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a b s t r a c t 

The mechanisms and properties of synchronization of oscillating ecological populations attract attention 

because it is a fairly common phenomenon and because spatial synchrony may elevate a risk of extinc- 

tion and may lead to other environmental impacts. Conditions for stable synchronization in a system of 

linearly coupled predator-prey oscillators have been considered in the past. However, the spatial disper- 

sal coupling may be relatively weak and may not necessarily lead to a stable, complete synchrony. If the 

coupling between oscillators is too weak to induce a stable synchrony, oscillators may be engaged into 

intermittent synchrony, when episodes of synchronized dynamics are interspersed with the episodes of 

desynchronized dynamics. In the present study we consider the temporal patterning of this kind of in- 

termittent synchronized dynamics in a system of two dispersal-coupled Rosenzweig-MacArthur predator- 

prey oscillators. We consider the properties of the distributions of durations of desynchronized intervals 

and their dependence on the model parameters. We show that the temporal patterning of synchronous 

dynamics (an ecological network phenomenon) may depend on the properties of individual predator- 

prey patch (individual oscillator) and may vary independently of the strength of dispersal. We also show 

that if the dynamics of predator is slow relative to the dynamics of the prey (a situation that may pro- 

mote brief but large outbreaks), dispersal-coupled predator-prey oscillating populations exhibit numerous 

short desynchronizations (as opposed to few long desynchronizations) and may require weaker dispersal 

in order to reach strong synchrony. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Synchronization of dynamics of spatially separated populations

ppears to be a very general phenomenon (see, e.g., Liebhold et al.,

004 for a review). The mechanisms and properties of synchro-

ized population dynamics attract attention not only because it

s a fairly common phenomenon, but also because spatial syn-

hrony may elevate a risk of extinction ( Heino et al., 1997 ;

arn et al., 20 0 0 ; Johst and Drechsler, 20 03 ) and may lead to

ther environmental impacts (e.g., a severe impact of pest out-

reaks ( Liebhold et al., 2012 ; Petrovskii et al., 2014 )). 

One of the major mechanisms of the spatial synchrony is a dis-

ersal between populations (reviewed in Liebhold et al., 2004 ).

patial synchrony due to dispersal is prominent in the population
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ith substantial cyclic fluctuations of populations (due to nonlin-

arity of interactions between species; Vasseur and Fox, 2009 ).

hus, the dispersal-induced spatial synchrony was considered

n mathematical modeling as coupled oscillators. In particular,

oldwyn and Hastings (20 08 , 20 09 ) provided detailed mathe-

atical analysis of how dispersal can induce synchronization of

redator-prey communities, including the consideration of the im-

act of spatial inhomogeneity. These findings fit very well with the

eneral mathematical view of synchronization of oscillators (e.g.,

ikovsky et al., 2001 ). Indeed, the coupling between predator-prey

scillators due to animal migration would correspond to a linear

issipative coupling, very-well known to have synchronizing effect.

These and many other studies of the synchrony in mathe-

atical models are primarily focused on the stable synchronized

tate and its associated properties. Generally speaking, stable syn-

hrony requires relatively large coupling between the oscillators.

et, the dispersal between populations appears to be relatively

eak ( Kot et al., 1996 ). Thus, the dispersal may not necessarily lead

o a stable synchrony. If the coupling between oscillators is too

https://doi.org/10.1016/j.jtbi.2020.110159
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weak to induce a stable synchrony, oscillators may be engaged into

intermittent synchrony, when episodes of synchronized dynamics

are interspersed with the episodes of nonsynchronized dynamics

(see, e.g., Pikovsky et al., 2001 , for a description of transitions to

synchronization scenarios). 

This leads to the question of what kind of dynamics the weak

dispersal can induce in the predator-prey systems. The same mod-

erate level of synchrony may be achieved with two markedly dif-

ferent types of dynamics: many short desynchronized episodes or

few long desynchronized episodes (as well as a spectrum of possi-

bilities in between these two extremes). Thus, the objective of this

study is to investigate the temporal patterning of the intermittent

synchrony in the predator-prey oscillators coupled via weak dis-

persal. 

Similar kind of questions have been studied in other types of

biological oscillators (e.g., Park and Rubchinsky, 2012 ; Ahn and

Rubchinsky, 2013 , 2017 ; Ahn et al., 2014a , b ). We take the model

analysis and data analysis techniques used in those studies and

apply them to the dispersal-coupled predator-prey oscillators to

investigate how the properties of predator-prey interactions af-

fect the temporal patterning of intermittent synchronization in this

ecological system. 

2. Methods 

2.1. Model 

To consider interactions between two spatially distinct oscil-

lating predator-prey systems we use the Rosenzweig-MacArthur

model in two patches with linear difference coupling. We follow

the modeling framework of Goldwyn and Hastings (20 08 , 20 09 )

as these studies provide a mathematically detailed analysis of how

the dispersal in heterogeneous predator-prey systems can affect

synchronous dynamics (however, unlike those studies we are con-

sidering the weak coupling, resulting in partially synchronized dy-

namics). This model is relatively simple for mathematical and com-

putational analysis, yet it captures complex synchronization phe-

nomena. We will briefly describe the model here. 

The populations for prey and predators are described by the

variables V i and P i where i ∈ {1, 2} is the patch. The dynamics of

V i and P i is given by: 

d V i 

dt 
= r i V i 

(
1 − V i 

K i 

)
− c i a i P i V i 

b i + V i 

+ D 

V 
ji V j − D 

V 
i j V i (1)

d P i 
dt 

= 

a i P i V i 

b i + V i 

− m i P i + D 

P 
ji P j − D 

P 
i j P i (2)

i, j = 1 , 2 ; i � = j 

The growth of the prey in the absence of predation follows the

logistic growth with the intrinsic rate r i and the carrying capacity

K i . Predation has a Holling Type II functional response with preda-

tion rate a i and half saturation coefficient b i . The loss of prey due

to predation is also proportional to c i ( c i > 1), the ratio of the loss

of prey to the gain in predators. The predator has a linear death

rate m i . Migration has a linear per capita rate. There is no immi-

gration or emigration out of the system. Coupling parameters D 

V 
i j 

and D 

V 
ji 

represent the prey migration from patch i to j and j to i ,

respectively ( D 

P 
i j 

and D 

P 
ji 

are analogous for predator migration). We

consider small values of coupling so that their individual predator-

prey oscillators are weakly coupled (in line with observations of

Kot et al., 1996 ). The heterogeneity is modeled via the differences

in parameters a i , b i , c i , r i , K i , m i in two patches. 

Following ( Goldwyn and Hastings, 2009 ) this model is

rescaled by letting the intrinsic parameters q = q and q =
1 2 
( 1 + σq ) q where q = a, b, c, r, K, m and the coupling parameters

 

V 
12 = D 

V and D 

V 
21 = (1 + σDV ) D 

V as well as D 

P 
12 = D 

P and D 

P 
21 =

(1 + σDP ) D 

P . Further rescaling involves 

 i = 

V i 

b 
, p i = 

(
ac 

rb 

)
P i , τ = at, α = b/K, η = m/a, 

ε = a/r, d v i j = D 

V 
i j /a, d p 

i j 
= D 

P 
i j /a. (3)

This results in the following system of four ordinary differential

quations ( Goldwyn and Hastings, 2009 ): 

d v 1 
dτ

= 

1 

ε 

(
v 1 ( 1 − αv 1 ) − p 1 v 1 

1 + v 1 

)
+ d v ( ( 1 + σdv ) v 2 − v 1 ) (4)

d v 2 
dτ

= 

1 

ε 
( ( 1 + σr ) v 2 ( 1 − ( 1 − σk ) αv 2 ) − ( 1 + σa + σc ) (
1 − σb 

1 + v 2 

)
p 2 v 2 

1 + v 2 

)
+ d v ( v 1 − ( 1 + σdv ) v 2 ) (5)

d p 1 
dτ

= 

p 1 v 1 
1 + v 1 

− ηp 1 + d p 
((

1 + σdp 

)
p 2 − p 1 

)
(6)

d p 2 
dτ

= ( 1 + σa ) 

(
1 − σb 

1 + v 2 

)
p 2 v 2 

1 + v 2 
− ( 1 + σm 

) ηp 2 

+ d p 
(

p 1 −
(
1 + σdp 

)
p 2 

)
. (7)

We consider the oscillatory intrinsic dynamics, which occurs

hen α < 1 and η < 

1 −α
1+ α ( Hastings, 1997 ). We assume that the

oupling strength d v = d p = d and σa = σb = σc = σr = σK = σm 

=
dv = σdv = σ where σ > 0 and d > 0. When σ > 0, two uncou-

led patches will have different frequencies. We consider the dy-

amics of coupled two predator-prey oscillators as we vary oscil-

ators’ parameters ɛ , α, η, and the coupling strength d . Numerical

imulations of the model were performed in XPP software package

 Ermentrout, 2002 ) using adaptive-step fourth order Runge-Kutta

ethod for 20 units of time with 0.0 0 0 01 step size. 

.2. Analysis of the temporal patterns of synchrony 

The objective of this study is to explore the temporal pattern-

ng of synchronized dynamics. Roughly speaking, the same moder-

te synchronization level may be achieved with many short desyn-

hronizations or few long desynchronizations (or different possi-

ilities between these two extremes) and the goal is to discrimi-

ate between these possibilities. We have recently developed time-

eries analysis techniques to characterize temporal patterning of

ynchronous dynamics ( Ahn et al., 2011 ; Rubchinsky et al., 2014 )

nd applied them to several biological oscillators (mostly neural

scillators, e.g. Park et al., 2010 ; Ahn and Rubchinsky, 2013 , 2017 ;

hn et al., 2014a , b ; Ratnadurai-Giridharan et al., 2016 ). The data

nalysis employed here follows these works very closely and is

ummarized below. 

While there are multiple ways to analyze synchronization phe-

omena, we will use phase-based analysis. Phase synchroniza-

ion is a common phenomenon in weakly coupled oscillators

 Pikovsky et al., 2001 ). The phase synchronization has been con-

idered in ecological dynamics with model and real data (e.g.,

lasius et al., 1999 ) as well as in the studies of neural dynamics

see references above). For an oscillatory activity, a phase of the

 th prey-predator system is reconstructed here by computing 

 i ( t ) = arctan 

(
v i ( t ) − ˆ v i 
p i ( t ) − ˆ p i 

)
(8)

ith atan2-type function to reconstruct angular coordinate,

( ̂ v i , ˆ p i ) is a middle point of oscillations in the ( v i , p i )-plane. Then

e consider an average synchronization strength index to mea-
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Fig. 1. The effect of ɛ (the ratio of the predation rate to the intrinsic prey growth rate). (A) Mode value of the durations of desynchronization events (the main graph) and the 

corresponding probability to observe the mode value p mode (the insert). The high (close to one) value of probability to oberve a mode indicates that the desynchronizations 

of corresponding duration are strongly prevalent. (B) Synchronization strength index γ . (C) The mean frequency of oscillations in coupled predator-prey oscillators. The other 

parameters are α = 0 . 34 , η = 0 . 32 , d = 0 . 03 , ratio σ = 0 . 19 . 
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ure the strength of the phase locking between two signals (e.g.,

ikovsky et al., 2001 ; Hurtado et al., 2004 ): 

= 

∥∥∥ 1 

N 

∑ N 

j=1 
e i 	ϕ ( t j ) 

∥∥∥2 

(9) 

here 	ϕ ( t j ) = ϕ 1 ( t j ) − ϕ 2 ( t j ) is the phase difference, the t j are

he sampling points, N is the number of data points to be con-

idered, and ‖ · ‖ is the absolute value of a complex number. This

hase synchronization index γ varies from 0 (lack of synchrony) to

 (perfect synchrony). It provides average value of phase-locking.

here may be cycles of oscillations, when phase difference is close

o the average value of the phase difference (phase-locked, syn-

hronized state) and when it is not close to it (desynchronized

tate). 

To study the fine temporal structure of the dynamics of syn-

hronization, we construct a sequence of phase lags between sig-

als. Whenever ϕ1 crossed the zero from negative to positive val-

es, we recorded the value of ϕ2 , generating a set of consecutive

hase values { φi } , i = 1 , . . . , M. If the value of φi differs from the

verage value of φi by less than π /2 then the oscillations are con-

idered to be in a synchronized state, otherwise they are in the

esynchronized state. The choice of π /2 value for the threshold

ollows earlier applications of these method (see references above).

e used the Kolmogorov-Smirnov test to detect non-uniform dis-

ribution of { φi } M 

i =1 
with the significance level of 0.05 to include

t in the further analyses (the results were not qualitatively af-

ected by this level). The duration of desynchronizations is defined

s the number of cycles of oscillations that the system spends in

he desynchronized state. Note that synchronized state here is the

ne with near constant (but not necessarily zero) phase lag (which

s in line with observations of non-zero lag population synchrony,

.g., Martin et al., 2017 ). 

We characterize the temporal patterning of intermittent syn-

hronization by considering the distribution of desynchronization

urations (measured in the cycles of oscillations, thus duration is

 discrete variable, as described above). In particular, we consider

he mode of this distribution. For example, mode = 1 indicates that

ost common desynchronization duration is very short. We also

onsider p mode –the probability to observe the duration, which cor-

esponds to the mode (i.e. the chance to observe the most com-

on duration). There is a reason for this approach: if the mode of

he desynchronization duration is small, but long desynchroniza-

ions are still fairly frequent, then the dynamics is not necessarily

ominated by short desynchronizations overall. However, if p mode 

s relatively large, this guarantees that all other desynchronization

urations are rare. 
. Results 

.1. The impact of ɛ (the ratio of the predation rate to the intrinsic 

rey growth rate) on the temporal patterning of synchronization 

We consider here how ɛ affects the durations of desynchroniza-

ion events. Parameter ɛ is a ratio of predation rate to the intrinsic

ate of the prey growth. In the limit as ɛ goes to zero, the system

ecomes a relaxation oscillator. As the value of ɛ increase, the fine

emporal structure of synchronization changes when ɛ is about 0.1

s evident by the changes of the mode of the distribution of desyn-

hronization durations ( Fig. 1 A). Smaller values of ɛ promote short

esynchronization episodes that last for only one cycle of oscilla-

ions. The increase in ɛ leads to the increase of the mode of the

istribution of desynchronization durations. 

There is also an effect on the synchrony strength γ ( Fig. 1 B).

ncreasing ɛ leads to a modest decrease in the synchrony strength

. The frequency of oscillations is also affected by ɛ although quite

eakly ( Fig. 1 C). This means that as ɛ decreases, the mean desyn-

hronization duration is short not only if measured in relative units

cycles of oscillations), but also in the absolute units of time. 

Note that the probability of the dominant duration of desyn-

hronization events p mode (the insert in Fig. 1 A) is always higher

han 0.5. Thus, more than the half of all desynchronizations are

aptured by the mode (1 or 2 cycles here) and mode of the distri-

ution is really representative of the dynamics in this situation. 

.2. The impact of η (the ratio of the predator death rate to 

redation rate) on the temporal patterning of synchronization 

We consider here how η affects the synchrony strength and the

urations of desynchronization events. Smaller predator death rate

and thus smaller η) increases the amount of time necessary for

he predator population to become sufficiently small so as to al-

ow for a prey outbreak, increasing the amount of time in the cy-

le with low prey population. As the value of η increase, the fine

emporal structure of synchronization changes as evident by the

hanges of the mode of the distribution of desynchronization du-

ations ( Fig. 2 A). Smaller values of η promote short desynchroniza-

ion episodes lasting for two cycles of oscillations. On the contrary,

he increase in η leads to the increase of the mode of the distribu-

ion of desynchronization durations to three and four cycles (that

s by a factor of two). 

As η changes, there is also an effect on the synchrony strength

( Fig. 2 B). Shorter desynchronizations correspond to the higher

ynchrony level. Fig. 2 C shows that the mean frequency is also al-

ost constant (minor increase). Thus, like for the variation of ɛ
ase considered above, the desynchronizations are short here not
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Fig. 2. The effect of η (the ratio of the predator death rate to predation rate). (A) Mode value of the durations of desynchronization events (the main graph) and the 

corresponding probability to observe the mode value p mode (the insert). (B) Synchronization strength index γ . (C) The mean frequency of oscillations in coupled predator- 

prey oscillators. The other parameters are ε = 0 . 09 , α = 0 . 47 , d = 0 . 05 , ratio σ = 0 . 11 . 

Fig. 3. The effect of α (the ratio of the predation functional response half-saturation to the prey carrying capacity). (A) Mode value of the durations of desynchronization 

events (the main graph) and the corresponding probability to observe the mode value p mode (the insert). (B) Synchronization strength index γ . (C) The mean frequency of 

oscillations in coupled predator-prey oscillators. The other parameters are ε = 0 . 09 , η = 0 . 27 , d = 0 . 05 , ratio σ = 0 . 11 . 
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only if measured in the number of cycles, but also measured in

absolute time units. And again, the probability of the dominant du-

ration of desynchronization events p mode (the insert in Fig. 2 A) is

mostly close to 1 and always higher than 0.5, indicating that the

mode captures the majority of desynchronizations. 

3.3. The impact of α (the ratio of the predation functional response 

half-saturation to the prey carrying capacity) on the temporal 

patterning of synchronization 

We consider now how α affects the synchrony strength and the

durations of desynchronization events. Decreasing α increases the

carrying capacity, thereby increasing both the magnitude of the

prey outbreak and the time between outbreaks. Smaller values of

α promote short desynchronization episodes lasting for two cycles

of oscillations. As α increases, the most frequent desynchroniza-

tion episodes are getting longer ( Fig. 3 A). As α changes, there is

also an effect on the synchrony strength γ in the range of smaller

α, which virtually disappears for larger α; frequency does not de-

pend on α in the considered range of the variation of this parame-

ter ( Fig. 3 B and C). Similar to what was observed above, the prob-

ability of the dominant duration of desynchronization events p mode 

(the insert in Fig. 3 A) is mostly close to 1 and always higher than

0.5, indicating that the mode captures majority of desynchroniza-

tions. 

3.4. Changing desynchronization durations independently of 

frequency and synchrony strength 

Earlier studies showed that one can change parameters of oscil-

lators in such a way that the distribution of desynchronization du-

ration is changed independently of the average synchrony strength
e.g., Ahn et al., 2011 ; Rubchinsky et al., 2014 ; Ahn and Rubchin-

ky, 2017 ). In the coupled ecological oscillators considered here,

hanges in the temporal patterning of synchronization can be inde-

endent of the synchronization strength too, as evidenced by the

esults presented above (although they may co-vary together as

ell). This evidence is somewhat limited, because in the ranges of

arameters studied, eventually changes in the synchrony strength

re followed by the changes in the synchrony patterns. Neverthe-

ess, when α is in the range of [0.49, 0.54] ( Fig. 3 ), both the syn-

hrony strength γ and the mean frequency of oscillators do not

ary much ( Fig. 3 B, C) while the mode of desynchronization dura-

ions changes substantially (from cycle 2 to cycle 4, Fig. 3 A). This

ind of situation is present to a lesser degree in Figs. 1 and 2 . The

oint, however, is that the same level of synchrony strength may

e supported either with relatively large number of fairly short

esynchronizations or a smaller number of long desynchroniza-

ions regardless of whether the durations of desynchronizations

re measured in cycles of oscillations or in absolute time units. 

.5. Dispersal-induced synchronization threshold for different 

emporal patterns of intermittent synchronization 

We measure the threshold value of the dispersal rate d to reach

trongly synchronized dynamics (dynamics without any desyn-

hronization events) between the dynamics of two patches in the

arameter regimes as in Fig. 1 (change ɛ ), Fig. 2 (change η), and

ig. 3 (change α). The parameters for each desynchronization du-

ation mode (measured in cycles of oscillations) at each setting

ere chosen as the smallest parameter to achieve the given mode

f the desynchronization durations. While one cannot directly vary

he duration of desynchronizations, we vary system parameters to

hange the mode of the desynchronization durations, which is re-
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Fig. 4. Threshold value of the dispersal rate d to reach dynamics without any desynchronization events for different lengths of cycles by changing (A) ɛ ( Fig. 1 ), (B) η ( Fig. 2 ), 

(C) α ( Fig. 3 ). (A) For Cycle 1 the value of ε = 0 . 08 , for Cycle 2 the value of ε = 0 . 10 . (B) For Cycle 2 the value of η = 0 . 27 , for Cycle 3 the value of η = 0 . 29 , for Cycle 4 the 

value of η = 0 . 30 . (C) For Cycle 2 the value of α = 0 . 47 , for Cycle 3 the value of α = 0 . 50 , for Cycle 4 the value of α = 0 . 54 . 
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ected in the horizontal axes in the Fig. 4 . For example, for the

ig. 4 A, the system achieves Cycle 1 when 0.08 ≤ ɛ ≤ 0.09, Cycle

 when 0.1 ≤ ɛ ≤ 0.15. Then in Fig. 4 A, for Cycle 1 the value of

 = 0 . 08 , for Cycle 2 the value of ε = 0 . 10 . In Fig. 4 B, for Cycle 2

he value of η = 0 . 27 , for Cycle 3 the value of η = 0 . 29 , for Cycle 4

he value of η = 0 . 30 . In Fig. 4 C, for Cycle 2 the value of α = 0 . 47 ,

or Cycle 3 the value of α = 0 . 50 , for Cycle 4 the value of α = 0 . 54 .

he results presented in Fig. 4 indicate that the system with short

esynchronization dynamics needs weaker dispersal strength to be

ynchronized than the system with longer desynchronization dy-

amics (even if the initial synchrony strength is nearly the same). 

. Discussion 

We considered two predator-prey populations coupled via dis-

ersal modeled as two Rosenzweig-MacArthur oscillators with lin-

ar difference coupling. Models of individual predator-prey patches

re rescaled to get dimensionless variables and have slightly differ-

nt parameter values to represent spatial heterogeneity following

he framework introduced in the studies of Goldwyn and Hastings

20 08 , 20 09 ). However, unlike those studies (and in line with the

bservations of dispersal being weak, Kot et al., 1996 ), we consider

he case where the coupling strength is weak enough (relative to

he difference of frequencies in isolated oscillators), so that the

oupling-induced synchrony is only partial. The dynamics of these

ystems exhibits intermittent synchrony just due to the moderate

alues of coupling (without any indigenous noise or environmental

tochasticity). This system exhibits intervals of time when the dy-

amics is synchronized, and intervals of time when the dynamics

s desynchronized. 

We found that the temporal structure of this dynamics exhibit

ependence on several parameters of predator-prey model oscilla-

ors. In particular, the larger values of the ratio of predation rate

o intrinsic growth rate for prey, the ratio of predator half sat-

ration coefficient to the carrying capacity of prey, and the ra-

io of predator death rate to the predation rate lead to the dy-

amics with longer desynchronization episodes (there are ratios of

arameters here, because we considered nondimensionalized sys-

ems). While changes in model parameters may affect both the

verage synchrony strength and temporal patterning of synchro-

ized dynamics, the average synchrony strength and its tempo-

al patterning can be independent. The present study shows how

he durations of desynchronizations may be altered while the av-

rage synchrony strength stays the same. Thus, the same syn-

hrony strength between migration-coupled predator-prey popula-
ions may be achieved via many short desynchronized episodes or

ew long desynchronized episodes. 

Our numerical analysis shows that the temporal patterns of

ynchrony (dynamics of ecological network) may be altered just

y the alteration of the properties of predator-prey interactions

properties of individual oscillators) and this may be altered with-

ut changes in the dispersal strength. On the other hand, disper-

al strength is naturally affecting the overall synchrony strength as

arger coupling strength in general leads to complete synchrony

etween oscillators. What we see here is that the interplay of

he individual oscillator properties and dispersal leads to a poten-

ially important observation: dispersal-coupled predator-prey os- 

illating populations exhibiting fewer longer desynchronizations

as opposed to numerous short desynchronizations) may require

tronger dispersal in order to reach strong synchrony. It is known

hat the weak dispersal may have complex effects on the stability

nd survival of synchronized predator-prey populations (see, e.g.,

bbott, 2011 ). We show here a case where the same dispersal leads

o different impacts on the synchronized dynamics depending on

he characteristics of predator-prey interactions. 

The changes in the parameter values (towards the smaller val-

es of ɛ , α, and η) that promote shorter desynchronizations (even

f the average synchrony stays the same) essentially make the dy-

amics of predator slow relatively to the dynamics of the prey,

eparating the time-scales of predator and prey dynamics. These

mall parameter values lead to the predator dynamics being ini-

ially slow to follow the increase in prey, eventually leading to late

ut very sharp rise (outbreak) in predator numbers. The predator-

rey systems with substantially different timescales and result-

ng dynamics of outbreaks has long been considered in math-

matical ecology (e.g., Ludwig et al., 1978 ; Rinaldi and Schef-

er, 20 0 0 ). It is worth mentioning that dispersal-synchronized re-

ources enrichment-induced outbreak-like population cycles were 

ound to exhibit low persistence under some conditions in a labo-

atory experiments ( Laan and Fox, 2020 ), which suggest that mech-

nisms of outbreaks may exhibit complex interplay with the syn-

hronized dynamics and persistence. Perhaps the outbreak-type os-

illatory cycles effectively modulate the coupling making it very

trong at the top of the population peak while keeping it low

t other times (the coupling strength is constant in this consid-

ration, it is the magnitude of the coupling term that effectively

ncreases, because it is proportional to population difference be-

ween patches). 

Interestingly, another example of biological oscillator with sep-

ration of timescales is a spiking neuron. In particular, many neu-

ons have sodium-potassium spiking mechanism with fast Na + 
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and slow “delayed rectifier” K 

+ currents and associated models of

Hodgkin-Huxley type have substantially different time scales (see,

e.g., Izhikevich, 2007 ; Ermentrout and Terman, 2010 ). The separa-

tion of the time scales in neuronal models also led to the preva-

lence of short desynchronizations, if the neurons were connected

via weak synapses and exhibited partially synchronized dynamics

( Ahn and Rubchinsky, 2017 ). This probably points to a very general

mathematical basis of this phenomenon, which calls for its math-

ematical exploration. 

It would be interesting and important to consider the temporal

patterns of synchronization and desynchronization in the more re-

alistic ecological context. Various sources of stochasticity (whether

indigenous or environmental) as well as seasonal variability may

affect population synchrony (e.g., Bressloff and Lai, 2013 ) and thus

may potentially affect the temporal patterns of synchronized dy-

namics. In particular, it may be important to consider tempo-

ral patterns of ecological synchrony in the context of Moran ef-

fect (e.g., Goldwyn and Hastings, 2011 ). Moreover, various spa-

tial effects may affect synchronous dynamics ( Walters et al., 2017 ;

Hopson and Fox, 2019 ) and may be relevant here as well. Over-

all, it is important not to overinterpret the results of this study.

The parameters of the model are not traced to a specific ecolog-

ical system. The actual mechanisms of the ecological oscillations

and synchrony may involve much more than the ones represented

by the predator-prey interactions of Rosenzweig-MacArthur model

considered here (see e.g., Barraquand et al., 2017 ). Thus, this study

presents only a potential possibility for the temporal patterns of

intermittent synchronous dynamics, its dependence on parameters

of predator-prey interaction, and its potential impact on long-term

ecological dynamics. 

Finally, we would like to put our observations in the context of

the studies of transient dynamics in ecology, which appears to be

very important and quite common ( Hastings et al., 2018 ) includ-

ing population synchronization phenomena ( Klapwijk et al., 2018 ).

From a mathematical perspective, the idea that the ecologically rel-

evant dynamics is not necessarily the dynamics near and on the at-

tracting synchronization manifold in the phase space is somewhat

similar to the idea of importance of transients in ecology. While

the intermittent synchronization considered here is not a transient

phenomenon in a strict sense, in both situations the properties of

dynamics of interest depend not only on the properties of attrac-

tors in the phase space, but also on how the system approaches to

and leaves them. 
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