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The probability distribution of the ancestral population size conditioned on

the reconstructed phylogenetic tree with occurrence data
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Abstract

We consider a homogeneous birth-death process with three different sampling schemes. First, individuals can

be sampled through time and included in a reconstructed phylogenetic tree. Second, they can be sampled

through time and only recorded as a point ‘occurrence’ along a timeline. Third, extant individuals can be

sampled and included in the reconstructed phylogenetic tree with a fixed probability. We further consider

that sampled individuals can be removed or not from the process, upon sampling, with fixed probability.

We derive the probability distribution of the population size at any time in the past conditional on the

joint observation of a reconstructed phylogenetic tree and a record of occurrences not included in the tree.

We also provide an algorithm to simulate ancestral population size trajectories given the observation of a

reconstructed phylogenetic tree and occurrences.

This distribution can be readily used to draw inferences about the ancestral population size in the field of

epidemiology and macroevolution. In epidemiology, these results will allow data from epidemiological case

count studies to be used in conjunction with molecular sequencing data (yielding reconstructed phylogenetic

trees) to coherently estimate prevalence through time. In macroevolution, it will foster the joint examination

of the fossil record and extant taxa to reconstruct past biodiversity.

Keywords: birth-death process, fossilized birth-death model, epidemiology, macroevolution, phylogenetics

1. Introduction

Owing to seminal papers by Yule (1925), Kendall (1948), and much later by Nee et al. (1994), birth-

death models have become ubiquitous in evolutionary biology. They are used as a population dynamic

model, parameterized via a birth and death rate, in studies spanning fields as diverse as paleontology,
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macroevolution, linguistics, and epidemiology (see e.g. Foote (2000); Heath et al. (2014); Gray et al. (2009);

Stadler et al. (2013)). A major aim when using these models is to reliably estimate the ancestral number

of species, languages or infected individuals, i.e. past biodiversity, past prevalence, or more general past

population sizes. In both macroevolution and epidemiology, population dynamics inferences can rely on

occurrence data, i.e. the fossil record and the case counts record. This data is modeled as a sampling of

individuals from the full population through time (Foote, 2000; Starrfelt and Liow, 2016).

In recent years, impressive sequencing efforts targeting present-day species and pathogens have enabled

the reconstruction of phylogenies. Two main modeling approaches allow to quantify past population sizes

in the past using these trees. First, phylodynamics tools have been developed to fit the birth and death

rates of a birth-death process on the reconstructed phylogenetic tree of interest, while integrating over past

population sizes (Stadler, 2011; Morlon et al., 2011). In order to quantify past population sizes, typically

the expected population sizes based on these estimated birth and death rates are calculated (Morlon et al.,

2011; Ratmann et al., 2016; Billaud et al., 2019). Thus, such population sizes are not directly conditioned

on the reconstructed phylogenetic tree. Instead, the statistical signal in the tree is only used to compute

rate estimates. Second, phylodynamic tools have been developed to fit the expected population size of a

coalescent model on a reconstructed phylogenetic tree. This modeling approach may appear as a better

alternative, for it is directly parametrized with the population size that we wish to estimate. However, this

comes at the cost of ignoring stochastic fluctuations in small populations (Morlon et al., 2010; Ratmann

et al., 2016).

Statistical approaches stemming from the analysis of case count data or from the analysis of reconstructed

evolutionary trees have been part of separate bodies of work for many years, historically yielding conflicts

between biodiversity estimates based on the fossil record and estimates based on reconstructed phylogenies

of extant taxa (Quental and Marshall, 2010 but see also Morlon et al., 2011). A first path towards merging

these disparate data was introduced by the fossilized birth-death model of Stadler (2010), which considered

a birth-death model with sampling and inclusion of individuals in the tree through time. This allowed

taking into account infection trees reconstructed from pathogen sequences sampled throughout an epidemic

(Stadler et al., 2011). In macroevolution, it paved the way to more precise phylogenetic dating using well-

conserved fossil taxa which could be placed on a reconstructed phylogeny using morphological characters

(Gavryushkina et al., 2016). Not so well-conserved fossils (i.e. occurrences) have also been used with this

model, using a Markov Chain Monte Carlo (MCMC) scheme to integrate over all possible placements along

a fixed tree (Heath et al., 2014). Analytical developments around this new model have been made by Gupta

et al. (2019), which derived an analytical formula for the probability density of an outcome of the process,

which consists of a reconstructed phylogenetic tree along with a record of occurrences. Again, all these

methods do not quantify population sizes directly, but estimate birth and death rates while analytically
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integrating over population sizes.

Very recently, Vaughan et al. (2019) introduced a Monte-Carlo particle filtering algorithm allowing direct

quantification of past population sizes and birth- and death rates conditioned on reconstructed phylogenetic

trees and occurrences (see Andrieu et al., 2010 for details about particle filtering methods). As such, it can

produce more accurate population size estimates than the methods mentioned above as the estimates directly

condition on all data, i.e. the occurrence record (e.g. poorly preserved fossils, or case count epidemiological

record) and the reconstructed phylogenetic tree.

In this paper, we build on the analytical developments presented by Gupta et al. (2019), to calculate

the past population size distribution as originally targeted by Vaughan et al. (2019). Our approach here

is more analytic, leading to much faster numerical calculations compared to the particle filtering method

previously developed. The efficiency of our method paves the way towards considering much bigger datasets,

and towards extending the method to multi-type or density-dependent birth-death processes.

In Section 2, we present the model, notation, and an overview of the strategy to express the targeted

distribution. In Section 3, we adapt the main results of Gupta et al. (2019) to compute the probability

density of observations made after a given time, conditioned on the past population size. In Section 4, we

provide a way to compute the joint density of the past population size and observations made before a given

time. Combining results of Sections 3 and 4 in Section 5, we compute the distribution of past population

sizes conditional on the full outcome of the process,and perform sanity checks against previously published

methods achieving similar tasks (Stadler, 2010; Vaughan et al., 2019; Gupta et al., 2019). We finally discuss

applications and potential extensions of the model.

2. Model and notation

2.1. Parameters of the process

We consider a population of individuals, any of which can give birth to another individual at rate λ or die

at rate µ. The process starts at time tor in the past with one individual, and evolves until reaching present

time 0, i.e. time is oriented from the present towards the past. In the rest of the manuscript, something

happening at time t will thus always refer to an event taking place t units before present.

We superimpose to this background population dynamics three different sampling schemes. First, in-

dividuals can be ψ-sampled at rate ψ throughout their lifetime. When ψ-sampled, the individual will be

included in the reconstructed phylogenetic tree. Second, individuals can be ω-sampled at rate ω throughout

their lifetime. When ω-sampled, the individual is not included in the reconstructed phylogenetic tree, but its

sampling time is nevertheless recorded and called ‘an occurrence’. Last, the process finishes upon reaching
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the present time 0, and each extant individual at that time is ρ-sampled with fixed probability ρ, leading

to their inclusion in the reconstructed phylogenetic tree. The sum of all per-capita rates will be called for

short γ = λ+ µ+ ψ + ω.

Following Vaughan et al. (2019), we also include in the model an effect of the ψ- and ω-sampling through

time on the population dynamics. We consider that, upon sampling, an individual is either removed from

the process with probability r ∈ (0, 1), or is unaffected by the sampling with probability (1− r). The overall

number of individuals, denoted (It), thus follows a linear birth-death process with birth rate λ and death

rate µ+ (ψ+ω)r. Note that, because the ρ-sampling step occurs here at the end of the process, it does not

matter whether or not individuals are removed upon ρ-sampling.

2.2. Introducing useful probabilities

Some aspects of this process have been previously investigated thoroughly. We now use two key prob-

abilities. First, we will call ut the probability that a process starting at time t with only one individual

remains unsampled up to and including the present time (time 0).We recall that ut satisfies the ordinary

differential equation (ODE) (Maddison et al., 2007)

u0 = z

u̇t = λu2t − γut + µ . (2.1)

The solution of this for a particular initial condition z being the following

u(t, z) =
x1(x2 − z)− x2(x1 − z)e−

√
∆t

(x2 − z)− (x1 − z)e−
√
∆t

(2.2)

where ∆ = γ2 − 4λµ > (λ + µ)2 − 4λµ ≥ (λ − µ)2 > 0 and x1, x2 are the two roots of the polynomial

λx2 − γx+ µ,

x1 =
γ −

√
∆

2λ
and x2 =

γ +
√
∆

2λ
.

Second, we call pt the probability that a process starting at time t with one individual precisely leads to

one sampled individual at present time 0. Writing the ODE governing the evolution of this quantity leads

to

p0 = 1− z

ṗt = (2λu(t, z)− γ)pt . (2.3)

The solution of this being the following

p(t, z) = (1− z)
∆

λ2

(
(x2 − z)− (x1 − z)e−

√
∆t

)−2

e−
√
∆t . (2.4)
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These formulas are well known, and correspond respectively to quantities called p0(t) and p1(t) in Stadler

(2010). When z = 1 − ρ, we will drop the dependence on z and use the shorter notation ut, pt. We recall

standard ways to derive these expressions in AppendixA.

2.3. Strategy of the paper

The process with sampling leads to the observation of two distinct objects (T ,O) illustrated in Figure 1.

The reconstructed phylogenetic tree T , on the one hand, represents the evolutionary relationships between

all ψ-sampled and ρ-sampled individuals. We further consider that ψ-sampled individuals are labeled either

as ‘removed’ or ‘non-removed’. All ψ-sampled removed individuals are necessarily leaves of T , whereas ψ-

sampled non-removed ones can either stand as leaves (when the descent of the individual is not sampled) or

as vertices along a branch (when the descent of the individual is further sampled), in which case they are

referred to as sampled ancestors.

The record of occurrences O, on the other hand, is an ordered list of all ω-sampling times. We also consider

that these sampling times are labeled as either ‘removed’ or ‘non-removed’.

In this paper, we are interested in computing the probability distribution of the number of individuals in

the past, conditioned on the observed outcome (T ,O) of the process. If kt denotes the number of sampled

lineages in T at time t, we call our target distribution,

∀t ≥ 0, ∀i ∈ N0 = {0, 1, 2, . . .}, K
(i)
t := P(It = kt + i | T ,O) . (2.5)

We will refer to epochs as the maximal time slices within which no sampling event in O, nor branching

event in T , happened. These epochs are delimited by the union of sampling times in O, branching times

in the tree T , and sampling times of leaves and sampled ancestors in T . All pooled together, we call these

ordered times (th)
n
h=0, starting at present time t0 = 0 and ending at the origin time tn = tor.

At any time t ≥ 0 we also introduce:

T ↑
t := the tree T starting at the origin time tor and cut at time t

T ↓
t := the collection of trees (or forest) obtained by cutting T

at time t, and considering all subtrees descending from cut lineages

O↑
t := O|(t,tor)

O↓
t := O|(0,t)

The general strategy – and outline – of the paper is the following. We will traverse the tree and record

of occurrences breadth-first, i.e. level-by-level through time. In a backward traversal we will compute the

5



Figure 1: General setting of the method. a) the full process with sampling. Pink dots translate as dots in O and correspond
to ω-sampling (sampling through time without sequencing). Blue dots translate as dots in T and correspond to ψ-sampling
(sampling through time with sequencing). Yellow dots correspond to all present-day ρ-sampling events. Filled or unfilled
dots correspond respectively to sampling with or without removal. b) Population size through time. c) Observed occurrences
through time. d) Reconstructed phylogenetic tree. e) Number of individuals in reconstructed phylogenetic tree through time.

probability density of observations made between time t and 0 conditioned on the population size at time t.

We call this probability density,

∀i ∈ N0, L
(i)
t := P

(
T ↓
t ,O↓

t | It = kt + i
)

. (2.6)

In a forward traversal we will then compute the joint probability density of the observations made prior

to time t and the population size at time t. We call this density,

∀i ∈ N0, M
(i)
t := P

(
T ↑
t ,O↑

t , It = kt + i
)

. (2.7)

Provided we get expressions of (Lt)
tor
t=0 and (Mt)

tor
t=0, our target distribution can then be expressed by

combining both, noting that

K
(i)
t := P (It = kt + i | T ,O)

∝ P

(
It = kt + i, T ↑

t ,O↑
t , T ↓

t ,O↓
t

)

= P

(
T ↓
t ,O↓

t | It = kt + i, T ↑
t ,O↑

t

)
P

(
It = kt + i, T ↑

t ,O↑
t

)

= L
(i)
t M

(i)
t (2.8)

where the last line holds because, conditionally on It = kt + i, the future of the (Markov) process is

independent of what happened before.

In the process of getting the probability density of T ,O under the same model, Gupta et al. (2019)

provided an analytical formula and an algorithm to compute the first ingredient Lt in the case where all

individuals are removed upon sampling (i.e. r = 1). We thus recall their main result, and adapt it to our

slightly different framework, in the next section.

3. Calculation of Lt – The density of observations below t conditioned on past population size

We start this section by presenting the ODEs satisfied by the probability density Lt. This provides

us with a numerical algorithm to compute Lt, which we subsequently simplify with analytical results for

specific sets of parameters.
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3.1. Set of ODEs satisfied by Lt

We can derive the probability density Lt by studying its evolution through time. First, observe that we

can express L0 at present time 0. Indeed, provided we know the exact number of individuals living at time

0, the probability to see the tips of the tree is directly driven by the ρ-sampling,

∀i ∈ N0, L
(i)
0 = ρk0(1− ρ)i . (3.9)

We now derive the ODE driving the evolution of Lt through time across any given epoch. We consider

an infinitesimal time step δt and list the events which could have happened in the full process between t+ δt

and t, leading to our observations. Suppose the number of observed lineages in this epoch is k, and the total

number of individuals alive is k + i. We emphasize three cases, illustrated in Figure 2:

1. nothing happened with probability (1− γ(k + i)δt)

2. a birth event happened

(a) among the k sampled lineages in T ↓
t , and it leads to an extinct or unsampled subtree to the left

or to the right, with probability 2λkδt.

(b) among the i other individuals, with probability λiδt.

3. a death event happened among the i particles, with probability µiδt.

Figure 2: Four unobservable scenarios taken into account to derive the ODEs 3.10 and 4.24.

These allow us to write, ∀i ∈ N0,

L
(i)
t+δt =(1− γ(k + i)δt)L

(i)
t + λ(2k + i)δtL

(i+1)
t + µiδtL

(i−1)
t .

Note that for i = 0, L
(i−1)
t is not defined, but the term cancels out thanks to the factor i.

Subtracting L
(i)
t from both sides, dividing by δt and letting δt → 0, we get the following set of ODEs

driving the evolution of Lt,

∀i ∈ N0, L
(i)
0 = ρk0(1− ρ)i

L̇
(i)
t = −γ(k + i)L

(i)
t + λ(2k + i)L

(i+1)
t + µiL

(i−1)
t . (3.10)

Last, we need to study how Lt changes at punctual events. We call unsampled lineages the lineages that

do not appear on the reconstructed phylogenetic tree, i.e. have not been ρ- or ψ-sampled. Note that these

unsampled lineages might still be subject to ω-sampling events.

There are 6 types of punctual events that we can come across at time t in the past, listed below and
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illustrated in Figure 3. We denote Lt+ the probability just before (i.e. up) the punctual event and Lt− the

probability immediately after (i.e. down). One directly gets Lt+ by decomposing it into what must occur

below t−, multiplied by the rate of the specific event happening on the infinitesimal time window (t−, t+).

We can either find,

1. a leaf of T ↓
t , labeled as removed. This is a ψ-sampling with removal event for which the number of

unsampled lineages remains constant, and the number of sampled lineages increases by one (going

backward in time). It thus gives,

L
(i)
t+

= ψrL
(i)
t−

. (3.11)

2. a leaf of T ↓
t , labeled as non-removed. This is a ψ-sampling without removal event for which one of the

unsampled lineage becomes a sampled one (going backward in time). It thus gives,

L
(i)
t+

= ψ(1− r)L
(i+1)
t−

. (3.12)

3. a sampled ancestor along a branch of T ↓
t , necessarily labeled as non-removed. This is a ψ-sampling

without removal event, not impacting the number of sampled or unsampled lineages. It thus gives,

L
(i)
t+

= ψ(1− r)L
(i)
t−

. (3.13)

4. an occurrence in O↓
t , labeled as removed. This is a ω-sampling with removal event, for which the

number of unsampled lineages increases by one (going backward in time). It thus gives,

L
(i)
t+

= ωriL
(i−1)
t−

. (3.14)

Note that here also, for i = 0, L
(−1)
t is not defined but the term cancels out thanks to the factor i.

5. an occurrence in O↓
t , labeled as non-removed. This is a ω-sampling without removal event, not im-

pacting the number of sampled or unsampled lineages. It thus gives,

L
(i)
t+

= ω(k + i)(1− r)L
(i)
t−

. (3.15)

6. a branching event between two branches of T ↓
t . The number of sampled lineages decreases by one

(going backward in time). It thus gives,

L
(i)
t+

= λL
(i)
t−

. (3.16)

Note that these updates can be adapted to the case when we don’t observe the removal status of in-

dividuals. The update corresponding to a leaf of T is the sum of updates (3.11) and (3.12), the update

corresponding to an occurrence event is the the sum of updates (3.14) and (3.15), while updates (3.13) and

(3.16) are unchanged.
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Figure 3: Six observable punctual events in the data.

This set of ODEs (3.10) together with update equations (3.11)-(3.16 can be numerically approximated.

To do so, we fix a finite upper bound N on the number of hidden individuals and numerically integrate a

truncated ODE system. We detail this in the following algorithm to compute an approximation of Lt at

any time t.
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Algorithm 1 Computes a numerical approximation of Lt for a specific set of times

Input:
Observed tree and occurrence data (T ,O),
parameters (tor, λ, µ, ψ, ω, ρ, r),

set of time points (τj)
S
j=1 for which we want to compute the density L

(i)
τj ,

and the truncation N setting the accuracy of the algorithm.

Output: A numerical approximation of Lt at times (τj)
S
j=1, (L̃

(i)
τj )i∈{0,1,...,N}

j∈{1,2,...,S}
.

1: Pool all (τj) and all branching and sampling times of (T ,O) in an ordered list (th)
n
h=1

2: Set j = 1 and initialize B as a S × (N + 1) empty matrix

3: Set ∀i ∈ {0, 1, . . . , N}, L̃(i)
0 = ρk0(1− ρ)i

4: for h = 1, 2, . . . , n do

5: Numerically solve the ODE
˙̃
Lt = AL̃t on (th−1, th), by computing L̃th = e(th−th−1)AL̃th−1

,
6: where matrix A is a (N + 1)× (N + 1) tridiagonal matrix with entries given by,

∀i ∈ {0, 1, . . . , N} A(i,i) = −γ(k + i)

∀i ∈ {0, 1, . . . , N − 1} A(i,i+1) = λ(2k + i)

∀i ∈ {1, 2, . . . , N} A(i,i−1) = µi

7: if th = τj then

8: Record ∀i, B(j,i) = L̃
(i)
th

9: Set j = j + 1
10: end if
11: if th = tn or th = τS then
12: return B
13: else if th is a removed leaf then
14: Set L̃t

+

h
= ψrL̃t

−

h

15: else if th is a non-removed leaf then
16: Set ∀i < N, L̃

(i)

t
+

h

= ψ(1− r)L̃
(i+1)

t
−

h

and L̃
(N)

t
+

h

= 0

17: else if th is a sampled ancestor then
18: Set L̃t

+

h
= ψ(1− r)L̃t

−

h

19: else if th is a removed occurrence then
20: Set ∀i > 0, L̃

(i)

t
+

h

= ωriL̃
(i−1)

t
−

h

and L̃
(0)

t
−

h

= 0

21: else if th is a non-removed occurrence then
22: Set L̃

(i)

t
+

h

= ω(1− r)(k + i)L̃
(i)

t
−

h

23: else th is a branching event
24: Set L̃t

+

h
= λL̃t

−

h

25: end if
26: end for

We also define a slight variation of this algorithm, that we will refer to as Algorithm 1’, where no set of

time points (τj) is required, and the values of L̃t are not recorded through time (i.e. matrix B disappears).

Instead, when reaching tn = tor we simply return L̃
(0)
t , which by definition is an estimate of the probability

density of (T ,O). Note that this strategy is identical to what has been used to compute the probability

density of a reconstructed phylogenetic tree under a logistic birth-death process (Leventhal et al., 2013).
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These two algorithms will prove useful to deal with the general case. Furthermore, we may obtain

analytical expressions for Lt when ω = 0 as well as when r = 1 (Gupta et al., 2019). We reveal these in the

next two subsections.

3.2. Special case ω = 0

Suppose we can express L
(i)
t as the product L

(i)
t = uitWt where Wt is a function of time only, and ut is

defined as in equation 2.2. We first get, from the initialization in equation (3.10), that W0 = ρk0 . Moreover,

substituting uitWt in the ODE leads to

L̇
(i)
t = iui−1

t u̇tWt + uitẆt

=
(
λiui+1

t − γiuit + µiui−1
t

)
Wt + uitẆt .

Thus leading to the following ODE for Wt, on any epoch (th, th+1) where the number of sampled lineages

remains fixed and equal to k,

uitẆt =
(
−γ(i+ k)uit + λ(2k + i)ui+1

t + µiui−1
t − λiui+1

t + γiuit − µiui−1
t

)
Wt

⇒ Ẇt = (2λut − γ)kWt .

This is very close to the ODE (2.3) governing the evolution of pt, and it leads to (see derivation in

AppendixA),

∀t ∈ (th, th+1), Wt =Wth

(
pt
pth

)k

. (3.17)

Last, because ω = 0, updates (3.11) to (3.16) simplify to only the following ψ- and λ-events,

if t is a removed leaf, Wt+ = ψrWt− (3.18)

if t is a non-removed leaf, Wt+ = ψ(1− r)utWt− (3.19)

if t is a sampled ancestor, Wt+ = ψ(1− r)Wt− (3.20)

if t is a branching time, Wt+ = λWt− . (3.21)

Combining these updates with equation (3.17) leads to the following proposition.

Proposition 3.1. When ω = 0, at any time t across epoch (th, th+1), considering that we observed so far

–i.e. on (0, th+1) – v sampled ancestors, w removed leaves at times tj ∈ W, x branching events at times

tj ∈ X , y non-removed leaves at times tj ∈ Y, we get,

L
(i)
t = uitWt

11



where Wt = λxψv+w+y(1− r)v+yrwpkt

t

∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj
.

Proof We prove this proposition by induction across the epochs in AppendixE, using as the main arguments

the equation updates (3.18) to (3.21), combined with equation (3.17). �

Note that this proposition is very similar to what is presented in Section 3 by Gupta et al. (2019). We

nevertheless need to highlight two differences.

The first one is that we allow here for removal or not of the individual upon sampling, with a given

probability r, whereas Gupta et al. (2019) considered that all individuals were removed upon sampling

(r = 1), and Stadler (2010) considered that individuals were not removed upon sampling (r = 0).

The second difference concerns the underlying framework under which we derive our results. In Gupta

et al. (2019), individuals where distinguishable (say, each one is assigned a number and they can be ordered),

whereas in the present paper they are not. When individuals are ordered, the probability density L
(i)
t is

changed by a factor (k+i)!
i! , which is the number of ways we can arrange k+ i elements in a list of size k, i.e.

the number of ordered configurations of hidden individuals.

Note that, when reaching the origin of the tree, the formula in Proposition 3.1 reduces to a very similar

formula for the probability density of T because i = 0 and k = 1. We summarize this as the following

corollary.

Corollary 3.2. When ω = 0, the probability density of a reconstructed tree T with v sampled ancestors,

w removed leaves at times tj ∈ W, y non-removed leaves at times tj ∈ Y, and branching events at times

tj ∈ X , is

P(T ) = λw+y+k0−1ψv+w+y(1− r)v+yrw
∏

tj∈X∪{tor}
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

(3.22)

Proof It directly follows from Proposition 3.1, by noting that P(T ) = L
(0)
tor

. Note also that a rooted binary

tree with w + y + k0 leaves shows necessarily x = w + y + k0 − 1 branching times. �

Note that this formula is a straightforward generalization of formulas provided in Stadler (2010) (where

r = 0) or Stadler et al. (2011) (where ρ = 0).

3.3. Special case r = 1

When r = 1, only three kinds of punctual events, corresponding to updates (3.11), (3.14) and (3.16)

need to be taken into account. Because the number of unsampled individuals i goes into formula (3.14),

12



the simple expression L
(i)
t = uitWt cannot be considered anymore, and one needs to find another expression.

This has already been done in Gupta et al. (2019) and we only need to adapt here their result to our slightly

different framework.

Proposition 3.3. When r = 1, we can compute the L
(i)
t values at any time t as

L
(i)
t =

q∑

ℓ=0

i!

(i− ℓ)!
ui−ℓ
t W

(ℓ)
t .

where Wt is a q dimensional time-varying vector which can be computed following Algorithm 2 in Gupta

et al. (2019).

Proof The proof relies on the definition of a distinguishable version of the probability L
(i)
t as

L
(i)

t =
(k + i)!

i!
L
(i)
t (3.23)

which allows us to use results previously derived in Gupta et al. (2019). Details are provided in Appendix

AppendixB. �

Note that when there is no ω-sampling, then q = 0 for all times and W
(0)
t is the same as Wt defined in

the previous section.

This ends our section on the computation of Lt. It thus remains to (i) present a way to compute Mt and

(ii) combine Lt and Mt to get the target distribution Kt at any time t. We do this in turn in the next two

sections.

4. Calculation of Mt – The joint density of observations above t and past population size

Recall that we are now interested in computing the joint density of observations above time t and past

population size at time t, i.e. ∀i ∈ N0, M
(i)
t := P(T ↑

t ,O↑
t , It = kt + i). We start by presenting the ODEs

satisfied by Mt, before turning to its resolution for specific parameter sets. The approach is very similar

to the one presented in the previous section to compute Lt, with the slight difference that we will need to

traverse the tree forward in time instead of backward in time.

4.1. Set of ODEs satisfied by Mt

At the time of origin of the process tor, we only observe one starting lineage in T ↑
tor

. This provides us

with the following initialization condition on M ,

M
(i)
tor

= P(Itor = 1 + i) = 1i=0 .

13



We then derive the ODEs driving the evolution of Mt across an epoch on which the number of observed

lineages is fixed and equal to k. Suppose we know Mt, and we observe no punctual event on the infinitesimal

time interval (t− δt, t). Unobservable events have already been illustrated in Figure 2. It allows us to get

M
(i)
t−δt =(1− γ(i+ k)δt)M

(i)
t + λ(2k + i− 1)δt1i>0M

(i−1)
t + µ(i+ 1)δtM

(i+1)
t .

Subtracting M
(i)
t from both sides, multiplying by -1, dividing by δt and letting δt → 0, we get the

following set of ODEs driving the evolution of Mt,

∀i ∈ N0, M
(i)
tor

= 1i=0

Ṁ
(i)
t = γ(i+ k)M

(i)
t − λ(2k + i− 1)1i>0M

(i−1)
t − µ(i+ 1)M

(i+1)
t . (4.24)

Last, we need to take into account the evolution of Mt at punctual events. Again, there are 6 types of

punctual events that we can come across at time t in the past, listed below and illustrated in Figure 3. We

denote Mt− the probability just after (i.e. below) the punctual event and Mt+ the probability immediately

before (i.e. up). Because we are here deriving Mt forward in time, one needs to carefully note differences

with results derived in Section 3 relating to the number of lineages before and after the event. We can

indeed find the same punctual events, namely,

1. a leaf of T ↓
t , labeled as removed. This is a ψ-sampling with removal event for which the number of

sampled lineages decreases by one and the number of unsampled lineages remains unchanged. This

gives,

M
(i)
t−

= ψrM
(i)
t+

. (4.25)

2. a leaf of T ↓
t , labeled as non-removed. This is a ψ-sampling without removal event for which one

sampled lineages becomes unsampled. This gives,

M
(i)
t−

= ψ(1− r)1i>0M
(i−1)
t+

. (4.26)

3. a sampled ancestor along a branch of T ↓
t , necessarily labeled as non-removed. This is a ψ-sampling

without removal event which does not affect the number of lineages. It gives,

M
(i)
t−

= ψ(1− r)M
(i)
t+

. (4.27)

4. an occurrence in O↓
t , labeled as removed. This is a ω-sampling with removal event, for which the

number of unsampled lineages decreases by one. This gives,

M
(i)
t−

= ωr(i+ 1)M
(i+1)
t+

. (4.28)
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5. an occurrence in O↓
t , labeled as non-removed. This is a ω-sampling without removal event which does

not affect the number of lineages. It gives,

M
(i)
t−

= (k + i)ω(1− r)M
(i)
t+

. (4.29)

6. a branching event between two branches of T ↓
t .

This is a λ-event increasing the number of sampled lineages by one. This gives,

M
(i)
t−

= λM
(i)
t+

. (4.30)

Finally, upon reaching present time 0, one needs to take into account the ρ-sampling, leading to the

following update,

M
(i)
0− = (1− ρ)iρk0M

(i)
0+ . (4.31)

Note, as for Lt, that these updates can be adapted to the case when we don’t observe the removal status

of individuals. The update corresponding to a leaf of T is the sum of updates (4.25) and (4.26), the update

corresponding to an occurrence event is the the sum of updates (4.28) and (4.29), while updates (4.27) and

(4.30) are unchanged.

As already exhibited for Lt, we can build a similar algorithm to compute Mt in the general case, relying

on a numerical ODE solver for approximating equation (4.24). As for Algorithm 1’ previously introduced to

compute the probability density of (T ,O), a slight variation of this algorithm would allow one to compute

an estimate of the probability density of (T ,O) by summing the M
(i)
0 ’s over all i. Note that this strategy

is identical to what has been used to compute the probability density of a reconstructed phylogenetic tree

under a logistic birth-death process (Etienne et al., 2012; Laudanno et al., 2020).

While this approach is in theory a good approximation, it requires fixing arbitrarilly a truncation pa-

rameter N , and exponentiating matrices of dimension N×N , leading to potential speed or accurracy issues.

In the remainder of this section, we derive analytical results to avoid resorting to a numerical ODE solver

in specific cases.

4.2. The corresponding generating function

We introduce now the generating function corresponding to the density Mt, which will prove useful to

get analytical results,

M̂(t, z) :=
∞∑

i=0

ziM
(i)
t .
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The initial condition on M translates into, ∀z, M̂(tor, z) = 1. The ODE (4.24) furthermore translates

into the following partial differential equation (PDE),

∂tM̂ =

∞∑

i=0

zi
(
γ(i+ k)M

(i)
t − λ(2k + i− 1)1i>0M

(i−1)
t − µ(i+ 1)M

(i+1)
t

)

= γk
∞∑

i=0

ziM
(i)
t + γ

∞∑

i=1

iziM
(i)
t − λ

∞∑

i=0

zi+1(2k + i)M
(i)
t − µ

∞∑

i=1

izi−1M
(i)
t

= γkM̂ + γz∂zM̂ − 2kλzM̂ − λz2∂zM̂ − µ∂zM̂

= −k(2λz − γ)M̂ − (λz2 − γz + µ)∂zM̂ .

Our target generating function M̂ is thus the solution of the following PDE problem across a given epoch

(th−1, th), on which the number of observed lineages remains constant and equal to k,

M̂(th, z) = F (z)

∂tM̂ + (λz2 − γz + µ)∂zM̂ + k(2λz − γ)M̂ = 0 . (4.32)

Solving this PDE problem allows us to obtain an analytical expression of M̂ for any time across an

epoch, provided we know the expression of M̂(th, z) at the end of the epoch.

Proposition 4.1. The solution to the PDE problem (4.32) is given by

M̂(t, z) = F (u(th − t, z))R(th − t, z)k

where we introduce R(t, z) = p(t, z)/(1− z) to ease the notation.

Proof We used the method of characteristics to solve this first order linear PDE, see derivations in

AppendixC. �

Between epochs, one must also update M̂ according to punctual events taking place. Previously presented

updates of M (equations (4.25) to (4.30)) translate into the following updates for M̂ ,

if t is a removed leaf, M̂(t−, z) =
∞∑

i=0

zi
(
ψrM

(i)
t+

)
= ψrM̂(t+, z) (4.33)

if t is a non-removed leaf, M̂(t−, z) =
∞∑

i=0

zi
(
ψ(1− r)1i>0M

(i−1)
t+

)
= ψ(1− r)zM̂(t+, z) (4.34)

if t is a sampled ancestor, M̂(t−, z) =
∞∑

i=0

zi
(
ψ(1− r)M

(i)
t+

)
= ψ(1− r)M̂(t+, z) (4.35)

if t is a removed occurrence, M̂(t−, z) =
∞∑

i=0

zi
(
ωr(i+ 1)M

(i+1)
t+

)
= ωr∂zM̂(t+, z) (4.36)
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if t is a non-removed occurrence, M̂(t−, z) =
∞∑

i=0

zi
(
ω(1− r)(k + i)M

(i)
t+

)

= ω(1− r)
(
kM̂(t+, z) + z∂zM̂(t+, z)

)
(4.37)

if t is a branching event, M̂(t−, z) =
∞∑

i=0

zi
(
λM

(i)
t+

)
= λM̂(t+, z) . (4.38)

If we are interested in the distribution at some point, we can thus start the formula at tor with F (z) = 1,

and then iteratively alternate between the updates at punctual events and the use of Proposition 4.1 over

each epoch. When reaching present time 0, the step of ρ-sampling expressed in equation (4.31) moreover

translates into,

M̂(0−, z) =
∞∑

i=0

zi(1− ρ)iρk0M
(i)
0+ = ρk0M̂(0+, (1− ρ)z) . (4.39)

While this procedure in theory allows us to get the analytical formula of M̂ at any time, updates (4.36)

and (4.37) require differentiating the generating function, greatly complicating the expression of the function

after a few occurrences. When ω = 0, these two updates disappear and a nice recursion leads to a closed-form

formula that we will detail in Proposition 4.3.

We implemented this procedure in the SageMath programming language able to deal with symbolic

calculus. We were however not able to make it find concise expressions, and computing these successive

derivatives was too time-consuming to be applicable to standard datasets in the field. Instead, when ω 6= 0,

we suggest another strategy for computing the M
(i)
t ’s, namely approximating M̂ across punctual events by

a polynomial of order N ,
∑N

l=0 M̃
(l)
t zl, while still relying on Proposition 4.1 to drive the evolution of the

probability generating function between events. This is a more efficient alternative to numerically solving

the ODE system. We only need to derive the expression of the generating function at punctual events as

given in the following proposition 4.2.

Proposition 4.2. The derivatives in z = 0 of a generative function which can be expressed as

M̂(th − t, z) := R(th − t, z)k
N∑

l=0

M̃
(l)
th
u(th − t, z)l

can be numerically computed using the formula

(
∂izM̂(th − t, z)

)
z=0

=

(
∆

λ2
e−

√
∆(th−t)

)k i∑

α=0

N∑

l=α

M̃
(l)
th

(
i

α

)
l!

(l − α)!

(
i−α−1∏

m=0

(2k + l +m)

)
(x1x2)

l−α

(
−x1 + x2e

−
√
∆(th−t)

)α (
1− e−

√
∆(th−t)

)l+i−2α (
x2 − x1e

−
√
∆(th−t)

)−(2k+l+i−α)

.

Proof The derivation is detailed in AppendixD.1. �
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This derivation is at the heart of Algorithm 2, allowing to follow the evolution of the M̃
(i)
t ’s through

each epoch, as well as at times when we want to record them.

We will refer to Algorithm 2’ as the slight variation of this algorithm aimed at computing the density

of (T ,O). No set of time points (τj) is required, and the values of M̃t are not recorded through time (i.e.

matrix B′ disappears). Instead, when reaching th = t0 we simply return
∑N

i=0 ρ
k0(1− ρ)iM̃ (i).
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Algorithm 2 Computes a numerical approximation of Mt for a specific set of times

Input:
Observed tree and occurrence data (T ,O),
parameters (tor, λ, µ, ψ, ω, ρ),
set of time points (τj)

S
j=1 for which we want to compute the density,

and the truncation N setting the accuracy of the algorithm.

Output: A numerical approximation of Mt at times (τj)
S
j=1, (M̃

(i)
τj )i∈{0,1,...,N}

j∈{1,2,...,S}
.

1: Pool all (τj) and all branching and sampling times of (T ,O) in an ordered list (th)
n
h=1

2: Set j = S and B′ as a S × (N + 1) empty matrix

3: Set ∀i ∈ {0, 1, . . . , N}, M̃ (i) = 1i=0

4: Set k = 1
5: for h = n− 1, n− 2, . . . , 0 do
6: Compute the values right before the punctual event,

˜̃
M

(i)

=

(
∆

λ2
e−

√
∆(th−t)

)k i∑

α=0

N∑

l=α

M̃
(l)
th

(
l

α

)
1

(i− α)!

(
i−α−1∏

m=0

(2k + l +m)

)

(
−x1 + x2e

−
√
∆(th−t)

)α

(x1x2)
l−α

(
1− e−

√
∆(th−t)

)l+i−2α (
x2 − x1e

−
√
∆(th−t)

)−(2k+l+i−α)

7: if th = τj then

8: Record the result in B′ : ∀i, B′(j,i) =
˜̃
M

(i)

9: Set j = j − 1.
10: end if
11: if th = 0 or th = τS then
12: return B′

13: else if th is a removed leaf then

14: Update ∀i, M̃ (i) = ψr
˜̃
M

(i)

15: Set k = k − 1
16: else if th is a non-removed leaf then

17: Update M̃ (0) = 0 and ∀i > 0, M̃ (i) = ψ(1− r)
˜̃
M

(i−1)

18: Set k = k − 1
19: else if th is a sampled ancestor then

20: Update ∀i, M̃ (i) = ψ(1− r)
˜̃
M

(i)

21: else if th is a removed occurrence then

22: Update ∀i < N, M̃ (i) = ωr(i+ 1)
˜̃
M

(i+1)

and M̃ (N) = 0
23: else if th is a non-removed occurrence then

24: Update ∀i, M̃ (i) = ω(1− r)(k + i)
˜̃
M

(i)

25: else th is a branching event

26: Update ∀i, M̃ (i) = λ
˜̃
M

(i)

27: Set k = k + 1
28: end if
29: end for

Note that we tried to follow an analogous generating function approach as an alternative to Algorithm
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1 to compute Lt as well. This leads to another PDE problem, described in AppendixF, that will require

further work to be solved.

4.3. Special case ω = 0

We were not able to come with any analytical simplification, as in the previous section, for the case

r = 1. However, for the special case ω = 0, corresponding to the special case leading to the observation of

O = ∅, a nice recursion leads to a closed-form formula for M̂ .

Proposition 4.3. When ω = 0, at any time t, considering that we have observed so far –i.e. on (t, tor)– v

sampled ancestors, w removed leaves at times tj ∈ W, x branching events at times tj ∈ X , y non-removed

leaves at times tj ∈ Y, we get,

M̂(t, z) =λxψv+w+yrw(1− r)v+y
∏

tj∈X∪{tor}
R(tj − t, z)

∏

tj∈W
R(tj − t, z)−1

∏

tj∈Y
u(tj − t, z)R(tj − t, z)−1 .

Proof We prove this result by induction across the epochs of T in AppendixE, using as the main arguments

the update equations (4.33), (4.34), (4.35), (4.38), combined with Proposition 4.1 driving the evolution across

an epoch. �

As a simple corollary of this result, when th = 0 is the present, we get back the same probability density

formula of T as provided, e.g. in theorem 3.5 in Stadler (2010) (when r = 0), in Section 3 in Gupta et al.

(2019) (when r = 1), or in our previous corollary 3.2.

Indeed, Proposition 4.3 offers yet another proof of corollary 3.2 by noting that

P(T ) =

∞∑

i=0

M
(i)
0− = M̂(0−, 1) = ρk0M̂(0+, 1− ρ)

where the last equality follows from equation (4.39) taking into account the ρ-sampling at present. Note

that this alternative proof is also presented in (Laudanno et al., 2020).

When ω = 0, Proposition 4.3 also offers an alternative to Algorithm 2 for deriving Mt. Indeed, resorting

to the generating function to get back the probability density, one can get the following corollary.

Corollary 4.4. When ω = 0, at any time t, considering that we have observed so far –i.e. on (t, tor)– v

sampled ancestors, w removed leaves at times tj ∈ W, x branching events at times tj ∈ X , y non-removed

leaves at times tj ∈ Y, we can compute M
(i)
t using the following recursion,

M
(0)
t = λxψv+w+yrw(1− r)v+y

∏

tj∈X∪{tor}
R(tj − t, 0)

∏

tj∈W
R(tj − t, 0)−1

∏

tj∈Y
u(tj − t, 0)R(tj − t, 0)−1
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M
(i)
t =

1

i

i∑

α=1

M
(i−α)
t C(α)

where we define

C(α) = 2
∑

tj∈X∪{tor}
aαtj−t − 2

∑

tj∈W
aαtj−t −

∑

tj∈Y
(aαtj−t + bαtj−t)

at =
(
1− e−

√
∆t

)(
x2 − x1e

−
√
∆t

)−1

bt =
(
x1 − x2e

−
√
∆t

)(
x1x2 − x2x1e

−
√
∆t

)−1

.

Proof The probability density M
(i)
t can be found back by taking

M
(i)
t =

1

i!

(
∂izM̂(t, z)

)
z=0

.

The result follows from the derivation of these derivatives in AppendixD.2. �

This special case ends the section. In the next section, we will combine results from Sections 3 and 4

and use our ability to compute Lt and Mt to compute Kt, the probability distribution of the population

size given (T ,O).

5. The distribution of past population size conditioned on observations

5.1. The distribution at fixed times

In Section 3, we explained how to compute Lt, the probability density of the observations below time t

conditioned on the population size at time t. This relies either on Algorithm 1 in the general case, or on the

more optimized Proposition 3.1 in case ω = 0, or Proposition 3.3 in the case r = 1.

In Section 4, we explained how to compute Mt, the probability density of the observations above time

t and the population size at time t. This relies either on Algorithm 2 in the general case, or on the more

optimized Corollary 4.4 when ω = 0.

We now combine Lt and Mt to derive the probability distribution of the population size given (T ,O).

Provided we have stored numerical values (L̃
(i)
τj )i∈{0,1,...,N}

j∈{1,2,...,S}
and (M̃

(i)
τj )i∈{0,1,...,N}

j∈{1,2,...,S}
for a set of time points

(τj)
S
j=1, recall from the first section that we obtain

K(i)
τj

= P
(
Iτj = kτj + i | T ,O

)

=
L
(i)
τj M

(i)
τj

P(T ,O)

≈ L̃
(i)
τj M̃

(i)
τj

P(T ,O)
if i ≤ N, and 0 otherwise.
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Note that the denominator needs only be computed once, by evaluating
∑N

i=0 L̃
(i)
τj M̃

(i)
τj for example at time

τj = tor or τj = 0 as described in previous sections.

Depending on the parameter space that one wants to consider, it thus remains to arrange pieces stemming

from the previous sections. We provide a flowchart in Figure 4 to guide the reader to chose the most efficient

path.

Figure 4: The most efficient results depending on the parameter space considered. In red, results already described in Stadler
(2010) and Gupta et al. (2019). In blue, the new contribution of this manuscript.

5.2. Generator of trajectories

The previous result gives us the distribution of the population size at any time in the past, but does

not state anything about population size trajectories. We provide now an approximate way of simulating

population size trajectories conditioned on (T ,O).

Indeed, recall we have,

K
(i)
t := P(It = kt + i | T ,O) ∝ L

(i)
t M

(i)
t

L̇
(i)
t = −γ(kt + i)L

(i)
t + λ(2kt + i)L

(i+1)
t + µiL

(i−1)
t

Ṁ
(i)
t = γ(kt + i)M

(i)
t − µ(i+ 1)M

(i+1)
t − λ(2kt + i− 1)1i>0M

(i−1)
t .

We thus get,

K̇
(i)
t ∝ L̇

(i)
t M

(i)
t + L

(i)
t Ṁ

(i)
t

∝ − γ(kt + i)L
(i)
t M

(i)
t + λ(2kt + i)L

(i+1)
t M

(i)
t + µiL

(i−1)
t M

(i)
t

+ γ(kt + i)M
(i)
t L

(i)
t − µ(i+ 1)M

(i+1)
t L

(i)
t − λ(2kt + i− 1)1i>0M

(i−1)
t L

(i)
t

∝ λ(2kt + i)
L
(i+1)
t

L
(i)
t

K
(i)
t + µi

L
(i−1)
t

L
(i)
t

K
(i)
t −λ(2kt + i− 1)1i>0

L
(i)
t

L
(i−1)
t

K
(i−1)
t − µ(i+ 1)

L
(i)
t

L
(i+1)
t

K
(i+1)
t

∝ Q
(i,i)
t K

(i)
t +Q

(i−1,i)
t K

(i−1)
t +Q

(i+1,i)
t K

(i+1)
t . (5.40)

We introduced in the last line the following notation,

Q
(i+1,i)
t = −µ(i+ 1)

L
(i)
t

L
(i+1)
t

Q
(i−1,i)
t = −λ(2kt + i− 1)1i>0

L
(i)
t

L
(i−1)
t

Q
(i,i)
t = λ(2kt + i)

L
(i+1)
t

L
(i)
t

+ µi
L
(i−1)
t

L
(i)
t

.
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Using these, we see that Q
(i,i)
t = −

(
Q

(i,i+1)
t +Q

(i,i−1)
t

)
. This allows us to draw trajectories of the

number of ancestors in the past as a time-continuous Markov process with the (inhomogeneous) rates Qt

written above.

Observe that we could equally write these ODE coefficients using the M
(i)
t ’s. This gives,

K̇
(i)
t ∝ λ(2kt + i)

M
(i)
t

M
(i+1)
t

K
(i+1)
t + µi

M
(i)
t

M
(i−1)
t

K
(i−1)
t − µ(i+ 1)

M
(i+1)
t

M
(i)
t

K
(i)
t − λ(2kt + i− 1)1i>0

M
(i−1)
t

M
(i)
t

K
(i)
t

∝ R
(i+1,i)
t K

(i+1)
t +R

(i−1,i)
t K

(i−1)
t +R

(i,i)
t K

(i)
t (5.41)

where we introduced in the last line the following notation,

R
(i+1,i)
t = λ(2kt + i)

M
(i)
t

M
(i+1)
t

R
(i−1,i)
t = µi

M
(i)
t

M
(i−1)
t

R
(i,i)
t = −λ(2kt + i− 1)1i>0

M
(i−1)
t

M
(i)
t

− µ(i+ 1)
M

(i+1)
t

M
(i)
t

.

This is a standard result for Markov chains that are conditioned on a final state, and the shape of

the newly derived transition kernel is called a Doob’s transform (Levin and Peres, 2017). Note that these

transitions symplify for special cases when we have an analytical expression of either L
(i)
t or M

(i)
t .

5.3. Numerical implementation

Results of this paper have been implemented numerically and the code is freely available on GitLab:

https://gitlab.com/MMarc/popsize-distribution/.

We used the numerical implementation to verify the correctness of the results in several ways:

1. We verified that the values of the probability density of (T ,O) computed using Lt and Mt (i.e.

respectively using Algorithms 1’ and 2’) were equivalent to values computed using already known

formulas when (ω = 0, r = 0) (Stadler, 2010) or when r = 1 (Gupta et al., 2019). See result in Figure

5AB.

2. We verified that the values of the probability density of (T ,O) computed using Lt or Mt (Algorithms

1’ and 2’) were identical on examples for which no previous formula was known. See result in Figure

5C.

3. We assessed the distribution of the population size against the only numerical method performing

the same goal, the particle filtering developed in Vaughan et al. (2019). We compared values of

a few quantiles computed using the two methods, see result in Figure 5DEF). Note that Vaughan
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et al. considered that we never have data on the removal status of individuals. We thus adapted our

developments to this scenario in this specific comparison, by summing updates corresponding to the

removal or not of the sampled individuals.

On each of these sanity checks, we verified that different quantities match across different λ values. Note

that we could equivalently have chosen any other parameter to be varied.

Figure 5: Assessment of the accuracy of the methods presented in this paper, on toy datasets. First row, probability density
of data, A) against known analytical formula when ω = 0 and (µ, ρ, ψ, r) = (1, 0.5, 0.3, 0.2); B) against known analytical
formula when r = 1 and (µ, ρ, ψ, ω) = (1, 0.5, 0.3, 0.6); C) obtained using Algorithms 1’ or 2’ otherwise, with (µ, ρ, ψ, r, ω) =
(1, 0.5, 0.3, 0.2, 0.6). Second row, quantiles of the population size distribution, against the particle filter in Vaughan et al.
(2019), with parameters (µ, ρ, ψ, r, ω) = (1, 0.1, 0.001, 0.5, 0.001). D) quantile of level 0.2; E) median; F) quantile of level 0.8.

We also illustrate in Figure 6 our target distribution Kt of the past population size conditioned on (T ,O),

on a few simulated examples.

Figure 6: Inferred population size distribution Kt using (T ,O) matches the simulated population size trajectory It under three
different processes: A) A homogeneous birth-death with ρ-sampling at present; B) A homogeneous birth-death with ρ-sampling
at present and ψ-sampling through time; C) A homogeneous birth-death process with ρ-, ψ- and ω-sampling. Note that we
plot on the same graph kt, the number of observed lineages in the tree, as this is an obvious lower bound in our population
size inference.
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6. Discussion

The results we have derived in this paper fit into two main categories. The first category concerns results

allowing one to compute the probability density of a tree and occurrences, while the second category concerns

results allowing one to compute the probability distribution of the population size in the past. We discuss

these two categories below, before presenting ideas for future extensions of the model.

6.1. Using the probability density of the data

We present in this article new ways to compute the probability density of the data, P(T ,O). For the

special cases (ω = 0, r = 0) or (r = 1), efficient calculations are available in Stadler (2010); Gupta et al.

(2019). Our two Algorithms 1’ and 2’ have the potential to improve the computation time of P(T ,O)

also when ω 6= 0 and r 6= 1. When analysing data, as described below, often this probability density is

conditioned on sampling at least one individual, using utor (Stadler, 2012).

In the case that the tree is known, we can use P(T ,O|λ, µ, ρ, ψ, r, ω, tor) (with conditioning on sampling

at least one individual) to obtain maximum likelihood parameter estimates for the birth-death parameters

λ, µ as well as the sampling parameters ρ, ψ, r, ω. For special cases of this model, it has been shown that

not all sampling parameters are identifiable (see e.g. Stadler and Steel (2019)). Future work will involve

investigating which of the sampling parameters in the general model can be estimated.

On the other hand, data may consist of sequencing data A and occurrence data O. Bayesian tools are

then typically employed to obtain a sample from the posterior distribution of the parameters using Markov

chain Monte Carlo methods. The posterior distribution is,

f(T , θ, λ, µ, ρ, ψ, ω, tor | O,A) ∝ f(A | T , θ)f(O, T | λ, µ, ρ, ψ, r, ω, tor)f(λ, µ, ρ, ψ, r, ω, θ, tor),

with θ summarizing the parameters of the model of molecular evolution and f(λ, µ, ρ, ψ, r, ω, θ, tor) being

the prior distribution on the model parameters.

6.2. Probability distribution of past population sizes

The main results of this paper allow one to compute the probability distribution of the population size

in the past and to generate population size trajectories conditioned on (T ,O) (Section 5).

Given a tree and occurrences together with birth-death parameters (which may be the maximum like-

lihood parameters obtained based on the tree and record of occurrences), we can simulate the distribution

of past population sizes as described in Section 5.2. Furthermore, we can calculate the probability of a

population size at any time in the past as described in Section 5.1.
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If we are instead provided with sequencing data A and occurrence data O, and want to generate a

simulated ensemble characterizing the posterior distribution of past population size trajectories I, we can

use the following strategy. The posterior distribution is,

f(T , I, θ, λ, µ, ρ, ψ, ω, tor | O,A) = f(I | T , θ, λ, µ, ρ, ψ, ω, tor,O,A)f(T , θ, λ, µ, ρ, ψ, ω, tor | O,A)

We have described above how to obtain a sample from the posterior distribution f(T , θ, λ, µ, ρ, ψ, ω, tor | O,A)

using Markov chain Monte Carlo. For each sample of T , θ, λ, µ, ρ, ψ, ω, tor thus obtained, we can simulate an

appropriately conditioned population size trajectory I as described in Section 5.2. The ensemble of trajecto-

ries thus generated has the required distribution. We can employ an analogous procedure if we are interested

in the posterior probability distribution of the population size at a particular time t. For each posterior

sample of T , θ, λ, µ, ρ, ψ, ω, tor, we can calculate the population size distribution at time t using Section 5.1.

The posterior population size at time t is then the average over all these conditional distributions.

6.3. Increased efficiency opens new research avenues

Both the density P(T ,O) and the probability distribution of the population size in the past (Kt) can

be obtained using the Monte-Carlo particle filtering algorithm developed in Vaughan et al. (2019). The

new approach presented in this paper is nevertheless appealing for two reasons. First, it provides a direct

link with previous analytical formulas developed in Stadler (2010); Gupta et al. (2019), thus improving

our understanding of these processes and leading to very efficient results in the specific case where ω = 0.

Second, Algorithms 1 and 2 have the potential to be more efficient alternatives to the Monte-Carlo particle

filtering algorithm. Computing quantiles shown in Figure 5DEF using the particle filtering took a few days,

as compared to a few minutes with our method, mainly because it can be applied directly on a fixed tree

and does not need to be part of a MCMC. A more thorough quantitative comparison of both approaches

would require to implement this work in a MCMC framework, which is beyond the scope of this paper.

This increased efficiency could open up the possibility to analyse much bigger datasets in the near

future. In macroevolution, the study of clades with a huge fossil record like cetaceans could benefit from

our approach. This dataset is characterized by a rather small number of extant species and fossils with

morphological data available (respectively ρ-sampled and ψ-sampled species), but includes a huge number

of fossils without morphological data (ω-sampled species) (Morlon et al., 2011; Barido-Sottani et al., 2019).

For the cetaceans as well as many other clades, it will be of great interest to compute diversity estimates

under the same model, our modelling framework presented here (assuming ρ 6= 0, ω 6= 0, r = 0)." Ultimately,

all ω-samples could be taken into account to inform the tree and diversity estimates.

In the context of epidemiology, typically, the genetic sequences of the pathogen are only available for a

fraction of the infected individuals. These correspond to ψ-samples, while other sampled infected individuals
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correspond to ω-samples. Further developing our approach in a Bayesian framework, both the genetic

sequences and the record of occurrence could be jointly used to estimate the underlying transmission tree

and prevalence of the disease through time. Depending on the cost of sequencing and the ability of numerical

methods to handle some critical amount of both genetic sequences and number of occurrences, optimal

sampling procedure could be investigated, to make the most of both types of data.

Finally, while improving on current methods, these two Algorithms 1 and 2 still only provide approx-

imations of, respectively, Lt and Mt, that critically rely on the truncation parameter of the state space

N . Increasing N leads to a more accurate approximation, while increasing the runtime of the method. If

the probability mass of the number of hidden individuals is non-negligible above N , both algorithms will

lead to very poor approximations of Lt and Mt. This value should thus be carefully chosen in empirical

applications, depending on what is expected with the data at hand. We point out that the behaviour of

these algorithms strongly relies on the runtime and accurracy of the matrix exponentiation steps. Numer-

ous matrix exponentiation methods have been proposed in the literature (Moler and Van Loan, 2003). In

our current implementation, we rely on a recent matrix exponentiation method already implemented in

scipy (Al-Mohy and Higham, 2010). Future avenues towards improving this specific step could focus on

new theoretical results adapted to tridiagonal matrices (Smith and Shahrezaei, 2015) or alternatively try to

adapt Laplace transform approximations derived in Crawford et al. (2014), who present theoretical results

bounding the errors made in their approximation.

6.4. Future extensions

Our proposed modelling framework lends itself well for various biologically realistic extensions to allow

closer fit to empirical data in a variety of situations.

The first extension that we envision is to relax the assumption of rate homogeneity and instead work with

time-varying rates. This has already been considered in different studies relying on birth-death processes,

either with exponentially varying functions (Morlon et al., 2011) or with piecewise constant rates (a model

dubbed as skyline birth-death process, see Stadler et al., 2013; Gavryushkina et al., 2016). As all our

results can be straightforwardly adapted to such a framework, this would not require much theoretical work.

However, the challenge would be to do so without overfitting the data.

Another popular extension that has been described in the literature on birth-death processes for phylo-

dynamics is to consider multi-type birth-death processes (Maddison et al., 2007). Each individual is assigned

a type, which impacts its propensity to give birth to other types. All sampling-related parameters can also

be considered type-dependent. The main challenge here boils down to dealing with an increase of dimension-

ality, because we would be interested in the joint distribution of all subpopulation sizes. This extension is
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particularly interesting for epidemiological applications, when different populations of infected individuals,

clustered according to some characteristic (e.g. patient behaviour or geography) might have very different

dynamics (Stadler and Bonhoeffer, 2013).

Finally, we are very hopeful that this piece of work could be applied as well to density-dependent

birth-death processes, also known as logistic birth-death models. Indeed, very similar ideas to the breadth-

first forward and backward traversals as applied in Algorithms 1’ and 2’ appear in the context of logistic

birth-death models (Etienne et al., 2012; Leventhal et al., 2013; Laudanno et al., 2020). Preliminary results

obtained by adapting our numerical algorithms to this framework are very encouraging, and we are currently

in the process of deriving as much analytical results as we can to speed up the method. We are hoping to

present this in a subsequent paper.

6.5. Conclusion

This manuscript presents a way to efficiently compute the distribution of the past population size in a

linear birth-death process, conditioned on the observation of a reconstructed phylogenetic tree and a record

of occurrences through time. Such data are very common in macroevolution where the reconstructed phylo-

genetic tree of extant species is available together with occurrences from the fossil record. In epidemiology,

pathogen genetic sequencing data and case count data are a common data source. Our method thus promises

to allow efficient quantification of past population sizes, representing past biodiversity or past prevalence,

from these rich datasets.

We believe that this method also paves the way for the consideration of more complex and more re-

alistic demographic scenarios, assuming either time-dependent (Morlon et al., 2011; Stadler et al., 2013;

Gavryushkina et al., 2016) or density-dependent parameters (Etienne et al., 2012; Leventhal et al., 2013),

potentially catering for populations with multiple demographic categories/types (Maddison et al., 2007;

Stadler and Bonhoeffer, 2013; Freyman and Höhna, 2018). It is our hope that this manuscript will foster

important research advances for unravelling demographic histories in epidemiology, macroevolution, and any

other fields where birth-death processes form a relevant model framework.
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AppendixA. Solving well-known ODEs

AppendixA.1. The extinction probability

We first deal with equation (2.1) governing ut, and start by studying the polynomial λx2 − γx+ µ.

This polynomial has discriminant ∆ = γ2 − 4λµ > (λ + µ)2 − 4λµ ≥ (λ − µ)2 ≥ 0. Note that the first

inequality holds in the case we are interested in because we can assume that ψ + ω > 0. When this is not

the case, one needs to consider that λ 6= µ. Roots are

x1 =
γ −

√
∆

2λ
and x2 =

γ +
√
∆

2λ
.

Moreover, we know that both roots are positive because ∆ < γ2 ⇒
√
∆ < γ ⇒ x1 > 0.

On an interval including zero and where the polynomial remains positive (as (−∞, x1) for example), we can

write,

du

λu2 − γu+ µ
= dt

⇐⇒ du

(x1 − u)(x2 − u)
= λdt

⇐⇒ 1

x2 − x1

(
1

x1 − u
− 1

x2 − u

)
du = λdt

⇐⇒
(

1

x1 − u
− 1

x2 − u

)
du =

√
∆dt .

Integrating both sides between time 0 and t, we get

x2 − ut
x1 − ut

=
x2 − z

x1 − z
e
√
∆t

⇐⇒ x2(x1 − z)e−
√
∆t − ut(x1 − z)e−

√
∆t = x1(x2 − z)− ut(x2 − z)

⇐⇒ ut

(
(x2 − z)− (x1 − z)e−

√
∆t

)
= x1(x2 − z)− x2(x1 − z)e−

√
∆t

⇐⇒ ut =
x1(x2 − z)− x2(x1 − z)e−

√
∆t

(x2 − z)− (x1 − z)e−
√
∆t

.

This is the result stated in equation (2.2). Note that this quantity is called p0(t) in Stadler (2010), or

E(t) in Maddison et al. (2007).

AppendixA.2. Probability to leave only one sampled descendent

We aim here to integrate a slight variation of equation (2.3) governing pt when k = 1. The equation we

are interested in is,

dWs

ds
= (2λu(s, z)− γ)kWs (A.1)
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dWs

Ws

=

(
2λk

x1(x2 − z)− x2(x1 − z)e−
√
∆s

(x2 − z)− (x1 − z)e−
√
∆s

− γk

)
ds

=

(
2λkx1√

∆

√
∆(x2 − z)e

√
∆s

(x2 − z)e
√
∆s − (x1 − z)

− 2λkx2√
∆

(x1 − z)
√
∆e−

√
∆s

(x2 − z)− (x1 − z)e−
√
∆s

− γk

)
ds .

All these three terms can be integrated visually between some time th and t, leading to,

ln
Wt

Wth

=
2λkx1√

∆

[
ln

(
(x2 − z)e

√
∆s − (x1 − z)

)]t
th

− 2λkx2√
∆

[
ln

(
(x2 − z)− (x1 − z)e−

√
∆s

)]t
th

− γk(t− th)

=
2λkx1√

∆
ln

(x2 − z)e
√
∆t − (x1 − z)

(x2 − z)e
√
∆th − (x1 − z)

− 2λkx2√
∆

ln
(x2 − z)− (x1 − z)e−

√
∆t

(x2 − z)− (x1 − z)e−
√
∆th

− γk(t− th)

= −2λk(x2 − x1)√
∆

ln
(x2 − z)− (x1 − z)e−

√
∆t

(x2 − z)− (x1 − z)e−
√
∆th

− γk(t− th) + 2λkx1(t− th)

= −2k ln
(x2 − z)− (x1 − z)e−

√
∆t

(x2 − z)− (x1 − z)e−
√
∆th

− k
√
∆(t− th) .

Leading to the final expression below

Wt =Wth

(
(x2 − z)− (x1 − z)e−

√
∆t

(x2 − z)− (x1 − z)e−
√
∆th

)−2k

e−k
√
∆(t−th) . (A.2)

Note that the case k = 1, th = 0 and W0 = 1 − z corresponds to the probability pt given as equation

(2.4),

p(t, z) = (1− z)
∆

λ2

(
(x2 − z)− (x1 − z)e−

√
∆t

)−2

e−
√
∆t .

while the general case can be expressed using function p as

Wt =Wth

(
p(t, z)

p(th, z)

)k

.

AppendixA.3. A few useful properties

Solutions u(t, z) and p(t, z) to ODEs (2.1) and (2.3) satisfy two properties relying on the semi-group

property of solutions of ODEs, namely,

u(t2 − t1, u(t1, z)) = u(t2, z) (A.3)

p(t2 − t1, u(t1, z)) =
p(t2, z)p(0, u(t1, z))

p(t1, z)
=
p(t2, z)(1− u(t1, z))

p(t1, z)
. (A.4)

These two properties are useful in many calculations throughout this document, e.g.
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• Solving the main PDE in AppendixC requires inverting u, using the first property with,

z = u(t− th, z0)

⇐⇒ u(th − t, z) = u(th − t, u(t− th, z0))

⇐⇒ u(th − t, z) = u(0, z0)

⇐⇒ z0 = u(th − t, z) .

• The same Appendix section requires also composing function p and u, using

p(t− th, u(th − t, z))

p(0, u(th − t, z)
=

p(0, z)

p(th − t, z)
.

• In the proof of Proposition 4.3, we switch to the notation R(t, z) = p(t, z)/(1− z) and again compose

R and u in the same way,

p(tj − t, u(th − t, z))

p(0, u(th − t, z))
=
p(tj − t, z)

p(th − t, z)

⇐⇒ p(tj − t, u(th − t, z))

1− u(th − t, z)
=
p(tj − t, z)

p(th − t, z)

⇐⇒ R(tj − th, u(th − t, z)) =
R(tj − t, z)

R(th − t, z)
.

AppendixB. Link with previous work by Gupta et al. (2019)

We aim here at providing details to link this work with results previously derived by Gupta et al. (2019),

allowing efficient computation of L
(i)
t in the special case r = 1.

To do so, we define the distinguishable version of the probability L
(i)
t as

L
(i)

t =
(k + i)!

i!
L
(i)
t . (B.1)

We now derive the ODE for L
(i)

t . Multiplying both sides of (3.10) by (k+i)!
i! we obtain

L̇
(i)

t = −γ(k + i)
(k + i)!

i!
L
(i)
t + λ(2k + i)

(k + i)!

i!
L
(i+1)
t + µi

(k + i)!

i!
L
(i−1)
t

= −γ(k + i)
(k + i)!

i!
L
(i)
t + λ(k + i)

[
(2k + i)(i+ 1)

(k + i+ 1)(k + i)

]
(k + i+ 1)!

(i+ 1)!
L
(i+1)
t + µ(k + i)

(k + i− 1)!

(i− 1)!
L
(i−1)
t

= −γ(k + i)L
(i)

t + λ(k + i)φi,kL
(i+1)

t + µ(k + i)L
(i−1)

t , (B.2)

where

φi,k =
(2k + i)(i+ 1)

(k + i+ 1)(k + i)
= 1− k(k − 1)

(k + i+ 1)(k + i)
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is the probability that a coalescing pair of randomly chosen lineages (from (k + i + 1) total lineages) does

not consist of two sampled lineages. This shows that L
(i)

t satisfies the ODE (B.2) across any epoch. One

can see that at punctual events the transition conditions (3.11) and (3.16) hold for L
(i)

t for ψ-sampling and

branching events respectively. Moreover at ω-sampling events the transition condition (3.14) transforms to

L
(i)

t+ = ω(k + i)L
(i−1)

t− .

With these transition conditions and initial condition L
(i)

0 = (k0+i)!
i! L

(i)
0 = (k0+i)!

i! (1− ρ)k0ρi, the ODE (B.2)

was solved explicitly in Gupta et al. (2019) and the solution is of the form

L
(i)

t+ =

q∑

ℓ=0

(k + i)!

(i− ℓ)!
ui−ℓ
t W

(ℓ)
t

where q is the number of ω-sampling events in the time-interval [0, t) and the (q + 1)-dimensional time-

varying vector Wt = (W
(0)
t , . . . ,W

(q)
t ) can be analytically computed following the approach in Gupta et al.

(2019). Therefore from (B.1) we state Proposition 3.3.

AppendixC. Solving the main PDE

We aim now at finding an analytical solution for the following PDE, driving the evolution of M̂ across

a given epoch (th−1, th), on which the number of observed lineages remains constant and equal to k,

M̂(th, z) = F (z)

∂tM̂ + (λz2 − γz + µ)∂zM̂ + k(2λz − γ)M̂ = 0 .

AppendixC.1. Principle of the method of characteristics

This problem can be solved by the method of characteristics. We suppose that we can write M̂(t, z) =

M̂(t(s), z(s)) where functions t and z satisfy the ODEs,

dz

ds
= λz2 − γz + µ

dt

ds
= 1 .

This way, the function g(s) = M̂(t(s), z(s)) satisfies another ODE, that we will have to solve,

dg

ds
=
dz

ds
∂zM̂ +

dt

ds
∂tM̂ = (λz2 − γz + µ)∂zM̂ + ∂tM̂ = −k(2λz − γ)M̂

⇐⇒ dg

ds
+ k(2λz − γ)g = 0 .
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AppendixC.2. Step 1, solve for t(s), z(s) and g(s)

We start by integrating t(s). We moreover fix that t(0) = th, thus leading to t(s) = th + s.

We now turn to z, and notice that it satisfies previously studied ODE (2.1). Integrating between 0 and

s leads to,

z(s) = u(s, z0) =
x1(x2 − z0)− x2(x1 − z0)e

−
√
∆t

(x2 − z0)− (x1 − z0)e−
√
∆t

.

Last, g satisfies an ODE very similar to (A.1). Taking care of the minus sign, it leads to the following

result,

gs = g0

(
1

R(s, z0)

)k

. (C.1)

AppendixC.3. Step 2, express M̂ back as a function of t, z

We want to express our two unknown quantities s and z0 as functions of t and z.

On a first hand, we get easily s = t − th. We moreover can solve for z0 in the following equation,

remembering the semi-group property of u,

z = u(t− th, z0) ⇐⇒ z0 = u(th − t, z) .

Substituting these into the previous expression (C.1) of gs then leads to,

M̂(t, z) = F (u(th − t, z))R(t− th, u(th − t, z))−k

= F (u(th − t, z))R(th − t, z)k .

where the first to second equality relies on a property exposed in AppendixA.3. This gives us the final

formula which is stated in Proposition 4.1.

AppendixD. Some useful algebra

This section of the Appendix pools together all bits of algebra that are not really digestible, but are used

in the main text.

AppendixD.1. Deivative of M̂

We first modify a bit the expression of the generating function,

M̂(th − t, z) = R(th − t, z)k
N∑

l=0

M̃
(l)
th
u(th − t, z)l
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=

(
∆

λ2
e−

√
∆t

)k N∑

l=0

M̃
(l)
th

(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l (
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l)

.

Applying Leibniz’s derivation rule to the product, we get,

(
∂izM̂(th − t, z)

)
z=0

=

(
∆

λ2
e−

√
∆t

)k N∑

l=0

M̃
(l)
th

i∑

α=0

(
i

α

)(
∂αz

(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l
)

z=0(
∂i−α
z

(
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l)
)

z=0

.

(D.1)

The first of the two derivatives in the sum can be computed as,

∂z

(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l

= l
(
−x1 + x2e

−
√
∆t

)(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l−1

1l≥1

∂2z

(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l

= l(l − 1)
(
−x1 + x2e

−
√
∆t

)2 (
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l−2

1l≥2

...

∂αz

(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l

=
l!

(l − α)!

(
−x1 + x2e

−
√
∆t

)α (
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)l−α

1l≥α .

While the second gives us,

∂z

(
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l)

= (2k + l)
(
1− e−

√
∆t

)(
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l+1)

∂2z

(
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l)

= (2k + l)(2k + l + 1)
(
1− e−

√
∆t

)2 (
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l+2)

...

∂i−α
z

(
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l)

=

(
i−α−1∏

m=0

(2k + l +m)

)(
1− e−

√
∆t

)i−α

(
(x2 − z)− (x1 − z)e−

√
∆t

)−(2k+l+i−α)

.

Applying these derivatives in z = 0 in equation (D.1) yields,

(
∂izM̂(th − t, z)

)
z=0

=

(
∆

λ2
e−

√
∆t

)k i∑

α=0

N∑

l=α

M̃
(l)
th

(
i

α

)
l!

(l − α)!

(
i−α−1∏

m=0

(2k + l +m)

)

(
−x1 + x2e

−
√
∆t

)α

(x1x2)
l−α

(
1− e−

√
∆t

)l+i−2α (
x2 − x1e

−
√
∆t

)−(2k+l+i−α)

which is the expression provided in Proposition (4.2).

AppendixD.2. Derivatives of M̂ when ω = 0

We wish here to derive the ∂iz M̂(t, z) where function M̂ is as given in Proposition 4.3, i.e.

M̂(t, z) =λxψv+w+yrw(1− r)v+yR(tor − t, z)
∏

tj∈X
R(tj − t, z)

∏

tj∈W
R(tj − t, z)−1

∏

tj∈Y
u(tj − t, z)R(tj − t, z)−1 .
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We take for simplicity the derivative of the logarithm of M̂ and express the derivatives of M̂ using these

and Leibniz’s formula,

∂zM̂ = M̂∂z(ln M̂)

∂2zM̂ = ∂zM̂∂z(ln M̂) + M̂∂2z (ln M̂)

∂3zM̂ = ∂2zM̂∂z(ln M̂) + 2∂zM̂∂2z (ln M̂) + M̂∂3z (ln M̂)

...

∂izM̂ =

i∑

α=1

(
i− 1

α− 1

)(
∂i−α
z M̂

)(
∂αz (ln M̂)

)
. (D.2)

In order to compute the derivatives of ln M̂ , one needs to get the derivatives of lnR(t, z) and lnu(t, z).

We have

lnR(t, z) = −2 ln
(
(x2 − z)− (x1 − z)e−

√
∆t

)
+ ln

∆

λ2
−
√
∆t

∂z lnR(t, z) = 2
(
1− e−

√
∆t

)(
(x2 − z)− (x1 − z)e−

√
∆t

)−1

∂2z lnR(t, z) = 2
(
1− e−

√
∆t

)2 (
(x2 − z)− (x1 − z)e−

√
∆t

)−2

∂3z lnR(t, z) = 4
(
1− e−

√
∆t

)3 (
(x2 − z)− (x1 − z)e−

√
∆t

)−3

...

∂αz lnR(t, z) = 2(α− 1)!
(
1− e−

√
∆t

)α (
(x2 − z)− (x1 − z)e−

√
∆t

)−α

.

Finally taking the function in z = 0 leads to

∂αz lnR(t, 0) = 2(α− 1)!aαt (D.3)

where we defined at :=
(
1− e−

√
∆t

)(
x2 − x1e

−
√
∆t

)−1

. (D.4)

In the same way we get,

lnu(t, z) = ln
(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)
− ln

(
(x2 − z)− (x1 − z)e−

√
∆t

)

∂z lnu(t, z) =−
(
x1 − x2e

−
√
∆t

)(
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)−1

+
(
1− e−

√
∆t

)(
(x2 − z)− (x1 − z)e−

√
∆t

)−1

∂2z lnu(t, z) =−
(
x1 − x2e

−
√
∆t

)2 (
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)−2

+
(
1− e−

√
∆t

)2 (
(x2 − z)− (x1 − z)e−

√
∆t

)−2

∂3z lnu(t, z) =− 2
(
x1 − x2e

−
√
∆t

)3 (
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)−3
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+ 2
(
1− e−

√
∆t

)3 (
(x2 − z)− (x1 − z)e−

√
∆t

)−3

...

∂αz lnu(t, z) =(α− 1)!

[
−

(
x1 − x2e

−
√
∆t

)α (
x1(x2 − z)− x2(x1 − z)e−

√
∆t

)−α

+
(
1− e−

√
∆t

)α (
(x2 − z)− (x1 − z)e−

√
∆t

)−α
]

.

Here also, we are interested in the function in z = 0,

∂αz lnu(t, 0) = (α− 1)!(aαt − bαt ) (D.5)

where we defined bt :=
(
x1 − x2e

−
√
∆t

)(
x1x2 − x2x1e

−
√
∆t

)−1

. (D.6)

Last ingredient needed to write the derivative of ln M̂ , we get,

(
∂αz ln

(
u(t, z)R(t, z)−1

))
z=0

=(∂αz lnu(t, z))z=0 − (∂αz lnR(t, z))z=0

=− (α− 1)!(aαt + bαt ) . (D.7)

Finally, using equations D.4 and D.7, one can compute

(
∂αz (ln M̂(t, z))

)
z=0

= (α− 1)!C(α)

where we defined C(α) := 2aαtor−t + 2
∑

tj∈X
aαtj−t − 2

∑

tj∈W
aαtj−t −

∑

tj∈Y
(aαtj−t + bαtj−t) .

Plugging this into equation D.2 and noting that
(
∂izM̂(t, z)

)
z=0

= i!M
(i)
t , we get

M
(i)
t =

i∑

α=1

(
i− 1

α− 1

)
(i− α)!(α− 1)!

i!
M

(i−α)
t C(α) =

1

i

i∑

α=1

M
(i−α)
t C(α)

which is the result stated in corollary 4.4.

AppendixE. Inductions across the epochs

AppendixE.1. Proof of Proposition 3.1

We prove the proposition by induction across the epochs.

If we observe only the first epoch and the k0 leaves at present, then we get at any time t across the first

epoch (0, t1), L
(i)
t = ρk0(1− ρ)i = uitp

k0

t , which satisfies Proposition 3.1.

Suppose we observed so far – i.e. on (0, th+1) – v sampled ancestors, w removed leaves at times tj ∈ W ,

x branching events at times tj ∈ X , y non-removed leaves at times tj ∈ Y. And suppose that Proposition
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3.1 is verified across epoch (th, th+1). Let us have a look at what happen across epoch (th+1, th+2).

The observed punctual event th+1 can either be,

1. a removed ancestral leaf. Update (3.18) then applies. Subsequently, the number of sampled lineages

increases by one and formula (3.17) applies on the next epoch, leading to

L
(i)
t = uitWt

where Wt = λxψv+(w+1)+y(1− r)v+yrw+1pkth+1

(
pt

pth+1

)k+1 ∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

= λxψv+(w+1)+y(1− r)v+yrw+1pkt
∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W∪{th+1}
p−1
tj

.

2. a non-removed ancestral leaf. Update (3.19) then applies. Subsequently, the number of sampled

lineages increases by one and formula (3.17) applies on the next epoch, leading to

L
(i)
t = uitWt

where Wt = λxψv+w+(y+1)(1− r)v+(y+1)rwpkth+1
uth+1

(
pt

pth+1

)k+1 ∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

= λxψv+w+(y+1)(1− r)v+(y+1)rwpk+1
t

∏

tj∈X
ptj

∏

tj∈Y∪{th+1}
utjp

−1
tj

∏

tj∈W
p−1
tj

.

3. a non-removed sampled ancestor along a branch. Update (3.20) then applies. The number of sampled

lineages does not changes, and formula (3.17) applies on the next epoch, leading to

L
(i)
t = uitWt

where Wt = λxψ(v+1)+w+y(1− r)(v+1)+yrwpkth+1

(
pt

pth+1

)k ∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

= λxψv+w+y+1(1− r)v+y+1rwpkt
∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

.

4. a branching event between two sampled lineages. Update (3.21) then applies. The number of sampled

lineages decreases by one, and formula (3.17) applies on the next epoch, leading to

L
(i)
t = uitWt

where Wt = λx+1ψv+w+y(1− r)v+yrwpkth+1

(
pt

pth+1

)k−1 ∏

tj∈X
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

= λx+1ψv+w+y(1− r)v+yrwpk−1
t

∏

tj∈X∪{th+1}
ptj

∏

tj∈Y
utjp

−1
tj

∏

tj∈W
p−1
tj

.

In all four cases, Proposition 3.1 is satisfied across epoch (th+1, th+2).
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AppendixE.2. Proof of Proposition 4.3

This Proposition is also proven by induction across the epochs.

We start at tor = tn with k = 1 lineage. Across epoch (tn−1, tn), applying Proposition 4.1 with F (z) = 1

and k = 1, we get M̂(t, z) = R(tor − t, z), which verifies Proposition 4.3.

Suppose now that Proposition 4.3 is verified across epoch (th, th+1) and that we observed, on (th, tor), v

sampled ancestors, w removed leaves at times tj ∈ W, x branching events at times tj ∈ X , y non-removed

leaves at times tj ∈ Y. Let us have a look at what happens on (th−1, th).

Punctual event th can either be,

1. a removed leaf. The number of sampled lineages then goes from 1 + x − y − w to x − y − w, and

applying update (4.33) followed by Proposition 4.1 leads to

M̂(t, z) = λxψv+(w+1)+yrw+1(1− r)v+yR(tor − th, u(th − t, z))R(th − t, z)x−y−w
∏

tj∈X
R(tj − th, u(th − t, z))

∏

tj∈W
R(tj − th, u(th − t, z))−1

∏

tj∈Y
u(tj − th, u(th − t, z))R(tj − th, u(th − t, z))−1

= λxψv+(w+1)+yrw+1(1− r)v+yR(tor − t, z)

R(th − t, z)
R(th − t, z)x−y−w

∏

tj∈X

R(tj − t, z)

R(th − t, z)

∏

tj∈W

R(th − t, z)

R(tj − t, z)

∏

tj∈Y
u(tj − t, z)

R(th − t, z)

R(tj − t, z)

= λxψv+(w+1)+yrw+1(1− r)v+yR(tor − t, z)
∏

tj∈X
R(tj − t, z)

∏

tj∈W∪{th}
R(tj − t, z)−1

∏

tj∈Y
u(tj − t, z)R(tj − t, z)−1 .

where the first to second equality is detailed in AppendixA, and the second to third comes after

canceling out the R(th − t, z).

2. a non-removed leaf. The number of sampled lineages then goes from 1 + x− y − w to x− y − w, and

applying update (4.34) followed by Proposition 4.1 leads to

M̂(t, z) = λxψv+w+(y+1)rw(1− r)v+(y+1)R(tor − t, z)

R(th − t, z)
R(th − t, z)x−y−wu(th − t, z)

∏

tj∈X

R(tj − t, z)

R(th − t, z)

∏

tj∈W

R(th − t, z)

R(tj − t, z)

∏

tj∈Y
u(tj − t, z)

R(th − t, z)

R(tj − t, z)

= λxψv+w+(y+1)rw(1− r)v+(y+1)R(tor − t, z)
∏

tj∈X
R(tj − t, z)

∏

tj∈W
R(tj − t, z)−1

∏

tj∈Y∪{th}
u(tj − t, z)R(tj − t, z)−1 .

3. a sampled ancestor. The number of sampled lineages then remains unchanged and equal to 1+x−y−w.

Applying update (4.35) followed by Proposition 4.1 leads to

M̂(t, z) = λxψ(v+1)+w+yrw(1− r)(v+1)+yR(tor − t, z)

R(th − t, z)
R(th − t, z)1+x−y−w
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∏

tj∈X

R(tj − t, z)

R(th − t, z)

∏

tj∈W

R(th − t, z)

R(tj − t, z)

∏

tj∈Y
u(tj − t, z)

R(th − t, z)

R(tj − t, z)

= λxψ(v+1)+w+yrw(1− r)(v+1)+yR(tor − t, z)
∏

tj∈X
R(tj − t, z)

∏

tj∈W
R(tj − t, z)−1

∏

tj∈Y
u(tj − t, z)R(tj − t, z)−1 .

4. a branching time. The number of sampled lineages then goes from 1+ x− y−w to 2+ x− y−w, and

applying update (4.38) followed by Proposition 4.1 leads to

M̂(t, z) = λx+1ψv+w+yrw(1− r)v+yR(tor − t, z)

R(th − t, z)
R(th − t, z)2+x−y−w

∏

tj∈X

R(tj − t, z)

R(th − t, z)

∏

tj∈W

R(th − t, z)

R(tj − t, z)

∏

tj∈Y
u(tj − t, z)

R(th − t, z)

R(tj − t, z)

= λx+1ψv+w+yrw(1− r)v+yR(tor − t, z)
∏

tj∈X∪{th}
R(tj − t, z)

∏

tj∈W
R(tj − t, z)−1

∏

tj∈Y
u(tj − t, z)R(tj − t, z)−1 .

In all these cases, Proposition 4.3 is verified across epoch (th−1, th), which ends the proof.

AppendixF. Using a generating function to solve for Lt

AppendixF.1. A slightly different strategy

Recall that Lt verifies the following ODEs,

L̇
(i)
t = −γ(i+ k)L

(i)
t + λ(2k + i)L

(i+1)
t + µiL

(i−1)
t

L
(i)
0 = ρk0

0 (1− ρ0)
i .

If we introduce the corresponding generating function,

L̂(t, z) =

∞∑

i=0

ziL
(i)
t

then the initial condition on L translates into,

L̂(0, z) =

∞∑

i=0

(z(1− ρ))iρk0 = ρk0
1

1− z(1− ρ)
, ∀z ∈

(
± 1

1− ρ

)
.

The ODE translates into a PDE, but not as nicely as for Mt, see below,

∂tL̂ =

∞∑

i=0

zi
(
−γ(i+ k)L

(i)
t + λ(2k + i)L

(i+1)
t + µiL

(i−1)
t

)
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= −γk
∞∑

i=0

ziL
(i)
t − γ

∞∑

i=1

iziL
(i)
t + λ

∞∑

i=1

zi−1(2k + i− 1)L
(i)
t + µ

∞∑

i=0

(i+ 1)zi+1L
(i)
t

= −γkL̂− γz∂zL̂+ (2k − 1)λ
1

z
(L̂− L

(0)
t ) + λ∂zL̂+ µz2∂zL̂+ µzL̂

=

(
−γk + (2k − 1)λ

1

z
+ µz

)
L̂+ (µz2 − γz + λ)∂zL̂− (2k − 1)λ

1

z
L̂(t, 0) .

We are thus left with the following PDE problem,

L̂(0, z) =
ρk0

1− z(1− ρ)

− z∂tL̂+ (µz3 − γz2 + λz)∂zL̂+ (µz2 − γkz + (2k − 1)λ)L̂− (2k − 1)λL̂(t, 0) = 0 . (F.1)

This remaining term with L̂(t, 0) complicates things a little bit. However, the initial condition on L̂

provides us with a first candidate function to satisfy this PDE.

AppendixF.2. Solution

We introduce below function f , and show that it satisfies the PDE problem (F.1).

f(t, z) :=
pkt

1− zut
.

First, we observe that it satisfies the initial condition. We then need to check that it satisfies the PDE,

and to do so we expand each of the four components of equation (F.1).

The first one gives us,

−z∂tf = −z kṗtp
k−1
t (1− zut) + zu̇tp

k
t

(1− zut)2

= −z k(2λut − γ)(1− zut) + (λu2t − γut + µ)z

(1− zut)2
pkt

=
λ(−2kzut − (2k − 1)z2u2t ) + γ(kz − (k − 1)z2ut)− µz2

(1− zut)2
pkt .

We then turn to the second component,

(µz3 − γz2 + λz)∂zf =
λzut − γz2ut + µz3ut

(1− zut)2
pkt .

And the third one,

(µz2 − γkz + (2k − 1)λ)f =
(1− zut)(µz

2 − γkz + (2k − 1)λ)

(1− zut)2
pkt

=
λ((2k − 1)− (2k − 1)zut) + γ(−kz + kz2ut) + µ(z2 − z3ut)

(1− zut)2
pkt .
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And the fourth and final one,

−(2k − 1)λf(t, 0) =
−λ(2k − 1)(1− zut)

2

(1− zut)2
pkt

=
λ(−(2k − 1)z2u2t + 2(2k − 1)zut − (2k − 1))

(1− zut)2
pkt .

Putting everything together, we can now check that indeed,

− z∂tf + (µz3 − γz2 + λz)∂zf + (µz2 − γkz + (2k − 1)λ)f − (2k − 1)f(t, 0) = 0 .

While the branching and ψ-sampling with removal updates do not change anything to this solution, all

the others do. Further work is thus needed to look for other solutions to this same PDE with different initial

conditions.
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