates, 2014 ). Other av-

nues for interesting extensions would be to consider the incorpo-

ation of internal boundaries within a mixed heterogeneous pop-

lation so that the model could be used to study the interactions

etween an invasive population, such as a population of tumour

ells, that invades into a surrounding population of non-invasive

ells ( Haridas et al., 2017 ). Furthermore, an obvious extension of

he current work would be to two or three dimensions ( Smith

t al., 2012; Zmurchok et al., 2018 ). In terms of biological applica-

ions, mechanical models describing cell migration and cell prolif-

ration are important in wound healing ( Evans et al., 2013 ), devel-

pment ( Kular et al., 2015 ), and cancer progression ( Samuel et al.,

011 ) and detection ( Huo et al., 2014 ). In all of these various appli-

ations we expect that experimental and clinical data will encom-

ass both individual cell-based information as well as population-

evel, tissue-scale information. Therefore, the general framework of

eveloping and applying cell-based models to study a particular

henomena while simultaneously working with a coarse-grained

pproximation to provide population-level information will be im-

ortant to ensure that we get the most out of taking a combined

odelling and experimental approach to studying particular bio-

ogical phenomena. 
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ppendix A. Boundary condition derivation 

We derive the transformed boundary condition, starting from

q. (21) 

∂x 

∂t 
= α

(
a − ∂x 

∂ i 
+ 

1 

2 

∂ 2 x 

∂ i 2 

)
, 

α

q 3 
∂q 

∂x 
= α

(
a − 1 

q 
+ 

1 

2 

∂ 

∂ i 

(
1 

q 

))
, 

α

q 3 
∂q 

∂x 
= α

(
a − 1 

q 
+ 

1 

2 

∂x 

∂ i 

∂ 

∂x 

(
1 

q 

))
, 

α

q 3 
∂q 

∂x 
= α

(
a − 1 

q 
+ 

1 

2 q 

(
− 1 

q 2 
∂q 

∂x 

))
, 

0 = aq − 1 + 

1 

2 

1 

q 2 
∂q 

∂x 
. 

ppendix B. Numerical solution of the full system 

We solve Eqs. (101) –(105) numerically using a finite difference

cheme with Picard iteration. Algorithm 1 provides the scheme

lgorithm 1 Picard iteration for the PDE system, Eqs. (101) –(105) ,

erived in Section 5.6. 

τ = 0 , k = 1 

while τ < T do 

for j = 1 to j = J do 

if k = 1 then 

q k 
j 
= q 

(pre v ) 
j 

, �k 
j 
= �(pre v ) 

j 

end if 

Solve for �k +1 
j 

using q k 
j−1 

, q k 
j 
, q k 

j+1 
and �k 

j−1 
, �k 

j 
, �k 

j+1 

Solve for q k +1 
j 

using q k 
j−1 

, q k 
j 
, q k 

j+1 
and �k +1 

j 
, �k +1 

j−1 
, �k +1 

j+1 

end for 

if d(q k , q k +1 ) < ε then 

q (pre v ) = q k +1 , �(pre v ) = �k +1 

k = 1 

τ = τ + d τ
else 

k = k + 1 

end if 

end while 

sed for Picard iteration. The tolerance for the Picard iteration step

s ε = 10 −4 , where the distance between solutions, d(q k , q k +1 ) ,

s computed using the sum of squared differences over all space

oints, and the space step and time step are d X = 0 . 01 and d τ =
 . 001 , respectively. 

Within the Picard algorithm, Eq. (102) is discretised as 

k +1 
j 

= �(pre v ) 
j 

− δτ
D 

(
q k 

j 

)
+ E 

(
q k 

j 

)
q k 

j 

q k 
j+1 

− q k 
j−1 

�k 
j+1 

− �k 
j−1 

, (B.1) 
nd Eq. (103) as 

 

k +1 
j 

= q (pre v ) 
j 

+ δτ

{ 

q k j G 

(
q k j 
)

+ 

�k +1 
j 

− �(pre v ) 
j 

δt 

q k +1 
j+1 

− q k +1 
j−1 (

�k +1 
j+1 

− �k +1 
j−1 

)2 

+ 

2 δX 

�k +1 
j+1 

− �k +1 
j−1 

1 

δX 

[ 

D 

(
q k 

j+1 

)
+ D 

(
q k 

j 

)
2 

+ 

E 
(
q k 

j+1 

)
+ E 

(
q k 

j 

)
2 

] 

q k +1 
j+1 

− q k +1 
j 

�k +1 
j+1 

− �k +1 
j 

− 2 δX 

�k +1 
j+1 

− �k +1 
j−1 

1 

δX 

[ 

D 

(
q k 

j 

)
+ D 

(
q k 

j−1 

)
2 

+ 

E 
(
q k 

j 

)
+ E 

(
q k 

j−1 

)
2 

] 

q k +1 
j 

− q k +1 
j−1 

�k +1 
j 

− �k +1 
j−1 

} 

, (B.2) 

here the subscript, j , indexes the space step, the superscript, k ,

he Picard iteration step. Eq. (B.2) can be rearranged to give 

 

k +1 
j 

= q k j + δτ q k j G (q k j ) 

+ δτ

[ 

−
�k +1 

j 
− �(pre v ) 

j 

δt 
(
�k +1 

j+1 
− �k +1 

j−1 

)2 

+ 

D (q k 
j 
) + D (q k 

j−1 
) + E(q k 

j 
) + E(q k 

j−1 
) (

�k +1 
j 

− �k +1 
j−1 

)(
�k +1 

j+1 
− �k +1 

j−1 

)
] 

q k +1 
j−1 

+ δτ

[ 

−
D (q k 

j+1 
) + D (q k 

j 
) + E(q k 

j+1 
) + E(q k 

j 
) (

�k +1 
j+1 

− �k +1 
j 

)(
�k +1 

j+1 
− �k +1 

j−1 

)
−

D (q k 
j 
) + D (q k 

j−1 
) + E(q k 

j 
) + E(q k 

j−1 
) (

�k +1 
j 

− �k +1 
j−1 

)(
�k +1 

j+1 
− �k +1 

j−1 

)
] 

q k +1 
j 

+ δτ

[ 

�k +1 
j 
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