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Abstract and Key Terms 

The microvasculature plays a crucial role in the perfusion of blood through cerebral tissue. 

Current models of the cerebral microvasculature are discrete, and hence only able to model 

the perfusion over small voxel sizes before becoming computationally prohibitive. Larger 

models are required to provide comparisons and validation against imaging data. In this 

work, multi-scale homogenization methods were employed to develop continuum models 

of blood flow in a capillary network model of the human cortex. Homogenization of the local 

scale blood flow equations produced an averaged form of Darcy’s law, with the permeability 

tensor encapsulating the capillary bed topology. A statistically accurate network model of 

the human cortex microvasculature was adapted to impose periodicity, and the elements of 

the permeability tensor calculated over a range of voxel sizes. The permeability tensor was 

found to converge to an effective permeability as voxel size increased. This converged 

permeability tensor was isotropic, reflecting the mesh-like structure of the cerebral 

microvasculature, with off-diagonal terms normally distributed about zero. A representative 

elementary volume of 375 µm, with a standard deviation of 4.5 % from the effective 

permeability, was determined. Using the converged permeability values, the cerebral blood 

flow was calculated to be around 55 mL min
-1 

100g
-1

, which is in very close agreement with 

experimental values.  These results open up the possibility of future multi-scale modelling of 

the cerebral vascular network. 

Key Terms: capillary network; continuum model; cerebral blood flow; microvessels; 

perfusion 
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1. Introduction 

A constant supply of blood is essential to keeping the brain in a healthy functioning state. 

The brain takes up around 2 % of the mass of an average human body, yet consumes 20 % 

of the oxygen supply of the whole body (Clarke and Sokoloff, 1999). This makes it 

particularly vulnerable to severe reductions in blood supply, with damage occurring within 

tens of seconds. Any mismatch between the metabolic rate in the brain cells and oxygen 

supply leads to localised damage of tissue, known as ischemia, and eventual infarction if the 

supply of blood, and hence oxygen, is not restored. On a large scale, this is often referred to 

as a stroke.  

Increasingly, the underlying microvascular architecture is recognised as being key to 

the perfusion rate and the delivery of oxygen to surrounding tissue (Cassot et al., 2006; 

Lauwers et al., 2008; Reichold et al., 2009). Hemodynamically based functional imaging 

techniques, such as fMRI, make use of the coupling between neuronal activity and local 

increases in blood flow and metabolism. However, the spatial resolution of such imaging 

techniques is not high enough to pick out the microvasculature and its effects on perfusion. 

As a result, little information is available on the interplay between the microvascular 

topology and tissue-scale perfusion. Characterising this interplay, and the response of the 

vascular system to hemodynamic disturbances, is likely to help to improve the treatment of 

vascular diseases.  

In order to aid with understanding blood flow in the brain, a number of models have 

been built of blood and oxygen transport through the main groups of vessels in the 

vasculature. These models are most often discrete networks with 1-dimensional blood flow 
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through the vessels. On the local scale, these models are useful for analysing perfusion and 

oxygen transport through individual vessels and the surrounding extracellular space.  

Secomb et al. (Secomb et al., 2000) and Fang et al. (Fang et al., 2008) have developed 

models of blood and oxygen transport that can be applied to any 3-dimensional network, 

and which were applied to transport in the rat cortex. Similarly, others have reconstructed a 

rat cortex network from experimental data, using it to investigate the effects of local 

vascular dilation and occlusion (Reichold et al., 2009). Lorthois et al. applied the transport 

models to a reconstructed network from the human cerebral cortex (Lorthois et al., 2011). 

The network was reconstructed from experimental data (Cassot et al., 2006). Su et al. also 

used these cerebral cortex data, but rather than reconstruct the observed network, they 

developed a statistical algorithm to fit morphometric parameters and statistically to model 

the microvasculature (Su et al., 2012). Such an algorithm is valuable as it bypasses the 

labour intensive and time-consuming method of experimentally extracting the structure of 

the microvasculature at each section in the brain. Additionally, such statistical algorithms 

are easily adaptable for varying statistical parameters at different cerebral locations. 

However, all of these models are currently only computationally reasonable for small 

tissue sections. Building larger models so that accurate comparisons can be made with 

imaging data becomes very difficult using current discrete modelling techniques. Boundary 

conditions of imaged sections are also unknown and have been shown to have a strong 

effect on flow properties (Lorthois et al., 2011). This makes it very difficult to determine the 

effect of the microvasculature on tissue-scale fluid transport. In order to gain a more 

comprehensive understanding of the perfusion and pathophysiological conditions 
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associated with the vasculature, a mathematically rigorous multi-scale model will be 

required, which is not currently achievable. 

Continuum-based mathematical modelling techniques, specifically homogenization, 

aim to deal with these issues. Homogenization is an averaging technique which derives 

macro-scale models using micro-scale models, assuming that there is scale separation 

between the two sizes and that the micro-scale model is periodic. Using such methods 

results in the discrete micro-scale representation being replaced with averaged integral 

quantities of the capillary bed valid over the larger region of interest, reducing the 

computational cost substantially. A key advantage of this continuum approach is that the 

results are independent of the choice of boundary condition. 

Shipley and Chapman used these mathematical averaging techniques on a leaky 

capillary bed to derive an averaged macroscopic Darcy flow model (Shipley and Chapman, 

2010). The permeability tensor of this flow model is what links the capillary-scale topology 

to macro-scale blood flow, and is the property of interest when scaling up discrete models. 

Characterizing this tensor allows us to build larger continuum models of the cerebral 

microvasculature. The idea of scale separation introduces the concept of a representative 

elementary volume (REV). This is generally defined as the minimum volume within which 

the property of interest remains relatively constant (Bear, 1988). Therefore, determining the 

REV of a network is important to minimise computation time. Smith et al. have previously 

used the averaging techniques derived by Shipley and Chapman on a model of non-leaky rat 

myocardial capillaries (Smith et al., 2014). 

In this paper, we adapt the discrete model developed by Su et al. in order to generate 

periodic, statistically accurate, 3-dimensional models of the cerebral microvasculature for 
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the first time. The techniques developed by Shipley and Chapman for capillary networks in 

tumours are used to derive macro-scale flow equations for non-leaky capillaries, with no slip 

boundary conditions on the capillary walls. These are used to calculate the permeability 

tensors of various voxel sizes in order to determine convergence of the permeability. From 

the converged permeability a REV can be calculated for a given error tolerance. 

2. Materials and Methods 

2.1 Homogenization of the Capillary Network 

The same homogenization methods are used here, as in Shipley and Chapman, to derive the 

continuum equations for a normal cerebral vasculature. The model of the brain tissue 

proposed here has two distinct phases: the capillaries and the interstitium. The interstitium, 

comprised of cells and extracellular space, is assumed to be a porous medium due to the 

large size of the capillaries in comparison to the inter-cell separation. Blood flow in the 

capillaries is assumed to be incompressible, of constant hematocrit, and to obey Stokes flow 

(viscous dominated at the capillary-scale). The validity of assuming constant hematocrit will 

be examined in the 'Discussion'. It is also assumed that there is negligible leakage of blood 

between the capillaries and interstitium, and no-slip, no-leak boundary conditions are 

imposed for the blood velocity at capillary walls. As a result, the system of equations to 

homogenize on the micro (capillary) scale is: 

 −∇�� + �∇��� = 0            in Ω� (1)  

 ∇. �� = 0   in Ω� (2)  
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 ��. � = 0   on Γ� (3)  

 �� . � = 0   on Γ�  (4)  

where subscript � refers to the capillary domain, Ω� is the capillary volume, Γ� is the 

capillary wall surface, � is the density of blood, �� is the blood velocity, � is the blood 

viscosity, �� is the blood pressure, and � and � are the tangential and normal unit vectors 

respectively. 

A small parameter ε, defined as the ratio of the micro and macro length scales, is 

introduced by non-dimensionalizing the set of equations using the following characteristic 

values: 

 �� = ����,   �� =  ���
��  ��� + ��,   � = ���  (5)  

where �, �, and � are characteristic values of velocity, macro length scale, and micro length 

scale respectively, � is the micro length variable, �� is a pressure offset, and the prime 

variables are non-dimensional forms of the original variables. Substituting the non-

dimensional variables from (5) into (1), multiplying by ��/���, and dropping the primes 

gives: 

 −∇�� + �∇��� = 0    in Ω� (6)  

where � is defined as: 

 � =  �
� 

(7)  

Assuming well-separated micro and macro length scales and a periodic microstructure, 

an asymptotic expansion is performed for the blood pressure and velocity in terms of the 
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small parameter � – as previously detailed (Shipley and Chapman, 2010). The assumption of 

periodicity is necessary, particularly in multi-dimensional systems, due to the need to 

remove secular terms. Periodicity is a mathematical tool regularly used in homogenization 

to simplify the removal of secular terms (Auriault et al., 2009; Holmes, 2013; Shipley and 

Chapman, 2010). The validity of this assumption for cerebral microvascular networks is 

discussed later. The end result of the homogenization is an equation dependent only on the 

macro-scale with averaged coefficients. It is these coefficients which are determined from 

solving the local scale problem. 

Performing the homogenization technique (see Appendix A) under the given 

assumptions leads to the volume averaged form of Darcy’s law on the macro-scale: 

 ���(�) Ω! =  −"∇��(�)
 (8)  

where ∇��(�)
 is the leading order macro-scale pressure gradient, " is the permeability 

tensor, and ���(�) Ω! is the volume averaged leading order velocity over the capillary domain. 

It has been shown that, to leading order, the volume averaged velocity is equivalent to a 

surface mean velocity (Darcy Flux) (Auriault et al., 2009; Durlofsky, 1991). Therefore (8) can 

be rewritten as: 

 ���(�) # =  −"∇��(�)
 (9)  

where ���(�) #  is the surface mean flux taken at the outflow boundaries of the periodic 

voxel over which we are averaging. 

 The homogenized permeability tensor " is important as this encapsulates the 

geometry of the periodic substructure. It is an averaged coefficient tensor, calculated by 
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solving the micro cell problem. Determining the converged values of the elements of the 

tensor allows us to build ‘scaled-up’ models of blood flow in the cerebral microvasculature. 

2.2 Calculation of the Permeability Tensor 

In order to determine the averaged permeability tensor, a periodic boundary value problem 

must be solved over the periodic micro cell of the capillary network. Assuming the radial 

and swirl components of the blood velocity at the capillary-scale to be zero, and fully 

developed flow, then the blood follows Poiseuille flow. Integrating the velocity profile of 

each capillary over the cross-section of capillary $ leads to Poiseuille’s equation: 

 %&' =  ()&*8�& ,Δ.&'
�& / ,   0 = 1,2,3 

(10)  

where %&'  is the flux through capillary $, )& and �& are the radius and length of the 

capillary respectively, and Δ.&'
 is the local pressure drop along the capillary length. The 

viscosity law of Pries et al. is used to account for non-Newtonian rheology for a constant 

discharge hematocrit of 0.45 (Pries et al., 1994). 

 Since the left hand side of (9) is a surface mean, it can be calculated by summing the 

capillary flow rates cutting through a surface of the voxel and dividing by the area of that 

surface. Therefore the elements of the permeability tensor can be calculated as such: 

 45' =  Σ%&,789:'
Γ'∇�5 ,   ;, 0 = 1,2,3 

(11)  

where %&,789:'
 is a surface outflow node in the 0th direction and Γ'  is the cube outflow 

surface area. As a result three independent pressure gradients are required in order to 
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determine " for the 3-dimensional structure of the cerebral microvasculature. In our case 

;, 0 refer to Cartesian co-ordinates. As an example, if we wish to calculate 4<< then a 

pressure gradient is imposed in the =-direction, the total flow rate through the Γ< surface is 

calculated, and divided by the surface area Γ< and the pressure gradient in the =-direction. 

In order to calculate the cross flows in the > and ? directions, the same procedure is 

followed but over the Γ� and Γ� surfaces respectively, yielding 4<� and 4<�. Imposing 

pressure gradients in the > and ? directions produces the second and third rows of the 

tensor respectively, and hence the full 3x3 permeability tensor. 

2.3 Application to Synthetic Cerebral Microvascular Networks 

The network generation algorithm developed by Su et al. is used here in order to generate 

statistically accurate models of the cerebral microvasculature. The homogenization theory 

already detailed is then applied to this model to calculate the permeability tensor. The 

model is based on the morphometric data obtained by Cassot et al. In Cassot’s study, 

quantitative morphometric information was extracted from the collateral sulcus in the right 

temporal lobe using Indian ink and confocal laser microscopy to analyse sample sections. 

The vessel density, length distribution of vessels, distribution of the radii of the vessels, and 

average connectivity were some of the parameters found which provide enough 

information to generate statistically accurate models of the cerebral vasculature. 

The algorithm, proposed by Su et al., uses a modified spanning tree method (MSTM), 

where two spanning trees are generated from randomly seeded nodes on a given voxel 

which then merge to form a random capillary network. The diameters of the capillaries are 

assumed to be normally distributed with a mean of 6.23 μm and a standard deviation of 1.3 

μm, in accordance with experimental data (Cassot et al., 2006).  In order to fit the length 
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distribution of the vessels found in Cassot et al., filters are then applied, which remove and 

add vessels depending on their length. 

The assumption of periodicity made during the homogenization process means it is 

necessary to modify this model. It is currently not spatially periodic, nor does it have 

periodicity of blood flow through opposing surfaces of the voxel. Therefore, the model is 

modified here to introduce spatial and flow periodicity. 

 In order to impose spatial periodicity, the surfaces of the voxel must be symmetric. 

This is achieved by randomly seeding three non-opposite faces with nodes and copying their 

co-ordinates over to their opposing faces. The internal nodes of the voxel are seeded 

randomly. Each surface node has one capillary connected to it from the internal network. 

Capillaries attached to opposing surface nodes are summed to form one long capillary. 

Along with the filters used by Su et al., this allows for the generated models to statistically 

fit the experimental data despite the constraint of spatial periodicity. A typical spatially 

periodic voxel is shown in Fig. 1. 

 Various voxel sizes are generated in order to determine how the permeability of the 

cerebral network varies with size. In order to ‘scale-up’ to larger voxel sizes a base voxel 

must be chosen. As there can only be an integer number of nodes, the size of the periodic 

base voxel is limited by being able to accurately fit the experimental data whilst having one 

surface node on each face. It was found that a 125 µm cube with one surface node on each 

face is able to match the length distribution of the capillary network, as well as the segment 

density (in the range 7219 – 8817 /mm
3
 (Cassot et al., 2006)). Therefore, one surface node 

on a 125 µm cube is deemed to be an acceptable base voxel. Larger cubes can be built by 

stacking 125 µm cubes together.  
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FIG 1. Typical cerebral capillary network, generated in a 375 µm cube with the additional 

constraint of spatial periodicity. 

 Finally, the flow over opposing faces of the voxel must also be periodic, i.e. the total 

influx over one face must be equal and opposite to the outflux over the opposing face. This 

is achieved by using wrap-around boundary conditions on the four faces over which the 

pressure gradient is not applied.  

 The capillary networks are simulated 500 times for every cube size so that the 

average length distribution of the capillaries matches that observed by Cassot et al. The 10 

cube sizes used ranged in length from 125 - 625 µm (see Table 1). Cube sizes not multiples 

of 125 µm had the number of surface nodes rounded down to the nearest whole integer. 

The sizes chosen were such that the rounding error of the surface nodes was kept to a 

minimum, whilst also giving a good spread of values in the range of sizes being simulated. 
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Cube sizes larger than 625 µm were found to be extremely computationally expensive to 

simulate, therefore 625 µm was chosen as the upper bound of the sizes. 

Cube Size (µm) 

Mean Segment Density 

(/mm
3
) 

Mean Segment 

Length (μm) 

No. Surface Nodes 

(/face) 

125 8621 ± 939 57.5 ± 5.8 1 

180 7744 ± 697 57.2 ± 3.2 2 

250 7991 ± 479 57.2 ± 1.9 4 

300 7685 ± 327 53.5 ± 1.3 5 

375 7763 ± 229 56.4 ± 0.9 9 

425 8048 ± 209 54.2 ± 0.7 11 

450 8162 ± 184 54.6 ± 0.6 12 

500 7934 ± 164 56.1 ± 0.6 16 

550 8272 ± 143 54.9 ± 0.5 19 

625 8115 ± 119 55.0 ± 0.4 25 

TABLE 1: Table of the mean segment densities, mean segment length, and surface nodes of 

the 10 periodic cube sizes used to model the cerebral capillary network. 

2.4 Calculation of the Representative Elementary Volume 

The idea of scale separation introduces the concept of a representative elementary volume 

(REV). Within the range of the REV the macroscopic permeability coefficient does not 

change significantly. The REV contains a large enough number of capillary-scale 

heterogeneities that the permeability coefficient calculated from it can be considered to be 

the effective permeability coefficient on the macro-scale (Renard and de Marsily, 1997). 

 As the periodic voxel simulation size increases, � @  0, and hence the permeability 

coefficient tensor asymptotically tends to the effective macro-scale permeability. It is 

therefore expected that as voxel size increases, the calculated permeability will tend to a 
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converged asymptotic macro permeability, similar to that observed by Smith et al. for their 

simulations of capillary networks in the rat myocardium (Smith et al., 2014). 

 In order to determine the converged permeability of each element in the tensor, the 

root mean square error between the variation of permeability with cube size and a curve of 

best fit of the form: 

 4&ABC = Δ4DE FF!G + 4A:: 
(12)  

was minimised, where 4&ABC is the mean permeability at every cube size, � the cube length, 

��H a characteristic length, Δ4 a stretch coefficient, and 4A:: the effective, or macro, 

permeability. The average permeability values at each cube size for each element in the 

tensor is plotted, and the line of best fit provides a functional equation of how the 

permeability varies with cube size. This form of equation was chosen to fit the data as it was 

a simple fit with few parameters. Δ4, ��H, and 4A:: were found using the fminsearch 

function on MATLAB. 

 It is then possible to calculate the REV for an acceptable error margin by comparing 

the calculated permeability of a given cube size with the converged permeability, 4A::. 

Determining the minimum REV is important in order to minimise computation time when 

scaling up models. 

3. Results 

3.1 Periodic Network Generation 
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The cube sizes used, along with the average segment density, are listed in Table 1. As can be 

seen, all the mean segment values lie within the range 7219 - 8817 /mm
3
 found 

experimentally (Cassot et al., 2006). The distribution of the number of segments for each 

cube are normally distributed over the samples (all p-values > 0.05), except for the 125 µm 

cube. Therefore the segment density at each cube size can be characterised by a mean and 

standard deviation. The average length distribution of the simulated capillary networks 

provides a good match to the experimental results of Cassot et al., despite the additional 

constraint of periodicity (see Fig. 2). The mean capillary length density – the product of the 

mean segment density and the mean length – ranged from 411 – 496 /mm
2
. 

 

FIG 2: Vessel length distribution of a periodic 250 µm voxel compared with experimental 

data converted from Cassot et al. (Cassot et al., 2006) 
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3.2 Permeability of Capillary Networks 

All elements of the permeability tensor were normally distributed at each cube size bar 

those for the 125 µm cube. This was due to the very small number of segments in this voxel 

size (average of 16) which effectively meant there was a discrete distribution of 

permeability values. As a result, the results of the 125 μm cube are omitted from the rest of 

the work. The diagonal terms of the permeability tensor all displayed a decreasing 

permeability as the cube size increased. The permeability appeared to converge for all three 

diagonal terms (Fig. 3). The exponential line of best fit (12) was applied over cube sizes ≥ 

180 µm. The converged permeability values, 4A:: were found for 4<<, 4��, and 4�� to be 

4.26 x 10
-4

 mm
3
 s kg

-1
, 4.31 x 10

-4
 mm

3
 s kg

-1
, and 4.27 x 10

-4
 mm

3
 s kg

-1
 respectively (the 

values of Δ4, ��H, and 4A:: are given in Table 2). The difference in the three diagonal values 

was < 1.2 % indicating isotropy of the tensor. This mirrors the underlying “mesh or net-like 

structure” (Cassot et al., 2006) of the cerebral microvasculature, which appears random and 

isotropic. 
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FIG 3: Error-bar plot of the 4<<term of the permeability tensor. Lines of best fit pass through 

the error-bars of all cube sizes. The plots of 4�� and 4�� are similar. 

 Simulations over 180 µm, 375 µm, and 625 µm voxel sizes gave mean 4�� values of 

(5.35 ± 1.58) x 10
-4

 mm
3
 s kg

-1
, (4.50 ± 0.63) x 10

-4
 mm

3
 s kg

-1
, and (4.20 ± 0.31) x 10

-4
 mm

3
 s 

kg
-1

. The magnitudes of the errors in these values from the converged permeability (4A::) 

range from around 25 % to 1.6 %. This is in contrast to the error in the mean calculated by 

Smith et al. which has a maximum value of around 70 % for a 100 x 100 x 21.6 µm
3
 voxel 

(Smith et al., 2014). The lack of a sharp increase in permeability at smaller cube sizes is likely 

to be due to the more random, isotropic nature of the cerebral microvasculature, as 

opposed to the more aligned myocardial capillaries modelled by Smith et al. It is also likely 

that the much larger density of the longitudinally aligned myocardial capillaries will have 

partially accounted for this difference. The diagonal terms of the permeability matrix were 
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found to be an order of magnitude smaller than those measured by Smith et al. for 

capillaries aligned parallel to the epicardial surface. 

 4A:: (mm
3
 s kg

-1
) x10

-4 Δ4 (mm
3
 s kg

-1
) x10

-4
 ��H (µm) 

4<< 4.26 1.03 25.9 

4<� -0.019 3.96 3.96 

4<� -0.0067 0.76 19.7 

4�< -0.026 4.13
 

3.76 

4�� 4.31 0.096 42.8 

4�� 0.037 -0.0014 134 

4�< 0.00025 0.71
 

18.6 

4�� 0.050 -0.0015 133 

4�� 4.27 0.158 36.2 

TABLE 2: Parameters of the lines of best fit for the nine permeability tensor elements. 

 The off-diagonal terms were found to be on average two orders of magnitude 

smaller than the diagonal terms, indicating that the majority of blood flow occurs in the 

direction of the pressure gradient. The off-diagonal pairs ([4<� , 4�<], [4<� , 4�<], [4�� , 4��]) 

had similar lines of fit which all appeared to converge towards a mean of zero. A t-test was 

performed to determine whether the off-diagonal terms were distributed normally about a 

mean of zero. All 6 terms returned a p-value > 0.05; hence the hypothesis that the mean 

was zero could be accepted. Any deviations from zero were purely due to random variations 

in construction of the networks.  

The off-diagonal pairs were not perfectly symmetric, with slightly differing 

parameters and converged permeabilities for the lines of best fit (Table 2). However, it is 
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expected that as the number of simulations for each cube size increases, the off-diagonal 

pairs will become symmetric. Smith et al. found that the off-diagonal pair for the myocardial 

permeability tensor had a mean permeability of order 10
-8

 mm
3
 s kg

-1
. This is in contrast to 

the larger off-diagonal mean found in this study, of order 10
-6

 mm
3
 s kg

-1
. This is likely due to 

the ordered nature of the simulated myocardial capillary network which had orthogonal 

connections between principal direction and cross-flow capillaries. In the cerebral 

microvasculature the capillaries can be aligned in any direction in 3-dimensions, thus 

increasing the amount of cross-flow. 

 

FIG 4: Log-log plot of the standard deviation of the diagonal permeability terms over cube 

size. 

 The standard deviation of the diagonal terms dropped linearly with increasing cube 

size on a log-log plot (Fig. 4). The standard deviation of the off-diagonal terms similarly 
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displayed a linear drop on a log-log plot. Therefore the standard deviations drop according 

to a power law as expected. In comparison to the cross-flow standard deviation, the 

diagonal standard deviations have a steeper drop. The cross-flow standard deviation is 

almost symmetric, and it is expected that as the number of simulations is increased it will 

become symmetric. 

3.3 Perfusion Estimation 

The permeability calculations can be validated, in a similar fashion to Smith et al., 

using experimental cerebral blood flow (CBF) measurements. Assuming that the pressure 

gradient is linear across the capillary bed, the perfusion (µm
3
 s

-1
) into a region of the brain 

can be estimated by integrating the Darcy velocity over a cross-sectional area A (µm
2
). If the 

Darcy velocity is parallel to the principal axis over which the pressure gradient is imposed 

then: 

 .D)IJK;LM = 455  ×  Δ�
O ×  0.133 × 10E� ×  P 

(13)  

where the factor 0.133 ×  10E� converts from mmHg to kg µm
-1

 s
-2

, 455  is in kg µm
3
 s kg

-1
, 

and Δ� is a uniform pressure drop of 18 mmHg (Lorthois et al., 2011) over a pre-capillary 

arteriolar post-capillary venular path length of O ≈ 340 µm (Sakadžić et al., 2014). Perfusion 

can also be related to the CBF using the following equation: 

 .D)IJK;LM = CBF
60 × �

100 × P × O (14)  

where � = 0.96 g cm
-3

 and is the cerebral density (Dekaban and Sadowsky, 1978; Lüders et 

al., 2002), the factor of 60 converts from min to s, and the factor of 100 converts from g to 

100g. Substituting Eqn. (14) into (13) using the converged permeability values of 4<<, 4��, 
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and 4�� yielded a CBF in the range 55.1 – 55.8 mL min
-1 

100g
-1

. These results are within the 

range, and very close to the mean, of the CBF values observed experimentally of 54.7 ± 6.1 

mL min
-1 

100g
-1

 (Obrist et al., 1967). 

 

4. Discussion 

In this paper, we homogenized a statistically accurate 3-dimensional model of the human 

cerebral microvascular network in a portion of the temporal lobe. It was found that the 

permeability of the capillaries in the three principal directions was highly isotropic, with less 

than 1.2 % variation in their converged values. This was due to the “mesh-like” structure of 

the capillary network, and confirms that when modelling the cerebral microvasculature a 2-

dimensional simplification of the model is not a valid assumption, unlike when modelling 

coronary capillary networks (Smith et al., 2014).  

The off-diagonal permeability was found to be on average two orders of magnitude 

smaller than the permeability of the principal terms. This indicates that there was very little 

crossflow in the capillary network, despite its strongly interconnected nature. The standard 

deviation of the permeability tensor elements dropped according to a power law. This drop 

of the standard deviation with cube size is useful in characterising the capillary network. 

 The converged values of the diagonal permeability terms were found using an 

exponential line of best fit. The line of best fit passed through every cube size’s standard 

deviation error-bar. The converged values are of use when determining what size REV 

should be used. The choice is of course application dependent. When choosing, there is a 

trade-off between computational cost of generating the periodic sub-structure, and the 



Page 22 of 32 

 

maximal tolerated deviation, or error, from the converged permeability. The REV should 

also be of a sensible size relative to any clinical data that are being used to validate the 

model. If attempting to compare the model with perfusion imaging data, which usually have 

voxel sizes of the order of mm, then the REV should be smaller than the in-plane resolution 

of the imaging data. For a 375 µm cube the average error is found to be 4.5 % in this study. 

This drops to 3.5 % at 500 µm and 1.7 % at 625 µm. Larger cube sizes however require 

greater computational effort. Therefore on balance it was decided that the 375 µm cube, 

with an error of 4.5 %, was an acceptable REV for future study. The REV we have calculated 

is well below typical MRI resolution, and hence can be used with MRI perfusion data for 

validation. 

 Reichold et al., Secomb et al., and Lorthois et al. all constructed accurate cerebral 

capillary networks directly from experimental data (Lorthois et al., 2011; Reichold et al., 

2009; Secomb et al., 2000). Such networks are difficult to scale-up discretely due to the 

rapidly increasing computational cost as voxel size increases. The choice of boundary 

condition also has a very significant effect on the flow solution. Reichold et al. homogenized 

a 2-dimensional idealised model of the cerebral capillary bed, where all capillaries have the 

same diameter. The model built upon here, in contrast, conforms statistically to 

morphometric data, is 3-dimensional, and the homogenized flow solutions are independent 

of the choice of boundary condition. Additionally, the model here has been used to 

characterise the effect of the microvasculature on tissue-scale blood flow to allow for the 

construction of larger scale cerebral blood flow models. Such information has been 

previously unavailable. 
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 In a similar study, Smith et al. used the same homogenization methods applied here 

on synthetic rat coronary capillary networks (Smith et al., 2014). The network was assumed 

to be 2-dimensional with orthogonal connections between capillaries. They found that as 

the voxel size of the capillary network increases, the permeability drops and eventually 

converges. This is also found here for the principal terms, although the magnitude of the 

drop is found to be smaller than that for a coronary network. This was due to the much 

more complex, less-dense, random nature of the cerebral microvasculature reducing the 

variability of flow with varying cube size. Smith et al. also found that the permeability of the 

network is of order 10
-3 

mm
3
 s kg

-1
 in the longitudinal direction and of order 10

-4 
mm

3
 s kg

-1
 

in the cross capillary direction. We found that the permeability for the cerebral 

microvasculature is of order 10
-4

 mm
3
 s kg

-1 
in all three orthogonal directions, in agreement 

with the cross-capillary direction (which had a similar order magnitude density as our 

capillary network). As the larger permeability found in Smith et al. is attributed as 

compensating for the compression of the capillaries, and hence restricted flow in systole, 

then it would appear that a permeability of order 10
-4

 mm
3
 s kg

-1 
is enough both in the heart 

and brain to maintain healthy function. 

 One limitation of the model is the assumption of periodicity of the microvascular 

network. This assumption was made to simplify the derivation of the homogenized 

equations; however it is not yet known whether such an assumption is valid for the cerebral 

microvasculature. It can be argued that for a sufficiently random microstructure, the 

approximation of periodicity is a good assumption (Auriault, 2011; Holmes, 2013). In the 

absence of experimental data determining the randomness or periodicity of the capillary 

networks, periodicity is used to simplify the derivation.  
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It should be noted that the network generation algorithm used here is based on one 

set of experimental morphometric data (Cassot et al., 2006) (due to the lack of other 

accurate data on the cerebral microvasculature). Therefore, the permeability tensor 

calculated in this paper characterises only a small region of the brain. The network topology 

and density may vary substantially within the brain, being closely linked with functional 

activity. However, as the algorithm is statistically based, it would easily be possible to 

modify it for different sets of morphometric data, and to use the same homogenization 

procedure laid out in this paper to characterise the permeability of different regions. As 

more information about the topology and geometry of cerebral microvascular networks 

becomes available, the more it will be possible to effectively and accurately characterise 

other regions of the brain. 

 The blood flow model here assumed a constant hematocrit throughout the capillary 

network; hence the viscosity in each capillary was only dependent on vessel diameter. It is 

known, however, that at bifurcations and trifurcations in the network, plasma skimming (or 

phase separation) takes place, where red blood cells are distributed unevenly across the 

daughter vessels. This leads to changes in hematocrit throughout the capillary network. This 

effect has been quantified (Pries et al., 1989), but was omitted in this paper. Su applied this 

variable hematocrit model to his microvascular model (Su, 2011). He found the vessel flow 

rates were on average 20 % smaller in comparison to the constant hematocrit model. 

However, there was no significant qualitative difference in flow distribution patterns. A 

variable hematocrit model will be incorporated in future work. 

 The current discrete model adapted here (Su et al., 2012) is able to model voxel sizes 

of up to 625 µm before becoming computationally too expensive on a standard PC. In order 
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to make comparisons with clinical data, voxel sizes of the order mm will need to be 

generated. Imaging voxels are usually of the order mm
3
 in volume. Such a volume will 

contain, as well as capillaries, larger structures such as arterioles and venules. If any 

accurate comparison is to be made between clinical or experimental perfusion data and the 

model, arterioles and venules must be incorporated into the model in the future, whilst 

maintaining periodicity.  

 The method presented here provides a novel technique to ‘scale-up’ such discrete 

networks and to calculate the permeability tensor ". This tensor provides fundamental 

information about the network flow conductivity and can be used to parameterise large 

models of the microvasculature. Modelling larger volumes of the brain is important for 

understanding whole-organ cerebral flow. The permeability tensor calculated here 

represents capillary bed flow conductivity under normal conditions. The framework 

developed however, could also be used to quantify the effects of microvascular changes in 

the brain. Of particular interest is ischemic stroke, where a statistically accurate network 

model is already in place (Park and Payne, 2013). The current stroke model is discrete and 

only able to model cube sizes of 250 µm. Applying the techniques laid out in this paper will 

allow us better to determine the effects of ischemic stroke on the permeability of the 

capillary beds, as well as to build larger scale models to compare with imaging voxel data. 

 

5. Conclusions 

 This study has characterised the tissue-scale permeability of the cerebral 

microvasculature. Mathematical averaging techniques were combined with a statistical, 
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periodic, anatomical model of the cerebral capillary bed to determine the permeability 

tensor. Calculation of the permeability tensor enables characterisation of the 

microvasculature flow properties to be performed at a specific region in the brain. This can 

then be used to build larger models of perfusion which can in turn be compared to voxel 

data for validation. The techniques laid out in this paper could be used to scale-up other 

microvascular topologies and densities. This will allow larger regions of the brain to be 

modelled, helping us further to understand the link between the microstructure and global 

perfusion. The permeability tensor has been shown to converge to some effective 

permeability (4A::) at larger voxel sizes, as well as to be isotropic, reflecting the mesh-like 

structure of the capillary network on the micro-scale. The off-diagonals are normally 

distributed about zero. These results parameterise the microvasculature for a region of the 

brain, and allow larger scale continuum models to be built. Future work will involve adding 

arterioles and venules to the statistical discrete model of the microvasculature, in order to 

provide an accurate comparison of modelled perfusion values and perfusion values 

extracted from imaging data. 
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Appendix A. Homogenization of Stokes Flow 

We briefly present here the homogenization of Stokes flow. Since we are assuming scale 

separation between the micro and macro length scales ( � ≪ 1), the macro length scale can 

be defined in terms of the micro length scale as V = ��. Therefore both V and � can be 

treated as independent variables and so: 

 ∇ =  ∇� + �∇W ,     ∇�=  ∇�X + 2�∇W. ∇� + ��∇W� (A.1) 

Using (A.1) in (6) and (2) leads to: 

 −∇��� − �∇W�� + �∇�X�� + 2��∇W. ∇���  + ��∇WX�� = 0  (A.2) 

 ∇�. �� + �∇W. �� = 0 (A.3) 

with the no-slip, no-leak boundary conditions unchanged. A multiple scales expansion of the 

form: 

 �� = ��(�)(V, �) + ���(<)(V, �) + ����(�)(V, �) + ⋯ 

�� = ��(�)(V, �) + ���(<)(V, �) + ����(�)(V, �) + ⋯  
(A.4) 

is substituted into the above equations, with successive orders of � equated in order to 

determine the leading order homogenized equations for capillary flow and pressure. In 

order to maintain periodicity each component of �� and �� is periodic in �. 

Equating powers of Z(1) in equations (A.2) and (A.3) gives: 
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 ∇���(�) = 0,    ∇�. ��(�) = 0  (A.5) 

and equating powers of Z(�) gives: 

 ∇���(<) + ∇W��(�) = ∇�X�� ,     ∇�. ��(<) + ∇W. ��(�) = 0  (A.6) 

From (A.5) it is evident that ��(�)
 is constant at the local scale. In order to determine the 

leading order problem it is necessary to solve for ��(�)
 and  ��(<)

. From (A.6) it can be seen 

that ��(�)
 and ��(�)

 are both linear functions of ∇W��(�)
 and so solutions are proposed of the 

form: 

 ��(�) =  −[�'(�) ���(�)
�='  

(A.7) 

 ��(<) =  −.�'(�) ���(�)
�=' +  ��\ (<)

 
(A.8) 

where 0 can take the values 1, 2, or 3 and refers to the Cartesian co-ordinate directions, and 

[�'(�) and .�'(�) account for the local variations in ��(�)
 and ��(<)

 and are known as the cell 

variables. Inserting the proposed solutions into (A.5) and (A.6) leaves us with the cell 

problem: 

 ∇�. [�'(�) = 0 ,     ∇�.�'(�) = ∇�X[�'(�) + ]^   in Ω� (A.9) 

with no-slip, no-leak boundary conditions in terms of [�'(�), and ]^ being the unit vector in 

the 0-direction. This is the local periodic cell problem which must be solved numerically in 

order to derive the parameters of the macro scale problem. The local pressure term is only 

defined up to a constant value and so a uniqueness condition is imposed which states that 

the volume average of .�'
 is zero. 
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Taking a volume average over ��(�)
 (A.7) results in: 

 ���(�) Ω! =  −"∇W��(�)
 (A.10) 

where  

 45' =  1
|Ω| b c�5'  �d

Ω!
 

(A.11) 

This is Darcy’s Law with " defining the permeability tensor. Therefore, to leading order, the 

homogenization of the Stokes equation results in Darcy’s Law. 

 Finally, consider the expanded incompressibility equation in (A.6) and volume 

average over the fluid domain. Using the divergence theorem, along with the no-slip 

condition and periodicity of ��(<)
 leads to the macro-scale volume conservation equation 

 ∇W. ���(�) = 0 (A.12) 

 



Highlights 

• Homogenization of statistically accurate human cerebral capillary networks. 

• A converged, isotropic permeability is determined as cube size increases. 

• A REV of 375 μm found to give error of 4.5% from converged permeability. 

• The permeability gives a CBF in agreement with experimental values. 

• Opens up possibility of large scale cerebral blood flow models. 




