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Abstract1

Genetic insect control, such as self-limiting RIDL1 (Release of Insects Carrying a Dominant2

Lethal) technology, is a development of the sterile insect technique which is proposed to suppress3

wild populations of a number of major agricultural and public health insect pests. This is achieved by4

mass rearing and releasing male insects that are homozygous for a repressible dominant lethal genetic5

construct, which causes death in progeny when inherited. The released genetically engineered (‘GE’)6

insects compete for mates with wild individuals, resulting in population suppression. A previous7

study modelled the evolution of a hypothetical resistance to the lethal construct using a frequency-8

dependent population genetic and population dynamic approach. This found that proliferation of9

resistance is possible but can be diluted by the introgression of susceptible alleles from the released10

homozygous-susceptible GE males. We develop this approach within a spatial context by modelling11

the spread of a lethal construct and resistance trait, and the effect on population control, in a two12

deme metapopulation, with GE release in one deme. Results show that spatial effects can drive an13

increased or decreased evolution of resistance in both the target and non-target demes, depending on14

the effectiveness and associated costs of the resistant trait, and on the rate of dispersal. A recurrent15

theme is the potential for the non-target deme to act as a source of resistant or susceptible alleles16

for the target deme through dispersal. This can in turn have a major impact on the effectiveness of17

insect population control.18

Keywords: Pest insects, self-limiting RIDL, Sterile insect technique (SIT), Mathematical modelling,19

Spatial dynamics20

1RIDL® is a registered trademark of Oxitec Limited, UK.21
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1. Introduction22

The control of insect pests is a major area of concern for both public health and agriculture,23

as these pests cause widespread harm and economic damage. Diseases such as malaria and dengue24

fever, transmitted by Anopheles and Aedes mosquitoes respectively, are particularly damaging, with25

the former being responsible for around 584,000 deaths in 2013 (World Health Organisation, 2014),26

whilst insect pests are responsible for a large proportion of the 18% annual crop production losses27

attributable to animal pests overall (Oerke, 2006).28

The sterile insect technique (SIT) is a method that has been used since the 1950s to control29

pest populations and involves releasing large numbers of mass reared insects into natural populations30

(Knipling, 1955). These insects, having been sterilised by irradiation, compete for mates with31

wild insects but do not produce any viable offspring, thus reducing the total number of offspring32

contributing to the next generation. If the number of insects released is large enough and released33

over a long enough period this can lead to local population suppression or elimination. The technique34

has been used to eradicate pests such as the screwworm fly Cochliomyia hominivorax in the USA35

and Mexico, and the Mediterranean fruit fly (‘Medfly’) Ceratitis capitata from various locations in36

the Americas (reviewed by Alphey et al. (2010)).37

A self-limiting genetic technology, referred to in published literature as RIDL® (Release of Insects38

carrying a Dominant Lethal), is a development of the sterile insect technique that involves the release39

of genetically engineered (‘GE’) insects homozygous for a dominant lethal genetic construct instead40

of being irradiated (Alphey, 2014; Thomas et al., 2000). These insects compete for mates with wild41

type insects and pass the construct onto their offspring, causing them to die before they fully mature42

(supplementary figure S1). The timing of death during insect development can be engineered in43

order to maximise population suppression. For example, early acting lethality is preferable for some44

agricultural pests such as Medfly where the larval stages cause the most damage (Schetelig et al.,45

2007). Late acting lethality on the other hand is used for insects, such as mosquitoes, that have46
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a density dependent mortality phase during their development; if the lethality acts after this phase,47

population suppression is maximised (Atkinson et al., 2007; Phuc et al., 2007).48

The efficiency of both the traditional sterile insect technique and its genetic variants are greatly49

increased if only males are released, as these individuals must then disperse and find wild-type50

females to mate with (Rendon et al., 2004). The separation of males and females can be achieved51

mechanically on a large enough scale for a limited number of species including screwworm and Aedes52

aegypti mosquitoes, and using classical genetics for Medfly, but is not 100% effective (Alphey et al.,53

2010). The need for male only release is particularly pertinent for insects such as mosquitoes where54

only females bite and transmit diseases.55

The evolution of resistance to both chemical insecticides and insecticidal (Bt toxin) crops is al-56

ready severely impeding population control efforts in a number of species (Nicholson, 2007; Tabash-57

nik et al., 2009) and has the potential to impact severely on the efficacy of the sterile insect58

technique. Behavioural resistance to conventional sterile insect technique has already been observed59

where selection favours wild-type females that alter their mating preferences to avoid lab reared60

males (McInnis et al., 1996). Although none has yet been detected in lab reared or sampled wild in-61

sect populations, there exists the distinct possibility that a genetic resistance to the lethal construct62

may emerge (Alphey et al., 2011; Gong et al., 2005).63

The emergence of resistance to an engineered lethal genetic construct could occur through64

selection for an existing allele that may be currently undetected due to low frequency, or through65

mutation in the genes affecting susceptibility to the construct (Alphey et al., 2011). In either case,66

a strong advantage would be conferred once the lethal construct was introduced into a population.67

However, unless it conferred some pleiotropic advantage, a resistance trait would not be under any68

positive selective pressure in the absence of the lethal construct, and so would likely only be present69

at a very low frequency in wild populations. For comparison, naturally occurring insect resistance to70

Bt toxins without widespread prior exposure has been found at frequencies of around 10−3 (Mahon71
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et al., 2007). As no resistance to a genetic lethal construct has been detected, we must consider its72

potential key properties. Hypothetical resistance could provide either complete or partial protection73

from the lethal effects. Such a resistance trait could impose costs on the insect, particularly if it74

acts by simply increasing metabolism to counter the lethal mechanism.75

In a previous study (Alphey et al., 2011) we used a combined population genetic and population76

dynamic model to investigate potential scenarios for the spread of both the lethal construct and a77

pre-existing hypothetical physiological resistance allele. The effect of varying the effectiveness and78

cost of resistance, along with the size of the GE release, on allele frequencies and population size79

was tested for varying levels of dominance in the resistance gene. We found that the evolution of80

the resistant allele frequency was driven by selection pressure from the lethal effects of the construct81

as expected. However, the spread of the resistance allele was limited by resistance dilution from the82

influx of susceptible alleles from the released modified males, which were homozygous susceptible at83

the resistant locus. This dilution effect could prevent the emergence of, or even reverse the spread84

of resistance and enable effective population suppression. The model looked at both bisex-lethal GE85

strains, where all progeny (of both sexes) are targeted by the construct, and female-lethal strains,86

which target females but leave males unaffected (Heinrich and Scott, 2000; Thomas et al., 2000).87

These were assumed to be fully dominant and 100% lethal to the target sex, as is usually the case88

with lab tested strains that are selected for further development (Ant et al., 2012; Fu et al., 2007;89

Gong et al., 2005; Jin et al., 2013; Phuc et al., 2007). The overall effectiveness of GE control was90

measured by simulating population size over time, as the number of individuals emerging in each91

generation is an effective indicator of economic or public health damage.92

That model (Alphey et al., 2011) took no account of the spatial distribution of the target and93

released populations. We know, however, that spatial structure has the potential to be a major94

factor determining the efficacy of GE-SIT and other genetic control methods. Yakob et al. (2008)95

used a network approach to model the effect of spatial population clustering on the efficacy of GE-96
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SIT control, finding that more highly clustered insect populations were easier to suppress. This was97

because once a local cluster was eliminated it could not easily be repopulated due to its isolation98

(Yakob et al., 2008). Another genetic insect control method, using a synthetic homing endonuclease99

gene (HEG), was modelled by North et al. (2013) in an individual based simulation, revealing that100

control could fail if mosquito resources, and therefore local mosquito populations, were too isolated.101

The size of release sites has also been found to impact upon the effectiveness of a genetic or102

radiation-based sterile insect technique control. Seirin Lee et al. (2013) modelled a barrier control103

method, whereby insects are released in order to halt the invasion of a wild-type wave, finding that104

the size of the optimal release region depended on the dispersal rate of the invading population.105

Here we explore the dynamics of a genetic lethal construct and a corresponding resistance allele106

in a spatial model. Specifically, we address the question of how a population targeted with the107

application of a treatment (GE release) interacts with a second non-target population, which is108

linked to the target population through dispersal. A simple two deme metapopulation model is109

sufficient for this investigation of how an asymmetrical interaction between target and non-target110

populations affects the evolution of resistance. The opposing forces of selection for, and dilution of,111

resistance highlighted in the original non-spatial model could play out in a different manner when112

space is taken into account. We hypothesize that gene flow of the GE construct into surrounding113

areas, outside the target population, and immigration of individuals from surrounding areas into the114

target population, could alter the frequency evolution of the resistance gene and consequently affect115

the efficacy of genetic control of the target population. We investigate the influence of resistance116

traits and dispersal rates on predicted outcomes for a bisex-lethal genetic system.117

2. Methods118

The model used in this study is based on that previously published (Alphey et al., 2011). It is119

a discrete-generation frequency dependent population genetic and population dynamic model, with120

random mating, no mutation, and a 1:1 sex ratio. The original model was of a closed homogeneous121
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population with no immigration or emigration. The underlying mathematical processes described in122

2.1 and 2.2 below are essentially the same as those in the original model, while the spatial dynamics123

described in 2.3 are new, extending the investigation to explore the effects of spatial heterogeneity.124

A summary of the parameters and variables used in this model can be found in table 1.125

2.1. Population genetics126

Within the insect population there are two genetic loci being modelled, the insertion or absence127

of the lethal construct, and the locus of resistance. The specific genotype of insects will affect their128

relative fitness and survival.129

The gene affecting the susceptibility of an individual to the lethal genetic construct is assumed to130

have a single autosomal locus. The two alternative alleles for this gene are resistant R (at frequency131

p in the current adult generation) and susceptible S (at frequency q = 1 − p in the current adult132

generation), meaning that there are three possible genotypes at this locus (SS, SR and RR). In all133

simulations presented here the initial frequency of the R allele in the population is p0 = 0.001, as134

this represents the very low frequency that might be expected of a recent mutation or a pre-existing135

allele that is not readily detectable (Alphey et al., 2011).136

The level of protection that a resistant genotype provides to an individual is governed by the137

parameter governing susceptibility to the lethal construct γi where i is the resistant/susceptible138

genotype. Susceptible homozygotes have no protection from the effects of the lethal construct139

(γSS = 1), while homozygote resistant individuals have reduced susceptibility to the construct140

(γRR < γSS). Resistance can be complete (γRR = 0), providing complete protection from the141

effects of the lethal construct, or incomplete (1 > γRR > 0) with different levels of dominance142

affecting the susceptibility of the heterozygote (SR) genotype. In this paper a number of different143

terms are used to describe the different types of potential resistance studied: dominant complete144

(γSR = γRR = 0), partially dominant complete (1 > γSR > 0, γRR = 0), co-dominant complete145

(γSR = 0.5, γRR = 0), and partially-dominant incomplete (1 > γSR > γRR > 0) (summarised in146

7



table 2).147

The resistant allele may or may not have associated fitness costs, depending on its mechanism,148

which are represented here by the fitness of genotype i (ψi) relative to the fitness of homozygous149

susceptible wild-type insects (ψSS = 1). In this study four different types of resistance were tested:150

no costs (ψSR = ψRR = 1), ‘minor costs’ (ψSR = 0.95, ψRR = 0.85), ‘fit resistance’ (ψSR = 0.9,151

ψRR = 0.7), and ‘costly resistance’ (ψSR = 0.2, ψRR = 0.1) (summarised in table 2). These152

parameter values were chosen to aid comparison with Alphey et al. (2011) where they were found153

to be effective for determining the effect of the magnitude of resistance costs.154

The lethal genetic construct itself also has a single autosomal locus with the assumption that155

there is no linkage between this and the locus controlling resistance to the construct. The two156

possible alleles at this locus are the dominant L (at frequency l in the current adult generation),157

where the construct has been inserted, and the wild-type w (at frequency 1− l in the current adult158

generation), where the construct is absent, giving three possible genotypes (ww, Lw and LL).159

Where the construct is present it imposes a relative fitness cost εk, where k indicates either the160

target or non-target sex. In this study a fully bisex-lethal construct is investigated so a maximum161

fitness penalty is always applied to both sexes (εk = 1). The relative fitness of genotype j (ww,162

Lw or LL) is given by:163

Ωj = (1− εk)ηj (1)

where ηj is the number of L allele copies present (0 = ww, 1 = Lw, 2 = LL). As the construct is164

bisex-lethal and dominant Ωww = 1 and ΩLw = ΩLL = 0. When susceptibility to the construct (γi)165

is included in the equation it acts as a scaling factor on the fitness (survival) penalty εk, while the166

cost of resistance (ψi) modifies the resulting fitness equation to give:167

Ωijk = ψi(1− εkγi)ηj (2)
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The three possible genotypes given by i (SS, SR and RR), the three by j (ww, Lw and LL)168

and the two sexes means that there are potentially a total of 18 genotypes used in this model. In169

practice because only a bisex-lethal construct is modelled, and we assume an equal sex ratio, there170

are essentially only 9 genotypes as the male and female genotypes always have equal frequencies.171

The genetic control being used on the wild insect population is modelled by the addition of adult172

males that are homozygous for both the susceptible allele and the lethal construct (SSLL) at a173

fixed ratio d to the total number of males in the wild population at that generation. While this174

proportional release policy may be difficult to implement in practice, it was included in the original175

model as it allowed the change in allele frequencies to be calculated independently of population176

size. In a spatial model where dispersal is dependent on population size this rationale is no longer177

strictly true, however, the assumption still serves to simplify the calculations involved in the model178

and allows direct comparison with previously published results. The addition of GE males occurs as179

the current generation in the wild population reaches maturity, prior to mating. Wild and released180

insects are assumed to mix homogeneously in the target population and random mating subsequently181

occurs between females and all male genotypes.182

The frequencies of each zygote genotype are calculated post-mating after which Eq. (2) is applied183

to calculate their relative fitness and survival. In this way the effects of both the lethal construct184

and the costs of resistance act during the larval stage of the insects’ life cycle. Those insects that185

survive then mature to become the adults of the next generation. The original non-spatial model186

used a simulation approach to calculate the changes in allele and genotype frequencies due to the187

large number of genotypes which would otherwise result in a complex system of difference equations188

that cannot be readily solved analytically. Adding a spatial element further complicates the model,189

so a simulation approach is even more essential. Simulations were performed in R (R Core Team,190

2016).191
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2.2. Population dynamics192

The insect population grows each generation at a rate determined by the basic reproductive193

rate, R0, which is the average number of offspring produced per adult pest insect in its lifetime (a194

single discrete generation). Where separate female population size is recorded, as it is here, and195

with an equal sex ratio this can be expressed as the number of female offspring produced per adult196

female. For the generic agricultural and public health pests (target species suitable for SIT) that are197

simulated in this model, an R0 value of 7.5 is used; a plausible R0 value for Aedes aegypti mosquitoes198

for example would be in the range 3 to 11 (Dye, 1984). In a density-independent population, with199

the assumption that half of the adults are female, growth is calculated by:200

Nt+1 = 2R0Ftσt (3)
201

Ft+1 = R0Ftσ
(F )
t (4)

where Nt is the adult pest population size at generation t relative to the initial population size202

(N0 = 1). 2R0 here is the average number of progeny (male and female) produced per adult203

female. σt and σ
(F )
t are the proportion of all offspring and of female offspring respectively, that204

survive to adulthood (calculated using the fitness values calculated from Eq. (2)). In a bisex-lethal205

model these values are the same as there are no differential survival rates between the sexes.206

All the simulations presented in this study feature density dependent population dynamics in207

order to represent a realistic field setting. This model adapts an equation from Bellows (1981):208

Ñt+1 = R0Ñte
−αÑt (5)

where Ñ is the absolute population size, α is the strength of the density dependence, and 1/α is209

related to the carrying capacity of the habitat. Because our model uses relative population size210

rather than the absolute, a substitution of variables is made where population sizes are measured211
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relative to their initial equilibrium value (Nt = Ñt/Ñ
∗ and Ft = F̃t/F̃

∗), so that (N0 = N∗ = 1212

and F0 = F ∗ = 0.5). The non-zero equilibrium for absolute population size from Eq. (5) is:213

Ñ∗ = log(R0)
α

(6)

which can be substituted into Eq. (5) giving:214

Ñt+1 = R0ÑtR
−Nt
0 (7)

As the density dependent term now uses the relative population size Nt it can now be applied215

to the density-independent Eqs. (3 and 4) to give the population growth used in this model:216

Nt+1 = 2R0FtR
−Nt
0 σt (8)

217

Ft+1 = R0FtR
−Nt
0 σ

(F )
t (9)

Density dependent mortality is assumed to act before the lethal construct and costs of resistance,218

so the relative survival terms (σ) are applied to the density dependence formula.219

2.3. Spatial modelling220

In order to explore spatial dynamics this model uses a two deme metapopulation structure with221

GE release in only one ‘target’ deme and dispersal between this and the other ‘non-target’ deme222

(supplementary figure S2). Both demes are of equal size and with an equal and constant rate of223

dispersal m in each direction (ie. m = 0.1 represents 10% of individuals migrating). The system is224

otherwise closed with no immigration or emigration beyond the two demes.225

Dispersal occurs after mating but before females have laid their eggs (and therefore before the226

larval phase density dependence and survival calculations). This means that although both sexes227

could disperse in reality, only female dispersal is calculated here as at this point only they can228

contribute to the next generation of insects. Conceptually, mated females may be thought of as229
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containers for fertilised eggs, which either transport those eggs/zygotes to another deme or remain230

in the deme where mating occurred. All 18 zygote genotype frequencies, along with the adult female231

population size, must be adjusted every generation to account for dispersal:232

Z
(T )
t+1 = (1−m)Z(T )

t F
(T )
t +mZ

(NT )
t F

(NT )
t (10)

233

Z
(NT )
t+1 = (1−m)Z(NT )

t F
(NT )
t +mZ

(T )
t F

(T )
t (11)

where Z is a matrix of genotype frequencies, (T ) indicates a variable belonging to the target deme,234

and (NT ) a variable belonging to the non-target deme. The resulting genotype frequencies are then235

rescaled so that Zt+1 sums to 1. The female population size in this previous generation must also236

be adjusted to take into account the migration of adult females:237

F̂
(T )
t = (1−m)F (T )

t +mF
(NT )
t (12)

238

F̂
(NT )
t = (1−m)F (NT )

t +mF
(T )
t (13)

After dispersal is complete the zygote genotype frequencies in each deme comprise the next239

generation and are adjusted by their individual survival rates. The (adult) population size of that240

next generation is then calculated, with the migration adjusted female population size (F̂t) from the241

previous generation, using Eqs. (8 and 9). In these equations Nt = 2F̂t (in the density dependence242

term) as density dependent larval mortality is a function of adult female numbers from the previous243

generation. This process simulates the eggs being laid, the larvae emerging, and their maturation244

to adulthood.245

When dispersal is removed from this model (m = 0) the target deme functions as a version of246

the original non-spatial model with bisex-lethal GE release, while the non-target deme functions as247

a version with no release of GE insects. In this way the spatial model was validated by confirming248

that results were consistent with results from the underlying non-spatial model. The insect life cycle249

simulated in this model is summarised in supplementary figure S3.250
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2.4. Simulations251

In all simulations the populations were assumed to be naive to the GE construct and did not252

contain any L alleles (l0 = 0). The initially present genotypes are in Hardy-Weinberg equilibrium253

(SSww = q2
0, SRww = 2p0q0, RRww = p2

0) while the other genotypes involving the L allele only254

arise after GE insects have been released and mate with wild females.255

To illustrate the range of complex dynamics that can arise in a spatially explicit model, a number256

of qualitatively and quantitatively different resistance costs and susceptibilities (summarised in 2.1)257

were chosen and run in different combinations. Also in order to simplify results a release ratio of258

d = 20, a realistic ratio that might be used in a real control programme, was used in most simulations259

except for in some early tests (Alphey et al., 2011). All simulations were run for the number of260

generations required for equilibrium values to be reached, or if this took a very long period of time,261

until the qualitative pattern of results became clear. As the primary purpose of this study was to262

investigate spatial dynamics, all simulations were run at three dispersal rates (m = 0.01, 0.05, 0.1)263

with additional rates being tested if this was insufficient to determine the effect of the parameter.264

Time series of both the L and R allele frequencies along with the relative population size N at every265

generation were recorded for both demes in every simulation run.266

In the first phase of simulation modelling a non-spatial versus spatial comparison was made using267

a strong partially dominant incomplete resistance trait (γSR = 0.2, γRR = 0.1) with no associated268

costs (ψSR = ψRR = 1). This initial spatial simulation was also run with a low (d = 1) and very high269

(d = 50) release ratio to determine whether this parameter was capable of producing qualitatively270

different or unexpected results. Following this, the same simulation (with d = 20) was run with each271

of the three costs of resistance detailed in 2.1 (minor costs, fit resistance and costly resistance).272

The role of various susceptibilities of resistance was then investigated under a variety of these cost273

regimes (see table 2 for resistance effects and costs).274

In all simulations, we consider an equilibrium to have been reached if a value, or the periodic limit275
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of an oscillating value, converges to within 5 decimal places. Furthermore, due to the deterministic276

nature of the model, using continuous state variables, the total fixation (or loss) of an allele is277

impossible and values instead asymptote at these points (referred to as near fixation).278

3. Results279

3.1. Spatial vs. non-spatial for a no-cost resistance280

In the original non-spatial model, a strong, partially dominant, incomplete resistant (R) allele281

with no fitness costs quickly spreads to reach an equilibrium of p ≈ 0.515 in 13 generations (figure282

1). This allows the lethal construct (L) allele to spread through the population, due to the increased283

survival of L-bearing offspring, and reach near fixation (l∗ ≈ 1.00) in 31 generations. The R allele284

is prevented from reaching fixation due to continuing dilution by the released SSLL males. The285

relative population size (N) initially falls rapidly from 1.00 to a low of 0.011 in three generations286

before recovering, at around the time that p increases above 0.5 (R is more common than S), to287

an equilibrium of N∗ ≈ 0.464 by generation 25. Therefore population suppression is still achieved,288

albeit to a lesser extent. With no resistance the population would be eliminated (N∗ ≈ 0 to 5 d.p.)289

in 10 generations.290

In the two deme spatial model, the system takes far more generations to reach equilibrium,291

(figure 2). For all values of the dispersal rate m tested (0.01, 0.05 and 0.1) the L allele does not292

reach fixation in either deme, but reaches a much higher equilibrium frequency in the target deme293

compared to the non-target deme. In the target deme l∗ is lower with higher values of m, whereas in294

the non-target deme it is higher with higher dispersal; the resultant effect is that the target and non-295

target equilibrium frequencies are closer together for higher values of m. This is due to higher rates296

of dispersal shifting more L alleles from the target to the non-target deme. Instead of increasing to297

an equilibrium in a sigmoidal curve, the L allele frequency with low dispersal (m = 0.01) increases298

to a local peak before falling gradually to equilibrium.299
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Strikingly, the R allele reaches a markedly higher equilibrium frequency in the non-target com-300

pared to the target deme. This is due to strong positive selection for the no-cost resistance, even301

with a low L allele frequency, combined with only weak dilution from the progeny of released SSLL302

males. This resistance dilution in the non-target deme will be even weaker with lower dispersal rates.303

As with the L allele, higher m values produce closer equilibria between the two demes, with the304

effect of increasing p in the target and decreasing p in the non-target deme. The rapid spread of305

resistance in the non-target deme causes it to act as a source of R alleles for the target deme; this306

effect increases with greater dispersal.307

Significant population suppression is most clearly observed in the target deme where, as in the308

non-spatial model, N initially drops very rapidly then climbs back to an equilibrium between 0.5309

and 0.75. Target population suppression is inferior to that of the non-spatial model (figure 1).310

This is partly due to the net migration of insects from the non-target deme, which retains a higher311

population size, but it is also due to the slightly higher frequency of resistance in the target deme312

(compared to figure 1). In contrast, the non-target deme shows little population suppression due to313

a relatively low influx of L alleles.314

With higher values of m the target N∗ is higher (inferior population suppression) but is lower in315

the non-target deme. For the target deme this is due to a combination of the lower L equilibrium,316

the higher R equilibrium, and a greater general loss of insects migrating to the non-target deme.317

Again, the two demes’ equilibria are closer in value at higher dispersal rates. Simulations conducted318

with alternative release ratios (d) produced no qualitatively novel results beyond those we have319

already described (Alphey et al., 2011) (Supplementary Material section 3.1 and figure S4).320

3.2. Adding costs of resistance321

Running the same simulations with minor costs of resistance results in very different patterns of322

equilibrium frequencies (figure 3) compared to the no-cost model. In contrast to the no-cost model323

(compare figures 2 and 3), the R equilibrium is higher in the target deme than in the non-target,324
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while all p∗ values are lower than in any of the no-cost simulations. The costs of resistance lower325

the selective pressure for the R allele by reducing the number of SR and RR individuals surviving to326

maturity, particularly in the non-target deme which has lower exposure to the L allele. Increasing m327

still results in deme equilibria being closer in value, due to greater mixing between the populations.328

However as the target p∗ is higher than in the non-target deme, increased dispersal now has the329

opposite effect on the equilibrium of each individual deme (increasing m reduces and increases p∗330

in the target and non-target demes respectively). The non-target deme now becomes a source of S331

alleles for the target deme. The L allele spreads in the target deme, and to a lower equilibrium with332

higher m as in the no-cost model. However L barely spreads in the non-target deme with any value333

of m because of the low number of resistant individuals. Due to the lower overall resistance spread,334

target population suppression is greater for all values of m compared to the no-cost model, and is335

again superior with a lower m. Equilibrium frequencies for non-target N are not markedly different336

from those in the no-cost model.337

Higher resistance costs result in a reduced spread of both the resistant allele and the lethal338

construct in both demes (Supplementary Material section 3.2 and figure S5 for intermediate cost339

‘fit resistance’). In simulations with costly resistance (figure 4) neither the R nor L alleles spread340

in either deme, while target population suppression is superior to that with any of the other costs341

of resistance tested. A new behaviour seen in this set of results, is that of the oscillations in the342

non-target N with m = 0.01, which are much larger than previously seen and do not converge,343

instead reaching a stable period 2 cycle (with limits 0.939 and 1.051 converging to 5 d.p.).344

We have shown a variety of outcomes that depend on the fitness costs of the resistant allele,345

which we have assumed throughout this section to be strong partially dominant and incomplete. If346

there are no fitness costs the R allele spreads through the non-target deme which becomes a source347

of R alleles and negatively affects the suppression of the target population (figure 2). Minor fitness348

costs prevent the R allele from spreading in the non-target deme, which acts as a source of S alleles349
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and thereby dilutes the resistance in the target deme (figure 3). Resistance is unable to spread in350

the target population anyway if its fitness costs are very high (figure 4). To explore the nature of351

these shifts in behaviour, we examine plots of equilibria (rather than time dynamics) against the full352

spectrum of fitness costs in resistant heterozygotes and in homozygotes.353

The R allele frequency p∗ in the non-target deme (figure 5) is much higher when there are very354

little or no fitness costs (as seen in the rear corner of all figure 5 panels). For most fitness cost355

combinations, the resistance goes extinct in the non-target deme (p∗ = 0), except where there356

are low or no fitness costs in SR heterozygotes (the right edge of all panels in figure 5). In this357

relatively small region of parameter space, the non-zero R allele frequency equilibria are slightly358

higher with higher rates of dispersal, while that region of parameter space itself is slightly larger.359

Only at, or very close to, zero costs does the R allele spread significantly in the non-target deme,360

with potentially detrimental effects on the pest control programme. Equilibrium plots of N∗ in the361

target deme (supplementary figure S6) show worse population suppression in regions where there362

are lower fitness costs of resistance, particularly in SR heterozygotes, with the worst degree of363

population control occurring where the R allele has no fitness costs. The impact of high resistance364

frequency in the non-target deme on the effectiveness of target population control is most clearly365

seen at higher dispersal rates due to the greater influx of R alleles from the non-target source.366

3.3. Altering the effectiveness of resistance in a no-cost model367

A dominant complete resistance with no associated costs (the strongest, most effective resistance368

possible) (figure 6) results in the L allele reaching near fixation in both demes for all values of m.369

The powerful resistance trait at higher frequencies reduces the selection against the L allele and370

allows it to spread to fixation. In the same manner as in the initial no-cost model (figure 2), the371

R allele equilibrium is higher in the non-target than in the target deme, and the deme equilibria372

are closer in value with a higher m. The non-target equilibria are also even higher than in figure373

2, due to the greater selection for the more effective resistance, while target deme equilibria are374
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very slightly lower. This latter result is most likely due to the reduced difference in population size375

between the two demes resulting in the target deme receiving a proportionately lower migratory376

influx of R alleles. The effect of m on population suppression is similar but the target deme N is377

higher overall due to the greater effectiveness of resistance.378

Increasing heterozygote resistance susceptibility (γSR = 0.4), while keeping homozygote suscep-379

tibility at 0, prevents the L allele reaching fixation in both demes for all m, although the l∗ values are380

still high (figure 7). Heterozygous resistance is no longer effective enough to counter the negative381

selection against the lethal construct, the spread of which is therefore limited. In this simulation382

it took very much longer to reach equilibria. This is a consequence of the weaker heterozygote383

resistance, as previously observed (Alphey et al., 2011). R allele equilibrium frequencies are higher384

in both demes (figure 7a) than they were with dominant complete resistance (figure 6a), with R385

nearing fixation in the non-target deme, particularly with a higher m. It is much more advantageous386

for an individual to have homozygous resistance, rather than heterozygosity, and therefore there is387

selection pressure for an increase in the R frequency even at high values of p. In the dominant388

complete model (figure 6) on the other hand, resistance is strong enough to provide good protection389

of the population from the genetic control even at lower R frequencies.390

With all previously tested parameter combinations, higher dispersal brings the L allele frequencies391

in the two demes closer to each other. Uniquely, in the present case, L allele equilibria for the two392

demes are no longer closer together at higher m (so there is more going on than simply better mixing393

between the two populations), and instead higher dispersal causes lower l∗ in both target and non-394

target demes. In this sense the effect of dispersal rate on the non-target deme l∗ has been reversed.395

Observing the L curve for m = 0.01 (figure 7b), we see that in the target deme l at first appears396

to be following earlier patterns (e.g. figure 2b) of declining towards a lower equilibrium point, but397

then the frequency suddenly starts increasing again from about the same time when the R allele in398

the non-target deme nears fixation. This suggests that the transient values of l in the target deme399
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are initially consistent with previous patterns. However, once resistance has spread sufficiently far400

in the non-target deme that most individuals are homozygous resistant (and suffer no effects from401

the lethal construct), the negative selection against the L allele in this deme is drastically reduced,402

allowing a large increase in its frequency. Due to migration this increase in both R and L alleles is403

also exported to the target deme. The difference between the p∗ values in the two demes is caused404

by a balance between the dispersal rate m and the relative population sizes of the two demes.405

Another qualitative difference in this set of simulations is that instead of rising to an equilibrium406

from the initial dip as seen previously, the target N (figure 7c) rises from this dip to a local peak407

before falling towards its equilibrium point. This change in the trajectory of N also appears to408

coincide with the rapid increase in L in this deme. The near fixation of resistance in the non-target409

deme drives an increase in the non-target l which, due to migration, in turn drives an increase in L410

alleles in the target deme. Because resistance is not fixed in that deme, this increases suppression411

of the target population. In this way the evolution of resistance in the non-target deme indirectly412

increases the effectiveness of population control in the target deme. Compared to the dominant413

complete model (figure 6), N∗ is lower for all values of m due to the above process and the overall414

lower effectiveness of resistance allowing greater population suppression. Further increasing the415

heterozygous susceptibility to achieve a co-dominant complete resistance (γSR = 0.5, γRR = 0)416

produces a more extreme pattern of results than seen in figure 7, even further away from those417

produced by the dominant complete model (figure 6) due to the lower effectiveness of heterozygous418

resistance.419

3.4. Altering the susceptibility of resistance in a model with resistance costs420

A dominant complete resistance with minor fitness costs produces a very distinct and unexpected421

pattern (figure 8). For m < 0.06, the R and L curves for both demes behave in a qualitatively422

similar manner to those in the original minor costs model with strong partially dominant incomplete423

resistance (figure 3). p∗ and l∗ in both demes are higher overall due to the more effective resistance424
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and therefore population suppression is inferior. However the curves for m ≥ 0.06 behave in a425

manner much more reminiscent of those for the no-cost model with dominant complete resistance426

(figure 6), with the non-target p∗ increasing above those of the target deme, and l∗ in both demes427

reaching fixation. For the R allele this p increase in the non-target deme coincides with a smaller428

increase in the target deme, while further increasing m still results in the equilibria in the two demes429

being closer in value.430

This pattern is due to an increase in the dispersal rate increasing the influx of L alleles to the431

non-target deme enough that the (frequency-dependent) benefits of resistance there outweigh the432

fitness costs. Passing this threshold results in rapid proliferation of resistance in this deme, for those433

values of m, lowering the average fitness penalty of the L allele to the point that fixation can occur.434

It should be noted that the curves at higher m values are smooth for the non-target deme but seem435

to plateau before increasing again to equilibrium in the target deme. This further implies that it is436

the spread of resistance in the non-target deme that is driving these changes, with dispersal causing437

a concurrent increase in the target p and l, to the point that the latter also reaches fixation. It has438

already been established that increasing the costs of resistance lowers the selection for the R allele439

and limits its spread. This increase in resistance costs (compared to figure 6) therefore also limits440

the potential for the non-target deme to experience this upwards shifting behaviour in the R and L441

allele frequencies.442

It is clear that target population suppression with the higher dispersal (m values) is inferior443

(higher N∗) compared with the lower m values, undoubtedly due to the higher levels of resistance444

that greater dispersal brings. This coincides with a lower non-target N∗ with the higher m values445

as consequence of net migration from the non-target to the target deme.446

An overall very similar pattern is seen when the heterozygote susceptibility is slightly increased447

to give a partially dominant complete resistance (γSR = 0.1, γRR = 0) with the same minor fitness448

costs (supplementary figure S7). The difference here however is that the upwards shift in the R and449
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L curves is no longer seen at m = 0.06 but is seen at m = 0.11. When resistance is less effective450

in heterozygotes, a higher dispersal rate is required to cause the critical influx of L alleles into the451

non-target deme required to initiate this upwards shift.452

Increasing heterozygote susceptibility even further to give a co-dominant complete resistance453

(γSR = 0.5, γRR = 0) results in resistance and introgression of L alleles only emerging in the non-454

target deme, and only with the lowest dispersal rate m = 0.01 (all other R and L curves remain at,455

or near, 0 frequency). In this case the dilution of resistance by the susceptible released GE insects456

is too strong for resistance to emerge, except in the non-target deme that has the lowest migratory457

influx of susceptibles. Large oscillations in the non-target N , reaching a stable limit cycle, with458

m = 0.01 are again observed here, as seen in the model with costly resistance (figure 4). This459

pattern is almost identically reproduced when the homozygote susceptibility is increased to give a460

weak partially dominant incomplete resistance (γSR = 0.5, γRR = 0.3), thereby highlighting the461

primary importance of heterozygote resistance effectiveness.462

4. Discussion463

We have shown by mathematical simulation that incorporating spatial effects into a frequency-464

dependent population model of resistance to an engineered dominant lethal genetic construct, in-465

troduces a number of interesting and often counter-intuitive dynamic results.466

We looked for (simulated) evidence of, and conditions for, dilution of resistance to the lethal467

construct in a population target for suppression, by susceptible insects from a nearby non-target pop-468

ulation. This was in anticipation of parallels with the dilution of resistance to engineered insecticidal469

(Bt) crops by susceptible insects from refuges of non-transgenic plants (Alphey et al., 2007; Tabash-470

nik et al., 2009). If overall selection for resistance is low enough then we did indeed observe that471

the non-target population acts as a source of susceptible alleles for the target population, thereby472

limiting the spread of resistance in this latter population. This effect arises from a combination of473

higher fitness costs and/or a low effectiveness of resistance. The dilution of resistance restricts the474
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adverse effect of such a resistant allele on the degree of control (suppression or local elimination)475

of the target population that may be achieved. However, whether this population control is more476

or less effective than in a non-spatial model, representing an isolated population, depends on the477

magnitude of migration from the relatively unsuppressed non-target population.478

Conversely, a key finding from our model is the potential for a high selective pressure for resistance479

to drive a very high equilibrium frequency of resistance in the non-target population, where resistance480

dilution from the homozygous susceptible males is limited. A critical strength of net positive selection481

can be achieved through a combination of low costs and a high effectiveness of resistance. In these482

cases the non-target population becomes a source of resistant alleles and increases the frequency483

of resistance in the target population also, particularly with higher dispersal rates between demes.484

This in turn reduces the effectiveness of population control.485

It is not simply the case that the resistant allele’s fitness properties assign the non-target deme486

irrevocably and unequivocally to be either a source of R alleles or a source of S alleles and thus seal487

the fate of a planned programme of genetic population control. Interesting dynamic behaviours can488

emerge from the interplay of genetic traits and spatial dynamics, with dispersal both into and out of489

the target population playing a role over time. For example, where (partially dominant) resistance490

is complete in homozygotes, but incomplete in heterozygotes, the dispersal of the genetic construct491

away from the release site, and low fitness costs of resistance, can allow a very high equilibrium492

frequency of resistance to emerge in the non-target population. As resistance reaches near fixation,493

a critical population protection threshold is crossed which drives a rapid increase in the frequency494

of the lethal construct in this deme. Migration then drives a rapid increase in the frequency of495

the lethal construct in the target population, which ultimately results in stronger suppression of the496

target population, a favourable outcome from a programme manager’s perspective. This process497

implies that spatial effects could make an insect population with a partially dominant and complete498

resistance relatively amenable to genetic control (as long as the non-target population is not also of499
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economic or public health importance).500

The dynamics observed in this spatial model could have different implications for the use of501

genetic control depending on the type of control being implemented. If the release strategy is static,502

meaning that it is only ever applied in a single target population, then many of the processes described503

in these results could come into play. For example, if a very effective resistance with low costs504

emerges, then this resistance could proliferate in the (non-target) populations in the surrounding area,505

and then indirectly decrease the efficacy of genetic control in the target population through migration.506

This process may not be detectable without detailed population genetic monitoring of resistance507

frequencies in both the target and the non-target populations. A rolling control programme, on508

the other hand, where modified insect releases are first applied to a target population before being509

extended to surrounding populations, raises additional questions. For instance, if a high frequency of510

resistance evolves in a non-target population, could this evolution be slowed or reversed by resistance511

dilution once genetic control is extended and applied directly to this population? Resistance in any512

of these scenarios could also be combated by switching to alternative engineered strains which are513

not affected by the field-evolved resistance (i.e. no cross-resistance).514

In a related concurrent study, Thompson (2015) used a constant-number release policy and ab-515

solute population sizes in a non-spatial model, finding qualitatively similar results to the proportional516

release model (Alphey et al., 2011). This constant release assumption, arguably closer to practical517

reality, merits further investigation in a spatial model. However with the insights provided by our518

model, the qualitative explanations for our findings are still expected to hold true (albeit at different519

values and thresholds). For example, no-cost, modestly effective resistance has a major advantage520

in the non-target deme against the lethal construct, which leaks in from the target deme, and has521

no selective disadvantage. Resistance therefore spreads extensively in the non-target deme, which522

then acts as a source of R alleles to the target deme. Very high-cost resistance on the other hand523

will go extinct in both demes. It is reasonable to anticipate that both of these insights would remain524
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true in a constant-release model, although how ‘modestly effective’, and how ‘high’ the costs of,525

resistance must be to fall within that region of outcome, would most likely be different under the526

two assumptions.527

We do not simulate dynamics after cessation of releases, where the only benefit of resistance528

would be against legacy L alleles. Unless the R allele is fixed (unlikely in the target deme, which was529

flooded with released susceptible insects), resistance with associated fitness costs should fade away,530

and at a faster rate with greater costs. The L allele should also die out, unless there is complete531

resistance remaining in the population. Experiments with the olive fruit fly Bactrocera oleae and532

diamondback moth Plutella xylostella, bearing female-lethal transgenic constructs, showed that the533

construct frequency fell by approximately 50% each generation (Harvey-Samuel et al., 2014). This534

is as expected due to the construct killing a half of its carriers, with female offspring dying but males535

surviving. The decrease in frequency could also potentially be faster if the construct had significant536

fitness costs in males. Transgenes at an initial frequency of 0.25 in populations of 200 insects went537

extinct in 11 generations or fewer, however the presence of a resistant allele would be expected to538

slow this decay. Given the sometimes non-intuitive nature of the spatial effects in our model, it is539

difficult to make predictions about the relative rates of allele extinction in the two demes.540

When judging the relative effectiveness of genetic control in these results it is important to541

consider what level of population suppression is actually required to meet the goals of the programme.542

In all our simulations, the target equilibrium population size is not as low as that which would be543

achieved if no resistance were present. However, population suppression might still be sufficient to544

limit damage from an agricultural crop pest below the threshold for economic harm. Similarly, for545

pests that act as vectors for disease, the population could potentially still be suppressed below the546

entomological threshold to sustain disease transmission. While the scenarios presented here that547

result in superior population suppression are more likely to meet these criteria, additional studies, that548

include the use of economic and epidemiological models, would be required for formal predictions549
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to be made.550

Stable oscillations in the population size of the non-target deme, with a low dispersal rate,551

were observed in some simulations (costly partially dominant incomplete resistance, figure 4; or552

co-dominant complete resistance). This phenomenon is a consequence of the formula for density553

dependence used in this model creating a bifurcation surface for population size under certain condi-554

tions. Bifurcations of this kind are typically produced by changing the effective rate of reproductive555

increase and/or the strength of the density dependent feedback (Hassell et al., 1976). The popu-556

lation growth parameter (R0) is kept constant in this model, but the effective population growth557

rate is also influenced by the effective ratio of fertile to ‘genetically sterile’ males, which reduces558

reproduction by reducing the fraction of matings that are successful. That fraction is modified by the559

extent to which resistance protects individuals from inherited lethal genes. The survival advantage560

and the associated fitness penalty (particularly if very costly) of a resistant allele, thus have the561

potential to alter the strength of the density dependent feedback, especially in the non-target deme562

which has a higher population size. Dispersal also has the potential to produce complex dynamics,563

although such effects depend on the model construct (Dey et al., 2014; Sinha and Parthasarathy,564

1994); the Bellows model has been shown to exhibit periodic dynamics under emigration (Agarwal565

and Sinha, 2005). Additional study of the specific mathematical processes involved (i.e. stability566

analysis) would be needed to shed further light on this topic and whether it is of mathematical567

and/or ecological significance.568

We have not explicitly presented simulations for a few alternative combinations of homozygous569

and heterozygous resistance effectiveness (e.g. recessive complete resistance, γSR = 1, γRR = 0).570

However, it is clear that the parameter combinations used in this study are sufficient for determining571

the general impact of the effectiveness of resistance and the relative importance of homozygous vs.572

heterozygous effectiveness. The effectiveness of heterozygous resistance is the major driver behind573

the observed dynamics, in accordance with our previous non-spatial findings (Alphey et al., 2011).574
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In some circumstances the homozygous effectiveness has been shown also to play an important role575

(figure 7).576

The type of genetic construct investigated here (bisex, late acting lethality) is applicable to GE577

strains such as OX513A Aedes aegypti, which targets the main mosquito vector of dengue fever578

(Phuc et al., 2007), but could be altered in further studies to tailor results for alternative strains579

and target species. Our non-spatial model (Alphey et al., 2011) found qualitatively similar results580

from simulations with bisex and female-specific lethality, although this might not necessarily be the581

case in a spatial model.582

The point in the insect life cycle at which dispersal predominantly occurs could differ in some583

species. If dispersal were modelled to occur before mating instead, there could be a large influx of584

released GE males into the non-target population also. However the assumption in our model, of585

limited dispersal occurring after mating, is applicable to a number of key target insect species. For586

example, diamondback moths mate at dusk on the day they emerge (Talekar and Shelton, 1993).587

The vast majority of males and females only make short trivial flights, remaining on their natal crops,588

although a small proportion (< 1%) travel further and long-distance seasonal migrations have been589

observed (Furlong et al., 2013). For Aedes aegypti mosquitoes, closely adjoining neighbourhoods590

would be part of a single population (requiring an area-wide release programme across that whole591

district), but male mosquitoes do not disperse across open spaces, or travel far at all, unless necessary592

to find resources such as food and mates (Harrington et al., 2005; Hemme et al., 2010; Trpis et al.,593

1995). In defining the landscape scale, and planning the releases, we may therefore reasonably594

assume that two distinct populations are connected by only a small fraction of adults at the high595

end of the dispersal scale distribution.596

The use of continuous state variables in our deterministic model, means that complete fixation or597

loss of an allele cannot occur mathematically. Extending this model to include stochastic dynamics598

would therefore be a useful development and might reveal any important differences. For example, if599
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the initial suppression of a population is good enough, potentially the population could be eliminated600

though stochastic effects before resistance emerges and limits the effectiveness of control. Similarly,601

at very low frequencies the resistant (R) or susceptible (S) alleles, or the wild type (w) absence602

of transgene at the locus of the lethal construct, could be lost from the population, while the603

relevant corresponding allele would reach fixation. In a spatial model, an allele would have to be604

lost, or a population would have to be eradicated, from both demes in order to disappear entirely,605

as migration will quickly reintroduce alleles and individuals. Stochasticity could also have a major606

impact on dynamics where critical thresholds exist that can drive alternative outcomes.607

We assume a single resistant gene in the population, with constant trait values for the effec-608

tiveness of resistance and its fitness costs. A further interesting study could start with a high609

cost and relatively ineffective resistance, and explore the potential evolution of fitness modifiers by610

modelling a number of resistant alleles with different values, and allowing mutation between types.611

This could model the time dynamics of evolutionary change in the resistant allele simultaneously612

with the population dynamics of the genetic control method. This might be done, for example, by613

adapting evolutionary ecology methods that apply Price’s equation to model evolutionary change in614

a pathogen population coupled with epidemiological dynamics (Day and Gandon, 2006).615

Further development of this model could focus on varying the spatial population structure and616

patterns of dispersal. In reality a target population may be surrounded by a larger non-target617

population or group of populations, a scenario that could be simulated by simply increasing the N0618

of the non-target deme (or by expanding to a network model). The study of source/sink population619

dynamics, or a directional bias in migration, between the two demes could also prove fruitful and620

would increase the relevance of this model for a wider variety of ecological settings. Furthermore,621

the flight potential of wild type and transgenic insects can differ (Bargielowski et al., 2012), a622

scenario that could be modelled by using different dispersal rates for these two groups of genotypes623

when calculating migration between the demes. Rather than a constant proportion of a population624
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dispersing to another deme, the departure of insects could be density dependent. This is a promising625

area for further study, as there are a large number of additional factors that could have a significant626

effect on the spatial evolution of resistance.627

Pest insects are notorious for developing resistance, physiological or behavioural, to diverse628

forms of pest management. Genetics-based methods, like any other effective control, impose strong629

selection pressure in favour of any allele that confers resistance to the control mechanism. The630

built-in resistance dilution (through releasing susceptible males) may lessen the risk somewhat, by631

presenting an evolutionary barrier that weak unfit resistant alleles are unable to surpass. However, it632

is still likely that the self-limiting genetic strategy modelled here would be implemented as part of an633

integrated pest management or integrated vector control programme. Deployment of multiple pest634

management tools with independent modes of action, for example engineered male releases with635

biopesticides such as Bti, serves to slow the evolution of resistance to any one of the components.636

In conclusion, we have highlighted the importance of spatial effects in the evolution of resistance637

to a self-limiting genetic insect control method based on the sterile insect technique. Depending638

on the nature of the resistance and the rate of dispersal, spatial dynamics can drive an increased or639

decreased evolution of resistance in both the target and non-target population, compared with that640

predicted for otherwise identical resistance in an isolated target pest population. This evolution could641

have a significant impact, positive or negative, on the effectiveness of genetic population suppres-642

sion, through a variety of interacting population genetic and population dynamic processes. These643

considerations could influence priorities for research and development, for example, which species to644

prioritise for product development, and how much effort to devote to measuring dispersal behaviour645

in field settings. Our findings also have practical implications for field trials and implementation646

programmes. For example, the number and placement of traps in and outside of the focal area for647

entomological surveillance, and knowledge of how changes in nearby populations (e.g. the stability648

of population dynamics in the field, or performance of wild-caught insects in laboratory tests for649
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resistance) might presage evolutionary effects in the population that has been targeted for control.650

Spatial interactions between a target population and insects in a non-target area can have a range651

of possible outcomes, from providing extra dilution to further slow or even prevent the spread of652

resistance in the target population, thus improving the efficacy of the control programme, to at the653

other extreme exacerbating the evolution of resistance.654
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Figure 1: Non-spatial model - Evolution of the R allele frequency (a), the L allele frequency (b), and the change

in the relative population size over time (c). The model has a release ratio of d = 20, and a strong partially dominant

incomplete resistance (γSR = 0.2, γRR = 0.1) with no associated costs (ψSR = ψRR = 1). The spread of resistance

leads to fixation of the lethal construct, and reduces the effectiveness of population control.
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Figure 2: Spatial model, no-cost resistance - Evolution of the R allele frequency (a), the L allele frequency (b),

and the change in the relative population size over time (c). The model is spatial, with release ratio d = 20, and a

strong partially dominant incomplete resistance (γSR = 0.2, γRR = 0.1) with no associated costs (ψSR = ψRR = 1).

Dashed lines indicate the target deme, solid lines indicate the non-target deme, and the line colours indicate the

simulated dispersal rate (see legend). 2000 of the 3000 simulated generations are shown. The non-target deme

acts as a source of R alleles, which in turn reduces the effectiveness of control in the target deme. Higher dispersal

increases the magnitude of this impact.
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Figure 3: Minor costs of resistance - Evolution of the R allele frequency (a), the L allele frequency (b), and the

change in the relative population size over time (c). The model is spatial, with release ratio d = 20, and a strong

partially dominant incomplete resistance (γSR = 0.2, γRR = 0.1) with minor costs (ψSR = 0.95, ψRR = 0.85).

Dashed lines indicate the target deme, solid lines indicate the non-target deme, and the line colours indicate the

simulated dispersal rate (see legend). The non-target deme acts as a source of S alleles, thereby enhancing the

effectiveness of target population control.
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Figure 4: Greater costs of resistance - Evolution of the R allele frequency (a), the L allele frequency (b), and

the change in the relative population size over time (c). The model is spatial, with release ratio d = 20, a strong

partially dominant incomplete resistance (γSR = 0.2, γRR = 0.1), and costly resistance (ψSR = 0.2, ψRR = 0.1).

Dashed lines indicate the target deme, solid lines indicate the non-target deme, and the line colours indicate the

simulated dispersal rate (see legend). Note the longer time scale (2000 generations) than shown in earlier figures.

The high-cost resistance goes extinct in both demes; control of the target population is only tempered by immigration

from the non-target deme.
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Figure 5: The effect of ψSR and ψRR on p∗ (the equilibrium R allele frequency) in the non-target deme. The model

is spatial, with release ratio d = 20, and a strong partially dominant incomplete resistance (γSR = 0.2, γRR = 0.1).

Dispersal rates m = 0.01 (a), m = 0.05 (b) and m = 0.1 (c) are used. Only points where ψSR ≥ ψRR (so that

heterozygote resistance is always less costly than homozygote resistance) are shown. The threshold increase in p∗

can clearly be seen at high ψSR and ψRR values (low costs of resistance).
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Figure 6: Dominant, complete, no-cost resistance - Evolution of the R allele frequency (a), the L allele frequency

(b), and the change in the relative population size over time (c). The model is spatial, with release ratio d = 20, and

a dominant complete resistance (γSR = γRR = 0) with no associated costs (ψSR = ψRR = 1). Dashed lines indicate

the target deme, solid lines indicate the non-target deme, and the line colours indicate the simulated dispersal rate

(see legend). 2000 of the 3000 simulated generations are shown. The highly effective resistance spreads and allows

the lethal construct to reach fixation in both demes. Even in this worst-case scenario, some suppression of the target

population is observed.
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Figure 7: Less dominant, complete, no-cost resistance - Evolution of the R allele frequency (a), the L allele

frequency (b), and the change in the relative population size over time (c). The model is spatial, with release

ratio d = 20, and a partially dominant complete resistance (γSR = 0.4, γRR = 0) with no associated costs

(ψSR = ψRR = 1). Dashed lines indicate the target deme, solid lines indicate the non-target deme, and the line

colours indicate the simulated dispersal rate (see legend). Note the longer time scale (20000 generations) than that

shown in earlier figures. Only 7500 generations are shown for c to highlight the local peak in the target population

size. The near fixation of resistance in the non-target deme drives an increase in the frequency of the lethal construct

in that deme. Through migration, this increases the L allele frequency in the target deme also, which ultimately

increases the effectiveness of target population control.
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Figure 8: Introducing minor costs of dominant, complete resistance - Evolution of the R allele frequency

(a), the L allele frequency (b), and the change in the relative population size over time (c). The model is spatial,

with release ratio d = 20, and a dominant complete resistance (γSR = γRR = 0) with minor costs (ψSR = 0.95,

ψRR = 0.85). Dashed lines indicate the target deme, solid lines indicate the non-target deme, and the line colours

indicate the simulated dispersal rate (see legend). Greater influx of L alleles through dispersal into the non-target

deme selects for a large increase in the frequency of resistance. This causes the non-target deme to become a source

of R alleles for the target deme, which decreases the effectiveness of target population suppression.
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Table 1: Parameters and variables used in the mathematical model

Symbol Parameter/Variable Description Constraints/Values

p Frequency of resistant R allele in current adult generation 0 ≤ p ≤ 1

q Frequency of susceptible S allele 0 ≤ q ≤ 1, p+ q = 1

p0 Initial R allele frequency 0.001

p∗ Equilibrium R allele frequency

l Frequency of the (GE) lethal genetic construct L 0 ≤ l ≤ 1

i Genotype at S/R locus SS, SR or RR

j
Genotype at L/w locus (w is the wild-type absence of the

lethal construct)
LL, Lw or ww

ψi Relative fitness of larvae of genotype i (costs of resistance) 0 ≤ ψRR ≤ ψSR ≤ ψSS = 1

εk Fitness penalty of lethal construct (to both sexes) εk = 1

γi
Susceptibility to the lethal construct (scaling factor applied to

fitness penalty ε)

0 ≤ γRR ≤ γSR ≤ γSS = 1,

γRR 6= γSS

ηj Number of copies of the lethal construct
0 for ww, 1 for Lw,

or 2 for LL

Ωijk Relative fitness of larvae of genotype i, j, k 0 ≤ Ωijk ≤ 1

d
Release ratio of GE males to the total number of males in the

wild population at that generation
1, 20, or 50

R0
Average number of female progeny produced per adult female in

its lifetime (a single generation)
7.5

Nt

Population size of mature adults at generation t relative to the

initial population size
N0 = 1

Ft Relative population size of mature females at generation t F0 = 0.5

F̂t Migration adjusted female population size

σt Simulated proportion of all offspring that survive to maturity

m
Dispersal rate between demes (the proportion of the resident

population emigrating)
0 ≤ m ≤ 1

Zt Matrix of zygote genotype frequencies in generation t
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Table 2: Designated parameter values for the resistance trait. γSS = ψSS = 1 in all simulations. Relative fitnesses

for each combination of parameter values by genotype are detailed in supplementary table S1.

Parameter designation Constraints/Values

dominant complete γSR = γRR = 0

partially dominant complete 1 > γSR > 0, γRR = 0

co-dominant complete γSR = 0.5, γRR = 0

partially dominant incomplete 1 > γSR > γRR > 0

no costs ψSR = ψRR = 1

minor costs ψSR = 0.95, ψRR = 0.85

fit resistance ψSR = 0.9, ψRR = 0.7

costly resistance ψSR = 0.2, ψRR = 0.1
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