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H I G H L I G H T S
c We present a theoretical model coupling kinetics/dynamics of arsenic in hepatocytes.
c The modeled antioxidant mechanism is based on a novel pathway of Nrf2 activation.
c The model estimations are assessed with data of DNA damage in human hepatocytes.
c The analysis highlights the importance of feedback loops to antioxidant response
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Background: A systems engineering approach is presented for describing the kinetics and dynamics that

are elicited upon arsenic exposure of human hepatocytes. The mathematical model proposed here

tracks the cellular reaction network of inorganic and organic arsenic compounds present in the

hepatocyte and analyzes the production of toxicologically potent by-products and the signaling they

induce in hepatocytes.

Methods and results: The present modeling effort integrates for the first time a cellular-level semi-

mechanistic toxicokinetic (TK) model of arsenic in human hepatocytes with a cellular-level toxicody-

namic (TD) model describing the arsenic-induced reactive oxygen species (ROS) burst, the antioxidant

response, and the oxidative DNA damage repair process. The antioxidant response mechanism is

described based on the Keap1-independent Nuclear Factor-erythroid 2-related factor 2 (Nrf2) signaling

cascade and accounts for the upregulation of detoxifying enzymes. The ROS-induced DNA damage is

simulated by coupling the TK/TD formulation with a model describing the multistep pathway of

oxidative DNA repair. The predictions of the model are assessed against experimental data of arsenite-

induced genotoxic damage to human hepatocytes; thereby capturing in silico the mode of the

experimental dose–response curve.

Conclusions: The integrated cellular-level TK/TD model presented here provides significant insight into

the underlying regulatory mechanism of Nrf2-regulated antioxidant response due to arsenic exposure.

While computational simulations are in a fair good agreement with relevant experimental data, further

analysis of the system unravels the role of a dynamic interplay among the feedback loops of the system

in controlling the ROS upregulation and DNA damage response. This TK/TD framework that uses arsenic

as an example can be further extended to other toxic or pharmaceutical agents.

& 2012 Elsevier Ltd. All rights reserved.
ll rights reserved.
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1. Background

Arsenic is one of the most common environmental contami-
nants and carcinogens (IARC, 1987; IARC, 2003). In vitro exposure
to arsenicals leads to oxidative stress, chromosomal aberrations,
and inhibition of DNA repair (Kligerman and Tennant, 2007; Qin
et al., 2008a, 2008b; Soriano et al., 2008), which are phenomena
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tightly linked to oxidative DNA damage and cancer phenotype
(Kojima et al., 2009). Trivalent arsenicals bind to sulfhydryl
groups (–SH) of proteins and interfere with a spectrum of
signaling pathways regulating cell growth, proliferation, apoptosis
and survival (Kitchin and Wallace, 2008). The cellular adaptive
response to oxidative stress agents such as arsenic typically leads
to the activation of the redox sensitive transcription factor Nuclear
Factor-erythroid 2-related factor 2 (Nrf2) (Bloom et al., 2002;
Kumagai and Sumi, 2007). This transcription factor is considered
to be the orchestrator of the cellular antioxidant defense system
(Kong et al., 2001b; Wu et al., 2011). Under homeostatic conditions
Nrf2 predominantly localizes in the cytoplasm bound to an inactive
complex with the Kelch-like ECH-associated protein 1 (Keap-1). This
is a cysteine rich protein which facilitates Nrf2 ubiquitination and
degradation (Kobayashi et al., 2006; Kobayashi and Yamamoto,
2005). The challenge of oxidative stress triggers Nrf2 nuclear
translocation; in the nucleus it heterodimerizes with a Maf protein
and binds to the antioxidant response element (ARE) or the
Fig. 1. General scheme of the induction of gene expression through the Keap-1/

Nrf2/ARE signaling pathway. ROS increase induces the dissociation of Nrf2 with

Keap-1, leading to translocation of Nrf2 to the nucleus. Heterodimerization of Nrf2

with Maf and its binding to ARE leads to transactivation of ARE-inducible genes

(adapted from Kensler et al., 2007). The network of biochemical interactions is

represented using the Systems Biology Graphical Notation (SBGN) (www.sbgn.

org) (Le Novere et al., 2009).
electrophile response element (EpRE), commencing upregulation of
various cytoprotective genes (Fig. 1) (Kensler et al., 2007).

Two mechanisms have been proposed to describe the Nrf2
activation: (a) Keap-1 is the redox sensor and therefore the Nrf2
release is Keap-1 dependent, and (b) Nrf2 itself is the redox
sensor. The former scenario relies on Keap-1 high cysteine
content, and on the fact that experimental evidence supports
the hypothesis that the cellular redox sensor is endowed with
highly reactive –SH groups present on protein domains (Dinkova-
Kostova et al., 2002, 2005). Although it is well known that
trivalent arsenicals react with vicinal thiols, it has been experi-
mentally demonstrated that arsenic does not disrupt Keap-1/Nrf2
association in the cytoplasm (He et al., 2006; Wang et al., 2008),
posing an argument against the Keap-1 dependent pathway
interpretation. Recently, Kong and co-workers proposed a novel
mechanism of Nrf2 activation, in which a specific motif of the
transcription factor NESTA itself is redox sensitive and its inacti-
vation constitutes the driving force for nuclear retention and
localization of Nrf2 (Li et al., 2006). Specifically, under oxidative
stress conditions, the reactive cysteines embedded in this motif
react with electrophiles and disable its function (Fig. 2). Upregu-
lation of the antioxidant mechanism, leading to increased cellular
GSH levels, may favor the restoration of NESTA motif activity and
the inhibition of the Nrf2 nucleus translocation (Li and Kong,
2009). Therefore there is a ‘‘Force Balance’’ between ROS and GSH
that dictates the localization of Nrf2 transcription factor.

In this study, the recently proposed cellular-level TK model for
arsenic exposure in human hepatocytes (Stamatelos et al., 2011)
is integrated with a TD model focusing on oxidative stress and
concomitant DNA damage. This mathematical formulation
involves the description of the basic steps of reactive oxygen
species (ROS) generation, antioxidant response via the recruit-
ment of Nrf2, a transcription factor that regulates many cytopro-
tective genes (Kong et al., 2001a), the oxidative genotoxic
Fig. 2. A new Keap-1 independent model for Nrf2 activation by ROS. The identified

NESTA motif contains reactive cysteines and when challenged by oxidative stress is

inactivated, leading to Nrf2 nuclear translocation (adapted from Li et al. (Li and

Kong, 2009)). Upregulation of the antioxidant mechanism via GSH increase alters

the ‘‘Force Balance’’ leading to inhibition of Nrf2 nuclear translocation. The

network of biochemical interactions is represented using SBGN formalism

(www.sbgn.org) (Le Novere et al., 2009).
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damage, and subsequent repair. The present work incorporates a
theoretical analysis of the contribution of various feedback loop
mechanisms in the creation and modulation of dynamic response
in network components. This behavior influences in a nonlinear
manner the DNA damage across doses of arsenite (iAsIII).
2. Approach and methods

The semi-mechanistic cellular-level toxicokinetic (TK) model
presented in Stamatelos et al. (2011) applies mass action kinetics
describing uptake, biotransformation and efflux of arsenicals in
human hepatocytes (Fig. 3). Novel concepts in this model
included the incorporation of the pathway of arsenic-GSH adduct
formation as described by (Hayakawa et al., 2005), and the
description of the methylation reactions by arsenic methyltras-
ferase (AS3MT) (El-Masri and Kenyon, 2008) using a hybrid
approach of Hill and Michaelis–Menten kinetics. Furthermore a
‘‘switch-like’’ formulation was introduced in the TK model in
order to describe the antioxidant response of hepatocytes to
arsenic exposure.

The TD model that is presented here describes a more explicit
biological mechanism for arsenic-induced protective response of
cells applying principles of indirect response model theory; a
theoretical framework commonly used to describe dynamic cou-
pling of extracellular stimuli to intracellular signaling (Abraham
et al., 2009a, 2009b; Foteinou et al., 2009; Ramakrishnan et al.,
2002; Vodovotz et al., 2009). So, it addresses the arsenic-induced
ROS production, the Nrf2-mediated mammalian antioxidant
response, and the concomitant DNA damage in hepatocytes. The
mathematical model of the underlying gene regulatory network is
integrated with the TK model for arsenic and refines the previously
formulated ‘‘switch-like’’ cellular response to toxicity, introducing a
more mechanistic perspective. Moreover, a kinetic model of DNA
damage repair (Sokhansanj and Wilson, 2004, 2006; Sokhansanj
et al., 2002) is linked to the TK/TD model for arsenic. This allows the
theoretical estimation of human DNA damage repair and the
Fig. 3. Schematic of the cellular-level TK model for arsenic in human hepatocytes showi

amounts of arsenicals, activities of macromolecules (AQP9, TR, MT1, MT2, MRPa, MRPm

using SBGN formalism (www.sbgn.org) (Le Novere et al., 2009) (adapted from Stamate
prediction of dose–response curves of arsenic-induced genotoxic
damage in human hepatocytes.

2.1. Model development

The proposed TD formulation illustrates an Nrf2-mediated
antioxidant homeostatic mechanism that hepatocytes employ in
order to scavenge ROS and efflux arsenicals. This mechanism is
modeled as being controlled primarily via antioxidant enzyme-
mediated coupled negative and positive feedback loops. The
integrated TK/TD model components and the interactions among
them are presented schematically in Fig. 4. This approach takes
into account the assumptions made for the TK model and
considers the following additional assumptions:
1)
ng t

) an

los
The ROS-induced Nrf2 signaling cascade is described by the
Keap1-independent Nrf2 signaling, and can be modeled using
a reduced dimensionality structure similar to a previously
proposed model of NFkB dynamics.
2)
 The Nrf2-triggered upregulation of GSH levels stimulates
nuclear export of Nrf2.
3)
 The DNA lesions caused by arsenic-induced ROS increase are
modeled via a first order process and the base excision repair
(BER) pathway is considered to be the major pathway for
oxidative DNA damage repair.

Compared to the cellular-level TK model for human hepato-
cytes, where the critical signal for the threshold-dependent
antioxidant response was the activity of thioredoxin reductase
(TR) (Fig. 3), the present formulation introduces a more explicit
mechanistic approach for the signaling cascade. That is to say, our
prior modeling work included an indirect response formulation
where TR is the signal for antioxidant response upregulation (GSH
and MRP increase) and decreased methylation capacity of AS3MT
enzyme. Therefore, the Nrf2 nuclear receptor pathway was not
explicitly included in a step by step basis. In this model this single
signal of TR inactivation is substituted with a toxicodynamic
he biochemical components. The variables depict extracellular and intracellular

d GSH (GS-Pm, GS-Pd). The network of biochemical interactions is represented

et al., 2011).
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Fig. 4. Schematic of the cellular-level TK/TD model for arsenic in hepatocytes showing the biochemical components. The variables depict extracellular and intracellular

amounts of arsenicals, ROS, Nrf2 nuclear signaling (Nrf2(N)), activities of macromolecules (AQP9, BER, TR, mGCLC, MT1, MT2, MRPa, MRPm, mMRP) and GSH (GS-Pm, GS-Pd).

The network of biochemical interactions is represented using SBGN formalism (www.sbgn.org) (Le Novere et al., 2009). The red dashed line represents a characteristic

negative feedback loop mechanism for MMAIII (also in Table 2, second row).
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model characterized by a cascade of signaling events for the
antioxidant mechanism (ROS increase, Nrf2 nuclear translocation,
increased transcription of GCLC and MRP mRNA). Therefore, TR
inactivation is presumed to affect only AS3MT activity. Based on
the newly proposed model of Keap1-independent Nrf2 signaling,
the transcription factor per se functions as a redox sensitive
probe, upregulating GSH levels in cells and initiating nuclear
export of Nrf2 (Fig. 2) (Li and Kong, 2009). In this case, Nrf2
signaling is regulated via a direct negative feedback interaction
with GSH. Similarly, the NFkB core feedback mechanism involves
the inhibition of transcription factor activity by NFkB-triggered
expression of IkB proteins (Basak et al., 2007; Kearns et al., 2006;
Shiha et al., 2009). The NFkB signaling module has been mathe-
matically described as consisting of a very large number of
interactions among the participating proteins, leading to negative
feedback to control expression of proinflammatory genes
(Hoffmann et al., 2002). Krishna et al. have shown that this huge
network of interactions can be decomposed to a small set of
variables describing the activity of signaling molecules that
primarily affect the cascade’s output (Fig. 5) (Krishna et al.,
2006). Based on this study, a conceptual analog is attempted in
the present work, based on the Nrf2 signaling cascade; the
variables chosen to describe the core pathway are: ROS activity
(source signal), Nrf2 nuclear translocation (transcription factor
activity in the nucleus), mRNA, and protein levels of an enzyme
(GCLC) that controls GSH biosynthesis (transcription factor
inhibitor).

The threshold-dependent elevation of ROS levels is described
by the nonlinear Hill-type formula HTR that was used to describe
oxidative stress in the TK model (Stamatelos et al., 2011) (Eqs. 1a–
1c). The amplification factor for the Hill equation is assumed to be
DMAIII, since trivalent DMAs are the most potent oxidative stress
inducers (Kligerman et al., 2003). Degradation of ROS excess
levels is modeled employing a saturation function introducing a
time delay in the feedback loops of the system (Igoshin et al.,
2004; Jacquet et al., 2003; Krishna et al., 2006; Tiana et al., 2002,
2007; Tyson et al., 2003). In the proposed formulation the anti-
electrophilic response is expressed as a function of effluxed DMA,
since this quantity has been suggested to have a positive correla-
tion with the induction of antioxidant proteins in human hepa-
tocytes (MRPs) and in rat liver (heme oxygenase—HO) following
arsenite exposure (Drobna et al., 2010; Kitchin et al., 1999)

dðROSÞ

dt
¼ kinROS

� ðDMAIII
extÞ �HTR�kdecROS

�HROS � ROSð Þ ð1aÞ

HTR ¼
½MMAint

III
�N

ICTRð Þ
N
þ½MMAint

III
�N

ð1bÞ

HROS ¼
½DMAext�

2

ðICROSÞ
2
þ ½DMAext�

2
ð1cÞ

where kinROS
and kdecROS

are the rate constants for ROS increase and
decay respectively; ICTR is the inhibition constant (IC50) for TR by
MMAIII in hepatocytes estimated in Lin et al. (2001); N is the Hill
coefficient for enzyme inactivation from MMAIII.

The ROS-induced Nrf2 nuclear translocation (Nrf2(N)) (Eqs.
2a–2b) and its subsequent binding to the ARE that leads to
upregulation of detoxifying enzymes and transporters is
described via indirect response models. Specifically, the increase
in GSH levels is assumed to be adequately described via the
induction of GCLC (glutamate cysteine ligase catalytic subunit)
(Eqs. 3–4c). This enzyme is used as a biomarker since it is the
catalytic subunit of the GCL holoenzyme, contributing all its
enzymatic activity and containing all the substrate-binding sites
(Franklin et al., 2009). GCL is a heterodimeric enzyme that
catalyzes the rate limiting reaction for GSH biosynthesis
(Griffith and Mulcahy, 1999). The phase III transporters acting
in cohort are modeled via the induction of MRP signaling
processes that transport the GSH-bound arsenicals ATG and
MADG out of the cells (Eqs. 5 and 6). These equations substitute
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Fig. 5. Schematic diagram of key interactions in the NF-kB signaling system (three

variable model). The variables represent the concentration of nuclear NF-kB

homodimer, mRNA of IkB, and cytoplasmic IkB (adapted from Krishna et al.,

2006). The network of biochemical interactions is represented using SBGN

formalism (www.sbgn.org) (Le Novere et al., 2009).
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the equations for GSH and MRPs for the antioxidant response of
the initial cellular-level TK model for arsenic (Stamatelos et al.,
2011)

dNrf2ðNÞ

dt
¼ ksynNF

� ROS� S�kdegNF
�Nrf2 Nð Þ ð2aÞ

S¼
½iAsIII

�init�threshold

threshold
ð2bÞ

dmGCLC

dt
¼ kmGC � 1þksynG

� Nrf2 Nð Þ
� �

�kmGC �mGCLC ð3Þ

dGCLC

dt
¼ ksynGC

�HGC�kdegGC
� GCLC ð4aÞ

HGC ¼
mGCLCn4

Kd4
n4þmGCLCn4

ð4bÞ

kdegGC
¼

ksynGC

Kdn4

4 þ1
ð4cÞ

dmMRP

dt
¼ kmMRP � 1þksynP

� Nrf2 Nð Þ
� �

�kmMRP �mMRP ð5Þ

dMRP

dt
¼ kMRP � mMRP�MRPð Þ ð6Þ
where ksynNF
and kdegNF

are the rate constants controlling Nrf2
translocation to the nucleus; [iAsIII]init is the initial exposure
concentration of iAsIII and the threshold variable is the concen-
tration defined in (Stamatelos et al., 2011); kmGC and ksynG

are the
rate constants governing the mRNA activity of GCLC; ksynGC

and
kdegGC

are the synthesis and decay rate constants for GCLC protein
synthesis; n4 and Kd4 are the Hill coefficient and dissociation
constant for GCLC induction; kmMRP and ksynP

are the rate
constants controlling the mRNA activity of MRP; kMRP is the rate
constant controlling MRP protein activity.

The oxidative stress-induced DNA damage (8-oxoG site for-
mation) is modeled via a first-order process (Eq. 7) while the
oxidative DNA damage repair is described via a previously
developed kinetic model of the BER pathway (Sokhansanj and
Wilson, 2004). This formulation describes the reaction cascade for
DNA repair via Michaelis–Menten kinetics, an approach that is
justified by the high concentration of repair proteins in the
nucleus (Sokhansanj et al., 2002). In order to reduce the dimen-
sionality of the model, the DNA repair process is assumed to take
place through the BER subpathways B and C (Fig. 6) (short- and
long-patch) which are primarily involved in the reaction cascade
(Caldecott, 2003; Liu et al., 2007)

dðDNAÞ

dt
¼ kDNA � ROSð Þ ð7Þ

where kDNA is the reaction constant for DNA lesions formation.
The value of this constant is calculated based on estimates of the
maximum rate of 8-oxoG sites formation in cells under basal
conditions (Lindahl, 1993). Eq. (7) substitutes the term f0 in the
BER model (Sokhansanj and Wilson, 2004) (Table 1).

The TK/TD model has been implemented in MATLAB; the
system of ODEs comprising the TK/TD model is solved numeri-
cally using the stiff solver ode15s. The TK/TD model involves 39
variables depicting the different arsenical species and the various
chemical processes involved in the signaling cascade, and 74
parameters (Supplementary Table S1). The parameters represent-
ing uptake and biotransformation of arsenicals are adopted from
our published mathematical model for the kinetics of iAsIII in
human hepatocytes (Stamatelos et al., 2011). The derivation of
the parameters involved in the human BER pathway model is
fully documented in the literature (Sokhansanj and Wilson, 2004,
2006; Sokhansanj et al., 2002). The deterministic optimization
function fmincon was used for estimation of 13 model parameters.
These parameters describing the Nrf2-mediated antioxidant cas-
cade and the genetic damage are estimated using time course
in vitro measurements of fold increase of mRNA and protein
levels of GCLC enzyme in murine hepatocytes exposed to 10 mM
of iAsIII (Thompson et al., 2009). Finally, the integrated TK/TD
model predictions are tested with dose-response data of arsenite-
induced DNA damage formation in human hepatocytes (5–
100 mM) (Dopp et al., 2008) in order to computationally assess
the validity of the fitted values.

2.2. Global sensitivity analysis and robustness to parameter

perturbation

This study provides estimates of how variation in the outputs
of the model can be apportioned to different sources of variation
in model inputs and parameters, in a manner similar to that used
previously for the TK model (Stamatelos et al., 2011). The TK/TD
model parameters were assumed to be normally distributed with
a coefficient of variation up to 30%. Ten thousand (10,000)
samples were generated and the normal distributions for all
parameters were truncated at 1% and 99% (approximately three
standard deviations from the mean value). The model output
selected for the sensitivity analysis was the area under the curve

www.sbgn.org


Fig. 6. Schematic of the kinetic model for base excision repair (BER) pathway. The diagram depicts pathways B and C of base excision oxidative DNA damage repair. The

variables represent activities of DNA parts being repaired, and proteins catalyzing this process (Ogg1 glycosylase, Ape1 AP endonuclease, Polb gap-filling, Polb dRp lyase,

Lig1 ligation, Pold gap-filling, Fen1 50-endo) (adapted from Sokhansanj et al. (Sokhansanj and Wilson, 2004)). The network of biochemical interactions is represented using

SBGN formalism (www.sbgn.org) (Le Novere et al., 2009).

Table 1
Equations of the BER pathway model.

dy1

dt ¼
dðDNAÞ

dt �v1

dy2

dt
¼ v1�v2

dy3

dt
¼ v2�v3�v5�v8

dy4

dt
¼ v3�v4

dy5

dt
¼ v5�v6

dy6

dt
¼ v4þv6�v7

dy7

dt
¼ v7þv10

dy8

dt
¼ v8�v9

dy9

dt
¼ v9�v10

v1 ¼ y1 �
k1�e1

y1 þK1

v2 ¼ y2 �
k2 � e2

y2þK2

v3 ¼ y3 �
k3 � e3

y3þK3

v4 ¼ k4 � y4

v5 ¼ y3 �
k4 � e3

y3þK4

v6 ¼ k3 � y6

v7 ¼ y5 �
k5 � e6

y5þK5

v8 ¼ y3 �
k6 � e4

y3þK6

v9 ¼ y8 �
k7 � e5

y8þK7

v10 ¼ y9 �
k5 � e6

y9þK5
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(AUC) of unrepaired DNA damage, MMAIII and DMAIII. The SIMLAB
modeling platform (SIMLAB, 2009) was used to perform the
global sensitivity analysis. Furthermore, we explored the robust-
ness in the dynamic behavior of specific state variables due to
stochastic perturbation of model parameters (Mirsky et al., 2009).
We created 10,000 parameter sets by randomly sampling from
normal distributions with a mean equal to the nominal value of
each parameter. The standard deviation spanned from 5 to 50% of
the nominal value. The cost function used for both analyses is the
mean of the sum of squares of the difference between model
predictions and experimental data.
3. Results

The semi-mechanistic TD model was parameterized using time
course data of arsenic-induced GCLC expression in hepatocytes
(Thompson et al., 2009). The estimated parameters are presented
in Supplementary Table S1. The TK/TD model is able to predict the
modes of both mRNA transcription (Fig. 7—left panel) and protein
translation (Fig. 7—right panel) of GCLC. The TK/TD model
captures the fast (within 1 h) upregulation of GCLC mRNA and
the late and gradual increase in GCLC protein translation. From a
biological standpoint this can be attributed to the multitude of
signaling processes involved in oxidative stress sensing and
antioxidant mechanism upregulation (Droge, 2002); this phe-
nomenon introduces a time delay in the cellular adaptive
response. During the next 3 h there is a sharp increase in mRNA
transcripts of GCLC while at the same time the increase of protein
levels is infinitesimal. The GCLC protein levels follow an increas-
ing pattern, which subsequently coincides with the decrease in
mRNA transcripts.

Fig. 8 presents the dynamics of selected state variables of the
TK/TD system; ROS levels and Nrf2 nuclear translocation activity
(upper row) follow a similar pattern and return to baseline at
approximately 20 h. Intracellular concentration of MMAIII and
MADG (bottom row) follow a multiphasic (‘‘two-wave’’) pattern
and are cleared from the hepatocytes in a much later stage

www.sbgn.org
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(�80 h). Thus, the cellular antioxidant mechanism scavenges the
ROS; however the system does not quite return to homeostasis
since MMAIII, a major inhibitor of thioredoxin reductase (TR), is
not effluxed and remains in hepatocytes for much longer.

Because of the multiphasic behavior of intracellular MMAIII

concentration, various in silico experiments were performed in
order to explore this phenomenon for various doses of arsenite. As
shown in Fig. 9, the nonlinear patterns vary both in frequency and
in amplitude; the first ‘‘wave’’ becomes spikier and peaks earlier,
while the second ‘‘wave’’ is clearly dampened and delayed with
increasing arsenite doses. On the other hand, the reduction of the
arsenic methyltransferase (AS3MT) methylation efficiency is
higher and its restoration is delayed with increasing exposures/
doses (Fig. 10—left panel). This pattern of AS3MT signal affects
the cellular accumulation of DMAIII, a critical oxidative stress
agent, which becomes extremely low while MMAIII concentration
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peaks (Fig. 9). In contrast, as shown in the right panel of Fig. 10,
the sharp rise of DMAIII concentration takes place when even-
tually MMAIII is entirely effluxed after the second ‘‘wave’’.

Fig. 11 presents an evaluation of the predictions of the TK/TD
model against normalized data of arsenic-induced DNA damage
formation (tail moment) in human hepatocytes after exposure to
various concentrations of arsenite (5–100 mM) for 1 h (Dopp et al.,
2008). Unrepaired DNA damage is calculated by adding the
amounts of DNA lesions and repair pathway intermediates that
are formed over the time course of the simulation. The results
presented are normalized against the model output of the 5 mM
exposure scenario. The model estimates are in good agreement



Fig. 11. Predicted dose–response profiles of DNA damage in hepatocytes using the cellular-level TK/TD model. Estimates of unrepaired DNA damage after exposure to

various doses of iAsIII (5–100 mM). Experimental data are adapted from Dopp et al. (2008) for human hepatocytes. The model predictions and experimental measurements

are normalized against the DNA damage formation at 5 mM dose of iAsIII.

Fig. 12. A three-dimensional representation of the cellular-level TK/TD model predictions for DNA damage in hepatocytes. Estimates of unrepaired DNA damage

concentration (mM) across time (up to 24 h) and doses of iAsIII (0.1–100 mM).

Fig. 13. Sensitivity analysis of unrepaired DNA damage estimation. Total sensitivity indices (TSI) of the cellular-level TK/TD model parameters for various exposure times

(1–10–24 h) to iAsIII; the parameters are listed in Table S1.
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with the experimental data of the relative change of DNA damage
accumulation across doses, which follow an increasing pattern up
to 20 mM and then decrease.

The TK/TD model predictions have been extended across doses
and time (up to 24 h) with respect to DNA damage accumulation.
The 3-D graph of Fig. 12 illustrates that the time course estimates
of DNA damage follow a consistent ‘‘Gaussian-like’’ pattern across
doses that resolves before 24 h, and take their maximum value at
approximately 10 h. Moreover, the TK/TD model predicts a dose
threshold (�10 mM) of arsenite above which the maximum
values of DNA damage is reduced.

The sensitivity analysis results for the parameters contributing
to variance of unrepaired DNA damage vary depending on the
time scale of exposure, as presented in Fig. 13. For 1 h exposure to
iAsIII, the parameter of highest impact is the coefficient of DMAG
hydrolysis fGSHd (Table S1, parameter 13). This parameter influ-
ences the activity of GSH-mediated hydrolysis of DMAG to DMAIII

in an inhibitory fashion (Stamatelos et al., 2011) (Eq. (A.10a), see



Table 2
Feedback loops contained in the cellular-level TK/TD model.

Stimulus Elements of feedback Type of
feedback

MMAIII MMAIII-ROS-Nrf2(N)-mGCLC-GS-Pm a

MMAIII

Negative

MMAIII MMAIII-ROS-Nrf2(N)-mMRP-MRPm a

MMAIII

Negative

MMAIII MMAIII
a TR a AS3MT-MADG-MMAIII Positive

DMAIII DMAIII-ROS-Nrf2(N)-mGCLC-GS-Pd a

DMAIII

Negative
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Supplementary Text), indicating the significance of the negative
feedback loop controlling DMA production (Table 2, fourth row)
during the early antioxidant response. It appears that the varia-
tion of fGSHd parameter modifies the ROS output, which is linked
to MMAIII production via the corresponding negative feedback
loop (Table 2, first row). This result also highlights the tight link
between the two negative feedback loops involved in GSH
upregulation (Table 2, first and fourth rows).

As shown in Fig. 13, for longer time intervals (10 and 24 h) of
exposure the number of parameters that contribute to unrepaired
DNA damage variation increases, since the cellular antioxidant
response and DNA repair process are fully active. The parameter
fGSHd continues to be of great importance, but almost equally
important is the parameter fGSHm (Table S1, parameter 10) which
is the coefficient of MADG hydrolysis. The latter coefficient of
variation influences the response signal traveling in two MMAIII-
driven feedback loops; one negative (Table 2, first row) and one
positive (Table 2, third row). Finally, among the DNA repair
enzymes, the one that appears to be the most influential is DNA
Ligase I. Specifically, the turnover number kcat (Table S1, para-
meter 59) and the enzyme concentration (Table S1, parameter 67)
of Ligase I, which accounts significantly for the enzyme’s activity,
are the most crucial parameters among all those describing the
BER pathway. The second sensitivity analysis study considering
the model outputs MMAIII and DMAIII which are the state
variables that drive ROS increase/decrease has resulted in 24
parameters that significantly contribute to their variance (see
Supplementary Fig. S1). The multiphasic behavior of MMAIII due
to stochastic changes in this parameter set is robustly sustained
for all parameter perturbations that lead to similar optimization
cost function values. We present the results for standard devia-
tions 5%, 10% and 20% of nominal values (Supplementary Fig. S2),
but we have seen the same results for even larger deviations
(50%–results not shown). Interestingly, this profile is sustained
even for cost function values that depart from the optimized
result.
4. Conclusions and discussion

The present study illustrates in mathematical terms the
biological control system of arsenic-induced anti-electrophilic/
oxidative response in hepatocytes, based on a recently proposed
model of Keap-1 independent Nrf2 transcription factor regulation
(Li and Kong, 2009). The new cellular-level TD model has been
integrated with the TK model presented in Stamatelos et al.
(2011), incorporating uptake, biotransformation, efflux and
threshold-dependent adaptive response to oxidative stress in
human hepatocytes. This mathematical formalism describes a
theoretical nonlinear mechanism of antioxidant action consisting
of multiple nested feedback loops (three negative and one
positive feedback: Table 2) leading to time-delayed responses,
which are critical for the occurrence of multiphasic dynamics in
the TK/TD model. Biologically, the time delays can be explained
by the fact that processes such as transcription and translation are
composed of a large number of intermediate Poisson-type ‘‘steps’’,
adding to the total delayed cellular response. Various formalisms
have been used to introduce this time delay in mathematical
models (Tiana et al., 2007). In the present case, in silico experi-
ments that were conducted excluding specific feedback loops or
combinations of them (Fig. 14) revealed that the negative feed-
back loop, that is necessary for the multiphasic behavior, is the
one leading to the upregulation of phase III transport system
(Table 2, second row and Fig. 4, red dashed line). This is a
multicomponent negative feedback loop that appears to delay
the propagation of the signal in the system in a way similar to the
effect of the repressilator (Elowitz and Leibler, 2000). It should be
stated that the multiphasic behavior has not been reported
experimentally, and therefore their presence in actual cellular
systems is currently a working hypothesis based on a basis of a
theoretical framework regarding the time-delay introduced in
cellular-systems. Nevertheless, based on the results of the robust-
ness analysis (see Supplementary Fig. S2) these dynamics are
preserved for a range of parameter sets; this highlights that this
nonlinear behavior is not an ‘‘artifact’’ (e.g. local minimum) of the
steepest descent multivariable optimization method.

The prediction of prolonged elevation of ROS signal as pre-
sented in Fig. 7 is consistent with the results of a number of
experimental studies that explore how oxidative stress contri-
butes to genomic instability and tumorigenesis. Zhang et al.
(Zhang and Zhou, 2012) have reported prolonged activation of
ROS-regulated Wnt/b-catenin pathway (up to 24 h) due to arsenic
exposure in similar dose ranges as the Dopp et al. (2008) study,
which employed a human colorectal cell line. Furthermore,
chronic oxidative stress is implicated to metabolic reprogram-
ming of cancer cells (Haigis et al., 2012). Hypoxia in the tumor
microenvironment induces deregulation of ROS homeostasis,
stabilizing HIF1a leading to increased cellular aerobic glycolysis
(Bell et al., 2011; Finley et al., 2011), and high proliferation rate in
various cancer cell lines including hepatic ones (Zhang and Zhou,
2012). These types of experimental settings along with in vivo
animal cancer xenografts can be employed in order to develop an
arsenic-induced multiscale model of cancer initiation and pro-
gression. Such a modular model could involve an agent-based
formulation for the cellular decision process (division, quiescence,
apoptosis) along with the integrated TK/TD model of arsenic
exposure, which will dictate this decision based on the ROS levels
in each cell.

The combination of positive and negative feedback loops has
been reported to generate oscillations in various biological net-
works, such as the levels of Ca2þ-induced Ca2þ release
(Goldbeter, 2002) and the mitotic oscillator in Xenopus embryos
(Ferrell et al., 2009). On the other hand, while negative feedback is
considered necessary for the creation of oscillations in compo-
nents of the model, positive feedback has been suggested to be
the primary mechanism tuning the amplitude and frequency of
these oscillations (Tsai et al., 2008). Positive feedback appears to
modulate the ‘‘two-wave’’ response of MMAIII, leading to higher
and sharper spikes of the first ‘‘wave’’, and influencing the
dampening and the delayed appearance of the second ‘‘wave’’
(Fig. 9). The positive feedback acts via the persistent inactivation
of TR in increasing arsenite doses (especially above 10 mM),
leading to the inhibition of the second methylation reaction of
arsenic (Fig. 10). This sensitivity testing revealed that the levels of
MMAIII and DMAIII follow reciprocal but tightly related patterns
and that the positive feedback loop appears to be the major factor
modulating this phenomenon.

Dopp and coworkers have reported that primary human
hepatocytes (which do not proliferate in culture) have almost
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the same viability after 1 h exposure to arsenite from 5 to 50 mM
(Dopp et al., 2008). Moreover, for 24 h exposure to arsenic the
increase of the percentage of cell death is much higher from 0.5 to
5 mM concentration than from 5 to 50 mM. A possible explanation
of this non-linear phenomenon could be given from our modeling
study via the predicted dose-dependent reduction of DNA
damage. The proposed biological mechanisms highlight the cru-
cial role the positive feedback loop for MMAIII plays in the system
leading to the computational prediction about the dose threshold
(Fig. 12). This result points to the potential critical role of the
positive feedback loop in a faster-than-linear antioxidant
response. Specifically, since it regulates in a nonlinear fashion
the ‘‘spikiness’’ of the first phase of MMAIII increase. The impor-
tance of the shape of these phases in cellular response networks
has already been reported in other systems, such as the p53-
Mdm2 and NFkB module (Krishna et al., 2006; Tiana et al., 2002).
The shape of this ‘‘wave’’ influences the contribution of the
DMAIII-driven negative feedback loop to the antioxidant response
mechanism which, according to the sensitivity analysis per-
formed here, is the dominant loop for DNA damage formation.
Improvement and expansion of the existing modeling struc-
ture and its parameterization, in order to involve more signals
and to account for phenomena such as arsenic-induced inhibition
of DNA repair, hormesis or tolerance phenomena (Liu et al., 2001;
Snow et al., 2005), demand additional experimental data. We
have already demonstrated the parametric differences of cellular-
level models for arsenic based on measurements from human
hepatocytes compared to other species such as rats (Easterling
et al., 2002; Stamatelos et al., 2011). The chemical speciation
analysis of valent arsenicals and arsenic-GSH adducts is
possible via liquid chromatography and mass spectrometry
(Naranmandura et al., 2006, 2008; Watanabe et al.). There is a
need to collect data to discern the levels of valent arsenical
species in human hepatocytes across time for various exposure
scenarios. The Nrf2 transcription factor control system consists of
a multitude of enzymes and feedback loops that work in coordi-
nation in order to scavenge ROS and mediate the return to cellular
homeostasis (Zhang and Andersen, 2007; Zhang et al., 2009). In
order to properly evaluate and calibrate a model that would
describe such a vast network of interactions there is a need for
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targeted arsenic- and cell-specific (Dahl and Mulcahy, 2001)
experimental designs that would provide expression measure-
ments of participating drug metabolizing and antioxidant
enzymes across both time and dose ranges.
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