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a b s t r a c t

The general tendency for species number ðSÞ to increase with sampled area ðAÞ constitutes one of the

most robust empirical laws of ecology, quantified by species–area relationships (SAR). In many

ecosystems, SAR curves display a power-law dependence, S / Az. The exponent z is always less than one

but shows significant variation in different ecosystems. We study the multitype voter model as one of

the simplest models able to reproduce SAR similar to those observed in real ecosystems in terms of basic

ecological processes such as birth, dispersal and speciation. Within the model, the species–area

exponent z depends on the dimensionless speciation rate n, even though the detailed dependence is still

matter of controversy. We present extensive numerical simulations in a broad range of speciation rates

from n ¼ 10�3 down to n ¼ 10�11, where the model reproduces values of the exponent observed in

nature. In particular, we show that the inverse of the species–area exponent linearly depends on the

logarithm of n. Further, we compare the model outcomes with field data collected from previous

studies, for which we separate the effect of the speciation rate from that of the different species

lifespans. We find a good linear relationship between inverse exponents and logarithm of species

lifespans. However, the slope sets bounds on the speciation rates that can hardly be justified on

evolutionary basis, suggesting that additional effects should be taken into account to consistently

interpret the observed exponents.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Species–area relationships (SAR) quantify ecosystem richness
and, in particular, the spatial variations of biodiversity. These
curves measure the average number of species (S) present in a
sample area (A) of a given ecosystem and usually display a
triphasic shape (Preston, 1960; Rosenzweig, 1995; Hubbell, 2001).
For small areas (below the dispersal range) and large areas
(continental scale), the number of species rapidly increases with
the area; while for intermediate areas a slower, sub-linear growth
is observed. The intermediate range is the most intriguing one
and has gathered much attention since its discovery. Although
many functional forms have been proposed to fit the data in
this intermediate regime (He and Legendre, 1996; Tjorve, 2003),
the most common and widely accepted ones are the algebraic law
S ¼ CAz (with zo1 and C a positive constant) proposed by
Arrhenius (1921) (see also Gleason, 1922), and the logarithmic
one S � C ln A due to Fisher et al. (1943). A recent survey by
Drakare et al. (2006), reconsidering most of the existing SAR
studies from different ecosystems, shows that the former provides
ll rights reserved.
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a better fit in about half of the cases. Even though any of the two
hypothesis cannot be a priori discarded, much efforts across
the years (Preston, 1962; MacArthur and Wilson, 1967; Connor
and McCoy, 1979; Wright, 1988; Kohn and Walsh, 1994; Durrett
and Levin, 1996; Hubbell, 2001; Chave et al., 2002; He and
Legendre, 2002; Martin and Goldenfeld, 2006) have been devoted
to explain the observed values of the exponent z. Observations
support the idea of a dependence of the exponent z on quantities
such as latitude (Allen and Gillooly, 2006) and body size of
considered species (Drakare et al., 2006). Notwithstanding
observations and theoretical efforts, a satisfactory theory able to
predict the value of the exponent in different ecological situations
is still lacking.

On the theoretical side, two distinct viewpoints on ecosystems
organization correspond to different explanations for species–area
relationships. According to the first, larger areas contain a larger
variety of habitats and consequently can sustain a richer species
diversity (Kohn and Walsh, 1994). For the second viewpoint,
species–area relationships are the outcome of demographic
processes such as colonization, dispersal, speciation and local
extinction, and do not need environmental diversity for their
explanation (MacArthur and Wilson, 1967; Hubbell, 2001). We
should mention a third explanation, ascribing species–area
relationships to statistical biases induced by the skewedness of
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species abundance distributions (He and Legendre, 2002; Martin
and Goldenfeld, 2006). As both niche-based and neutral-dispersal
mechanisms are able to sustain diversity, the hope is to extract
information on the importance of the different classes of effects
from the shape of SAR curves (Chave et al., 2002).

We consider the voter model as the simplest prototype of
neutral models able to generate non-trivial species–area relation-
ships (Durrett and Levin, 1996; Hubbell, 2001; Zillio et al., 2005;
Rosindell and Cornell, 2007). The model accounts, in a simple way,
for the processes of birth, local dispersal and introduction of new
species. Its main parameter, n, is a dimensionless number
measuring the rate of appearance of new species—speciation
events—in units of the death rate. The other ingredient is the
dispersal kernel, which quantifies the probability for an individual
of a species to colonize different locations in the ecosystem.
Speciation and dispersal are enough to produce triphasic SAR
curves resembling those observed in field data (Chave et al., 2002;
Rosindell and Cornell, 2007). In particular, for local (short-range)
dispersal, the intermediate regime is well described by a power-
law behavior S ¼ CAz, with an exponent z depending on the
speciation rate n. We mention that the logarithmic function is
reproduced by the voter model with global dispersal, when
individuals can invade all loci of the ecosystem (Coleman, 1981;
Chave et al., 2002). The logarithmic law is also retrieved, for large
dispersal, for areas being smaller than the dispersal range, indeed
at these scales the dispersal appears as if it was long range.
Understanding how the exponent z depends on the parameters of
the model (in this case, mostly on n) is fundamental to move a
step toward the theoretical prediction of the variations of
experimentally observed exponents in terms of ecological quan-
tities.

However, this dependence has been source of some contro-
versy in the literature. In a seminal paper, Durrett and Levin
(1996) proposed a formula according to which, in the limit small
n, z�1= lnð1=nÞ. Rosindell and Cornell (2007) suggest a power-law
relationship between z and n. Finally, the scaling argument of
Zillio et al. (2005) predicts z approaching a finite value z � 0:2 for
vanishing n. These discrepancies have not yet been settled and,
due to the weak dependence of z on n, a clean answer requires
numerical simulations with n varying over several orders of
magnitude. So far, only speciation rates n\10�6 were explored as
simulations at lower (possibly more realistic) values of the
speciation rate are computationally very expensive.

In this paper we present results of simulations of the voter
model with speciation rates varying in a wide range of values from
n ¼ 10�3 down to n ¼ 10�11, with the twofold aim of disentan-
gling the low speciation-rate behavior and examine an ecologi-
cally relevant range of parameters. Our findings are also useful to
assess whether neutral predictions are consistent with realistic
speciation rates (Hubbell, 2001), a question which raised a heated
debate (Hubbell, 2003; Ricklefs, 2003). SAR curves resulting from
our simulations are characterized by a power law behavior with
exponent z, displaying a logarithmic dependence on the specia-
tion rate and supporting de facto Durrett–Levin’s scenario, even
though with different numerical coefficients. In agreement with
Rosindell and Cornell (2007), we also found that the exponent z is
essentially insensitive to the dispersal range implying that,
accepting the hypothesis of the model, the observation of a
species–area exponent imposes strong constraints on the rate of
appearance of new species. In the Discussion section, we examine
the plausibility of the model predictions on the basis of data
available in the literature. In particular, we consider the z-values
reported in the literature for different taxa and, due to the absence
of reliable data on speciation times, we study how measured
exponents depend on the lifespan, with the additional assumption
that average speciation times and lifespans are linked by a scaling
relation. The observed variations turn out to be much larger than
those allowed in the framework of the model; we finally discuss
which effects may be included to possibly achieve a quantitative
description.
2. Model

We consider the voter model with mutation as defined by
Durrett and Levin (1996). Individuals belonging to different
species are placed at each site of a two-dimensional ðL� LÞ-
square lattice and evolve according to the following dynamics. At
each time-step, a randomly chosen individual is killed, creating a
gap which is immediately filled, with probability n, by an
individual from a new species (not present in the ecosystem)—
speciation event—or, with a probability 1� n, by a new individual
of an already existing (in the ecosystem) species chosen among
those present in a neighborhood (that will be detailed below) of
the site—birth/dispersal event. The dynamics is then advanced
until the number of species in the ecosystem reaches a
statistically steady value. Strictly speaking, the fact that empty
locations are immediately colonized means that the birth rate is
infinite (see discussion in Durrett and Levin, 1996). Therefore the
basic time-step of the dynamics correspond to a death event, and
thus the dimensionless parameter n represents the speciation rate
s measured in unit of the death rate d. Equivalently, we can
express n as the average species lifespan t divided by the average
time between speciation events tðsÞ (we shall come back to this
point in the Discussion section).

As for the dispersal rule several options are possible. The
simplest possibility is the nearest-neighbor (NN) rule, where the
individual is replaced by one of the species present in the four
neighbor sites with probability 1

4. We will refer to this in the
following as the nearest-neighbor case. A more realistic choice is
to use a generic dispersal kernel introducing the probability PðrÞ of
a gap being filled by a species whose representative individual is
at a distance r from it. We adopt a computationally simple
instance by choosing the square kernel: we replace the individual
with a copy of another individual randomly chosen in a square of
side 2K þ 1 centered on the gap. This choice does not represent a
restriction as it has been shown that the relevant quantity is the
averaged square dispersal distance and not the specific functional
form of the kernel. For instance, a Gaussian and a square dispersal
kernel with the same squared dispersal distance produce very
similar SAR (Rosindell and Cornell, 2007).

We stress that, independently of the dispersal rule, the model
is completely neutral: all species (and individuals) undergo the
same dynamics, as differences among species arise only due to
demographic stochasticity.

Simulations have been efficiently performed by using the dual
representation of the voter model (Holley and Liggett, 1975),
providing a way to reconstruct the asymptotic configuration of the
ecosystem by tracing backward in time its evolution. An
important advantage of the dual representation is that it
reconstructs the genealogy of each individual up to the speciation
event originating its species, meaning that the system is ensured
to have reached equilibrium. Moreover, it allows to implement
open boundary conditions: the genealogy of an individual can be
reconstructed also when its ancestors are outside the simulated
area, which can thus be considered as a sample of a virtually
infinite ecosystem (Rosindell and Cornell, 2007; Rosindell et al.,
2008). This means that we can interpret n as a bona fide speciation
rate, since immigration from outside the system is included in the
birth-dispersal process. However, long-range immigration events
qualitatively different from local dispersal (i.e. seeds transported
by birds) can be modeled as an higher ‘‘effective’’ speciation rate n.
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We managed to optimize the algorithm to simulate the model for
very low speciation rates, down to n ¼ 10�11. Details on how the
simulations have been performed and the statistics have been
collected can be found in Appendix A; see also Rosindell et al.
(2008) for other possible improvements of the coalescence
algorithm. As for the dispersal, we explored both the NN and
the square kernels, for the latter K has been varied in the range
K ¼ 3264, though we shall mostly present the results for K ¼ 7
(see the discussion in the next section).
3. Numerical results

We begin studying SAR curves obtained at fixed dispersal
range (K ¼ 7) and varying n, as shown in Fig. 1. All curves display a
fast growth for small areas with a crossover, for areas of the order
of the dispersal kernel (A � K2), to the power-law regime. The
final regime where the number of species becomes linear with the
area can be detected only for rather large speciation-rate values,
10�5

� n � 10�3; to observe it at lower values of n much larger
simulation samples would be required. In the inset, we plot the
‘‘local species–area exponent’’ for each curve, dðln SÞ=dðln AÞ,
which clearly shows that the smaller n the smaller the exponent
becomes and the larger is the range of scales where a well defined
power-law behavior establishes. Finally, when the parameter n is
not too small, it is possible to observe also the final linear regime
which occurs for areas much larger than n�1 (Durrett and Levin,
1996).

Fig. 2 (left and middle panel) exemplifies the behavior of
species–area curves at fixed n and different dispersal range K. At
increasing the dispersal range the onset of the power-law regime
shifts at larger areas, apparently without affecting the exponent. A
more careful analysis of the local exponents dðln SÞ=dðln AÞ, shown
in the right panel, detects a dependence of the value of the
exponent on the dispersal range when this is small, Kt5,
including the NN case.

On the other hand, when K\5, we did not observe any
appreciable corrections to the value of the exponent. The
independence against variations of K, when it is large enough,
has been quantified by Rosindell and Cornell (2007), who have
shown that curves obtained with different (not too small) K can be
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Fig. 1. Dependence of SAR curves on the speciation rate: S vs A for different

speciation rates n 2 ½10�9 : 10�3
� obtained with the square kernel with K ¼ 7 in a

simulation sample of side L ¼ 2048, and averaging over 100 independent

realizations. Note the triphasic shape clearly observable for larger values of n.

Inset: logarithmic derivatives of the SAR curves, dðln SÞ=dðln AÞ vs A, a plateau

identifies the intermediate regime and the plateau value the exponent z. Note that

z increases with n and the intermediate regime enlarges in width at decreasing n
up to invading almost all the simulation sample for small n values.
rescaled on a universal function of A and n only via the
transformation:

S ¼ f ðA; n; LÞ ¼ KrfðA=Kr ; nÞ (1)

characterized by the scaling exponent r � 1:97. We checked that
this relation holds also with the small values of n that we studied,
for instance the insets of Fig. 2 (left and middle panel) show it for
n ¼ 10�5 and 10�8. We will then study in the following the NN
and the K ¼ 7 cases, the former being that originally studied by
Durrett and Levin (1996) and the latter being representative of the
behavior of the model for large average dispersal distances.

We now turn to the main results of this paper about the
dependence of z on n. In Fig. 3 (left) we show the exponent z as a
function of the speciation rate n (see Appendix A for a discussion
on how we estimated z). We observe a clear discrepancy with
previous predictions (Durrett and Levin, 1996; Rosindell and
Cornell, 2007) (also shown in the picture). In particular, for n51,
we found the data to fall into a straight line when plotting 1=z vs
lnðnÞ (Fig. 3 right), suggesting the following functional
dependence:

z ¼
1

qþm lnðnÞ
, (2)

by which we obtained a best fit to the data with q � �3:3 and
m � �0:72. To compare our results with previous studies of these
models, notice that the power-law fit suggested in by Rosindell
and Cornell (2007) agrees with the data in the same range of
speciation-rate values, i.e. n � 10�5. Deviation from a power-law
behavior are clearly observed for lower values of n, where the data
also rule out the saturation at z � 0:2 predicted by Zillio et al.
(2005). Actually, our fit confirms Durrett and Levin (1996)
prediction of a logarithmic decay of z with n, up to corrections
order OðlnðlnðnÞÞÞ. However, the fitting parameters m and q for
both the square kernel with K ¼ 7 and the NN kernel are very
different from those of Durrett and Levin (see caption of Fig. 3).
We conjecture that the differences in prefactors could be caused
by two different assumptions used by Durrett and Levin (1996) to
derive the dependence of z on n. The first is about pre-asymptotic
effects: the statistical results used by Durrett and Levin are strictly
valid only when t!1 which requires n! 0, while finite-time
corrections may affect the exponent value. In this respect, also for
our data the n! 0 limit seems to be crucial for the validity of the
fit (2). The second is the assumption that a power-law regime
establishes from A ¼ 1 to n�1. Conversely, we observe the onset of
the power law for areas being slightly larger than 1 even in the NN
case. Moreover, the crossover to the linear asymptotic regime
begins for areas quite smaller than 1=n.

It should be noticed that discrepancies in the numerical factors
have profound implications when the model is used to estimate a
speciation rate from an observed species area exponent. The
logarithmic dependence of z on n makes, in fact, n exponentially
dependent on z. We will discuss in the next section how this
dependence can be compared with experimental data. It should
also be remarked that both Durrett and Levin prediction and
Eq. (2) are valid for small values of n and can lead to incorrect
results, such as negative z, for n close to 1.

All simulations so far presented have been performed with
open boundary conditions, which are appropriate when the
sample is a homogeneous portion of a much larger ecosystem.
However, closed boundary conditions can be of interest for
modeling confined ecosystems such as islands. Intuitively, open
boundaries allow new species to immigrate into the sampled
system from the external infinite ecosystem, independently of the
speciation events. Closed boundaries exclude this possibility and
are thus expected to reduce the exponent z and, in general, species
richness. Fixing the speciation rate n the decreasing of z becomes
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more and more efficient as the system size decreases, and at fixed
size the effect is the stronger the smaller is n. The closed boundary
effects become dramatic for simulation samples with A � 1=n,
and, in particular, we observed that for n such that At1=n,
biodiversity is definitely lost, i.e. z ¼ 0 (see Fig. 4). Notice that
when the system size is large (i.e. A � 20482) and the speciation
rate is not too small (i.e. n � 10�4) the exponent is essentially the
same of the open boundary case. We also remind that, if islands
are modeled by closed boundaries, the parameter n should be
meant to include the immigration rate of new species (MacArthur
and Wilson, 1967), since dispersal from outside the system is
forbidden in this case.

We stress here that the implementation of closed boundary is a
very simplistic way of describing confined ecosystems and more
sophisticated effects may be relevant in these cases. For example,
it has been shown that the dynamics at the edge of ecosystems
can be quite different from that in the bulk (Laurance et al., 2006).
This means that ‘‘open’’ situations, when the sample is part of a
much larger and homogeneous system, provide a much safer
comparison between models and field data.
4. Comparison with empirical data and discussion

Species–area relationships have been subject of intense
experimental research in a variety of ecosystems, and the range
of variability of the exponent describing the intermediate regime
goes from z � 0:05 in bacteria (Horner-Devine et al., 2004) to z ¼

0:420:5 in some plants community (see Drakare et al., 2006 for an
exhaustive review of field observations). According to our results,
the voter model with speciation displays a variability of z in the
same range when the speciation rate is allowed to vary over
several orders of magnitude. It is thus tempting to go in the
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direction of a more quantitative comparison between field data
and the model results.

As a first step, we assume that the model is able to describe the
main features of groups of trophically similar species and explore
the consequences of this assumption. This requires that a
speciation rate and a dispersal range for the whole group of
species can be properly defined, although we know that specia-
tion rates (Mariakeva and Gorshkov, 2004) and dispersal ranges
(Nathan and Muller-Landau, 2000; Kinlan and Gaines, 2003) may
have significant variations from species to species. However, in
the model the exponent is essentially independent on the
dispersal range and depends only logarithmically from the
speciation rate, so that these variations might be disregarded
treating all species in the group as having the same ‘‘average’’
dispersal range and speciation rate.

As far as dispersal is concerned, we only found a tiny
dependence for very short dispersal range, around Ko5. Above
these values the exponent is independent of the dispersal range
confirming previous results (Rosindell and Cornell, 2007). Realis-
tic average dispersal ranges (Nathan and Muller-Landau, 2000;
Kinlan and Gaines, 2003) are certainly far from the short dispersal
case, due to animal motility or wind for seeds. Therefore, we
assume that the dispersal range of real groups of species is always
in the range where the exponent is dispersal-independent. It is
however worth remarking that the dispersal range can still affect
the spatial biodiversity via the power-law prefactor, whose
increase can lead to a large number of species that, when z is
small, increases very slowly with the area. In this respect, the
model outcomes are in contrast with interpretations of low values
for z in bacteria as an effect of large dispersal distances as argued
in Drakare et al. (2006) and Horner-Devine et al. (2004).

What about speciation? Unfortunately, we do not have
ecological data allowing us to directly estimate the frequency of
speciation events. Data from fossils suggest an average speciation
rate on Earth of about three specie per year (Sepkoski, 1998), but it
is hard to infer from this number a reasonable rate for a living
system. Also estimates based on mutation rates (Mariakeva and
Gorshkov, 2004) could be flawed due to genetic bottlenecks and
phenomena like horizontal gene transfer (Jain et al., 1999).
Moreover, as discussed in the Model section, the parameter n
should be interpreted as an ‘‘effective’’ speciation rate, incorpor-
ating also long-range dispersal events. Within the model frame-
work, our results show that species–area exponent and
dimensionless speciation rate n are related even when the latter
is very small, implying that an observed value of the exponent z

would predict the rate of introduction of new species n.
Remarkably, the existence of positive correlations of these two
quantities is consistent with observational results. As an example,
it is known that close to the equator species–area exponents tend
to increase (Drakare et al., 2006) together with speciation rates
(Allen and Gillooly, 2006) and overall biodiversity (Stevens, 1986).

In order to test the ecological plausibility of the relation
between z and n, we make use of the definition of n as the ratio be-
tween the speciation rate s and the death rate d. From Eq. (2) and
separating the contribution from the variation in the speciation
rate from that of the variation in the death rate, we have

1

z
¼ qþm lnðnÞ ¼ qþm½lnðsÞ � lnðdÞ�, (3)

where the arguments of the logarithm are made dimensionless by
measuring them in the same units. To ease the interpretation, we
recast this equality in the time domain using the lifespans t ¼ 1=d

and the average time between speciation events tðsÞ ¼ 1=s:

1

z
¼ qþm½lnðtÞ � lnðtðsÞÞ�. (4)
The first term on the right-hand side accounts for the variation in
z due to the lifespan which is, of course, much easier to estimate
than the term due to speciation time and can still be important
and informative. Indeed there are evidences that taxa having
a shorter generation time have generally lower species area
exponents (Horner-Devine et al., 2004; Green and et al., 2004;
Zhou et al., 2008) (we recall that m is negative). We thus study
how the inverse exponent 1=z varies with the logarithm of the
lifespan. The results of this analysis are presented in Fig. 5 for data
obtained from the literature (see Appendix B for a description of
how data have been collected), which shows that a linear
relationship fits rather well the data, with an observed slope
mmeas ¼ �1:76	 0:13 (dashed line in the figure) which is different
from m � �0:72 predicted by the voter model.

The fact that for species–area exponents measured in field
data we found 1=z / lnðtÞ suggests a scaling relationship between
speciation time and lifespan, i.e. that tðsÞ�tg, so that mmeas ¼

mð1� gÞ, as clear by substitution in the previous formula. We do
not have any a priori explanation for justifying a power-law
dependence of the speciation time on the lifespan, apart from the
observation that the variations of many ecologically relevant rates
among species are governed by scaling laws (Brown et al., 2004).
We are not aware of independent estimation of the dependence of
the speciation time on the lifespan so to confirm or reject the
outcome of our analysis.

However, the relation mmeas ¼ mð1� gÞ, with m and mmeas fixed
by the voter model and field data, respectively, yields a negative g.
This result is in contrast with biological expectations as it would
imply, e.g. a speciation time for bacteria much longer than the one
for trees, which is hard to justify biologically. Reasonable
expectations would have been 0ogo1. The limiting case of g ¼
1 is the trivial case in which speciation time is proportional to the
lifespan. This would have lead to mmeas ¼ 0, i.e. same n ¼ t=tðsÞ and
z for all taxa. The other limiting case is g ¼ 0, which is plausible
when the possibility of creating a new species is triggered by
some external mechanism, like the availability of new niches,
which is not strongly correlated to any particular feature of the
species. Another justification could come from co-evolutionary
mechanisms: species having very different lifespans can still
evolve on similar timescales due to their ecological interactions
(Thompson and Jeremy, 1992). Actually, co-speciation is known to
occur in some cases of host–parasite systems (Clayton et al.,
2003). In this case, one would find mmeas ¼ m.

The inconsistent value of g we obtained can be interpreted
either as a failure of the basic assumptions of the neutral model
and thus of its inadequacy in describing realistic ecosystems or as
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the need of additional mechanisms to be included in the
framework of dispersal models. The quality of the linear fit shown
in Fig. 5 would suggest to opt for the second interpretation, even if
the linear dependence of 1=z on logðtÞ needs to be tested with
further measures. In recent years, several attempts of relaxing the
strong assumptions of neutral models have been tried. The results
of these models are pretty robust with respect to modifications of
some hypothesis such as the saturation of the resources (Etienne
et al., 2007b). In spatial models, it has been also observed that the
introduction of trade-offs does not have a dramatic effect on
species–area exponents (Chave et al., 2002). Therefore, it is
reasonable to search for other elements in the model which can
lead to a failure in reproducing the observed data. In particular,
the assumptions of a point speciation mode (i.e. the fact that each
individual has a fixed probability to speciate) is known to be
crucial and the results may change dramatically when considering
‘‘fission modes’’, corresponding to allopatric speciation (Hubbell,
2001, 2003; Ricklefs, 2003; Etienne et al., 2007a). Indeed, it seems
like the most important assumption of neutral models is that new
species enter the system with a population of a single individual
(Zillio and Condit, 2007). This could explain why speciation rates
predicted by neutral models with point speciation may look
unrealistically high: new species are introduced with only one
individual and they have an high probability of going extinct
before being able to grow. In other words, there could be a
discrepancy between the parameter n in the model and the
experimentally observed speciation rate. The effect of realistic
speciation mechanisms on neutral and more general dispersal
models could be key to understand the puzzle of the observed
variation of the exponents among different taxa.

In conclusion, simulations of the multi-type voter model for
low values of the speciation rate show a clear logarithmic
functional dependence of the species–area exponent on the
speciation rate and independence on the dispersal kernel
(provided it is not too short ranged). Analysis of field data support
a logarithmic dependence of the exponent z on the timescales of
the problem, though with a prefactor which is incompatible with
that found in the model. Our analysis points out that more refined
models should allow larger variations in the exponent z in order to
be consistent with observational data.
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Appendix A. Simulations and data analysis

By means of the dual representation of the voter model, the
model becomes equivalent to a system of coalescing random
walkers, where a birth/dispersal event corresponds to collision–
coalescence of two walkers and a speciation event to the death of
a walker. Therefore, as time proceeds, less and less surviving
walkers should be accounted, speeding up the simulation. This
allowed us to simulate lattices L� L with L ¼ 1024;2048 and L ¼

4096 for n 2 ½10�11 : 10�3
�. In order to test the effect of the system

size when boundaries are present, we have also used L ¼ 512; in
this case we generalized the algorithm by just refusing all moves
causing the exit of a walker from the simulation domain, thus
constraining the walkers to remain inside the initial grid. To
embank the simulation bottleneck due to the initial presence of L2

walkers we optimized the walker collision detection by means of a
look-up table. For each n and L we repeated the simulation many
times with different seeds for the random number generator,
typically from 100 to 1502300 for L ¼ 2048;4096 and
L ¼ 1024;512, respectively. For the lower values of n simulations
get very slow and a lower number of realization was used,
typically from 20 to 60 for no10�10. Once the species occupancy
patterns are obtained SAR curves are derived by averaging the
number of species in non-overlapping squares of side

ffiffiffi

A
p
¼

1; . . . ; L whose union completely covers the simulation grid. So
that averages are performed both over the number of sampled
areas in each realization and over different realizations. Statistical
errors on the average are also computed. The exponent z

characterizing the power-law growth of S with A is then estimated
fitting by a linear least square method the function ln S ¼ qþ z ln A

with A 2 ½Amin : Amax� chosen at the beginning and the end of the
intermediate regime, respectively. The fit were performed by
minimizing the reduced w2 function (i.e. normalizing the w2 with
the number of degrees of freedom) but constraining the minimal
number of points to be considered (from 5 to 15 depending on the
extension of the intermediate range). As the least square error is
smaller than the variability of the fitted z at changing the minimal
number of constrained points, we set the error on the estimate as
such variability. In Fig. 3 errors are comparable with the symbol
size.

The quality of the fit is then compared by a direct inspection of
the local slopes (logarithmic derivatives, i.e. d ln S=d ln A vs ln A)
of the SAR curves.
Appendix B. Details on observational data

Data presented in Fig. 5 are based on the collection of
exponents presented by Horner-Devine et al. (2004). We avoided
presenting the z-value for plants since it varies a lot among
different studies (see supplementary information of Horner-
Devine et al., 2004). As a representative of long-lived organisms
we have chosen tropical forest trees which are well studied and
we assumed for them z ¼ 0:27 (Lonsdale, 1999) and average
lifespan � 60 years (Condit et al., 1999). The exponent z values for
butterflies, earthworms, birds and ciliates are the same of the
original reference; the value for bacteria z ¼ 0:05 is an average
between the value z ¼ 0:04 in Horner-Devine et al. (2004) and the
value z ¼ 0:06 in a more recent study by Zhou et al. (2008). As far
as the other lifespans are concerned, we must stress that it can
vary much from species to species and, in most cases, it is hard to
find in the literature good statistical studies. However, due to the
logarithmic dependence, the fit is not be so sensitive to errors in
the estimates as far as the order of magnitude is correct. We
assumed an average lifespan of 2 years for birds (see, e.g.
Speakman, 2005). Despite their short average lifespan in their
adult stage, butterflies usually have a few generations per year
(Gilbert and Singer, 1975); we assumed an average of two,
corresponding to t ¼ 0:5 years. Other estimated lifespans are 1
year for earthworms (Edwards and Bohlen, 1977), 10 days for
ciliates (Jensen and Verschoor, 2004) and 2 days for bacteria
(Clarholm and Rosswall, 1980).
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