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We consider a branching particle system where particles reproduce according to the pure birth Yule
process with the birth rate 4, conditioned on the observed number of particles to be equal to n. Particles
are assumed to move independently on the real line according to the Brownian motion with the local
variance ¢ In this paper we treat n particles as a sample of related species. The spatial Brownian motion
of a particle describes the development of a trait value of interest (e.g. log-body-size). We propose an
unbiased estimator R of the evolutionary rate p? = 2 /4. The estimator R is proportional to the sample
variance S2 computed from n trait values. We find an approximate formula for the standard error of R2
based on a neat asymptotic relation for the variance of S2.
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1. Introduction

Biodiversity within a group of n related species could be
quantified by comparing suitable trait values. For some key trait
values like log-body-size, researchers apply the Brownian motion
model proposed by Felsenstein (1985). It is assumed that the
current trait values (X{",...,X{") have evolved from the common
ancestral state X, as a branching Brownian motion with the local
variance ¢°. Given a phylogenetic tree describing the ancestral
history of the group of species the Brownian trajectories of the
trait values for sister species are assumed to evolve independently
after the ancestor species splits in two daughter species. The
resulting phylogenetic sample (X", .., Xy consists of identically
distributed normal random variables with a dependence structure
caused by the underlying phylogenetic signal.

A mathematically appealing and biologically motivated version
of the phylogenetic sample model assumes that the phylogenetic
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tree behind the normally distributed trait values (X{",..., X)) is
unknown. As a natural first choice to model the unknown species
tree, we use the Yule process with birth rate 1 (see Yule, 1924).
Since the phylogenetic sample size is given, n, the Yule process
should be conditioned on having n tips: such conditioned branch-
ing processes have received significant attention in recent years,
due to e.g. Aldous and Popovic (2005), Gernhard (2008), Mooers
et al. (2012), Stadler (2009, 2011), and Stadler and Steel (2012).
This “tree-free” approach for phylogenetic comparative methods
was previously addressed by Sagitov and Bartoszek (2012),
Crawford and Suchard (2013) and Mulder and Crawford (2015)
(much earlier Edwards, 1970 used a related branching Brownian
process as a population genetics model).

In our work we show that a properly scaled sample variance is
an unbiased and consistent estimator of the compound parameter
p? =062 /2 which we call the evolutionary rate of the trait value in
question. Our main mathematical result, Theorem 2.1, gives an
asymptotic expression for the variance of the phylogenetic sample
variance. This result leads to a simple asymptotic formula for the
estimated standard error of our estimator. Our result is in agree-
ment with the work of Crawford and Suchard (2013) whose
simulations indicate that their approximate maximum likelihood
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procedure yields an unbiased consistent estimator of 2. This is
illustrated using the example of the Carnivora order studied
previously by Crawford and Suchard (2013).

The phenotype modelled by a Brownian motion is usually
interpreted as the case of neutral evolution with a random noise
around the ancestral state. This model was later developed into an
adaptive evolutionary model based on the Ornstein-Uhlenbeck
process by Felsenstein (1988), Hansen (1997), Butler and King
(2004), Hansen et al. (2008), and Bartoszek et al. (2012). The tree-
free setting using the Ornstein-Uhlenbeck process was addressed
by Bartoszek and Sagitov (2015) where for the Yule-Ornstein-
Uhlenbeck model, some phylogenetic confidence intervals for the
optimal trait value were obtained via three limit theorems for the
phylogenetic sample mean. Furthermore, it was shown that the
phylogenetic sample variance is an unbiased consistent estimator
of the stationary variance of the process.

At the end of their discussion Crawford and Suchard (2013)
write that as the tree of life is refined interest in “tree-free”
estimation methods may diminish. They however indicate that
“tree-free” estimates may be useful to calculate starting points for
simulation analysis. We certainly agree with the second statement
but believe that development of “tree-free” methods should
proceed alongside that of “tree-based” ones.

One of the most useful features of the “tree-free” comparative
models is that they offer a natural method of tree growth allowing for
study of theoretical properties of phylogenetic comparative models.
This is a field receiving more and more attention in recent years (e.g.
Gascuel and Steel, 2014; Ho and Ané, 2014a,b). A fundamental setup to
consider is the pure-birth Yule tree. Statistical results for processes
evolving on top of such a tree is developed in this work (and also
Sagitov and Bartoszek, 2012; Crawford and Suchard, 2013; Bartoszek,
2014; Mossel and Steel, 2014; Bartoszek and Sagitov, 2015). Another
alternative to studying estimators of parameters of such processes is
the tree growth model proposed by Ané (2008), Ho and Ané (2013),
and Ané et al. (2014). In this setup the total height of the tree is kept
fixed and new tips are added to randomly chosen branches (however
Ané et al, 2014 also discuss more general setups). These two
approaches seem to be in agreement, at least up to the second
moments, since e.g. they agree on the lack of consistency of estimating
Xo. In Sagitov and Bartoszek (2012) we showed that under the Yule
Brownian motion model Var{X,]— 242.
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In a practical situation “tree-free” methods can be used for a
number of purposes. Firstly as pointed out by Crawford and
Suchard (2013) they can be useful for calculating starting points
for further numerical estimation procedures or defining prior
distributions in a Bayesian setting. Secondly they have to be used
in a situation where the tree is actually unknown, e.g. when we are
studying fossil data or nearly very difficult to infer. For example,
the phylogenies of insects are characterized by multiple recent
radiations. In such a situation the support of many internal nodes
can be close to zero—we do not have enough signal to place them
even though we do not suspect polytomies. Piwczynski et al.'s
(2014) molecular phylogeny of flesh flies can serve as a model
example—their Bayesian analysis could not converge, while max-
imum likelihood trees had very low support for many internal
nodes. Thirdly “tree-free” methods can be useful for making
predictive statements about future phenotypes, e.g. development
of viruses. Finally they can be used for various sanity checks. If
they contradict “tree-based” results this could indicate that the
numerical method fell into a local maximum.

The paper has the following structure. Section 2 presents the
model, the main results and an application. In Section 3 we state
two lemmas characterizing the coalescent time of a Yule tree
needed for the proof of Proposition 4.1. Section 4 states two
further lemmas and a proposition directly yielding the assertion of
Theorem 2.1. Proposition 4.1 deals with the covariances between
coalescent times for randomly chosen pairs of tips from a random
Yule n-tree.

2. The main results

The basic evolutionary model considered in this paper is
characterized by four parameters (1,n,Xo,s?) and consists of two
stochastic components: a random phylogenetic tree defined by
parameters (i,n) and a trait evolution process along a lineage
defined by parameters (X, 0?%). The first component, species tree
connecting n extant species, is modelled by the pure birth Yule
process (Yule, 1924) with the birth (speciation) rate 4 and condi-
tioned on having n tips (Gernhard, 2008). For the second compo-
nent we adapt the approach by assuming that for a given
i=1,..,n, the current trait value X{” has evolved from the
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Fig. 1. Left: True and simulated values of E[Sﬁ , right: simulated values of Var[Sﬁ] with limit equalling z?/6+ 1. Each point comes from 10 000 simulated Yule trees and
Brownian motions on top of them. Parameters used in simulations are 1= 1, Xo = 0 and o2 = 1. The grey line on the right panel fits a curve based on the convergence rate

O(n~'logn?).
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ancestral state X, according to the Brownian motion with the local
variance ¢°.

Treating the collection of the current trait values (X{", ..., X!")
generated by such a process as a sample of identically distributed,
but dependent, observations, we are interested in the properties of
the basic summary statistics:

XPeaXY 1
n T n—

n
30K X2,

i=1

Xn

the sample mean and sample variance.
According to Sagitov and Bartoszek (2012) we have

1 2 n 1
Efst] = (R -225) 7 = 2op
1=

see Fig. 1, left panel (all simulations are produced using the
TreeSim, Stadler, 2009, 2011, and mvSLOUCH, Bartoszek et al.,
2012 and R Core Team, 2013 packages). It follows that the
normalized sample variance

n+1 n o\ !
R? = (nilHn—2ﬁ> s2

M

gives an unbiased estimator of the compound parameter p?:=¢2/4
for the Yule-Brownian-motion model, see Fig. 2. In the phyloge-
netic comparative methods framework the ratio p? can be called
the evolutionary rate as it measures the speed of change in the trait
value when the time scale is such that we expect one speciation
event per unit of time and per species. The next theorem is the
main asymptotic result of this paper, illustrated in Fig. 1, right
panel.

Theorem 2.1. Consider the sample variance S2 for the Yule-Brow-
nian-motion model with parameters (1, n, Xy, 62). Its variance satisfies
the following asymptotic relation:

2
Var[S2 /p?*] =1 +%+O(n*‘10g2n), n—o00.

In terms of our estimator equation (1), Theorem 2.1 yields
2

71

where y~0.577 is the Euler constant, implying that R? is a
consistent estimator of the evolutionary rate p?. It follows that
for large n, the standard error (estimated standard deviation) of
the unbiased estimator R? can be approximated by

72 R? 1.626
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The estimator of Eq. (1) should be compared to the approx-
imate maximum-likelihood estimator for the local variance o?
recently proposed by Crawford and Suchard (2013) in the same
framework of the Yule-Brownian-motion model. The main differ-
ence between two approaches is that in Crawford and Suchard
(2013) it is assumed that one knows both the number of tips and
the total height of the otherwise unknown species tree. The
Crawford-Suchard estimator is based on a closed form of the
distribution of phylogenetic diversity—the sum of branch lengths
connecting the species in a clade.

As an application of their estimator, Crawford and Suchard
(2013) study different families of the Carnivora order, estimating
o* for each of the 12 clades. The data for the log-body-size
disparities was taken from the PanTHERIA database (Jones et al.,
2009). The data summary and the Crawford-Suchard estimates are
shown in the left part of Table 1. In the right part of Table 1 we
present our estimates j? for the evolutionary rate parameter
p? =0%/2 for each of the 12 families in the Carnivora order. The
standard error is computed using Eq. (2). We note that the data
does not take into account the newly described species Bassaricyon
neblina from the Procyonidae family (Helgen et al., 2013).

In the next-to-last column we list the ratios demonstrating a
surprisingly good agreement between our and Crawford-Suchard
estimates. The ratio is taken between two products: j%u, on one
hand, and 4°t, on the other. Here u,, = E[U,] is the expected age of
the conditioned standard Yule process with 1 =1, while t, is the
clade age assumed to be known in the Crawford-Suchard frame-
work. Both p%u, and 6°t, estimate the same quantity—the variance
in the trait values for the evolution of the corresponding clade.
Therefore, one should expect these ratios to be close to one. And
indeed, the 12 ratios have mean 0.97 and standard deviation 0.20.

1475 Our estimator and its standard error are computed by simple
var(R; /p’] :762+O(n*1), formulae given above. A major weakness of our estimator is
(logn+y—2) relatively big standard error for realistic richness values, see the
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Fig. 2. Histograms of R? for left to right top n=>5, 10,50 and bottom n =100, 150, 200. Parameters used in simulations are 1=1, Xo =0 and ¢% = 1.
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Table 1

Data summary. 2nd column: clade richness (number of missing trait values); 3rd column: the clade age in millions of years; 4th column: (n—1)/n- Sﬁ trait disparity; 6th
column: the expected age u, = E[U,] of the conditioned standard Yule process with 2=1.

Famil n t, Disparit; 52 u 52 52 52

y n parity 6° (SE) n p° (SE) p(}lzl,, " ﬂ}‘tz—A
Felidae 40 (7) 333 1.588 0.080 (0.009) 4279 0.649 (0.466) 1.042 0.560
Viverridae 35 (6) 374 0.662 0.029 (0.004) 4147 0.284 (0.217) 1.086 0.676
Herpestidae 33 (4) 255 0.482 0.030 (0.003) 4,089 0.211 (0.166) 1128 0.485
Eupleridae 8 (0) 255 0.916 0.079 (0.010) 2.718 0.758 (1.72) 1.023 0.662
Hyaenidae 4(0) 322 0.805 0.122 (0.005) 2.083 0.999(19.5) 0.530 0.565
Canidae 35(3) 48.9 0.678 0.030 (0.004) 4147 0.290 (0.221) 0.825 0.667
Ursidae 8 (0) 426 0.303 0.024 (0.002) 2.718 0.251 (0.569) 0.667 0.722
Otariidae 16 (2) 245 0.386 0.028 (0.003) 3.381 0.227 (0.274) 1.119 0.559
Phocidae 19 (0) 245 0.751 0.052 (0.005) 3.548 0.410 (0.438) 1.142 0.544
Mephitidae 12 (3) 32.0 0.570 0.039 (0.005) 3.103 0.384 (0.588) 0.955 0.679
Mustelidae 59 (10) 274 2263 0.126 (0.014) 4663 0.811 (0.497) 1.095 0.444
Procyonidae 14 (1) 27.4 0.531 0.037 (0.004) 3.252 0.332 (0.444) 1.065 0.619

N 3. Coalescent indices of the standard Yule n-tree

U

0_

1 2 3 4 5

Fig. 3. An example of a standard Yule n-tree with n=5. The tree height is
Uy, =Ty +---+Tp, where T; are the times between the consecutive speciation events.

The 10 pairwise coalescent times 7"’ for the tips of the tree are #{) =Ts, 7§ =Ts+Ts,

(5) 5 (5) 5 (5) 5 (5) 5
3 = 1(23) =T5+T4+Ts3, and 77 = 1<24) =Ty = 1<15) =175 = 1(35) =T5+T4+T35+T>.

7th column in Table 1. This can be explained by the fact that we do
not use an additional information about the species tree, like the
height of the tree used in the Crawford-Suchard estimator.

This close agreement is obtained despite a number of features
that complicates the comparison between two methods. Our
approach in its current form does not allow us to take into account
the fact that some trait values are missing. We calculated 5 for the
trait disparity as if it was computed using all n trait values.
Moreover, it is not clear how to take into account the measure-
ment variance. As shown by Hansen and Bartoszek (2012) even
with a known tree, the measurement error can cause very diverse
effects. Therefore we would expect the situation to be even more
interesting when we integrate the phylogeny out.

In their work Crawford and Suchard (2013) estimated the overall
speciation rate to be 2 =0.069 per million years. The last column of
Table 1 demonstrates that using this common value for the speciation
rate A produces huge discrepancy between our estimates 2 for the
rates of evolution p?> =62/4 and the rates of evolution computed
using the Crawford-Suchard estimates for 2. This observation points
out that a fair direct comparison of 52 and 2 /4 would require specific
estimates of the speciation rate 1 for each of the 12 clades.

Following the standard (1= 1) Yule n-tree from its root toward
the tips we label the consecutive splittings by indices 1,...,n—1:
splitting k is the vertex when k—1 branches turn into k branches.
We define three random splitting indices (as we are interested in
four randomly chosen tips out of n available):

® [, is the index of the splitting where two randomly chosen tips
coalesce,

® [, is the index of the splitting where the first coalescent among
three randomly chosen tips takes place,

® M, is the index of the splitting where the first coalescent
among four randomly chosen tips takes place.

To avoid multilevel indices in the forthcoming formulae, we will
often use the following notational convention:

KLy=K;,, LMp=Ly,, KLMu=Kpy, .

To illustrate these indices, turn to Fig. 3. If the two randomly
chosen tips are (1, 2), then K,,=4. If the three randomly chosen tips
are (2,3,4), then L,=2, K;, = 1. If the four randomly chosen tips
are (2,3,4,5), then M,,=3, Ly, =2, Kiy, = 1.

The importance of these random indices comes from the
following representations for the standard Yule n-tree. Denote
U:=Ty, 1 +-+T, the sum of adjacent times between splittings
in the tree, and for a quadruplet (i, j, k, I) of tips randomly sampled
without replacement out of n tree tips, define

m _ m _ _(m) m _ m _ _m () __(m m __(n)

=T, Ty T, T3 =T Ty =T, T =T, Tg =T
3)

Clearly,

m d rym m () d ) m , () d m , () d pym

“1 _UK,.’ (SN _UL,,’ VY —UKan 71 V13 _UKLMr.'

“)

To prove our key Proposition 4.1 we need to know the distribu-
tions of these random splitting indices which are given in the next
two lemmas. We remind the reader that the properties of the
coalescent of a single random pair were previously studied by
e.g. Steel and McKenzie (2001) and Sagitov and Bartoszek (2012).

Lemma 3.1. The above defined random splitting indices have the
following distributions:

n+1 2

PKn =K = KT

k=1,...n-1,
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_ oy (- DH(+2) 6(k—1)
Pln=k)= n—1n—2) k+1)(k+2)(k+3y 2,..on-1
P(M, = ky = DO+ +3) 12(k—1)(k—2)

=T M- hn—2)n=3) (k+ ) (k+2)(k+3)k+4)
k=3,...n-1

Proof. From the definition of Kj, it is easy to see that, for k=2,...,n,

B 1 (k+D(k-2)
P(1<n<k—1|Kn<l<)—1—@—W'

Therefore,
_(m+1H(n-2) nn-3) m-1Hn-4) Kk+1)(k-2)
PUn <k=T)=— oD —2m=3) kk-1)
_(n4-1)(k-2)
- (n=-Dk ~

m+Dk-1) m+1)k-=2) n+1 2
n-Dk+1) -1k ~n—-1k+Dk

Similarly, for k=3,...,n,

_ 3 (k+2)(k-3)
P(L, <k—1|L, <k)= 1—@_W,
n+2)(n-3)(n+1)(n—4) n(n->5)

nn—-1) m-1)n-2)(n—-2)(n—3)
_ (n+2)(n+1)(k—2)(k—3)

T (n=1)(n-2)k+1k
(n+2)(n+1)(k—1)(k—2)_(n+2)(n+1)(k—2)(k—3)
n—1n—-2)k+2)(k+1) n—1)(n-2)(k+1)k
6 +2)(n+1)(k-2)

T (=1 (n-2)k+2)k+1k

and, for k=4,...,n,

P(Kn =k— 1) =

(k+2)(k—3)

Pln <k=1)= k(k—1)

Ply=k-1)=

6 (k+3)k—49)

P(Mp <k—1M, <k)=1 —®7W,

n+3)(n+2)(n+1)(k—2)(k—3)(k—4)
n—1)(n-2)(n—3)(k+2)(k+1)k
12(n+3)(n+2)(n+1)(k—2)(k—3)

(n—1)(n—2)(n—3)k+3)(k+2)(k+ Dk

P(M, <k—1)=

P(Mn :k—l):

Lemma 3.2. The random numbers Ky, Ly, ,Kiv, have the following
distributions:

n+1
Pl == Hm—2)
12 n+2
'(1<+1)(k+2)<k+—3_1>’ k=1,...n-2,
. (m+1DH(n+2) 72(k—1) n+3
P(LM”_k)_(n—l)(n—Z)(n—B)'(k+1)(k+2)(k+3)<k+4 ]>’
k=2, ..., n-2
N n+3 72 n+1)(n+2)
P(Kyy, = k)= n—1(n—-2)(n—3) (k+1)(k+2) ((k+3)(k+4) B 1)
n+2 144 n+1
7(n—1)(n—2)(n—3)'(k+1)(k+2)<k+37 )
k=1,...n-3.
Proof. Clearly,
n—1
P(Ky, =ky= > PK =kP(L,=1)
I=k+1
_(n+1(n+2) 12 -l 1

T(m-1)(n-2) (1<+1)(k+2),:zk:+1 d+2)I+3)

leads to the first assertion. Further,
nm+1)(n+2)(n+3)
(n—1)(n—2)(n-3)

5 ”i 12(m—1)(m—2)(m+1)(m+2)
(m+1H(m+2)(m+3)(m+4)(m—-1)(m—-2)

Py, =k)=

m=k+1
6(k—1)
(k+1)(k+2)(k+3y
and
m+1H(n+2)(n+3)
(n—1)(n—2)(n-3)
72(k—1)
‘(k+1)(k+2)(k+3)

_(n+DH(n+2)(n+3) 72(k—1) 1 1
Tm-Dm-2)n-3) (k+1)(k+2)(k+3)<m_m>‘

Py, =k) =

n—1 1
2 mimid

m=k+1

Finally,
n+1)n+2)(n+3)
(n—1)(n-2)(n-3)
72(m—1) m+1 2
m+DHm+2)m+3)(m+4m—1 (k+1)k+2)

-2 (n+Hn+2) 72(m—1)
n—-1(n-2)n—-3) (m+1)(m+2)(m+3)ym—1

n-2
PKim, =)= >

m=k+1

m+1

m=k+1
R
(k+1)(k+2)
_(n+D(n+2)(n+3) 144 n-2 1
_(“_1)(n_2)(n—3).(k+1)(k+2)m:k+1(m+2)(m+3)(m+4)
_ (+Dn+2) 144 n-2 1
(n—-1(n—=2)n-3) (k+1D(k+2), <,  (m+2)(m+3y
and therefore, it remains to use the equalities:
n-2 ;_L_ 1
S mA2)(m+3) k+3 n+1
n-2 2 1 1

et ME2)mE3)m+4) ~ (k+3)(k+4) (n+1)(n+2)

4. Proof of Theorem 2.1

In terms of the sample variance
2 1 . 2 :
- _Y Y=n1! .
D"_n—li;(y' Y, Y=n ;Y,,
for the scaled trait values
X" —X
AL T
o‘/ﬂ

we have Sﬁ = azDﬁ /4, and to prove Theorem 2.1 we have to verify that

Y=Y = ., )

2
Var[D2] =1 +%+ omn~'log?n). (6)

The standard Yule n-tree underlying the set of scaled values
equation (5) has unit speciation rate and we denote by Y, the o-
algebra generated by all the information describing this random
tree. Under the Brownian motion assumption the trait values
equation (5) is conditionally normal with

E[Yi|yn] =0, Var[Y,—|yn] =Un,
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where U, is the height of the standard Yule n-tree, see Fig. 3.
Moreover, we have

Cov[Y;Yjly,] = Un—1{", (7)

where rgm is the backward time to the most recent common
ancestor for a pair of distinct tips (ij) in the standard Yule n-tree,
see Fig. 3.

The proof of (6) is structured as follows. We start with a general
observation, Lemma 4.1, concerning the sample variance D2 of
possibly dependent and not necessarily identically distributed,
observations (Yq, ..., Y,). Together with Lemma 4.2, it shows that to
establish (6) it is enough to verify the next asymptotical results,
having interest on its own.

Proposition 4.1. Consider the coalescent times equation (3). As
n—oo,

Varfz{"]= +O(n‘1log n,

Cov{ (1”’,1(2”’] 2—”—+O(n*110g2n),

cOv[(”) m)] 3__+0(n”log n.

Notice that these asymptotic relations concern only the first
component of the evolutionary model we study—the standard
Yule n-tree. For the standard Yule n-tree it is well known that the
times between the consecutive speciation events (Tq,...,T,) are
independent exponentials with parameters (1, ...,n) respectively,
see Fig. 3. As shown by Gernhard (2008), this property corre-
sponds to the unit rate Yule process conditioned on having n tips
at the moment of observation, assuming that the time to the origin
has the improper uniform prior (see also Feller, 1971).

In view of Eq. (4), the harmonic numbers

Z k™', Hp= an k2 ®
k=1 k=1

play an important role in our calculations as
E[UP] =Hu—Hy,
E[(U{)?| =Hu—H+ (Hy— i) = H} — 2HyHy + Ho -+ H — Hy.

According to Lemma 4.3, the joint moments of coalescent times in
Proposition 4.1 can be expressed in terms of the expectations of
the harmonic numbers indexed by random numbers introduced in
Section 3. The required asymptotic analysis of such expectations is
performed in Lemmas 4.4-4.5 using the following properties of
harmonic numbers:

-l Hk - Hnn—rooﬂz

P

k:lk(k+1) n 6

Z Hk :H_m_Hn+m—Hn_ Hn Hz)ocﬂ, m=>1,

& 1(k+m)(k+m+1) m m n+m m

! H, nH, Hp H,.+m—Hnnw;z2 CHno g
(k+m)(k+m+]) (n+mym Tt 6m m2’ =

=l 2 —  n—H2—2Hpn-oor®

H?
,(Zl(k+1)(k+2)_ L

n—-1 Hk _@
(k+2)(k+3) T2

+1,
11n2+21n  H,(2n+3)  H; nos o 11
8+ 1)(n+2) (m+Dn+2) n+2 ~ 12178"

1
Z (k+m)(k+m+1) “m

2 — H
(%+H;+Hm—ﬁm), mx>1. 9

Some of these properties can be found in Adamchik (1997) and
Sofo (2011, 2012, 2013).

Lemma 4.1. If (W{,W,,W3,W,) is a random variable sampled
without replacement from random values (Y1, ..., Yy), then

Var{D?] = Cov [Wf, Wﬂ —2Cov [W%, W2W3] 4 CoV[W W, WsWa]+n~ By,
(10
where
|By| < E[W‘}] +4E [W?Wz] +E[W§W§] +6E [W%W2W3]
+4E[W1 W2W3W4].

Proof. Using the representation

_ n 1 n v 2
(R ¥) ey,

o8]~ ] e
(S 1R
S ] ) el
S S E[YN] 315 S e

SIS E[Y,-Y]-YkY,]>.

i jAi k2l l£ijk

If (Wq,W;,,W3,W,) is a random sample without replacement of
four out of n trait values, then

E[wi] =n—1ZE[Y?],

E[W?WZ] nmn-— 1)Z§E[Y3 }

B[] = e

and

E[W1W2W3] nn— 1)(n 2)Z;k;f[yzyy"]
E[WW,oW3sWy4] = = 1)(n 0= 3)222 > E[YiY;Y,Y).

i j#ik#ijl#ijk

Therefore, we have

E[DS] =n~'E[wi] -4n E[Wiw, +%B (wawi]
2(n—-2)° (n—2)(n-3)

E[wazwg] + W WoWsWal.  (11)

T nmn-1) nmn-1)

Since

E[Di] = E[Wﬂ —EW;Wa],

we conclude

Varo =n (] 4 E[ W] Cou ] w3
B n?n_—zl )E [W% Wﬂ —2Cov [W% W, W3]

2(3n—4)
nmn-1)

+ COV[W] Wz, W3 W4] —

E[W$W2W3]

2(2n-3)

“hn— 1) FWAWa W3 Wal
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The stated relations follow with

B, = E[w‘l‘] —4E [W%Wz]
2(3n—4)
n—1

n—2 202n—-3
7ﬁE[W3Wﬂ+ E[W%W2W3]f (n EW, W, Ws W, o

-1

Lemma 4.2. Let (W{,W,, W3,W,) be a random sample without
replacement of four trait values out of n random values defined
by Eq. (5). Then in terms of the coalescent times equation (3) we
have

Cov [Wf’ W%] —2Cov [W%’ W, W3] +Cov[W{W;, W3 W]
=2Var[{"]—- 4Cov[ o <2”>] + 3(;0\,[ . (n)] .

Proof. Denote by Y‘") the normalized trait value of the most
recent common ancestor of the tips (ij). Let y“” stand for the
o-algebra generated by the pair (Vy, Y(")) then

E[Yi\y‘f”] =E[Y—|y<ﬂ>] Yo,

Var(Y;| V{1 = Var[Y; |y’ = 7,
Cov [Yi, Y]D}ijn)] =

implying Eq. (7)

Cov[Y,Y;ly,] = Var[Y{"|Vu] = Un—7{".

By Eq. (13) of Bohrnstedt and Goldberger (1969), we have
Cov [Zij, ZkZ[] = M;MyCj + MM Cjj + 1M, Gy + 1M1 Cige + Cii Cjy + Cit Cje

for any sequence of normally distributed random values Z1,Z,, ...
with means E[Z]=m; and covariances Cov[Z;,Zj] =c;. In the
special case with m;=0 it follows

Cov(ZiZ;, ZyZi| = cixCji+ CiuCik.

Cov [Z,?,Z-zk} = 2¢;iCis

Cov|2}.2}| =2,

Using conditional normality of Y; and putting CU_Un—rﬁjn), we
derive from these relations that

Cov[Y; Y7Vl =2(Un— <.r”)2

CoV[Y;Y; Yl Vnl = 2(Un — 7 )(Un — 7)),

ik
CovIY:Y; Y, Y |Vl = Un — i WUn — ")+ (Un — 7 )Y Un — )

Jk

yielding in terms of Eq. (3),
CovIWIW3|Vy] = 2(Un —71")2,
Cov[WiW2W3|Vy] = 2(Un —7{")(Un —75"),
CovIW1 W W3 Wi |Vn] = (U — 75" )(Up — 26"+ (U —25")(Up — 2"
By the total covariance formula, we derive

)| +Var(Ua,

)] +Cov [Un, Un— "]

Cov [W%, Wﬂ —2E [(U,, -
Cov [wf, w2w3] —2F [(Un — "YU, —

CoOV[W, W, W3W,] = 2E [(U,, — YU, — Tg'”)] +Cov [U,, " U, — Tg“)]
2
—3E [(Un—rl YUy — <"))] - (E[Un—r(l’”D .
Combining these relations we get

Cov [wf, wg} —2Cov [W%, sz3} 4 COV[W, W, W3Wy]

= 2 [(Un — "] —4E[(Un ") Un— )]
+3E [(U.1 —2")(Uny —Tg”)]
+Var(Un] - 2Cov [ Un, Un =" | = (E[Un— "] )2_
This together with
Var{Uy] —2Cov [Up, Up — 2| = (E[Up —<{"] )2
— E[U2] — E1UM —2E [Un(Un — ") + 21U E [Un —+{"]
S o e T
=E[@"?] -E[#"] " E [Cod

implies the assertion of Lemma 4.2
Cov W2, W3] —2Cov [W2, Wa W3] + CoviW: Wa, W W]
2] +E[ 2] —E[+"] ’
—4E[(Un —#")(Un — )] +3E[(Un — ") Un — "]
—E [(Un 71;”)2] +Var[Z{"]—E [(Un — >)U,,] +E [Unr(")]
—4E[e"e| +3E [+

= 2Var[{"] - 4Cov [r‘{”, 1‘2")] +3Cov [ m ‘3”’} . o

=E[Un-

Lemma 4.3. We have

E[#"] =Hu—E[H, ).

E[({"?] = H} —2HuE[H, | +Ha+E[Hg, |,
_ 2H; Hi, +H% —2H; —H
E {r n)T(zn)] _H,E [ZHL" ';4HKL”] +H, +E[ 1, Hie, + KL3n Ly KL, ,
E [T(n) (n)] _H,E [3HMn +5Hl_1\9/,,1 + 10HKLM,,] +ﬁn 7%E [HM"]

1
+ §E [Hm,Him, +2Hy, Hion, +4Hm, Hiawm,

Proof. We have
E|"| =E[UY)] = Ha—E[Hy, .

and

E [(T(]n))z] =

Further, using Eq. (4) and U;?L),

E [(U;g;)Z] —H,+H2—E [HK" +2Hy, Hy — Hin] .
=UP + Ui, we get
E[#"4"] =1E[Wig)?| +3E[ufp U]

E[U?] +4E[UP U] +1E[Wi)?]-
Thus

_ .4
E["4"] = H2 — 2H,E[Hy, ]+ Ho-+ E[H2 ~FL, ] + SE[(Ha — Hu, )y, —Hig,)]

1 — —
+§E [H%n — ZHL"HKL" +HL" +H12(Ln _HKL,,]
—H?_H.E {ZHLH +4HKLH:| HAE |:2HLnHI<L,. +Hy, —2H,, —HKLH}
o " 3 " 3 '

Finally, for two pairs of sampled tips, we have three coalescent events
to consider: going from four to three selected nodes, 4— 3, going
from three to two selected nodes, 3 — 2, and going from two to one
selected nodes, 2 — 1. The coalescent 4 — 3 holds across the two pairs
with probability é =2 and within a pair with probability 1
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Given the former outcome, the coalescent 3 — 2 holds again across
the pairs with probability 1 and within a pair with probability 2.
Otherwise, the coalescent 3—2 holds across the pairs with
probability £ and Within the second pair with probability 1. The
four possibilities (3 x 1, 2x2 1x2 1x1) produce the following
four terms in

E{T(lmfgn)] §E [(UKLM ) }“‘%
It follows,
E [T(ln)‘[gn)] =E

E [U(L?\;" U;(”L)M"] +3E [U;’}li U;?L)M ] oF [U(m ULM,,]

M2 | 2 y(Ma) N2 | 10 [j0) 1j(Mn) 4 17(Mn) [ j(Mn) +3 () 1 {(Mn)
[(UM) +5Uiam,)” +9 Uy UKLM,,+ ULMn Uam, +3Unm, ULMﬂ]

Using the representation for E [ {Ma) (M”],

Tl \2 (M) 7(Mp)
3E [0 ]+ SE Ui i
—E|H2, —Hy 2Hm, +4Hkim, Hy, ZHLM,,HKLM,, +Hiypy, —2Him, — HKLM,,}
n M 3 :

we can write
B[] 2

2.1 0
+5F [H —Huy,

E [2HnHMn +Hy, — H,ZV,"] +H,

2Hym, +4H =
LM, L KMy | HM,]:|

2 _|2Hm, Hiiwm, +H12<LM,, —2H 1, —Hiw,
+3E
3 3
5 10
+§E [(Hn—Hwm,)(Hy, —Hiu,)) +§E [(Hn—Hwm,)(Hy, —Hiam,)] s
which after a rearrangement gives the last statement. ©

Lemma 4.4. We have as n— co

E[Hk,] =2+0m~'logn), E[H,]=3+0m" 'logn), E[Hp,]
=11 +0om'logn),
E[Hi,] =3 +0m~'logn), E[Hu,]=3%+0m " 'logn),

E[HK[_M"] :% +O(T17110g n.

Proof. The first three stated relations are obtained using Lemma
3.1 and Eq. (9). Equalities

n+1 2H,
E[Hx,] = Z < (k+T)(k+2)

(n+1)(n+2)Z 6(k—1)H,
(n—1)(n—-2) /= (k+1)(k+2)(k+3)

2(n—Hy)
n-1"~

E[Hy, | =

_6(n+1)(n+2)z ( Hy >
- (n—-1n-2) g (k+2)(k+3) (k+1)(k+2)
_ 3n(n+1)—6nH,
T (n-1H(n-2)

give the first and the second stated relations, and the third one

follows from
i+ DH+2)(n+3) 8 12(k—1)(k—2)Hy
ElHw, | = (n— 1)(n—2)(n—3)kg (k+D)(k+2)(k+3)(k+4)

_12(n+1)(n+2)(n+3)“§< Hy _ 5H
T (n-1)(n-2)n-3) p (k+1)(k+2) (k+2)(k+3)

5H,,
* (k+3)(k+4)>

131113 +30n? +33ﬂn—20— 12(n2 + DH,

n-1)(n-2)(n-3)

The second three stated relations are obtained similarly using

Lemma 3.2 and Eq. (9). Indeed,

ETH _(n+DH(n+2)"H 12H, n+1 =1 12H,
(Hi, ] Tn-Dhn-2) & (k+l)(k+2)(k+3)7(n71)(n72)k:](k+1)(k+2)

_6(n+1)(n+2) Z Z 12(n—Hpy)

T m—-hHn-2) (k+1)(k+2) (k+2)(k+3) T—hH(n-2)

6n(n—H,)

B 6(3n%+5n—4(n+1)H,) _ 6H, 3n(n->5)
T(-H(n-2)"

An-DHn—-2) _m-1)n-2) 2m-1)n-2y

implying E[H., | =3+0(n~'log n). Furthermore,

ad 72(’(7 1)Hk
E[Huw, | = z:: (k+1)(k+2)(k+3)(k+4) '

2
S 72H;
ElHiam,] = g(k+1)(k+2)(k+3)(k+4)

} O(n*llogn)=%+0(n”logn),

+O(n”logn):§+0(n*'log). o

Lemma 4.5. Let a,=a stand for a,=a+0n-'log?n) as n— oo.

Then

E[HE, ] :;”32+2, E[an]:z%, E[Hy,|= 32 +2]181

? 7 3 7:2 31
E[HK"}:’)?—Z, EH j’ E[_M" S ]8
and
2 1,79 2 1167 72 , 1222 41
Bl )= -7 ElMin]=7g—5 E[Hiw]55 -3
215 oo, 8 222 49
E[Hi,|= = 4 E[HLMH]:ZE_%’ EWKLMH]:Z%—g,
and
39 7 221 2
E[H,Ha,]=57 5 E[Hw,Huw, | 355~
22 14 148 4r2
E[Hu,Hium, | 3% ~9° E[Hm,Hiim, | S5 - %

Proof. The stated relations are obtained using Lemmas 3.1, 3.2,
and Eq. (9). Firstly,

2] n+15% 2H;  2(n+1)(5 ,n-H;-2H,
[HKn] Z(k+1)(k+2)_ =1\t

2(Hn(n+1)+n H2— 2Hn) 2

n—1 3

=+2.

Similarly, we have

n+1 2H, _2(n+1)
E[Hk,] = Z(k+1)(k+2)_ n—1
an—n_Zan—Zn nj
n+1 =~ n-1 3
Observe that the limit is >°p° ; 2Hy/((k+1)(k+2)). In the same
manner we obtain

-2

X 12H} =
[”KLn] Z(k+1)(k+2)(k+3) Z(k+1)(k+2)

nj_9

Z (k+2)(k+3) 2 4

12H, o 6H,
EHx, )= ,; (k+D(k+2)k+3) Z < (k+1)(k+2)

S e
(k+2)(k+3) 2 4

Using partial fraction decomposition we find

) e 12(k—1)k—2)H; 2% 211
[HMH] Z < (k+1)(k+2)(k+3)(k+4) ~ 3 t1g°
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> 12(k—1)k=2)H,  »* 31
E[Hw,]= ,;3 (k+1)(k+2)(k+3)k+4) 3 18

Again using partial fraction decomposition we find

ElH)= 3 it e = 155
FlHun]= :2 (k+ 1)(1352)(12:1;)(“4) = % —7[3*2
and

E [HﬁLM"] = ,{2: (k+1)(k +722)€II<£+ 3k+4) 23i2 —%,
FlHiom]= lé (k+ 1)(k+722)€11<k+ 3)k+4) Zg.iz_%

Since E[Hk,] =2(n—H,)/(n—1), we have
2(m—Hm)

= 6(m—1)Hp
E[Hy,Hia, = Z L (m+D(m+2)(m+3) m—1
_ Z 12mHp, S 12HZ,
T meD(m42)(m4-3) A= (m1)(m+2)(m+3)
15 (x2 9)_39
T2 2 4 4 2
where we use the following corollary of Eq. (9)
Z 2mHm _ Z Hm
= (mAD(m+2)(m+3) < (m+2)(m+3)
Z _2
(m+1)(m+2) T4
Similarly,
> 72(m—1)Hp 2(m—Hy)
E[HLM"HKLM" z:: (m+1)(m+2)(m+3)(m+4) m-1
i 144mHy,
(m+1)(m+2)(m+3)(n+4)
B i 144H?
= (mA-T)(m+2)(m+3)(m+4)
where
144kH, 22

—=24(—1+15/4-22/9) =2,

Z (k+ 1(k+2)(k+3)(k+4) 3’

144H; 472 82
Z(k+l)(k+2)(k+3)(k+4) 379

so that E [HLMn HKLMn] 3148 (47[2 /3)
Further, in view of E [HLH} =@3n(n+1)—6nH,)/(n—1)(n—2), the
limit for E[Hy,Hym,] can be computed as

3m(m+1)—6mHp,

ud 12(m—1)(m—2)H,,
E[Hu, Hu, ] Z ((m+)(m+2)(m+3)(m+4)  (m—1)(m—2)
36mHy,
- ,11221 (m+2)(m+3)(m+4)
S 72mHp,
=) (m41)(m+2)(m+3)(m+4)’
where

$ 6mH;, 7,85
= (mD)(m+2)(m+3)m+4) " 36 216

mH, _ Hpn
mgl (Mm+2)(m+3)(n+4) mgl (m+3)(m+4)

17
Z (m+2)(m+3) =36

yielding E[Hwm,Him, | 324 — (#? /3). Finally, from

6Hp, 3m(m-5)

E[Hg,] = (m-1)(m-2) 2(m-1)(m-2)

we get

- 12(m—1)(m—2)Hp, ( 6Hm

3m(m->5)
E[HM"H"“‘””}:”El (m+1)(m+2)(m+3)(m+4) )

(m—-1)(m-2) “ 2(m—-1)(m-2)
S 72H?,
T (mD)(m4-2)(m4-3)(m+-4)

> 18m(m—5)Hp,
2 e

)(m+2)(m+3)(m+4)y
where

72H2, 272 41

mg](m+l)(m+2)(m+3)(m+4): 39

Z m(m—5)H, _1
= (m+1)(m+2)(m+3)(m+4) 6
so that E [HM,,HKLM,,] 3(2ﬂ2 /3) 7%. o

Proof of Proposition 4.1. With Lemmas 4.3-4.5 at hand, the proof
of Proposition 4.1 is straightforward. The first statement

Varte ") = E[")2] - (E[s0"])" =Ho+E[H2, ~ |~ ([, ) 2=

is obtained applying the classical relation H, = (z%/6)+0(n"1).
Further, Lemma 4.3 yields

Cov 4] =[] - (E[4"]) = Huk 21 -

ZHL" +4HKL,.:|
3

_ 1 _
+Hu+5E[2H1, Hia, +Hiy, — 2H1, — i, | - E[Hi, )2,

3
where according to Lemma 4.4
E {ZHK" —M} =0~ 'logn).

Thus, applying Lemma 4.5 we obtain the second statement

2 2 2 2
m )7 ] 39_ =\, 7 9 5,3 = 15
COV[Tl \Ty }:{6+3<+2<4 5 +2 a 2 5 2+4

2
T
—4=2-"
6

Finally, the third statement follows from

Cov [T(ln), T(Bn)} JE |:2H](" _ 31‘1[\/1n + SHL[;" + 1OHKLMH:| +Hn
1
—(E[Hk,])* - E Hwm,] +sE[Hum,Him, +2Hm, Hium,

9
+4Hy, Hiam, +2H 12<LMn —4Hpy, — ZHKLM,,} .

Indeed, according to Lemma 4.4

3HM,, + 5HLM,. + ‘lOI‘IK]_Mn
9

E|2Hy, — =0(n 'logn).

Moreover, from the following three limits

1.— 7% 185
2
—(E[HKH]) —§E[HM,.]3§—ﬁ,
1349 132
E[Hm,Him, +2Hm,Hiim, +4Hiv, Hiau, | 37—%,

272 77

E [H 12<LMn —2Hy, — HKLM,,] :;T —9
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we get the stated overall limit
72 185 1 (1349 137:2) 2(27:2 77) _3_57r2

— [m]

18°

18 529

18 3

*9

3 9
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