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Abstract

Much of the work on extinction events has focused on external perturbations of ecosystems, such as climatic change, or anthropogenic

factors. Extinction, however, can also be driven by endogenous factors, such as the ecological interactions between species in an

ecosystem. Here we show that endogenously driven extinction events can have a scale-free distribution in simple spatially structured

host–parasitoid systems. Due to the properties of this distribution there may be many such simple ecosystems that, although not strictly

permanent, persist for arbitrarily long periods of time. We identify a critical phase transition in the parameter space of the

host–parasitoid systems, and explain how this is related to the scale-free nature of the extinction process. Based on these results, we

conjecture that scale-free extinction processes and critical phase transitions of the type we have found may be a characteristic feature of

many spatially structured, multi-species ecosystems in nature. The necessary ingredient appears to be competition between species where

the locally inferior type disperses faster in space. If this condition is satisfied then the eventual outcome depends subtly on the strength of

local superiority of one species versus the dispersal rate of the other.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the ecological processes responsible for
the persistence and extinction of biological populations is a
fundamental goal of ecological theory (Diamond, 1984;
Lawton and May, 1995; Mayr, 1985; Simberloff, 1984;
Wilson, 1988, 1992). The simplest organizing principle for
studying the question of persistence in multi-species
communities is to divide ecosystems into two classes: those
that are permanent, in the sense that all species coexist
indefinitely, and those that are not, so that some species are
driven to extinction in a finite time. If one is interested in
the causes of persistence versus extinction then it is
important to be able to classify these systems correctly.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Thus, one would like to understand the statistical
distribution of extinction events in a given class of
ecosystems. For example, in such an approach we would
be interested in determining the distribution of times until
the first species in a community becomes extinct, for a large
number of communities in a given class. If the distribution
of extinction times is such that many communities that are
not strictly permanent can survive for long periods of time,
then the relevant notion of ecological persistence must be
broadened to include many non-permanent ecosystems.
Therefore, the fundamental issue of understanding persis-
tence in multi-species communities depends critically on the
particular form of the distribution of extinction times.
Multi-species, host–parasitoid ecosystems are well suited

to the theoretical investigation of this issue for a number of
reasons. First, insect parasitoids are extraordinarily abun-
dant, comprising approximately 10% of all metazoan
species (Godfray, 1994) so any findings pertain to a
significant fraction of all animal species. Second, the
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relatively uncomplicated nature of the life cycle of
parasitoids means that reasonably simple models (Hassell,
1978, 2000) can describe host–parasitoid population
dynamics. Third, many aspects of host–parasitoid systems
(such as multi-species interactions (Hassell, 1978, 2000)
have been studied theoretically. Finally, the ability to study
host–parasitoid interactions in laboratory microcosms
means that theoretical results on extinction dynamics in
such systems may possibly be tested experimentally.

Without spatial structure these models are well under-
stood. Indeed, many of them can be solved analytically.
Incorporating spatial structure serves a number of pur-
poses. Firstly, it is realistic—few natural ecosystems are so
small that space can be said to be unimportant. Secondly, it
has been previously explored (Comins et al., 1992; Comins
and Hassell, 1996; Hassell, 2000; Hassell et al., 1991, 1994)
and shown to introduce novel and interesting effects.
Finally, spatial separation enables the ‘‘rescue effect’’
(recolonization after local extinction), of particular im-
portance in systems like the one we will be investigating,
where the local dynamics are unstable. Therefore, spatially
structured host–parasitoid models provide natural model
ecosystems with which to investigate extinction processes.

Here we study extinction dynamics in a class of simple
multi-species, host–parasitoid ecosystems. We use models
that can exhibit permanence of all species in the commu-
nity as well as extinction of one or more species. We show
that these regimes are separated by a critical phase
transition, and that, as a consequence, the extinction
dynamics in these systems has a distinctive statistical
distribution—it is a scale-free process governed by a power
law. We also show that species may persist despite the
presence of superior competitors by taking advantage of
space through dispersal.

2. Model

A convenient simple system for studying community
extinction dynamics consists of two parasitoid species
attacking a common host species in a spatially structured
habitat that is divided into a large number of discrete
patches (Comins and Hassell, 1996; Hassell, 2000; Hassell
et al., 1994). In a homogeneous environment, the popula-
tion dynamics of this host–parasitoid system may be
described by the following system of difference equations
(Comins and Hassell, 1996; Hassell et al., 1994):

Ntþ1 ¼ lNt expð�RtÞ,

Ptþ1 ¼ Nt½1� expð�RtÞ�ðPt=RtÞ,

Qtþ1 ¼ Nt½1� expð�RtÞ�ðbQt=RtÞ.

In these equations, Nt, Pt and Qt denote the population
size, in generation t, of the host and the two parasitoid
species, respectively. l is the growth rate of the host in the
absence of any parasitoids. b ¼ aQcQ=aPcP is the relative
superiority of parasite Q. (The a-values are the per capita
attack rates for each parasitoid species and the c-values are
the average numbers of adult female parasitoids of each
species emerging from each parasitized host. These four a

and c parameters are over-specified and can be replaced
with the single parameter b.) Finally, Rt ¼ Pt þ bQt is the
effective parasite population level. Without loss of general-
ity we can assume b41; accordingly, the parasitoid with
density Pt is called the inferior-type parasitoid, while the
parasitoid with density Qt is called the superior-type
parasitoid, because the ratio Qt=Pt / bt increases with
time. In formulating this model it is assumed that the two
types of parasitoids search independently and randomly,
and hence the population dynamics can be described in
classical Nicholson–Bailey form (Hassell, 2000). It is also
assumed that the two parasitoid species search simulta-
neously for hosts and that superparasitism by either
parasitoid species does not occur. The dynamics of this
spatially unstructured model is such that both parasitoid
species are quickly driven to extinction (Comins and
Hassell, 1996; Hassell et al., 1994).
In a spatially structured habitat, consisting of a large

number of patches, which we represent by the cells of a
32� 32 square lattice (larger lattices give qualitatively
similar results but are computationally prohibitive), the
dynamics of this host–parasitoid system can be regarded as
having two stages. In the first the host and parasitoid
populations in each patch reproduce according to the
system of equations given above. In the second phase
fractions mN, mP and mQ, respectively, of the host and
parasitoid populations in each patch disperse and are
distributed equally among the eight nearest neighbours of
that patch in the square lattice (Comins et al., 1992; Comins
and Hassell, 1996; Hassell, 2000; Hassell et al., 1991, 1994).

3. Results

The fundamental theoretical issue concerning the extinc-
tion dynamics is to determine the distribution of times to
extinction of at least one member of the community, for a
large ensemble of host–parasitoid systems of the type
described above, with regularly sampled parameters. We
found that the extinction dynamics depended most
sensitively on just two parameters: the relative superiority
b, and the quotient of the two parasitoid dispersal fractions
m ¼ mP=mQ. Thus, we worked with fixed host properties
l ¼ 2 and mN ¼ 1=2, and varied b, mP and mQ to sample
parameter space. For each set of parameters we simulated
the host–parasitoid system to determine whether any
species go extinct. Local populations were set to zero if
they fell below a specified threshold e (taken to be 10 orders
of magnitude below the (unstable) equilibrium density of
the non-spatial model), and a species was deemed to have
gone extinct if it had zero population density in every
patch. We determined the number of host–parasitoid
systems E(t) in which all species survive for at least
time t from these simulations in the following way. We
constructed a regular sampling of the parameter space of
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(b, mP, mQ) values, with each point in this sampling
representing a spatial host–parasitoid system. For each of
these host–parasitoid systems we determined by simulation
the time until the first species went extinct (this time was
taken to be infinity if all species were permanent), and from
this determined the distribution E(t). Thus, if spatial
host–parasitoid systems are picked at random then the
corresponding extinction times will be distributed accord-
ing to E(t). The distribution of E(t) against t is shown in
Fig. 1. We found that E(t) is described well by a power law
EðtÞ / t�Z for large t, with an exponent Z � 2:2. Extensive
simulations show that the power-law behaviour of the
distribution E(t) is robust to changes in the parameters l
and mN.

Power-law distributions are interesting because they are
scale-free, meaning that they look the same on all scales of
the property being measured. For instance, in our current
study we could predict exactly the same shape for the
distribution E(t) whether we studied time-scales of decades
or millennia. (This follows directly from EðuÞ / u�Z / t�Z,
where u ¼ t=s is just t measured in different units.)
Therefore, there is no characteristic time-scale governing
extinction dynamics, and extinctions occur on all time
scales, with some communities losing species rapidly, while
others maintain all species for long periods of time.
Further, since the exponent Zo3 the variance of the
distribution is unbounded: the second moment of the
distribution is

R
EðtÞt2 dt /

R
t2�Z dt, which is infinite for

Zo3. One important consequence of this is that there exist
many non-permanent host–parasitoid systems that persist
for arbitrary long periods of time. From a practical
ecological point of view such long-lived ecosystems are
essentially permanent.

Two general types of dynamic regimes can be distin-
guished in our models: for some parameter values all
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Fig. 1. Distribution of extinctions in a regular sampling of parameter

space, showing a power-law tail EðtÞ / t�Z with Z � 2:2. [Sample size,

N ¼ 691; 805 extinctions; 32� 32 lattice; parameter space: dispersal rates

mP, mQ ¼ 0:01, 0.02, y, 0.99, relative superiority of one parasite b ¼ 1:01,
1.03, y, 3.99.]
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Fig. 2. The inferior-type can coexist with the superior-type even when it is

much less efficient if it has a high migration rate. (a) The frequency o of

the inferior-type after 100,000 generations demonstrates the two phases:

coexisting and extinct. The boundary between the regimes is shown on the

floor of the plot. [Parameter details: relative dispersal ratem ¼ mP=mQ; mP

was fixed at 0.99 (results are qualitatively the same for other values of mP);

averaged over four replicates.] Fixing the relative superiority of one

parasite b and varying the relative dispersal rate m of the other

demonstrates that power laws characterize the transition on both sides.

(b) Time (generations) until the inferior-type goes extinct: t / ðmc � mÞ�1:0.
(c) Frequency of the inferior-type after 100,000 generations:

o / ðm� mcÞ
0:4. [Subset of Fig. 1 dataset with b ¼ 1:15 in panels (b) and

(c).]
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Fig. 3. Another variant, the 2-host Nicholson–Bailey model, also exhibits

(a) power law extinction times: EðtÞ / t�2:1; and (b) a critical phase

transition between extinction and coexistence regimes: t / ðmc � mÞ�1:2 (at
b ¼ 1:05). Compare with Figs. 1 and 2(b), respectively. (32� 32 lattice.

Parameter space: mP, mQ ¼ 0:01, 0.02, y, 0.99, m ¼ mP=mQ.)
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species coexist indefinitely while for others one or more of
the species goes extinct (Fig. 2a). In particular, if the
relative superiority b of one parasite is fixed while the
dispersal rate of the other m ¼ mP=mQ is varied, our models
exhibit a phase transition: extinction occurs for low values
of m, while all species coexist indefinitely as m is increased
beyond a critical point mc (Fig. 2b). In physics, phase
transitions are called critical if the system behaviour near
the critical point is governed by power laws due to system
fluctuations that can grow to be of any size and produce
events on all scales. In our models the continuous nature of
the divergence of the time to extinction of the inferior-type
parasitoid, t, at the critical point mc, as shown in Fig. 2b,
demonstrates that there is a critical phase transition at mc

(Goldenfeld, 1992). More specifically, the divergence in
extinction time near the critical point is itself governed by a
power law, t / ðmc � mÞ�k, which is characteristic of a
critical phase transition (Goldenfeld, 1992). Other natural
statistical measures of the extinction dynamics also have
power-law behaviour. An example is the frequency o of the
inferior-type parasitoid as a function of m. We find that o
declines continuously as m is decreased to mc, and that a
power law describes the divergence: o / ðm� mcÞ

s (Fig. 2c).
The behavior of t and o demonstrates that power laws
hold on both sides of the phase transition.

The existence of a critical phase transition in our model
provides an explanation for the power laws that govern the
distribution of extinction times E(t). When calculating E(t)
from a large ensemble of host–parasitoid systems, those
corresponding to parameter sets near the critical phase
transition will have extinction dynamics governed by a
scale-free process described by power laws. Parameter sets
far from the critical phase transition correspond to
ecosystems in which either both parasitoid species coexist
indefinitely or one parasitoid species goes extinct rapidly.
Ecosystems in the former category do not contribute to the
extinction statistics, while those in the latter category
contribute a peak in E(t) at short times (see Fig. 1). Thus,
overall the dominant contribution to E(t) comes from
host–parasitoid systems corresponding to parameter sets
near the critical phase transition, which generates the
power-law behaviour.

4. Variants

It is important to note that the phenomena we have
reported here are not restricted to one particular system.
We have also studied in detail the extinction dynamics of a
number of other multi-species spatial ecosystems: the first
consists of a single parasitoid species attacking two host
species (Comins and Hassell, 1996; Hassell, 2000; Hassell et
al., 1994). This example of apparent competition between
host species also exhibits a scale-free distribution of
extinction times and a critical phase transition between
extinction and coexistence regimes (see Fig. 3).

In the second alternative model we replaced the host in
the original model by completely random values (updated
every generation) in order to demonstrate the phase
transition is not dependent on the particulars of the
host–parasite interaction. Even in this simpler two-species
system with noise, the results are qualitatively similar to the
case where the host dynamics are strictly determined by the
host–parasite interactions (see Fig. 4a).
In yet another variation we replaced the two-dimen-

sional lattice by a one-dimensional chain of connected sites,
representing a ring-ecology as around a lakeshore. We
again observed a phase transition between coexistence and
extinction as shown in Fig. 4b. The critical exponents
found in this one-dimensional situation were different from
those found in the two-dimensional cases (for example, the
extinction-time power law had a different exponent,
EðtÞ / t�1:7), indicating that the nature of the critical point
depends on the spatial structure of the system, as is
expected for phase transitions (Goldenfeld, 1992). Thus,
although the exact rate at which E(t) decreases with time
depends on the particular system (including the spatial
dimension), the power-law distribution EðtÞ / t�Z holds for
all systems we have studied. The power-law distribution of
E(t) is the feature of key ecological significance since it
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implies that there exist many non-permanent ecosystems in
which all species persist for arbitrarily long periods of time.
Finally, we modified our original model to study the

effect of demographic stochasticity. We were able to
imitate an individual-based simulation by replacing the
bulk population dynamics with stochastic deviates sampled
from appropriate distributions. The values computed by
the deterministic equations were interpreted as averages of
distributions that were then sampled to produce actual
population levels. Both the birth–death and dispersal
processes incorporated demographic stochasticity in this
way, but with different underlying distributions: births and
deaths were assumed to obey a Poisson process character-
ized by an average net birth rate (per generation) given by
the Nicholson–Bailey equations shown above; dispersals
followed a binomial distribution where the fractions mN, mP

and mQ determined the average number of individuals to
disperse. Even if these assumptions do not exactly mimic
the intended individual-based dynamics, they capture two
important features: they introduce a stochastic effect and
the stochasticity grows with small populations. (Our
original model represents the limiting case of infinitely
large populations so that fluctuations become infinitesi-
mal.) Even in the limit of extremely small populations, this
model also exhibited the same phase transition as seen in
the original model and the other variants (see Fig. 4c).

5. Discussion

We have investigated the dynamics of endogenously
driven extinctions in a simple class of spatially structured,
multi-species host–parasitoid systems. Our models for
spatial communities can exhibit permanence of all species
in the community as well as extinction of one or more
species. Permanence is in itself an interesting model
outcome, because not only does it imply that inherently
unstable host–parasitoid interactions can persist in spa-
tially structured populations (as shown by Hassell et al.,
1994), but it also implies that a parasitoid (or host) type
that is locally always inferior to another type can never-
theless persist if it can take advantage of space through
dispersal. Nevertheless, extinctions occur for large regions
of parameter space, and here we have shown that the two
regimes of permanence and extinction are separated by a
critical phase transition. As a consequence, extinction is a
scale-free process in these systems, and power laws govern
the distribution of extinction times.
It is interesting to note that a number of distinct

mechanisms can in principle lead to scale-free distributions.
The mechanism that is relevant here is that near a critical
phase transition correlation scales become infinite and
the system becomes scale-free (Goldenfeld, 1992). Other
mechanisms, which can also result in scale-free distribu-
tions in various systems, include: self-organized criticality
(Bak et al. 1987), in which systems self-organize into a
critical state which is scale-free; ‘‘rich-get richer’’ mechan-
isms, in which the probability of an individual choosing a
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particular option increases with the number of individuals
that have already chosen it—this type of mechanism can
lead to scale-free distributions in, for example, citation
statistics, city sizes, and degree distributions of networks
(see, for example, Newman, 2003); and random processes,
such as Brownian motion (see, for example, Hastings and
Sugihara, 1993). Our identification of a critical phase
transition in the spatially structured ecological models we
have studied makes it clear that this is the origin of the
scale-free extinction dynamics that we have found. We
have no reason to believe that any other mechanism (such
as any of those mentioned above) is involved.

Consequently, there exist many ecosystems of this type
that, although not strictly permanent, persist for long
periods of time. The existence of long-lived, non-perma-
nent ecosystems that results from power-law extinction
dynamics can be contrasted with the case of extinction
statistics having an exponential distribution, which would
result if each species had a constant probability per unit
time of going extinct. Such a distribution is not scale-free,
but rather has a ‘‘half-life’’ which characterizes the time-
scale on which extinctions occur, and there would be
essentially no ecosystems that would persist for signifi-
cantly longer than the characteristic ‘‘half-life’’.

We have found scale-free extinction dynamics, and the
associated critical phase transition, in different kinds of
simple, spatially structured, multi-species host–parasitoid
systems. Competition between different species is a key
feature of these ecosystems and occurs either because two
parasitoid species are competing directly for the host
species, or because the two host species are in apparent
competition due to the common parasitoid species attack-
ing both. We have shown that the critical phase transition
is preserved in many variants of the model. Thus, we
conjecture that the phenomena we have found here are
characteristic of a large class of spatially structured
ecosystems, in which there are competitive interactions
between different species, and populations in neighbouring
habitat patches are coupled by dispersal. Establishing the
veracity of this conjecture would seem to be an important
topic for future research.

Previous approaches to understanding spatial mechan-
isms for species coexistence (Comins et al., 1992; Comins
and Hassell, 1996; Hassell et al., 1991, 1994; King and
Hastings, 2003) have focused on the role of spatial structure
in promoting species permanence. The existence of scale-
free extinction dynamics implies that the conventional
notion that persistence of a community is equivalent to
permanence must be refined to allow for the existence of
many non-permanent ecosystems that persist for long
periods of time. Thus, scale-free extinction dynamics
represents a novel and potentially important mechanism
through which spatial structure leads to species coexistence.

Finally, it is interesting to note that near a critical phase
transition, system often exhibit complex transient dynamics
that lasts for long periods of time before relaxing to some
simple asymptotic state (Killingback and Doebeli, 1998).
Such supertransients are known to occur in the time-series
of various spatially structured ecological models (Hastings,
2004; Hastings and Higgins, 1994). These supertransients
result from the existence of a chaotic saddle in the
ecological model (Hastings, 2004). Our results suggest that
a new type of supertransient may occur in certain spatially
structured ecological models as a consequence of a critical
phase transition in the model. If this is the case then this
type of critical phase transition may also have important
implications for the nature of population dynamics.
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