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Alternate bearing, seen in many types of plants, is the variable yield with a strongly biennial pattern. In
this paper, we introduce a new model for alternate bearing behavior. Similar to the well-known Resource
Budget Model, our model is based on the balance between photosynthesis or other limiting resource
accumulation and reproduction processes. We consider two novel features with our model, 1) the exis-
tence of a finite capacity in the tree’s resource reservoir and 2) the possibility of having low (but non-
zero) yield when the tree’s resource level is low. We achieve the former using a density dependent
resource accumulation function, and the latter by removing the concept of the well-defined threshold
used in the Resource Budget Model. At the level of an individual tree, our model has a stable two-
cycle solution, which is suitable to model plants in which the alternate bearing behavior is pronounced.
We incorporate environmental stochasticity by adding two uncorrelated noise terms to the parameters of
the model associated with the nutrient accumulation and reproduction processes. Furthermore, we
examine the model’s behavior on a system of two coupled trees with direct coupling. Unlike the coupled
Resource Budget Model, for which the only stable solution is the out-of-phase solution, our model with
direct coupling has stable in-phase period-2 solutions. This suggests that our model might serve to
explain spatial synchrony on a larger scale.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction ubiquity of the phenomenon suggests that there is a common
‘‘Alternate bearing” is the variability of fruit or nut production
in many types of plants for which a year of high yield (ON-year)
is followed by one or more years of low or no production (OFF-
years). Generally, the crop varies biennially. However, in some
cases, it can show longer period cycles where multiple years of
high or low yield happen consecutively (Monselise and
Goldschmidt, 1982; Shalom et al., 2012). When this phenomenon
is observed in collective synchrony among trees in orchards and
natural forests, it is known as masting.

Alternation is very common and is observed in a variety of
plants like citrus trees (Shalom et al., 2012), olive trees (Lavee,
2007), and pistachio trees (Lyles et al., 2015; Noble et al., 2018).
These plants are different in many ways. The differences include
time of flowering, dormancy, and duration of fruiting compared
to vegetative growth (Monselise and Goldschmidt, 1982). The
mechanism that explains the crop variability in a variety of plants.
Both exogenous conditions, like environmental triggers, and

endogenous factors, like bud abscission, flowering inhibition by
current fruits (Shalom et al., 2012), pollination, and fruit overload,
have been considered as contributing factors to the alternate bear-
ing phenomenon. The depletion of the resource level of the plant
due to over-fruiting is considered the most common cause of the
phenomenon (Monselise and Goldschmidt, 1982; Lavee, 2007).
Isagi pioneered a simple model to explain the mechanism of vari-
able acorn yield observed at the level of an individual tree (Isagi
et al., 1997). His model, called the Resource Budget Model (RBM),
is based on the dynamics of the tree’s energy resource which is
accumulated as the result of photosynthesis and consumed during
the flowering and nut production processes.

The Resource Budget Model, as originally proposed by Isagi et al.
(1997) and expanded in Satake and Iwasa (2000), assumes the exis-
tence of a well-defined threshold for the tree’s resource levels
below which the plant will not reproduce. This means that during
an OFF-year, the tree has no yield. This assumption is appropriate
for the plants like olive and citrus, for which there is zero or
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near-zero yield during an OFF-year, but represents other species
with low but positive OFF-year yields less well. Once the resource
level of the tree exceeds the threshold, flowering and nut produc-
tion happens. Both flowering and nut production processes are
costly and result in the depletion of the tree’s resource reservoir.
The cost of flowering and nut production is assumed to be propor-
tional to the amount of resources above the threshold with the
depletion coefficient (the parameter of the model). The Resource
Budget Model belongs to the category of tent maps for which there
is no stable period-2 solution at the level of individual tree (except
at the bifurcation point). Systems of two trees do have an in-phase
period-2 solution, but it is only stable if the trees are coupled via
indirect (mean-field) coupling, as with pollination, and not for trees
coupled directly through local interactions like root grafting
(Prasad et al., 2017). Together, these features make the Resource
BudgetModel a simple and successful model to explain themasting
phenomenon in many plants for which there is zero or near-zero
yield during an OFF-year, the plant goes through several OFF-
years before having a year with high yield, and at a collective level,
the plants can interact via pollination (the plants are monoecious).
But themodel needs to bemodified if it is to be applied to the plants
like pistachio that have a low yield, but not zero, during OFF-years,
whose yield show a two-cycle behavior, and is dioecious, therefore,
the interaction between the female trees happens via direct cou-
pling (root grafting). Lyles et al. modified the Resource Budget
Model by removing the concept of threshold from the model and
adding temporal stochasticity to the depletion coefficient and the
pollen availability to achieve the variable and synchronized nut
production of the trees (Lyles et al., 2015). However, this model, like
the previous Resource Budget Models, does not show synchrony in
trees with direct coupling.

In another attempt to predict the yield of citrus trees, Ye and
Sakai suggested a more generalized version of the Resource Budget
Model (Ye and Sakai, 2016). Motivated by the result of their anal-
ysis of field data collected from a citrus orchard in Japan (Ye et al.,
2008), they added a vegetative growth factor to the Resource Bud-
get Model to account for the role of new leaf growth in inhibition of
fruit production. According to their model, the cost of new leaf
growth is proportional to the empty portion of the resource tank.
Also, the return map obtained from their experimental study
showed, what they called, a ‘‘hump-shaped” curve similar to what
is obtained from the logistic map. To reproduce the logistic-like
return map, they replaced the linear relationship between the
resource reserve level and flowering and fruiting cost in the origi-
nal Resource Budget Model (see Section 2), with a nonlinear
Ricker-type relationship (Ye and Sakai, 2016). By adding nonlinear-
ity they modified the model to better reflect the yield dynamics of
citrus trees. However, similar to the original Resource Budget
Model, this model assumes the existence of a well-defined thresh-
old below which no flowering or production happens, which does
not reflect the low (but non-vanishing) yield of species, like pista-
chio, during OFF years.

Inspired by an existing data set collected from a pistachio orch-
ard at the level of individual trees during a 6-year period (Lyles
et al., 2015; Noble et al., 2018), we propose a different approach
for modeling alternate bearing that accommodates low but non-
vanishing yield during OFF-years. This is achieved by replacing
the concept of a sharp cut-off for reproduction (represented by a
threshold function) with a continuous function that accommodates
the non-zero yield when the tree’s current energy level is low. Also,
we take into account the fact that there is a maximum capacity for
the plant to store photosynthate and other nutrients and therefore,
its energy storage cannot grow indefinitely.

In Section 2 we briefly review the rules and the characteristics of
the Resource Budget Model. In Section 3, we describe our new
model of alternate bearing behavior for the treeswith low yield dur-
2

ing OFF-years. We analyze the model by performing a bifurcation
analysis. Furthermore, we discuss and apply some necessary con-
straints on the model to make it biologically meaningful and appli-
cable. In Section 4, we add stochasticity to the model to account for
environmental variation. As the preliminary step to understand the
collective behavior of the trees in an orchard or a natural forest, in
Section 5, we study the dynamics of a two-tree system.

2. Background

First we describe the Resource Budget Model: every year, the
resource level of an individual tree (St) increases by a constant
amount called Ps. If the resource level exceeds a threshold, LT ,
the plant will flower and bear fruits/nuts which depletes the
energy reservoir of the tree. The cost of flowering is assumed to
be proportional to the excess amount of resources above the
threshold with a positive constant a. The cost of fruit/nut produc-
tion is also considered to be proportional to the cost of flowering.
The Resource Budget Model is formulated as,

Stþ1 ¼ St þ Ps; St þ Ps 6 LT
St þ Ps � a ðRc þ 1Þ ðSt þ Ps � LTÞ; St þ Ps > LT

�
ð1Þ

where Rc is the ratio of the cost of fruit/nut production to the cost of
flowering. The model can be written in terms of the dimensionless
variable st ¼ StþPs�LT

Ps
as,

stþ1 ¼ st þ 1; st 6 0
�mst þ 1; st > 0

�
ð2Þ

where m ¼ aðRc þ 1Þ � 1 is called the depletion coefficient.
As it is shown in the model’s orbit diagram (Fig. 1) and dis-

cussed in Appendix A, the model has a stable fixed point for
m < 1. At exactly m ¼ 1 (which is the discontinuous bifurcation
point) the system shows two-cycle behavior. For m > 1 the system
demonstrates a chaotic period-four oscillation for a very small
range of the parameter, followed by a single band chaos (Prasad
and Sakai, 2015).

3. The Model

Similar to the Resource Budget Model, our new model of alter-
nate bearing is based on the dynamics of the nutrient (i.e. carbon,
nitrogen, phosphorus, etc) level of an individual tree. According to
our model, the nutrient level of an individual tree in year t þ 1 is
determined based on the balance between two processes that hap-
pen in year t: 1) nutrient accumulation, 2) reproduction. The accu-
mulation of nutrients is the result of photosynthesis (Marino et al.,
2018) and the plant’s interaction with soil and soil-based microor-
ganisms (Guignard et al., 2017). The process of reproduction is the
flowering and production of nuts. Nut production comes with a
higher cost than flowering and is considered the main sink of the
tree’s nutrient reservoir (Marino et al., 2018). The nutrient level
of a tree in year t þ 1 (Stþ1) can be written as,

Stþ1 ¼ St þ Nutrient Accumulation� Cost of Reproduction: ð3Þ
In modeling the Nutrient Accumulation and the Cost of Repro-

duction, we take into account the following considerations:

1) The Nutrient Accumulation process cannot result in the
indefinite growth of the tree’s nutrients level. In other
words, each tree has a maximum capacity to store nutrients,
denoted by Smax. Therefore, the amount of nutrients that is
added to the tree’s reservoir each year is a density depen-
dent function of its existing nutrients level. We model the
Nutrient Accumulation process by a function of St , which
grows when St is small but approaches zero as St ! Smax.



Fig. 1. The orbit diagram of the Resource Budget Model shows that the dynamics of the system goes from a stable fixed point for the depletion coefficient, m < 1, to period-
four oscillation for a very small range of m and then quickly leading to chaos.
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2) As we mentioned in the introduction, the function used to
model the Cost of Reproduction should allow for low yield
(as opposed to zero yield) during OFF-years.

There are many mathematical functions that satisfy the above
conditions and can be considered to model these two processes.
For the purpose of this paper, we have chosen the bounded growth
function for Nutrient Accumulation and a shifted sigmoid function
for the Cost of Reproduction. However, these functions are not
unique. In Appendix C, we present an alternate version of the
model using a different Nutrient Accumulation function and show
that the dynamics of the model stay qualitatively similar.

Bounded Growth Function
The amount of nutrients added to the tree’s reservoir as a result

of photosynthesis and other nutrient uptake processes at the end
of year t is modeled by:

Nutrient Accumulation ¼ Smaxð1� e�r1St=Smax Þ � St; ð4Þ
where St is the current nutrients level, Smax is the tree’s maximum
capacity to store nutrients, and r1 is the efficiency of the Nutrient
Accumulation process. Fig. 2a shows the behavior of the nondimen-
sionalized version of Eq. (4) as a function of st ¼ St

Smax
and for different

values of r1. As r1 gets larger, the tree can accumulate more nutri-
ents and do it more efficiently and with less available resources.
Therefore the accumulation function has a higher maximum and
is right skewed with increasing r1 (the accumulation function
reaches its maximum for a smaller current resource levels (st)).

Shifted Sigmoid Function
The cost of reproduction is modeled by a vertically shifted sig-

moid function. A sigmoid function allows for low production when
the current nutrients level is low. Also, the second term (vertical
shift) ensures that when St ¼ 0, there is no reproduction, and
therefore no cost.

Cost of Reproduction ¼ Smax

1þ eð�r2StþLÞ=Smax
� Smax

1þ eL=Smax
: ð5Þ

In Eq. (5), r2 is the tree’s reproductive investment and L=r2 (=L�)
is the threshold that controls the level of resource needed to trigger
high yield. We can nondimensionalize Eq. (5) by defining st ¼ St

Smax

and l ¼ L
Smax

. Fig. 2b and c show the behavior of the nondimension-
alized versions of the Cost of Reproduction for different values of
the efficiency rate (r2) and the threshold (l).

As it can be seen in Fig. 2a, there are values of r1 for which the
Nutrient Accumulation term becomes negative. Also, for some val-
ues of r2 and l, the curves in Fig. 2b and c cross the diagonal line
which indicates that the Cost of Reproduction exceeds the current
resource levels (st). For the model to be meaningful, both of these
3

conditions must be avoided. This can be done by imposing con-
straints on the model and defining acceptable ranges of parame-
ters. Section 3.2 addresses this issue in detail.

Finally, we can write the nondimensionalized model as,

stþ1 ¼ ð1� e�r1st Þ � 1
1þ eð�r2stþlÞ �

1
1þ el

� �
: ð6Þ

While Eq. (6) models the dynamics of a tree’s nutrients level,
the amount of nut production is the observable that is actually
measured for each tree. Since nut production is the main sink of
the tree’s nutrient resources during reproduction, it can be taken
to be proportional to the cost of reproduction. We use
Yt ¼ 1

1þeð�r2 stþlÞ � 1
1þel

to denote the nondimensionalized yield of a

tree at time t to also study the dynamics of the observable of the
system.
3.1. Bifurcation analysis

In this section we study the behavior of the model for different
values of efficiency rates and a fixed value of l. For simplicity, we
choose the accumulation efficiency and reproductive investment
rates (r1 and r2) to always be equal. Therefore, we will have
r1 ¼ r2 ¼ r. This will simplify the model to a one-dimensional, sin-
gle parameter map, many examples of which have been exten-
sively explored (Strogatz, 1994; Devaney, 2003; Feigenbaum,
1980). However, the results presented in this section remain qual-
itatively the same if r1 and r2 are chosen to be different.

Fig. 3a and b show the orbit diagram of the model and the tree’s
yield (Yt) respectively, when l ¼ 7. Qualitatively, the orbit dia-
grams are similar to orbit diagrams of one dimensional unimodal
maps with one parameter, like the quadratic map. The model has
a stable fixed point for rK6:8. At r � 6:8 the first period-doubling
bifurcation happens. For 6:85KrK8:6 the model shows a 2-cycle
behavior (the range of the parameter where the alternate bearing
behavior can be modeled). At r � 8:6 a second period-doubling
bifurcation happens and the system switches to a 4-cycle oscilla-
tion. Next period-doubling bifurcation happens at r � 9:1 followed
by a cascade of period-doubling bifurcations that leads to chaos.
Like the orbit diagrams of other unimodal maps, the chaotic regime
is interrupted by small windows of cyclic behavior. Fig. 3c shows
the Lyaponov exponent as a function of the parameter r. We used
the method introduced in (Strogatz, 1994) to calculate the Lyapo-
nov exponent. For the range of the parameter values where k < 0
the system has a stable fixed point or a cyclic attractor. When
k ! �1, the attractor is superstable. Period-doubling bifurcations
happen when k ¼ 0. For k > 0 the trajectories diverge exponen-
tially which is a signature of a chaotic regime.



Fig. 2. The behavior of a) nondimensionalized Nutrient Accumulation term for different values of r1, b) and c) nondimensionalized Cost of Reproduction for different values of
r2 when l ¼ 3:5, and different values of l when r2 ¼ 7, respectively.
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Fig. 4 shows the trajectories for different values of r belonging
to different regimes, again with l ¼ 7. For r ¼ 6, the model relaxes
to a stable fixed point (Fig. 4a) and the tree maintains a fixed car-
bon level and constant yield. For r ¼ 7:5, the carbon level, and
therefore the production, show a period-2 oscillation (Fig. 4b).
Fig. 4c shows the model’s stable period-4 solution for r ¼ 8:8.
When r ¼ 9:8 the system is in the chaotic regime (Fig. 4d).

The analysis in this section has also been performed for differ-
ent values of l. As we change l, the locations of the period-
doubling bifurcations and the width of the chaotic windows
change, but the behavior of the model stays qualitatively the same.

3.2. Constraints on the Model

As we briefly mentioned in Section 3, for a range of values of r1,
the Nutrient Accumulation term becomes negative. Also, for some
combinations of r2 and l the Cost of Reproduction exceeds the cur-
rent resource levels (st). To avoid this and for the model to be bio-
logically meaningful, we have to determine the acceptable range of
values for the model’s parameters.

3.2.1. Nutrient Accumulation
The Nutrient Accumulation process should always result in the

increase of current resource levels. This means that the result of Eq.
(4) should always be greater than zero when the current resource
levels are below the maximum capacity (i.e. St < Smax or st < 1). As
St ! Smax (st ! 1), the Nutrient Accumulation function should
approach zero. In other words, St ¼ Smax (st ¼ 1) should be the
stable fixed point of the model when the reproduction is turned
4

off. This means that the solution of Eq. (7) (Nutrient Accumulation
¼ 0) should be s� ¼ 1.

1� e�r1s� � s� ¼ 0: ð7Þ
In Fig. 2a, s� is where each curve crosses the horizontal axis. As

we can see, for any finite values of r1, the solution to the Eq. (7) is
less than 1. This means for s� < st � 1 the result of the Nutrient
Accumulation function is negative. As it can be seen in Fig. 2a, as
r1 becomes larger, s� gets closer to 1 and the result of the Nutrient
Accumulation function remains positive for a larger range of st . Our
goal is to find a lower bound for r1 (let’s call it rmin) so that for val-
ues of r1 greater than rmin the corresponding s� is sufficiently close
to 1. We can write s� ¼ 1� d, where d is the tolerance that controls
the proximity of s� to 1. To determine the rmin as a function of d, in
Eq. (7), we substitute r1 with rmin and s� with 1� d. we can write,

1� e�rminð1�dÞ � ð1� dÞ ¼ 0: ð8Þ
Solving for rmin, we obtain a lower bound for r1 as a function of d

(i.e. r1 P rminðdÞ), where rminðdÞ ¼ 1
1�d ln

1
d

� �
. For any value of r1

greater than rmin we can accept that the Nutrient Accumulation
term remains positive for st 2 ð0;1� dÞ � ð0;1Þ. For the rest of this
manuscript, we choose d ¼ 0:01 and study the behavior of the
model for r1 P 4:65.
3.2.2. Cost of Reproduction
A tree’s intensity of flowering and nut production depends on

the current level of its nutrients storage. A tree will never draw
more resource to flower and reproduce than what is available in



Fig. 3. a) The orbit diagram of the model for r1 ¼ r2 ¼ r and l ¼ 7, b) the orbit diagram of the tree’s yield Yt , and c) the corresponding Lyaponov exponent (k) as a function of r.
For values of r where k > 0 the system is in the chaotic regime.
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its reservoir. In the language of our model, the Cost of Reproduc-
tion (Eq. (5)) cannot exceed the current nutrient levels. In terms
of the density of nutrient levels, st , it means:

1
1þ eð�r2stþlÞ �

1
1þ el

� �
6 st: ð9Þ

As presented in Fig. 2b and c, for some combinations of r2 and l,
the above condition is not met. To find the acceptable ðr2; lÞ pairs,
for which the condition is satisfied, we solved Eq. (9) numerically.
The shaded area in Fig. 5 shows the acceptable pairs of ðr2; lÞ for
which the cost of reproduction does not exceed the current nutri-
ent levels.
4. The role of environmental variation

The stochastic effect of environmental variation plays an impor-
tant role in photosynthesis (and other nutrient uptake processes)
and reproduction. Factors like the amount of CO2, the intensity of
radiant energy, and the temperature affect the process of photo-
synthesis (Marshall and Biscoe, 1980). On the other hand, the
amount of precipitation and the temperature during the reproduc-
tion season affect flowering or nut production. We incorporate
environmental variability into the model by adding two noise
5

terms to the nutrient accumulation efficiency and reproductive
investment rates (r1 and r2 respectively),

stþ1 ¼ 1� e�ðr1þn1tÞst � 1
1þ eð�ðr2þn2tÞstþlÞ �

1
1þ el

� �
ð10Þ

in which n1t and n2t are uncorrelated random variables that are
independently drawn from a normal distribution with mean zero
and variances r2

1 and r2
2, respectively.

In our simulations we choose r1 ¼ r2 ¼ r ¼ 7 and l ¼ 7 for which
the system is in the two-cycle regime. We also set r1 ¼ r2 ¼ r.
Notice that these choices of parameters satisfy the conditions set
for r1; r2, and l as mentioned in Section 3.2 and shown in Fig. 5.
While under the effect of very large noise, these conditions can
be violated, for the small enough variance of the noise terms, our
choices of parameters are unlikely to go beyond the acceptable
range. Fig. 6a shows a perfect period-two behavior of the model
without noise. Fig. 6b–d show the effects of noise with different
strengths (variances, r) on the amplitude and the phase of the
oscillation.

5. The dynamics of a two-tree system

One of the mechanisms behind spatial synchrony, observed in
the masting phenomenon, is the local interaction between trees.



Fig. 4. The trajectories for different values of r. a) r ¼ 6, the model relaxes to a stable fixed point, b) r ¼ 7:5, it shows a stable period-two oscillation, c) r ¼ 8:8, the model has a
period-four solution, d) r ¼ 9:8, the systems is in the chaotic regime. In all panels l ¼ 7.

ig. 5. The area covered by blue dots shows the combinations of ðr2; lÞ for which the
ondition in Eq. (9) is satisfied and the Cost of Reproduction stays below the current
utrient levels.
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The trees planted in proximity to one another interact in complex
ways including exchanging their carbon through root grafts (Klein
et al., 2016). Grafting is known as direct interaction or diffusive
coupling (Prasad et al., 2017). Trees also interact through pollina-
tion via external agents (e.g. birds, insects, and wind). This process
is considered an indirect interaction and usually implemented in
the form of mean-field coupling (Satake and Iwasa, 2000; Prasad
et al., 2017). In dioecious plants, pollen distribution is provided
by male trees while flowering and reproduction are done by female
trees. Therefore, pollination cannot be considered as the mecha-
nism behind the interaction among female trees. Instead, root
grafting (direct coupling) should be considered as the method of
local interaction. The numerical simulations of the Resource Bud-
get Model with direct coupling for a system of two trees show that
the only possible period-2 solution for the trees is the out-of-phase
solution (Prasad et al., 2017). We confirmed these results by per-
forming a stability analysis of the coupled Resource Budget Model
as discussed in Appendix B. These results suggest that the Resource
Budget Model cannot model the spatial synchrony observed among
dioecious plants, like pistachios, for which the direct coupling is
the main method of interaction.

In this section we use direct coupling to investigate the dynam-
ics of a deterministic system of two coupled trees. The internal
6

F
c
n



Fig. 6. The behavior of the density of resources (black) and the yield (blue) for 50 years for r ¼ 7; l ¼ 7, and a) r ¼ 0 (no noise), b) r ¼ 0:25, c) r ¼ 0:5, and d) r ¼ 0:75. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dynamics of each tree is defined by Eq. (6). We use ~si;t (i ¼ 1;2) to
refer to each tree’s resource level after nutrient uptake and repro-
duction but before exchange of resources. Each tree shares a fixed
fraction of its resource (j) with its neighboring tree and receives
the same fraction of the second tree’s resource in return. The result
is a net flow of nutrient from one tree to another. The nutrient level
of each tree at the beginning of year t þ 1 is:
s1;tþ1 ¼ ~s1;t þ jð~s2;t � ~s1;tÞ
s2;tþ1 ¼ ~s2;t þ jð~s1;t � ~s2;tÞ:

ð11Þ

To understand the dynamics of this system, we solve Eqs. (11)
numerically to construct the orbit diagram. We assume both trees
have the same internal dynamics by choosing the same nutrient
accumulation efficiency and reproductive investment rates. Also,
similar to previous sections we simplify the model by setting the
nutrient accumulation efficiency and reproductive investment
rates to be equal. Therefore, the internal dynamics of both trees
only depend on one parameter, r. We also choose l ¼ 7 for both
trees. To build the orbit diagram, we follow the technique used
in (Hastings, 1993). We choose 20 random initial conditions for
each choice of parameters r and j to capture all stable solutions
where the system is multistable.

Fig. 7 shows the dependence of the system’s dynamics on
parameter r and different values of j. Similar to the coupled logis-
tic equations discussed in (Hastings, 1993), two general categories
of solutions are identified: the perfectly in-phase solutions where
s1;t ¼ s2;t and all the other solutions, which we refer to as out-of-
phase solutions, where s1;t – s2;t . The left column in Fig. 7 shows
7

the orbit diagram of the total nutrient levels (s1;t þ s2;t) for stable
in-phase solutions. The right column shows the orbit diagram of
the nutrient levels difference (s1;t � s2;t) when the system has a
stable out-of-phase solution. For the range of parameters for which
the in-phase and out-of-phase solution coexist, both solutions are
shown in red. Different patterns of oscillation are observed in both
in-phase and out-of-phase categories. These patterns include in-
phase or out-of-phase period-2, period-3, period-4, or higher per-
iod oscillations, as well as chaotic behavior. When the resource
exchange between the two trees is weak (e.g. j ¼ 0:05), as shown
in Fig. 7a and b, the out-of-phase solutions are more prevalent and
the in-phase solutions are mostly observed when the two trees are
in fixed point or oscillatory regimes with different periods. As the
interaction becomes stronger, the in-phase solutions appear for a
wider range of parameter r and chaotic in-phase solutions are
more commonly observed. For a strong enough j (e.g. j ¼ 0:2)
the trees predominantly stay in-phase while out-of-phase solu-
tions are observed for r P 9:7. The similarity between Figs. 7c
and 3a suggests that, in this case, the system behaves mostly like
a single unit system.

As we mentioned above, the category of in-phase solutions
include a variety of periodic and chaotic oscillations that emerge
for different values of parameter r. Fig. 8 compares the basin of
attraction of some of these solutions. To obtain Fig. 8c–f, we scan
the entire phase space of ðs1;0; s2;0Þ, with increment of 0:005, to find
the initial conditions that relax to an in-phase attractor for j ¼ 0:1
and a given value of r. Fig. 8c–j are color coded to match the marker
lines in Fig. 8a and b. We choose values of r for which the in-phase
and out-of-phase solutions coexist. The in-phase solutions studied



Fig. 7. Left column: orbit diagrams of the total carbon levels when s1;t ¼ s2;t (in-phase solutions), right column: orbit diagrams of the carbon levels difference when s1;t – s2;t
(all other solutions), for different values of j. The red areas in all the figures indicate the coexistence of in-phase and out-of-phase solutions for that parameter value.
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Fig. 8. (a) and (b) The orbit diagram of in-phase (s1;t ¼ s2;t) and out-of-phase (s1;t – s2;t) solutions for j ¼ 0:1. (b)–(f) The basin of attraction for the in-phase solutions for
different values of r and different patterns of oscillation (color coded to match the marker lines on (a) and (b)). (g)–(j) The corresponding pattern of in-phase oscillations for
s1;t ; s2;t , and s1;t þ s2;t .
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in Fig. 8 are in the form of period-2 oscillation for r ¼ 8 (Fig. 8c and
g), chaotic for r ¼ 9:4 (Fig. 8d and h), period-10 for r ¼ 9:95 (Fig. 8e
and i), and period-3 when r ¼ 10:9 (Fig. 8f and j). The general pat-
terns of the basins of attraction are similar for different values of r
(different patterns of in-phase solution), however, the density and
the distribution of points differ, which can provide hints toward
the prevalence of the attractor in the phase space. For example,
the high density and the uniform distribution of points in Fig. 8c
indicates that the period-2 attractor has a higher probability of
emerging when r ¼ 8 compared to the period-3 attractor (Fig. 8f)
when r ¼ 10:9 which has a nonuniform basin with lower density
areas.
9

6. Discussion

We developed a new model for the alternate bearing phe-
nomenon. Alternate bearing is defined as the variability of the pro-
duction in many types of plants in a biennial manner. Similar to the
Resource Budget Model, our new model is based on the balance
between generating and storing nutrient during photosynthesis
and other nutrient uptake processes and consuming it through
flowering and nut production. We considered two biologically
motivated criteria: 1) the limited capacity of each plant to store
nutrient, and 2) low but non-vanishing yield during OFF-years
(when the resource level is low). The limited capacity of the
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resource tank was also considered in the generalized Resource
Budget Model proposed by Ye and Sakai (2016). There are multiple
mathematical functions that can satisfy the above conditions. In
each case different constraints should be applied to keep the model
biologically meaningful. Therefore, the model can be written in dif-
ferent mathematical forms while the qualitative dynamics of the
model remains robust.

As it was observed in the experimental data in Ye et al. (2008),
the return map of the fruit production shows a hump-shaped
curve. Ye and Sakai reproduced this behavior by replacing the lin-
ear relationship between resource level and the cost of flowering
and fruit production in the original Resource Budget Model with
a Ricker-type function which introduced more parameters to the
model (Ye and Sakai, 2016). We chose proper nonlinear functions,
that satisfy the biologically motivated conditions mentioned
above, to model the Nutrient Accumulation and Cost of Reproduc-
tion in our model. As a result the return map of the resource level
and, consequently, the yield of the plant show a logistic-like curve.
Therefore, unlike the Resource Budget Model, the new model for
alternate bearing has stable period-2 solutions for a wide range
of the model’s parameters and is well suited to model the variable
yield of plants in which the two-cycle behavior is more pro-
nounced. The structure of our model makes it possible to nondi-
mentionalize the resource level of the plant and, therefore, lower
the number of parameters to three. Furthermore, by setting the
nutrient accumulation efficiency and the reproductive investment
rates to be equal, we further lower the number of parameters to
two which makes the model easier to analyze and manipulate.
However, the behavior of the model remains qualitatively the same
if the two rates are not the same.

Trees in an orchard or natural forest do not show a perfect
periodic reproduction since they are subject to environmental
fluctuations. Although these variations affect the nutrient uptake
and reproduction differently, they are not independent. To
account for environmental stochasticity, we added two uncorre-
lated noise terms to the accumulation efficiency and the repro-
ductive investment rates. Our analysis shows that adding
stochasticity to the model affects the amplitude and phase of
the oscillation of the tree’s yield which models the noisy two
cycle behavior observed in alternate bearing plants. To include
the correlation between different environmental factors, one can
use correlated noise terms. In this case, the correlation coefficient
between the two noise terms becomes an additional parameter of
the model.

Masting and spatial synchrony is observed among alternate
bearing plants in orchards or natural forests. As the primary step
to examine the behavior of our model on a collective level, we ana-
lyzed the dynamics of a coupled two-tree system. One of the mech-
anisms behind masting is the local interaction between
neighboring trees. This interaction can be direct (root grafting),
indirect (pollen coupling), or a mixture of both. Since in diecious
plants, the female trees cannot interact through pollen coupling,
we used direct coupling to model the local interaction. The numer-
ical and stability analysis of the coupled Resource Budget Model
with diffusive coupling showed that the only stable two cycle solu-
tion is the out-of-phase solution. Therefore, the Resource Budget
Model cannot reproduce the spatial synchrony observed among
female trees of the diecious plants for which root grating (direct
coupling) is the main interaction mechanism. Our analysis shows
that our new model for alternate bearing with direct coupling
has stable in-phase period-2 solutions for a wide range of param-
eters and different values of coupling strength (j). Having stable
in-phase solutions can be interpreted as the primary requirement
for the model to be used in studying spatial synchrony at a larger
scale.
10
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Appendix A. Stability Analysis of Period-2 Solutions in the
Resource Budget Model

As it is shown in the orbit diagram of the Resource Budget
Model in Fig. 1, RBM has one fixed point ŝ ¼ 1

1þm which is stable
for m < 1. The period-2 solution, if exists, is the fixed point of
stþ2 ¼ f ðstÞ, where f ðstÞ can be obtained by iterating the model
twice. Using Eq. (2) we will have,

stþ2 ¼ f ðstÞ ¼

st þ 2; st 6 �1
�mst þ ð1�mÞ; �1 < st 6 0
m2st þ ð1�mÞ; 0 < st < 1

m

�mst þ 2: st P 1
m

8>>><
>>>:

ðA:1Þ

Solving stþ2 ¼ st ¼ ŝ, we obtain three acceptable answers from
the second, third, and fourth conditions in Eq. (A.1),

ŝ ¼
1�m
1þm ; �1 < ŝ 6 0
1

1þm ; 0 < ŝ < 1
m

2
1þm : ŝ P 1

m

8><
>: ðA:2Þ

For m > 1 all solutions become unstable. On the other hand, if
m < 1 the first and the third solutions become unacceptable since
they do not satisfy their required conditions. The second solution is
the model’s stable fixed point and not a period-2 solution.

For m ¼ 1 there is a continuum of period-2 solutions where the
system oscillates between any values of ŝ1 and ŝ2, as long as
0 < ðŝ1; ŝ2)<1, and ŝ1 þ ŝ2 ¼ 1. To analyze the stability of these
attractors, we study the system’s response to small and large per-
turbations. Any small perturbation that keeps st between 0 and 1
will push the system into another period-2 attractor where the
system will oscillate between two different values of ŝ1 and ŝ2.
On the other hand, a large perturbation can result in st falling out-
side the ð0;1Þ range. In that case, the system will come back and
settle in one of the period-2 attractors inside the continuum.

Appendix B. Stability Analysis of the Coupled Resource Budget
Model

When coupling two trees together, three scenarios can be
considered:

I) Stable fixed point
If both trees maintain the same resource levels above the

threshold, we can write the model as,



Fig. C.1. The behavior of the alternative Nutrient Accumulation function (Eq. (C.2))
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s1;tþ1 ¼ �ðmþ jÞs1;t þ 1þ js2;t
s2;tþ1 ¼ �ðmþ jÞs2;t þ 1þ js1;t :

ðB:1Þ

Setting s1;tþ1 ¼ s1;t and s2;tþ1 ¼ s2;t , the fixed point of the system
is ŝ1 ¼ ŝ2 ¼ 1

1þm. To perform the stability analysis, we find the eigen-
values of the coefficient matrix,

A ¼ �ðmþ jÞ j
j �ðmþ jÞ

� �
; ðB:2Þ

to be k1 ¼ �m and k2 ¼ �m� 2j. Therefore, the fixed point of the
system is only stable if ðmþ 2jÞ < 1.

II) Both trees oscillating between two positive values
Inthiscase,themodelisthesameasEq.(B.1).Ifthetreesarein-phase

with the same amplitude, s1;t ¼ s2;t , there is no net flow of resources
betweenthetreesandthesystemswillbe thesameas twouncoupled
trees.Sinceforanindividualtreethereisonlyacontinuumof2-period
solutionswhenm ¼ 1,thetreeswillstayin-phaseonlyiftheyarestarted
withequalresourcelevelsandm ¼ 1.

If s1;t – s2;t , the trees can be out of phase oscillating between
two positive values. In this case, the following two conditions will
be true,

s1;tþ2 � s2;tþ2 ¼ s1;t � s2;t
s1;tþ1 þ s2;tþ1 ¼ s1;t þ s2;t :

ðB:3Þ

Iterating Eq. (B.1) twice, we can write,

s1;tþ2 � s2;tþ2 ¼ ðm ¼ 2jÞ2ðs1;t � s2;tÞ: ðB:4Þ
This means that the first condition in Eq. (B.3) is satisfied if

ðmþ 2jÞ ¼ 1. As for the second condition, we will have,

s1;t þ s2;t ¼ 2
1þm

: ðB:5Þ

To find the period-2 solution, we assume that both trees oscil-
late out-of-phase between ŝlow and ŝhigh (both positive). Substitut-
ing these values in Eqs. (B.1), we will have,

ŝhigh ¼ �ðmþ jÞŝlow þ 1þ jŝhigh
ŝlow ¼ �ðmþ jÞŝhigh þ 1þ jŝlow:

ðB:6Þ

Using the criterion ðmþ 2jÞ ¼ 1 obtained from the first condi-
tion in Eq. (B.3), we will have,

ŝlow þ ŝhigh ¼ 2
1þm

ðB:7Þ

Therefore, any combination of ŝlow and ŝhigh that satisfies Eq.
(B.7) is the solution of the system.

III) Both trees oscillating between the same positive and neg-
ative values

In this case the model can be written as,

s1;tþ1 ¼ �ðmþ jÞs1;t þ 1þ js2;t s1;t > 0
s2;tþ1 ¼ ð1� jÞs2;t þ 1þ js1;t s2;t 6 0:

ðB:8Þ

The second iteration will be,

s1;tþ2 ¼ ð1� jÞs1;tþ1 þ 1þ js2;tþ1 s1tþ1 6 0
s2;tþ2 ¼ �ðmþ jÞs2;tþ1 þ 1þ js1;tþ1 s2;tþ1 > 0:

ðB:9Þ

We define,

Xð1Þ
t ¼ s1;t þ s2;t

Xð2Þ
t ¼ s1;t � s2;t:

ðB:10Þ

According to the conditions described in Eq. (B.3), for the out-
of-phase oscillation, we can write,

Xð1Þ
tþ1 ¼ Xð1Þ

t

Xð2Þ
tþ2 ¼ Xð2Þ

t :
ðB:11Þ
11
Applying the first and second iteration of the model in Eqs.
(B.11),

Xð1Þ
t ¼ 3�4j�m

ð1þmÞð1�kÞ

Xð2Þ
t ¼ 1

1�j :
ðB:12Þ

From here, we can obtain s1;t ¼ 2
1þm and s2;t ¼ 1�ðmþ2jÞ

ð1�jÞð1þmÞ. We

began our discussion assuming that s1;t > 0 and s2;t 6 0. Our final
result for s1;t is in agreement with our initial assumption. But for
s2;t to be less than or equal 0; ðmþ 2jÞ should be greater than or
equal one (ðmþ 2jÞ � 1).

To analyze the stability of this solution, we can analyze the sta-
bility of the fixed point of the following pair of equations,

s1;tþ2 ¼ f ðs1;t; s2;tÞ
s2;tþ2 ¼ gðs1;t ; s2;tÞ:

ðB:13Þ

Using Eqs. (B.8) and (B.9), the coefficient matrix will be,

A ¼ �m� jþmjþ 2j2 2jð1� jÞ
�2jðmþ jÞ �m� jþmjþ 2j2

 !
: ðB:14Þ

Matrix A has two eigenvalues, k1 ¼ ðjm�m� jþ 2j2Þ�
2j½ðjþmÞðj� 1Þ�ð1=2Þ, and k2 ¼ ðjm�m� jþ 2j2Þ þ 2j½ðjþmÞ
ðj� 1Þ�ð1=2Þ. Since j < 1; k1 and k2 are complex conjugates. The
period-2 solution is stable if jkj < 1. This results in m < 1.
Appendix C. An alternate version of the model

As we mentioned before, there are multiple mathematical func-
tions that satisfy the criteria discussed in Section 3. As an example,
we can use the Beverton–Holt function to model the Nutrient
Accumulation process. Therefore, the amount of nutrients added
to the tree during year t can be written as,

Nutrient Accumulation ¼ r1SmaxSt
Smax þ ðr1 � 1ÞSt � St ðC:1Þ

where r1 > 1 is the nutrient accumulation rate and Smax is the max-
imum capacity of the tree to accumulate nutrients. We can nondi-
for different values of efficiency rate.



Fig. C.2. The orbit diagram of the alternate version of the model (Eq. (C.3)).
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mensionalize Eq. (C.1) by defining st ¼ St
Smax

and multiplying both

sides by 1
Smax

. We will have,

Nutrient Accumulation ¼ r1st
1þ ðr1 � 1Þst � st : ðC:2Þ

Fig. C.1 shows the behavior of the Eq. (C.2) for different values of
r1.

We use the sigmoid function presented in Eq. (5) for the Cost of
Reproduction. We can write the model as,

stþ1 ¼ st þ r1st
1þ ðr1 � 1Þst � st

� �
� 1

1þ eð�r2stþlÞ �
1

1þ el

� �
: ðC:3Þ
12
As we can see in Fig. C.2, the orbit diagram of this version of the
model is similar to the orbit diagram of the version proposed in the
main text (Fig. 3a). This is an affirmation of the robustness of the
model.
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