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Cooperation is ubiquitous in the world surrounding us, from bacteria to Human interactions. In
Humans, cooperation is often associated with various group decisions, resulting from their complex
web of interrelated interests, associations or preferences. The existence of such social structures not
only opens the opportunity of having diverse behaviors depending on the individuals’ social position,
but also for a dynamical allocation of contributions depending on the returns obtained from each group.
Here, we address these issues by studying the evolution of cooperation under Public Goods Games in
the framework of Evolutionary Game Theory where cooperative players are able to distribute their
donations to their liking. As a result, cooperation is greatly enhanced when the community structure is
described by homogeneous graphs, as cooperators become able to support cooperative groups and
retaliate against those with poor achievements by withdrawing donations from them. Whenever the
underlying network becomes complex enough to add diversity to the distribution of group sizes,
directed investments do not optimize the emergence of cooperation, but they do enhance its robustness
against the invasion of a minority of free-riders. We define a robustness index and show that directed

investments expand the robustness of cooperation by about 50%.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperation is a key feature of self-organized systems, occur-
ring at all scales and levels of complexity (Hardin, 1968; Taylor,
1982; Axelrod, 1984; Trivers, 1985; Maynard-Smith and
Szathmary, 1995; Sigmund, 1995; Barrett, 2007; Sigmund,
2010). Despite this, the reasons behind its ubiquity remain an
open and challenging quest in several areas of science. To address
this issue, different models were built in the framework of
evolutionary game theory (Maynard-Smith, 1982; Sigmund,
2010) to try to reproduce the emergence of cooperation amongst
selfish individuals, using different mechanisms to achieve this
goal. In this quest, the role of higher levels of individual cognition
has remained elusive. In the present paper, we show that an
additional layer of individual complexity may provide a major
contribution to the emergence and robustness of cooperation and
investigate how the evolutionary advantage of such complexity is
tightly connected with the way in which the population is
structured.

For this purpose, we study the N-person Prisoner’s Dilemma,
better known as a Public Goods Game (PGG) of cooperation
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(Hardin, 1968; Kollock, 1998; Barrett, 2007; Sigmund, 2010).
PGGs constitute the primary tool in evolutionary game theory to
investigate the emergence of cooperation in group interactions. In
this game, N participants can decide to donate or not an amount
to the public good. An individual is considered to be a cooperator
(C), if she donates; otherwise she is a defector (D). The donations
are collected in a common pot and multiplied by a factor r (r > 1).
The resulting sum is subsequently shared equally among the
members of the group independently of their contribution. Hence,
in a mixed group of N individuals, refusing to contribute to a
common good assures the highest individual payoff. Thus, if all
participants are rational, individuals refuse to donate, falling into
the Tragedy of the Commons (Hardin, 1968).

Among the many mechanisms (Nowak, 2006; West et al., 2007)
suggested to avoid this negative outcome, such as repeated interac-
tions (Trivers, 1971), reward and punishment mechanisms (Sigmund
et al., 2001; Fehr and Gachter, 2002; de Quervain et al., 2004;
Sigmund et al.,, 2010; Szolnoki and Perc, 2010), reputation systems
(Nowak and Sigmund, 2005; Ohtsuki and Iwasa, 2006), voluntary
participation (Brandt et al., 2006), etc., most assume large popula-
tions and a well-mixed interaction pattern in which every player
interacts equally likely with everyone else. While the well-mixed
limit may be valid for small populations, spatial constraints or
complex networks of contacts often shape the interactions within
large-scale societies. This feature has been initially addressed by
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means of regular lattices and graphs, exploring the role of space in
the emergence of collective behaviors (Nowak and May, 1992;
Nowak et al., 1994; Szab6 and Hauert, 2002; Szabé et al., 2005;
Ohtsuki et al., 2006; Szabo and Fath, 2007; Taylor et al., 2007). More
recently, our increasing understanding of real interactions structures
(Doreian and Stokman, 1997; Barabasi and Albert, 1999; Watts,
1999; Amaral et al., 2000; Dorogotsev and Mendes, 2003; Newman,
2003) has led to a general analysis of evolutionary dynamics in a
broad range of topologies (Santos and Pacheco, 2005; Vukov and
Szabo, 2005; Santos et al., 2006; Gomez-Gardeiies et al., 2007; Szabo
and Fath, 2007; Santos et al., 2008).

In a networked population, nodes represent individuals, whereas
links represent shared goals, investments or exchanges. In an
N-person interaction setting, neighborhoods define a network of
overlapping groups (Szabé and Hauert, 2002; Santos et al., 2008),
defining not only who interacts with whom, but also the universe of
possible role models of each individual. With the help of this
powerful and general population structure metaphor, many differ-
ent communities can be modeled and the outcome of the strategies’
evolution is highly dependent on the underlying topology. During
the evolutionary process, every player is involved in (k+1) game-
interactions, where k is the number of acquaintances (neighbors) of
the given player. The group interactions take place in the (k+1)
groups centered on the neighbors and on the focal player (see
Fig. 1A). The total payoff of a player is gained from these (k+1)
games (Szab6 and Hauert, 2002; Santos et al., 2008).

In the simplest setting (Santos et al., 2008), cooperators donate
a fixed cost c to every PGG they participated in. However this
assumption may be unrealistic in situations where players parti-
cipate in a large number of interactions, as it is very unlikely that
players have such a huge amount of resources at their disposal at
any time. Limited resources may add the limitation that all
players have the same amount to invest, which will be equally
shared amongst all the groups (Santos et al., 2008; Pacheco et al.,
2009). This means that cooperators donate c/(k+1) to every
group. This modification has a big impact when the interaction
graph is heterogeneous, as we will discuss later. However for
regular networks where the number of neighbors is the same for
every node, this principle is equivalent to the traditional case with
a rescaling of the cost c by a factor of 1/(k+1). Nevertheless fixing
the available resources for the players raises new opportunities:
what if cooperators could decide themselves how to distribute
their donations amongst the groups they interact with?

Such a cooperator opens up a whole avenue of new strategies,
from random ones where cooperators just randomly contribute to
the different groups, to strategies where cooperators can take past

events, decisions or incomes into account before deciding about the
amount to contribute to each collective endeavor. Using this idea,
we shall address the role played by this additional speck of
complexity, and consider cooperators that donate to different
groups proportionally to the income previously received from each
given group (see Fig. 1B). Individuals assess how large is the share
they obtained from each group and, in the next generation, they
donate the corresponding fraction of c to this group. As detailed in
Section 2, this strategy is reactive and inherently assumes that
players can keep track of their payoffs from immediate past events,
i.e., they have some kind of short-term memory. As group profits
are generated solely from donations of cooperators, this strategy
rewards groups with higher cooperative standards. From this point
of view, this strategy can be seen as a form of direct reciprocity
(Trivers, 1971) in group interactions. For this reason, we shall refer
to this type of behavior as reactive strategies.

2. Methods

To have a clearer understanding of the results, here we give a
more thorough description of the model details. Players are
located on the nodes of a graph. The edges of the graph define
who interacts with whom and who can imitate whom. Each
individual engages in k+1 PGG games where k is the number of
her neighbors. The PGG groups are defined by the central player
and her neighbors, i.e., a given player is member of his own and
his neighbors’ group (Fig. 1A). Players gain their accumulated
payoff from these interactions in each generation. There are two
available strategies: defectors (D) do not donate to the public
good, while cooperators (C) donate the cost c. For the different
simulation scenarios, cooperators use slightly different strategies.
In the unconditional, unconstrained case (UUC), they donate the
cost ¢ to every group they participate in. In the unconditional,
constrained case (UCC), when the amount of donation per player
is fixed to c, they donate to all their groups equally, i.e., all groups’
pot receive c/(k+1). In the conditional, reactive case (CRC),
cooperators are allowed to redistribute their donations, and they
donate proportional to the payoffs they received from the given
group in the previous simulation step. Hence, if a cooperator
received payoff p; from his ith group at a given time (see
Introduction (Section 1) and Fig. 1) then she will donate (cp;)/P
in the next round, where P = J"j p;. In the first round of the
simulation, cooperators donate equally to the groups. The same
happens if a defector imitates a cooperator and she had zero total
payoff (P=0) in the previous round.
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Fig. 1. Public Goods Game on graphs. (A) Players are participating in (k+1) games in every generation. Colored bubbles show the PGG groups in which the central (orange)
player is participating while the p; values show the payoff she gains from the corresponding groups. (B) Reactive behavior of CRC cooperators: colored bars show the orange
player’s payoff-share gained from each group (with a given color) compared to the player’s total payoff. In the next generation, cooperators divide their contribution to the
public good according to their previous income. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Simulations start from a random initial condition where the
concentration of cooperators and defectors is equal. Having
different initial conditions (e.g. fewer cooperators at the start)
does not really influence the stationary distributions. The average
values are decreased slightly because of the cases when coopera-
tor clusters cannot form and cooperation vanishes at the initial
transitional period due to the low initial cooperator frequency.
We use synchronous update: in each simulation time step, we
update the payoff for every player, and then randomly pick a
neighbor (y) for every player (x). Player x can adopt the strategy of
player y with a probability given by the so called pair-wise
comparison rule: W(x«<y)=1/(1+e™P/K) where P, and P, are
the total payoff of players x and y while K is characterizing the
amount of errors in decision making. After calculating the
possible strategy imitations, we update the strategy of every
player at the same time.

The final outcome of evolution and cooperation is obtained
from extensive computer simulations performed on the following
network topologies: we consider paradigmatic examples of
homogeneous and heterogeneous network structures. For the
former class we consider a square lattice with von Neumann-
neighborhood structure and periodic boundary conditions. For the
latter class, we explore the effects of topological heterogeneity
using Barabasi-Albert scale-free networks (Barabasi and Albert,
1999), generated by the combination of growth and linear pre-
ferential attachment. This leads to distributions of group sizes and
number of games played by each player that follows the degree
distribution of the network, i.e., a power-law. After 2000 initial
generations, we average the strategy concentrations over the
population during 10,000 generations. Each result is obtained
from 100 runs from different random initial conditions and in the
case of heterogeneous networks, from 10 different network
realizations. We investigated the strong selection regime and
used K=0.04. The qualitative behavior of the system is the same
for higher K values (we tested it up to K=1.0), the ranking among
the different strategies remains the same so the conclusions are
valid for those parameter values too. In the case of the homo-
geneous networks, higher K shifts the threshold above which
cooperation can be maintained to higher multiplication values as
among these conditions defectors can break into the cooperator
cluster more easily due to the higher noise. For heterogeneous
networks, the thresholds are about the same but the transition
from the full defector state to full cooperation is sharper, isolated,
small islands of the minority strategy are consumed due to the
higher noise.

3. Results and discussion

Fig. 2 shows the results for the unconditional cooperative strategy
(UUC) and the reactive cooperative strategy (CRC) on the square
lattice (see Fig. 1A) as a homogeneous interaction network (note that,
in this case, UUC and UCC lead to the same results). The fraction of
cooperators is plotted as a function of the normalized multiplicative
factor n=r/(k+1), where k=4 for the square lattice with von
Neumann-neighborhood. In infinite, well-mixed populations, full
defection is replaced by full cooperation at # > 1, as in this case, a
single cooperator can provide positive payoff for the whole group.
Under spatial reciprocity, the threshold happens for significantly
lower values of #. There is also formally a lower threshold at <1/
(k+1), in which case even full cooperation results in negative payoffs,
that is, cooperation becomes impossible among these conditions.

The results in Fig. 2 show that reactive cooperative strategy
(CRC, red circles) successfully outcompetes defectors for a wide
range of parameters when compared with unconditional coopera-
tors (blue squares), while managing to achieve mixed, dynamical
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Fig. 2. Results of additional cooperator complexity on the square lattice: the fraction
of cooperators as a function of the normalized multiplicative factor () for the
different cooperator strategies. The incipient cognitive abilities of CRC cooperators
make it possible to prevail under much worse conditions. Red circles show the
concentration of CRC cooperators when the donations are given proportional to the
payoff from the groups, while blue squares show the results of the traditional case
(UUC or, equivalently, UCC), where the donations are shared equally. We used a
square lattice of size Z=100 x 100 as an example of a homogeneous interaction
structure, with nearest neighbor (von Neumann) interactions (k=4) and with
periodic boundary conditions. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

coexistence with them under rather unfavorable conditions. By
dividing their donations among successful groups, cooperators are
able to support the emergence of cooperative clusters by “directed”
contributions to fellow cooperator groups. Moreover, these indivi-
duals are able to withdraw help from the most defective groups,
located at the edges of the cooperative clusters. So the reactive
cooperative strategy could be considered as a mix of two mechan-
isms: reciprocity towards good, generous neighbors/groups and
punishment with the withdrawal of donations from defective
neighbors. As a result, whenever the conditions are not too adverse,
the cooperative clusters can grow and they will almost always take
over the whole community. In the coexistence region, due to the
lower multiplication factor, cooperator clusters gain and loose
territories dynamically while the strategy concentrations slightly
fluctuate around the average. We have investigated other regular
networks, such as the kagome-lattice (Sy6zi, 1951) and the one-
dimensional ring-graph (Watts, 1999) to filter out possible “square
lattice”-specific features but the results were qualitatively the same
on all of them: the overall level of cooperation was very signifi-
cantly increased with the introduction of a small level of complexity
(CRC). Similar qualitative results are also obtained for other values
of the intensity of selection, here associated with the parameter K.

The picture is different when the interaction graph is described
by a heterogeneous network. In this case different players will
have, in general, different number of neighbors. Consequently,
fixing the maximum amount of contribution for unconditional
cooperators is no longer a mere rescaling issue—in fact, it has a
huge impact on the final outcome of evolution (Santos et al.,
2008; Pacheco et al., 2009). Blue squares in Fig. 3 show the results
on a scale-free network when cooperators donate c to every group
they are part of (UUC). Cooperation becomes viable in a consider-
ably wide range even if cooperators in a central role have to invest
a big amount. The key of the success of cooperation is that the
complex interaction network made the payoff distribution het-
erogeneous and this gave an opportunity for cooperators to
outplay defectors: central cooperators can collect a high income
due to the many groups they are part of and can turn most of their
neighbors to cooperators while if a defector ends up in a central
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role, she will turn her followers to defectors, decreasing her own
payoff and after a while losing the “leading” position. However for
lower 7, the establishment of cooperation is hindered by the fact
that highly connected individuals (hubs) have to invest a huge
amount, which can be non-remunerative in a partly defective
environment. Fixing the total amount of donation of each indivi-
dual (UCC) can be of assistance to this problem, as shown with the
green triangles. Indeed, in (Santos et al., 2008; Pacheco et al.,
2009) it has been argued that it is not the amount given what is
important but the act of giving.

Unlike the situation observed in homogeneous networks, the
introduction of reactive cooperators (CRC) does not boost coop-
eration further (red circles in Fig. 3). Apparently, the additional
complexity in the strategy does not add up to the effects already
induced by the scale-free interaction network, associated with the
heterogeneous payoff distribution In other words, the network
structure may by itself dispense the need to develop highly
cognitive capabilities. Differently, a heterogeneous allocation of
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Fig. 3. Cooperation level with scale-free networks as interaction structures. The
different symbols show the fraction of cooperators with different model setups as
a function of the normalized multiplicative factor (n). For heterogeneous, scale-
free networks, 1 is calculated using the average connectivity ({k)»=4) of the
graph. Blue squares stand for the UUC cooperators, green triangles for the UCC
cooperators, while red circles indicate the CRC cooperators. The definition of the
strategies is given in the Methods. Scale-free networks (size of Z=1000 and
average degree of (k) =4) were generated using the Barabasi-Albert algorithm
(Barabasi and Albert, 1999). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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donations may open a window to smarter ways of cheating in a
heterogeneous network context.

On the other hand one expects that additional skills may enhance
the aptitude of Cooperators to protect themselves against Defectors,
which may play a different role depending on the composition of the
population. Up to now we have been discussing the viability of
cooperation to emerge from an equal distribution of cooperators and
defectors. But how stable is cooperation once established? In the
following we investigate the robustness of the cooperative commu-
nity against defector invasion attempts. To this end, and after an
initial transient period, in every generation we replace a given
amount of the population by defectors. It turns out that reactive
cooperators can withstand defector attacks far more successfully.
Fig. 4 shows that even for extreme defector inflow values as high as
10% of the population in every generation, cooperation survives with
the help of this more sophisticated strategy. We can define a
numerical index to compare the robustness of cooperation in
different scenarios by calculating the integral below the surfaces
in Fig. 4. The ratio of the integrals Qcrc/Qucc=1.46 shows that the
reactive cooperative strategy (CRC) is almost 1.5 times more
successful in defending itself than the unconditionally equal
cooperators (UCC).

Finally, it is also noteworthy that different cognitive skills and
levels of complexity can have an impact in several emerging
features of the population beyond the levels of cooperation. In
Fig. 5 we portray the wealth (here understood as fitness) distribu-
tion of the population in a fully cooperative community, that is, we
compute how the total income is divided among the individuals. It
is known (Santos et al., 2008) that donating a fixed cost per
individual results in less poor and more rich people than in the
case of donating a fixed cost per game. With the advent of reactive
cooperators, society becomes more “fair”, individuals are shifted
from the poor regions to the “middle class”. This can be also shown
by the Gini coefficient G (Gini, 1912), which measures inequality of
a distribution (G=0 for maximum equality and G=1 for total
inequality): G is 0.30 for the reactive cooperators (CRC) and 0.38
for the UCC. The few, very poor individuals are victims of the
randomly built scale-free interaction network: they belong to an
unfortunate neighborhood that condemns them to lower payoffs.

4. Conclusions

We investigated the emergence of cooperation in Public Goods
Games from the point of view of individual complexity. We found
that increasing the complexity of the cooperator strategy can help
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Fig. 4. Robustness against defector inflow on scale-free networks. Color codes show the cooperator concentration for different defector inflow rates as a function of 7. After
a transient period, a given amount of players were randomly replaced by defectors in every generation and the concentration values were calculated during the subsequent
10* generations under continuous defector inflow. The left panel (4A) displays the results for the case when cooperators share their donations equally (UCC), while the
right panel (4B) shows them for the more complex, reactive cooperator strategy (CRC). CRCs are more robust against the invasion of a minority of free-riders, specially for
large 1 and defectors inflow rates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Wealth distribution in fully cooperative populations for the different
cooperative strategies. Red bars stand for the cognitive cooperator strategy
(CRC) while striped bars show the distribution for the “equal” cooperators
(UCC). CRC cooperators lead to less poor and more rich individuals. Both
distributions were obtained from an average over 10 different network realiza-
tions with a size of Z=10>. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

to establish and maintain cooperation in different environments.
When the interaction network is homogeneous, described by
regular graphs, the introduction of a more complex, reactive
cooperator strategy (CRC) helped to improve the performance of
cooperators to a great extent. However if the interaction network
itself is complex and heterogeneous, as in the case of a scale-free
graph, then the additional complexity in strategy (CRC) does not
positively take effect on the spreading range but renders estab-
lished cooperation more robust against defector invasion.
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