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Abstract

A new time-dependent continuous model of biomass size spectra is developed. In this model, predation is the single process

governing the energy flow in the ecosystem, as it causes both growth and mortality. The ratio of predator to prey is assumed to be

distributed: predators may feed on a range of prey sizes. Under these assumptions, it is shown that linear size spectra are stationary

solutions of the model. Exploited fish communities are simulated by adding fishing mortality to the model: it is found that realistic

fishing should affect the curvature and stability of the size spectrum rather than its slope.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Biomass size spectra, the distribution of biomass across
body size classes in a community, have been the subject of
continuous interest since the first developments by
Sheldon and colleagues (1972), Sheldon et al. (1977). This
is both because it appears to be a very conservative feature
of marine communities, and because of the strong appeal
of summarizing complex communities, comprising nu-
merous species with complex trophic interactions, within a
simple plot and one or two numbers such as the slope and
intercept of the spectrum.

Biomass size spectra have been widely used both in
marine and freshwater ecosystems for estimating pro-
duction at different trophic levels, especially fish
production (Sheldon and colleagues, 1972,1977; Borg-
man, 1982; Leach et al., 1987; Sprules et al., 1991;
Boudreau and Dickie, 1992; Cyr and Peters, 1996),
predicting the effects of various human perturbations
(Borgman and Whittle, 1983; Cottingham, 1999), and
for more basic purposes such as analysing ecosystem
structure (Schwinghamer, 1981; Sprules and Munawar,
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1986) and dynamics (Denman et al., 1989), or estimating
mortality rates (Peterson and Wroblewski, 1984). More-
over, there is growing concern that fisheries manage-
ment should consider ecosystems rather than individual
populations, and biomass size spectra are considered a
potentially powerful tool for assessing human impacts
on exploited aquatic communities (Kerr and Dickie,
2001; Caddy and Mahon, 1996). Pioneering works
suggested that size spectra are regular and conservative
within a fishery, but vary between systems (Pope and
Knights, 1982; Murawski and Idoine, 1992). These
variations may be ascribed to fishing. Several authors
have hypothesized that exploitation should decrease the
slope of a fish community biomass size spectrum, and
reported decreasing trends of this slope in exploited
systems (Pope et al., 1988; Anonymous, 1995, 1996;
Greenstreet and Hall, 1996; Rice and Gislason, 1996),
although this pattern is not consistent across all systems
(Bianchi et al., 2000).

These studies are mainly based on empirical observa-
tions. However, an underlying theory is needed to be
fully able to predict and assess the effect of fishing on the
size spectrum, and also to determine reference points
(how steep should the size spectrum be or not be?). This
theory should also explain why size spectra are regular.

Existing theories of biomass size spectra rely on the
flow of biomass from the smallest- to the largest-sized
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Table 1

Definition of the mathematical variables

Symbol Definition Unit

w Weight of a fish g

x Logarithm of w lnðgÞ
t Time year ¼ yr

uðx; tÞ Number of fishes at time t by unit volume,

by unit of x

m�3

R x2

x1
uðx; tÞ dx Number of fishes with weight in ½ex1 ; ex2 �;

at time t; by unit volume

m�3

gðx; tÞ Growth rate yr�1

mðx; tÞ Mortality rate yr�1

jðqÞ Probability of predation when a predator

size x meets a prey size x � q
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organisms through size-dependent processes. Some of
them consider discrete trophic levels and the processes
considered include growth, production, respiration,
predation and even reproduction (Kerr, 1974; Borgman,
1982, 1983; Thiebaux and Dickie, 1992, 1993). However,
applying them to real situations is complicated by the
problem of defining trophic levels (Borgman, 1982). A
continuous biomass flow model avoiding this difficulty
has been developed (Platt and Denman, 1978; Silvert
and Platt, 1978). In this model, the size-dependent
processes governing the energy flow in the ecosystem are
loss (mainly by respiration), and a ‘‘generalized growth
function’’, which implicitly includes growth and preda-
tion. However, to predict the effect of additional
mortality on a large community encompassing several
size scales, it is desirable to explicitly describe predation
processes. Silvert and Platt (1980) developed a contin-
uous, time-dependent, nonlinear model of the size
spectrum where the energy flow is governed only by
predation, and the associated growth and mortality.
They predicted that biomass size spectra can be linear,
assuming a fixed prey–predator size ratio.

In this paper, this assumption is relaxed and a
continuous model of the size spectrum is developed,
where the energy flow is governed by predation, with a
distributed prey–predator size ratio. This means that
predators may feed not only on preys of a given unique
size, but on a range of prey sizes. In this model,
reproduction is assumed constant and independent
of the biomass present in the system. We first develop
the model and establish some of its mathematical
properties: it is predicted that size-spectra can still be
linear ; other ecological consequences of the model are
also examined to appraise the consistency and realism of
the assumptions. We then perform some numerical
simulations to predict the effect of fishing on a fish
community. The model is developed for fish in the broad
meaning of ‘‘animals swimming and foraging in the
open water’’.
2. The model

2.1. Notations

The fundamental independent variables are time t and
x; where x is the (natural) logarithm of the weight w of a
fish (Table 1). The derivative with respect to x is related
to the derivative with respect to w by

@

@x
¼ w

@

@w
:

The fundamental unknown is uðx; tÞ; the distribution
of the number of fish with respect to x: Then, the
number of fish in the weight range ½w1;w2� is given by
the formulaZ ln w2

ln w1

uðx; tÞ dx:

The mathematical change of variable x ¼ ln w shows
that this expression is equivalent toZ w2

w1

1

w
uðlnðwÞ; tÞ dw: ð1Þ

The mass of a fish is w ¼ ex; so the biomass of all fish in
the weight range ½w1;w2� is given byZ x2

x1

exuðx; tÞ dx or; equivalently

Z w2

w1

uðlnðwÞ; tÞ dw:

ð2Þ

The function u can be considered either as the
distribution in x of the number of fish or as the
distribution in w of the biomass.

Consider a fish of weight W ðtÞ; and X ðtÞ ¼ lnðW ðtÞÞ:
The growth function g is given by

dX

dt
¼ gðX ðtÞ; tÞ ð3Þ

or, using weight,

dW

dt
¼ W ðtÞgðlnðW ðtÞÞ; tÞ:

The function mðx; tÞ is the mortality rate of fish at
weight ex:

2.2. Balance

At time t; the number of fish in the weight range
½ex1 ; ex2 � is given byZ x2

x1

uðx; tÞ dx:

Some fish die and at time t þ dt; the remaining number
of fish isZ x2

x1

ð1� mðx; tÞ dtÞuðx; tÞ dx:
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Because, in the same time, they grow, these remaining
fish are exactly the fish in the weight range
½ex1þgðx1;tÞ dt; ex2þgðx2 ;tÞ dt� at time t þ dt: This number isZ x2þgðx2 ;tÞ dt

x1þgðx1 ;tÞ dt

uðx; t þ dtÞ dx:

We equate these numbers and compute the derivative
with respect to dt at the value dt ¼ 0:

�
Z x2

x1

mðx; tÞuðx; tÞ dx

¼
Z x2

x1

@u

@t
ðx; tÞ dx þ gðx2; tÞuðx2; tÞ � gðx1; tÞuðx1; tÞ:

Derive with respect to x2:

@u

@t
¼ �

@ðguÞ
@x

� mu: ð4Þ

This equation is well known in hydrodynamics (mass-
balance in a transport equation) and in population
dynamics (see Silvert and Platt, 1978, 1980, and Mc
Kendrick–von Foerster equation, see e.g. Kot, 2001).

2.3. Predation

In this model, predation is the unique driving force of
growth and mortality. Each predation event implies two
individuals. One (with weight ey) will grow, the other
(with weight ex) will die. The ratio of the weights of the
two individuals is supposed to be distributed indepen-
dently of the weights of the individuals: when two
individuals of weights ex and ey meet, the probability
that a predation happens is given by a function j which
depends only on the ratio of the weights ey�x: We denote
y � x by q: The function j (Fig. 1) is chosen dome-
shaped, positive, having a unique maximum which
implies an effective search for a preferred prey size.
Because preys are generally smaller than predators, the
function j is almost zero for negative values of q: But we
Fig. 1. Graph of j; the probability that a predator of weight ey

meeting a prey of weight ey�q will eat it.
do not need that j is exactly zero for negative q: For
numerical simulations, we take

jðqÞ ¼
en q

q0

� �n

e�nq=q0 if qX0;

0 if qp0:

8><
>: ð5Þ

This function j peaks at 1 for q0: The parameter n

determines the width of the peak of j:
Let us consider a predator of weight ey in a period of

time dt: The volume searched is supposed to be an
allometric function of weight: it is given by Aeay dt:
This allometry was derived by Ware (1978) based on
considerations about the bioenergetics of fish. Then the
number of encounters with possible preys of weight in
½ex; exþdx� is Aeayuðx; tÞ dt dx: The number of preys eaten
in the weight range ½ex; exþdx� is Aeayjðy � xÞuðx; tÞ dt dx:
The distribution of predation events is given by

Aeayjðy � xÞuðx; tÞuðy; tÞ dx dy dt: ð6Þ

2.4. Mortality

From the point of view of the prey, expression (6)
gives the mortality rate by predation

mðx; tÞ ¼
Z

N

�N

Aeayjðy � xÞuðy; tÞ dy

which is equivalent to

mðx; tÞ ¼ Aeax

Z
N

�N

eaqjðqÞuðx þ q; tÞ dq: ð7Þ

Non-predation mortality is accounted for by an
additional mortality rate

m0e
axuðx; tÞ;

which increases allometrically with body size and also
increases with the number of animals in the ecosystem
(density-dependent mortality). The allometric coefficient
was chosen to allow the mathematical analysis in
Section 3.

In simulations, we will add a fishing mortality rate
mf ðx; tÞ:

2.5. Growth

From distribution (6), the mass of preys eaten by one
predator is

Aeay dt

Z
N

�N

exjðy � xÞuðx; tÞ dx ð8Þ

(ex is the weight of one prey).
The increase in weight of the predator is given by

eygðy; tÞ dt (cf. Section 2.1). If the biomass eaten is used
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to grow with a constant efficiency K ; then

gðy; tÞ ¼ KAeay

Z
N

�N

e�qjðqÞuðy � q; tÞ dq: ð9Þ

2.6. Conclusion

Combining Eqs. (4), (7) and (9), we obtain the
following model:

@u

@t
ðx; tÞ ¼ �

@

@x
KAeax

Z
N

�N

e�qjðqÞuðx � q; tÞuðx; tÞ dq

	 


� Aeax

Z
N

�N

eaqjðqÞuðx þ q; tÞuðx; tÞ dq

� m0e
axuðx; tÞ2 � mf ðx; tÞ: ð10Þ

Eq. (10) is an equation of evolution, @u=@t ¼ AðuÞ;
where A is an operator on the functions of one variable
x: The difficulty lies in this operator being not local: it
includes convolutions.
3. Some mathematical properties of the model without

fishing

To allow a mathematical study, we first assume that
the solution uðx; tÞ is defined for all real x; i.e. for all
positive weights. Actually, it is not realistic: we need
another model for lower levels (plankton) in the
ecosystem (see Section 5.4).

For the sake of generality, j is kept as a parameter
function. Let Dj be the set of real numbers c such that
the integral

R
N

�N
jðqÞecq dq is convergent. For the

explicit j given above, Dj ¼ ð�N; n=q0Þ ; if j has a
compact support, Dj ¼ ð�N;þNÞ:

3.1. Relationship between rate and concentration

As the operator A is homogeneous quadratic with
respect to u; the following lemma is obvious:

Lemma 1. If uðx; tÞ is a solution of the model, and if c is a

constant, then, cuðx; ctÞ is also a solution of the model.

The biological meaning of this lemma is: if the
concentration of fish, biomass and nutrients is multi-
plied by a constant factor c; the biomass dynamics will
be similar, at a rate multiplied by c; consistently with the
findings by Silvert and Platt (1980) for a fixed prey–
predator size ratio. Another consequence of this lemma
is that if we change the parameter A to cA and m0 to cm0;
the solution uðx; tÞ becomes uðx; t=AÞ; or Auðx; tÞ: Then,
the parameters A and u0 do not influence the qualitative
behavior of the model, they determine only the rate of
biomass flow.
3.2. Stationary linear spectrum
Lemma 2. If jðqÞ is zero for negative values of q; there

exists a unique real l such that for any u0; the function

uðx; tÞ ¼ u0e
lx is a solution of Eq. (10). This l is the

unique real solution of

ð2lþ aÞK
Z

N

�N

e�ðlþ1ÞqjðqÞ dq

þ
Z

N

�N

eðaþlÞqjðqÞ dq þ
m0

A
¼ 0: ð11Þ

Moreover, lo� a=2:

Proof. The proof that a function elx is a solution of the
model if and only if condition (11) is satisfied is easy.

To prove the existence and unicity of l; we study the
function

F ðlÞ ¼ ð2lþ aÞK
Z

N

�N

e�ðlþ1ÞqjðqÞ dq

þ
Z

N

�N

eðaþlÞqjðqÞ dq þ
m0

A
:

With the hypothesis on j; the domain Dj has no lower
bound. We can then prove that

* the domain of F is

fl such that � 1� lADj and aþ lADjg

and it contains ð�N;�a=2Þ;
* for lX� a=2; the function F is nonnegative,
* the derivative F 0ðlÞ is positive for all lo� a=2;
* when l decreases towards �N the second integral in

F goes to 0, and F goes to �N:

From this follow the existence and unicity of a real
solution of F ðlÞ ¼ �m0=A; because �m0=Ao0: &

When j takes positive values for some negative q

(when small predators can eat large preys) the lemma
above is not valid (the sign of F 0ðl) becomes not
obvious). In some cases, F can have a global negative
minimum, so both existence and unicity can be wrong.
For example, it is the case for

jðqÞ ¼
q expð�qÞ if q > 0;

1=10 jqj expð�qÞ if qo0:

(

Although this is not the only solution (nor the only
stationary solution: see below), Lemma 2 shows that a
linearly decreasing size spectrum can appear, even if the
predators are allowed to prey on a weight range rather
than a single weight, and whatever the shape of the
predator–prey size ratio distribution.
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3.3. Other special solutions

3.3.1. Weak slope

Be C the constant

C ¼ m0 þ A

Z þN

�N

ð1� aKe�ð1�aÞqÞjðqÞ dq

(assuming that 0ADj and a� 1ADj the integral is
convergent). If both ao1; Ko1; and the probability of
eating large preys is negligible, then C > 0: It is easy to
show that

uðx; tÞ ¼
u0e

�ax

1þ Cu0t

is a solution of Eq. (10) with uð0; 0Þ ¼ u0:
Because C is positive, the solution is decreasing

towards zero. It is a linear spectrum with a slope weaker
than the stationary solution. This means that if for any
reason the slope of the spectrum becomes less steep
(i.e. more large fish and less small fish), there is a risk of
all biomass being washed out of the system by predators
eating preys faster than they are created by growth. Only
the input from the boundary condition (recruitment) can
keep some biomass in the ecosystem. This solution can
appear unrealistic, but would it happen, it would be
transient and hence not easy to observe.

If C is negative, the slope will be greater than the
slope of the stationary solution, and the population will
increase indefinitely and tend towards infinity. This
solution is mathematically correct, but the input of
biomass in the small weights must also increase towards
infinity.

3.3.2. Gaps in the spectrum

Let us assume (for this section) that the function j
has a compact support, i.e. jðqÞ is zero except for q in
some positive range ½qm; qM �: In this case, if uð0; xÞ is a
function which is zero except on some intervals of length
less than qm and with gaps of length at least qM ; then the
solution of the system is

uðt; xÞ ¼
uð0;xÞ

1þ m0e
axtuð0;xÞ

:

It corresponds to size spectra where no predation, hence
no growth, can occur, because the weights of the fish do
not match predators requirements. The only process
ongoing is mortality due to the term m0e

axu2:

3.4. Total biomass

The total biomass in 1 m3 is

BðtÞ ¼
Z þN

�N

exuðx; tÞ dx:

This integral is divergent, but from an ecological point
of view it is not a problem: there is a maximum and a
minimum size in any ecosystem. When the density u is
given by u0e
�x for x belonging to some range ½xmin;xmax�

(it is almost the case for the stationary solution
computed above), the biomass of fish of weight w in
½w0; 2w0� is u0 ln 2; independent of w0: the biomass is
homogeneous with respect to the weight of fish. When
u ¼ elx; with lo� 1; the concentration is higher in
small weights.

For a spectrum u which is zero outside a bounded
interval, we can compute the variation of the biomass.
Using Eq. (10)

dB

dt
¼

Z þN

�N

ex @u

@t
ðx; tÞ dx

¼ �
Z þN

�N

ex @

@x
ðKAeaxI1Þ þ AexeaxI2

	

þ m0e
ðaþ1Þxuðx; tÞ2



dx

with

I1 ¼
Z

N

�N

e�qjðqÞuðx � q; tÞuðx; tÞ dq;

I2 ¼
Z

N

�N

eaqjðqÞuðx þ q; tÞuðx; tÞ dq:

Integrating by parts, using uð7N; tÞ ¼ 0; we obtain

dB

dt
¼

Z þN

�N

½exKAeaxI1 � AexeaxI2 � m0e
ðaþ1Þxuðx; tÞ2� dx:

Changing x to y � q in the integral
R
exeaxI2 dx givesZ Z

eðaþ1ÞxeaqjðqÞuðx þ q; tÞuðx; tÞ dq dx

¼
Z Z

eðaþ1Þðy�qÞeaqjðqÞuðy; tÞuðy � q; tÞ dq dy:

Then we conclude that

dB

dt
¼ � Að1� KÞ

Z
N

�N

Z
N

�N

eð1þaÞye�qjðqÞuðy � q; tÞ

� uðy; tÞ dq dy � m0

Z
eðaþ1Þxuðx; tÞ2 dx:

From this result, it follows that, if K ¼ 1 and m0 ¼ 0;
total biomass is invariant. This is a corollary of the
model: if K ¼ 1; the biomass is conservative for each
individual predation event. In fact, there are losses when
converting food into body mass, hence Ko1 and the
biomass decreases with time. To avoid that, an external
input of biomass in the small weights is needed: it is
given by small fish food (e.g. plankton). This is related
to the boundary condition for small x:

3.5. Individual life history

Here we give some consequences of the model for an
individual fish: its growth curve, life expectancy (average
time the fish will live, given it is alive at time t), and food
ration. All this quantities can be computed for an
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individual fish in a given environment uðx; tÞ: We first
assume that this environment is a solution of Eq. (10);
then we make effective computations for the stationary
solution of Eq. (10).

We already defined the growth function X ðtÞ of an
individual fish (Eq. (3)). Combining with g (Eq. (9)), this
gives a differential equation for X ðtÞ which can be solved
with the initial condition X ð0Þ ¼ x0: It gives the weight
W ðtÞ ¼ eX ðtÞ as a function of time.

The food ration or instant amount of prey ingested is
given by Eq. (8).

Eq. (7) gives the function mðtÞ ¼ mðX ðtÞ; tÞ þ
m0e

aX ðtÞuðX ðtÞ; tÞ which is the mortality rate at time t

for the individual fish. The probability of living until
time t for a fish is given by exp

R t

0
�mðtÞ dt:

The distribution of the random variable ‘‘age of
death’’ is given by pðtÞ ¼ mðtÞ expð

R t

0 �mðtÞ dtÞ:
Then classical formulae give the life expectancy:

Eðx0Þ ¼
R
N

0 tpðtÞ dt: An integration by parts makes the
computation easier

Eðx0Þ ¼
Z

N

0

exp �
Z t

0

mðtÞ dt
� �

dt:

Let us apply this to compute the life expectancy in the
case of the stationary exponential solution uðx; tÞ ¼
u0e

lx: Following the procedure above, Eq. (9) gives

gðx; tÞ ¼ KAC1u0e
ðaþlÞx

where

C1 ¼
Z

N

�N

e�ðlþ1ÞqjðqÞ dq:

Eq. (3) is now

dX

dt
¼ KAC1u0e

ðaþlÞX ðtÞ

and we can compute the solution with initial condition
x0:

X ðtÞ ¼ �
lnð�C1KAu0ðaþ lÞt þ e�x0ðaþlÞÞ

aþ l
;

W ðtÞ ¼ ð�C1KAu0ðaþ lÞt þ W
�ðaþlÞ
0 Þ�1=ðaþlÞ: ð12Þ

The mortality rate at time t for a fish of weight W ðtÞ is
given by Eq. (7)

mðtÞ ¼
C3

C4t þ C0
;

where

C3 ¼ AC2u0; C4 ¼ KAC1u0ð�a� lÞ; C0 ¼ W
�ðaþlÞ
0

and

C2 ¼
m0

A
þ

Z
N

�N

eðaþlÞqjðqÞ dq:

Then, the life expectancy for a fish of weight W0 is

EðW0Þ ¼
C0

C3 � C4
:

It is easy to check that C3 > C4 if we remember that l is
a solution of Eq. (11).
4. Parameters

For numerical analyses below, we used values of the
parameters based on published literature (Table 2). The
parameters of the model are broad features of a food
web and cannot be measured for a given community;
rather, the values in Table 2 are reasonable, given the
published knowledge on marine organisms and food
webs. Both experimental and theoretical sources are
reported, as previous theoretical studies performed
valuable compilations of former experimental results.

The value of m0 is set such that the non-predation
mortality rate for a 500 g fish is 0.2, an assumption in
the range of residual mortality rates usually assumed in
multispecies models e.g. for the North Sea and Baltic
Sea (0.1–0.2) (Gislason and Helgason, 1985; Gislason,
1999; Anonymous, 2002; Andersen and Ursin, 1977).
5. Numerical simulations

5.1. Slope of the stationary solution

The slope l of the stationary size spectrum was
computed from Eq. (11) with function j given by
Eq. (5), for different values of the parameters (Table 3).

The slope of the size spectrum is not sensitive to
individual variations in the parameters, especially the
width of the predator–prey size ratio distribution.
Predators eating larger preys, searching in volumes
increasing steeper with size, and having a lower growth
efficiency result in steeper spectra than the opposite
settings. A higher non-predation residual mortality rate
also results in a steeper slope. Keeping all but one of the
parameters to their reference value results in slopes of
approximately �1; which is consistent with published
data:

* slopes of log numbers vs. log length class ranging
from �4 to �10 for weakly to heavily exploited fish
communities (Anonymous, 1996; Rice and Gislason,
1996; Bianchi et al., 2000). Indeed, assuming that
body weight is related to body length by wpL3; the
slope l of the density of fish with respect to log weight
is related to the slope s of the log density of fish with
respect to length by 3l ¼ sþ 1:

* the slope of log biomass density vs. log body mass in
various aquatic ecosystems being very close to 0
(Boudreau and Dickie, 1992).

* the slope of normalized biomass spectra (log biomass
per range of weight classes vs. log weight) being close
to �1 or steeper in various plankton communities as
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Table 3

Numerical computation of the stationary slope l

n eq0 a K m0 l

5 100 0.82 0.2 80 �1.0500

10 100 0.82 0.2 80 �1.0589

1 100 0.82 0.2 80 �1.0117

5 1000 0.82 0.2 80 �1.0105

5 10 0.82 0.2 80 �1.1569

5 100 0.6 0.2 80 �0.9558

5 100 0.9 0.2 80 �1.0847

5 100 0.82 0.1 80 �1.1099

5 100 0.82 0.6 80 �0.9560

5 100 0.82 0.2 0 �1.0439

5 100 0.82 0.2 200 �1.0589

10 10 0.9 0.1 200 �1.3710

10 1000 0.6 0.6 0 �0.8376

Table 2

Values of the parameters used in model simulations

Parameter Definition Section Unit Ref. Lower Upper Sources

value limit limit

a Exponent of weight (2.3) — 0.82 0.6 0.9 Ware, 1978

in volume of water searched

A Volume searched by unit weight (2.3) m3 yr�1 640 Ware, 1978

eq0 Modal ratio of (2.3) — 100 10 1000 Daan, 1973;

predator size to prey size Ware, 1978;

Silvert and Platt, 1980;

Borgman, 1982;

Cohen et al., 1993;

Thiebaux and Dickie, 1993;

Vignes, 1998

n An inverse measure of (2.3) — 5 1 10 Guessed from the distribution

the width of the predator–prey of prey size in predator

size ratio distribution stomach from

Daan, 1973; Cohen et al., 1993

K Growth efficiency (2.5) — 0.2 0.1 0.6 Paloheimo and Dickie, 1966;

Ware, 1978;

Borgman, 1982;

Gurney et al., 1990;

Buckel et al., 1995

m0 Natural mortality rate (2.4) m3 yr�1 80 0 200 Gislason and Helgason, 1985;

Gislason, 1999;

Anonymous, 2002;

Andersen and Ursin, 1977

Lower and higher limits refer to the range of values used in the sensitivity analysis.
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well as in benthic fish assemblages in the Benguela
System (Macpherson and Gordoa, 1996; Zhou and
Huntley, 1997).

Simultaneous changes in the parameters result in
wider variations in the slope. However, combining
extreme values of all parameters still results in
consistently slowly decaying size spectra. The reference
value l ¼ �1:0500 was taken for the simulations
below.
5.2. Initial intercept of the spectrum

The intercept u0 of the biomass spectrum at time t ¼ 0
was estimated from average densities estimated from
published size spectra (Table 4). Fish densities are
usually estimated from trawl surveys and reported in
numbers or biomass per swept area, i.e. per m2: Trawls
usually have a vertical opening of a few meters, but
considering that most fish are found close to the bottom,
the density per m2 can be considered very similar to the
density in the first meter of the water column, i.e. per m3:
The estimated intercepts vary by three orders of
magnitude, depending on ecosystems: it is determined
both by primary production and food web structure
(Sprules et al., 1991; Cyr and Peters, 1996).

For the stationary linear spectrum, the abundance of
fish with weight in ½w1;w2� or length in ½L1;L2� is given
by formula (1) i.e. assuming that w ¼ 0:005L3;

u0
wl

2

l
�

wl
1

l

� �
¼ 0:005lu0

L3l
2

l
�

L3l
1

l

� �

and the biomass is given by formula (2) i.e.

u0
wlþ1

2

lþ 1
�

wlþ1
1

lþ 1

� �
¼ 0:005lþ1u0

L3lþ3
2

lþ 1
�

L3lþ3
1

lþ 1

� �
:

Assuming that the values of the parameters are the
reference values (hence l ¼ �1:0500), u0 was computed
for each observation (Table 4).
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Fig. 2. The model growth curve of an individual fish (line), compared

with estimated weights at age derived from the data compiled by Pauly

(1980) (circles) (for explanations see text).

Table 4

Intercepts estimated from published size spectra

Spectrum Ecosystem Source Size range Weight Density Biomass Estimated intercept

Length (g) Number ðg m�2Þ ðg m�3Þ
(cm) ðfish m�2Þ

Demersal fish Mediterranean Sea Rochet and Lembo, 2003 1–100 0.5 0.002

All fish Lakes Cyr and Peters, 1996 0.2–790 1 0.14

Planktivorous fish Lake Michigan Sprules et al., 1991 5–20 6 1.56

Piscivorous fish Lake Michigan Sprules et al., 1991 30–80 0.2 0.09

Table 5

Life history of an individual fish, for reference values of the parameters (Table 2)

Weight 1 mg 1 g 10 g 100 yr g 1 yr kg 10 yr kg

Age (from weight 1 mg) 0 142 day 266 day 1 yr 112 day 2 yr 106 day 3 yr 349 day

Annual food ration 0:22 g 45 g 262 g 1:55 kg 9:10 kg 53:6 kg

Life expectancy 8 day 39 day 66 day 113 day 191 day 324 day
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For all simulations below, u0 ¼ 0:01 was taken as
reference value.

5.3. Individual life history

The life history of a hypothetical individual fish with
initial weight W ð0Þ ¼ 10�3 g was estimated in terms
of growth, annual food ration and life expectancy
(Table 5). The predicted growth and life expectancy
were checked against the data in Pauly (1980), who
compiled the parameters of the von Bertalanffy growth
model and natural mortality rate estimates for 175 fish
species encompassing a wide range of taxonomic groups
and environmental conditions. We partitioned the
species into 10 groups of increasing natural mortality
rate. Based on the growth parameters, the weight at age
for each group was then computed, as well as the life
expectancy for fish near their asymptotic weight. The
growth curves compare satisfactorily, except in ages
below one year (Fig. 2). This is partly due to the von
Bertalanffy growth model not being appropriate to
describe early growth of fish. Similarly, the life
expectancy predicted by the model fits rather well the
data for large fish, but overestimates it in small sizes.
This is due to small fish in the model being a mix of
small short-lived adult fish and young longer-lived
animals. Furthermore, the food ration estimated by
the model is consistent with the range of published data,
from 30%–70% of the body weight daily for fish larvae
(Pepin and Penney, 2000) to 1–7% for adult fish of
various species (Gislason and Helgason, 1985; Daan,
1973; Essington et al., 2001). Hence the model
individual fish seem to have a reasonable life history.

5.4. Boundary conditions

Eq. (10) cannot be used for numerical computations:
sizes have to be discretized, hence x is bound in an
interval ½xmin; xmax�: Subsequently, Eq. (10) has no
meaning because of the convolution integrals. To
circumvent this difficulty, function j is truncated and
the model is changed at both ends of the interval. In
addition, an input of biomass to the system is needed.

In small size, the population of plankton upðx; tÞ is
assumed to control the system. In large size, the biomass
should be almost independent of time. This is described
by two simple models, the differential equation B for
plankton, and C for very large animals.

@u

@t
¼ BðuÞ where BðuÞ ¼

1

tp

ðup � uÞ with tp small;

@u

@t
¼ CðuÞ where CðuÞ ¼

1

tm

ðum � uÞ with tm large:

The parameters tp (resp. tm) is the characteristic time to
return to equilibrium after a perturbation, for plankton
(resp. large animals).



ARTICLE IN PRESS

Table 6

Values of the parameters of fishing mortality used in model simulations

Parameter Definition Unit Ref. value Sources

b Log weight at recruitment lnð10Þ Estimated from

to the fishery Anonymous (1998a,b)

a Slope of the fishing mortality yr�1 0.1 Estimated from

as a function of log weight Anonymous (1998a,b)
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Call A the operator describing the dynamics in the
fish size spectrum u in Eq. (10):

AðuÞðxÞ ¼ �
d

dx
KAeax

Z
N

�N

e�qjðqÞuðx � qÞuðxÞ dq

	 


� Aeax

Z
N

�N

eaqjðqÞuðx þ qÞuðxÞ dq

� m0e
axuðx; tÞ2:

Models B and C were chosen similar to A to allow a
smooth transition between the populations of plankton,
fish and big fish. The complete model is then

@u

@t
ðx; tÞ ¼cpðxÞcmðxÞAðuÞðxÞ þ ð1� cpðxÞÞBðu; tÞðxÞ

þ ð1� cmðxÞÞCðu; tÞðxÞ; ð13Þ

where cp and cm are smooth functions with

0pcpðxÞp1

cpðxÞ ¼ 1 for x > x2

cpðxÞ ¼ 0 for xox1

8><
>:

0pcmðxÞp1

cmðxÞ ¼ 1 for xox3

cmðxÞ ¼ 0 for x > x4:

8><
>:

The functions cp and cm used in simulations are cubic
spline.

Hence the size spectrum governed by predation
processes only is simulated in the size range ½x2;x3�
only. For small sizes lower than x1; model B is
simulated, and model C for sizes larger than x4: Over
ranges ½x1;x2� and ½x3;x4� transition processes occur.

In addition, function j is truncated in simulations to
ensure that jðqÞ ¼ 0 while q > x1 � xmin and q > xmax �
x4: This ensures that the composite operator in Eq. (13)
is defined for all derivable functions over ½xmin;xmax�:

5.5. Fishing mortality

For simulations, fishing mortality rate mf ðx; tÞ is given
by

mf ðx; tÞ ¼ maxð0; aðx � bÞÞ;

where a and b are parameters. It is a linearly increasing
function of log weight with recruitment to fishing at
weight expðbÞ: The parameters a and b were estimated by
linear regression of fishing mortality rate F at age vs. log
weight at age, combining all stocks assessed by the
International Council for the Exploration of the Sea in
(i) the North Sea and (ii) the Bay of Biscay. The resulting
estimates did not to differ significantly (Table 6).
5.6. Diffusion

From a strictly mathematical view, Eq. (13) may not
have a solution at any time t: At some time t0; the slope
of the size spectrum may become infinite in some point,
then the solution would not be defined any more. This is
well known for the Burgers equation @u=@t ¼ u@u=@x:
As a consequence, in some simulations, the population
of fish of weight ex0 disappears at time t0: This problem
was circumvented by introducing diffusion in the model.
This amounts to assume that two fish of similar weight,
eating the same prey, will not grow exactly by the same
amount. Hence this will add realism to the model.
Mathematically, this introduces an additional term
@2u=@x2 in operator A:

Simulated size spectra with non-predation mortality
ðm0 > 0Þ are more regular than those without non-
predation mortality ðm0 ¼ 0Þ: When m0 > 0; diffusion is
not needed to obtain a solution defined for all positive t:
Unfortunately, we have no mathematical explanation
for this observation.

5.7. Simulated size spectra

Size spectra were simulated following Eq. (13) using
Cþþ on a Personal Computer with an order 4 Runge–
Kutta method and log weight x discretized by an
elementary method ðdx ¼ dw=w ¼ 0:5Þ: The size and
time steps were determined by trial and error, small
enough so that the observed patterns be independent
of the value of the steps, and large enough to allow
simulation of some years within a reasonable computing
time. The process parameters were selected in Table 2
and the boundary conditions parameters and limits are
reported in Table 7.

A first series of simulations was run to check that the
results conformed to the theoretical expectations. Linear
spectra u0e

lx were found to be stationary. A weaker
slope initial spectrum decreased uniformly for all
weights, conforming to Section 3.3.1. For m0 ¼ 0; an
initial spectrum with appropriate gaps was stationary,
conforming to Section 3.3.2 as well.

Further simulations were run (i) to study the stability
of the stationary solution and (ii) to predict the effect of
fishing on the stationary solution (Fig. 3).

When the initial spectrum is perturbed by a sine
function around the stationary slope, the peaks move
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downwards the spectrum and are rapidly damped,
especially in small sizes (Fig. 3a). On the other hand,
if the plankton input to the spectrum oscillates in time
following a sine function, the oscillations expand while
Table 7

Parameters and limits of the boundary conditions fixed for all

simulations. (see Section 5.4 for explanations)

Parameter name wmin w1 w2 w3 w4 wmax

Value 10�12 g 10�6 g 10�3 g 106 g 109 g 1012 g

Parameter name tp upðx; tÞ tm umðx; tÞ

Value 10 days u0e
lx 3 yr u0e

lx

Fig. 3. Simulated size spectra using reference parameters of Tables 2–7, un

represented by plotting the model solution for successive steps dt; 2dt;y;N
initial condition. Gray bold line: stationary solution: (a) oscillatory initial

realistic fishing effort; (e) realistic fishing effort with oscillatory initial conditi

like size range.
propagating through the spectrum (Fig. 3b) and may
result in infinite values if their amplitude is too large.
This confirms a conjecture of Silvert and Platt (1980)
that small oscillations in the food supply can drive large
swings in populations. Note that the amplitude of the
perturbations added is very large as the figures span 14
orders of magnitude (from 10�10 to 10þ4) on the y-axis.
Introducing either diffusion or larger non-predation
mortality stabilizes the solution (not shown). A strong
fishing mortality results in a steeper slope of the
stationary solution in larger sizes. Introducing fishing
mortality starting at weight 1 g causes a change in slope
for weights larger than 10 kg (Fig. 3c). However, a more
realistic fishing mortality (as estimated from the North
Sea and Bay of Biscay stocks) has no apparent effect on
the slope of the spectrum, but rather on its curvature
(Fig. 3d). This effect is not larger than the oscillations
less otherwise specified in Table 8. The dynamics of the spectrum is

dt with a grey shading from white at dt to black at N dt: Dashed line:

spectrum; (b) oscillatory plankton input; (c) strong fishing effort; (d)

on and oscillatory plankton input; (f) the same as (e) focused on a fish-
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Table 8

Parameters for the simulations plotted in Fig. 3

Panel First Last Time Initial Left boundary Fishing

time time step condition condition mortality

plotted plotted parameters

(yr) (yr) (day) a b

(a) 0 3 2 u0e
lxð1þ sinxÞ u0e

lx 0 0

(b) 0 3 2 u0e
lx u0e

lxð1þ 0:3 sinð2ptÞÞ 0 0

(c) 10 15 3 u0e
lx u0e

lx 0.5 log 1

(d) 5 10 3 u0e
lx u0e

lx 0.1 log 10

(e, f) 5 10 3 u0e
lxð1þ sin xÞ u0e

lxð1þ 0:3 sinð2ptÞÞ 0.1 log 10

E. Beno#ıt, M.-J. Rochet / Journal of Theoretical Biology 226 (2004) 9–21 19
created by perturbations added to the model, which can
have a fairly large amplitude (Fig. 3e and f ).
6. Discussion

That a regular size spectrum can be the result of
regularity in the predation processes along the food web
was suspected by Beyer (1989), who found that if the
size spectrum is linear and if growth and mortality rates
are allometric, then mortality rate has to be propor-
tional to growth rate (i.e. they should have the same
allometric exponent). Silvert and Platt (1980) formally
started from the processes to prove that given allometric
growth and mortality and a constant predator to prey
size ratio, a linear size spectrum is stationary. In an
unpublished paper, Beyer further proved that his result
is still valid when predators select their preys according
to a log-normal (symmetric) suitability rather than a
single size (Beyer, 1990. Size spectrum theory and
multispecies assessment: basic concepts and perspec-
tives. Working paper No 21 to the ICES Multispecies
Working Group hold in Woods Hole, dec. 1990). The
present study still relaxes this assumption and proves
that a linear spectrum can be stationary for any
distribution of prey size suitability, provided this
distribution is consistent throughout the whole size
spectrum. This is an important contribution as field data
show that there is a wide variability in predator to prey
size ratio, and that predator size–prey size distributions
are asymmetric (Scharf et al., 2000). Furthermore, we
demonstrate that a linear spectrum is still possible while
taking account of non-predation mortality, provided the
latter has an appropriate allometric exponent. Thus
improving the realism of the assumptions does not
necessarily increase the complexity of the solution.

Under the same assumptions, size spectra can also be
oscillating, both in time and along the size axis.
Perturbations that are likely to occur in the real world,
such as seasonal primary production, can result in
oscillations in the spectrum. Size spectra observed from
various marine communities frequently show oscillations
(Pope and Knights, 1982; Murawski and Idoine, 1992;
Drgas et al., 1998; Saiz-Salinas and Ramos, 1999;
Rochet and Lembo, 2003). On the other hand, solutions
oscillating in size can also be stationary. This has to do
with the ‘‘multispectrum’’ theory developed by Dickie
et al. (1987) and Boudreau et al. (1991). They assumed
discrete jumps of energy between relatively fixed size
ranges of prey and predator, resulting in a secondary
structure of the body size spectrum consisting of a series
of stationary biomass domes periodically spaced. The
data from several ecosystems verify this theory (see
review of theory and data in Kerr and Dickie, 2001).
Our results show that there is no need to assume discrete
trophic levels to obtain periodic spectra.

Although assuming a variable rather than fixed
predator to prey size ratio improves the regularity of
the size spectrum model, it is still unstable. Simulations
frequently resulted in ecosystem crash and this is
justified theoretically (see Section 5.6). However, intro-
ducing diffusion in the model stabilized the solution:
once again, the more realistic assumption that all fish
are not similar but have a variable efficiency in food
assimilation improves the realism of the solution.
Moreover, this is a contribution to the never-ended
debate about biodiversity and ecosystem stability
(Johnson et al., 1996). In this model, introducing
biodiversity (although a small amount of it) improves
the stability of the system. Surprisingly, the non-
predation mortality term also improves the stability of
the solution. This may be due to the density-dependence
introduced thereby, providing a week feedback control
of numbers in the spectrum.

Introducing a simple size-dependent fishing mortality
results in a steeper slope of the spectrum, as inferred
a long time ago by fisheries scientists. This change of
slope occurs in a range of sizes larger than the size at
recruitment. Given the parametrization of the model in
the present study, a realistic fishing mortality as
estimated from the North Sea and Bay of Biscay does
not result in a change in the slope of the spectrum.
Rather, its curvature and regularity are affected by
fishing. These impacts are expected to be larger if



ARTICLE IN PRESS
E. Beno#ıt, M.-J. Rochet / Journal of Theoretical Biology 226 (2004) 9–2120
diffusion and oscillations in primary production are
assumed. Moreover, it might be underestimated in
the simulations, due to assuming a process that keeps
the biomass invariant in large sizes (Section 5.4). Hence
we conclude that realistic fishing pressures could cause
disruptions in the size spectrum, consistently with the
increasing awareness that fishing depletes large preda-
tors in world fisheries (Myers and Worm, 2003; Pauly
et al., 1998).

Our result differs from the study by Gislason and Rice
(1998) who predicted, based on a Multi Species Virtual
Population Analysis (MSVPA) model, that the change
in slope of the size spectrum in the North Sea would
be proportional to the change in fishing intensity by a
factor of �1:3 to �3: This might be due to the
completely different structures of the models. MSVPA
describes the age-structured dynamics of a few com-
mercial species; the less well-known remainder of the
food web is fixed. Hence compensations and species
replacements in diets assumed to occur in any case in the
present model are completely neglected in MSVPA. This
hypothesis is confirmed by the results by Shin and Cury
(in press). These authors developed a multispecies
individual-based model where predation is a size-based
opportunistic process. Their simulations show that
fishing impacts the slope of the size spectrum if it is
assumed linear, and its curvature if it is assumed
quadratic. This would explain why published evidences
of fishing effects on the slope of size spectra are not
consistent (see review in Rochet and Trenkel, 2003). If,
as shown by our work, the main effects of fishing on size
spectra are to increase their curvature and to make them
vary through time, the linearity assumption would result
in erroneous and variable slope estimates that would
not be straightforward to interpret. This would be an
argument not to use the slope of size spectra, but rather
some other characteristic, if we are to monitor fishing
impacts.

The main predicted effect of a realistic fishing pressure
in the present model is to increase oscillations in the size
spectrum in large sizes. These oscillations are caused by
the depletion of large fish, allowing the numbers in the
lower size-classes to increase due to decreased predation.
These increased numbers in turn exert an increased
predation on the next lower size-classes, and so on.
These effects then propagate backwards to large sizes as
a depleted size class will cause food scarcity for the next
larger size class. Indeed, many published size spectra
from exploited fish communities show oscillations, but a
comparison of the magnitude of these oscillations with
less exploited communities or with the predictions of the
model would hardly be feasible. An interesting feature
of this model is that controls occur both top-down
(predators controlling prey numbers) and bottom-up
(preys limiting predator growth) and in this way may
reflect the complexity of real food webs.
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