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Abstract 

An outlier detection test related to a robustified score test is proposed and compared with the 
sign test and other tests based on functions of estimated residuals. Examples of an autoregres- 
sive process and a regression model with autoregressive errors are presented to illustrate the 
techniques. 
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1. Introduction 

The use of residuals for diagnostic and outlier detection tests is well known in 

regression analysis and the use of sums of the signs of residuals in outlier detection 

tests has been studied by Brown (1975), Brown and Kildea (1979), see also David 

(1962). More recently this approach has been extended to stochastic processes by 

Huggins (1989). These tests are based on noting that in the presence of asymmetric 

contamination the sum of the signs of residuals resulting from a non-robust estimating 

procedure becomes large which enables the construction of outlier detection tests. 

However, as revealed in simulations below, the power of tests based on the signs of 

residuals can be poor and in particular in small samples the discrete nature of the sign 

test can cause problems in determining the appropriate size of the test. Further, the 

sign test is no longer strictly non-parametric as its asymptotic variance depends on 

assumptions about the error distribution. This motivates us to search for tests of 

increased power by considering more informative functions of the residuals. 

More generally, we apply our results to test if an easily calculated estimator, such as 

the least squares estimator, is the solution of a set of robust estimating equations 

which guard against outliers. Typically these robust estimating equations involve 

vectors of weighted sums of functions of standardised residuals, see for example 

Denby and Martin (1979), Martin (1979, 1980), Bustos (1982), Basawa et al. (1985), 

Godambe (1985), Martin and Yohai (1985, 1986), and Kulkarni and Heyde (1987), 

amongst others. Out test statistic in this setting is akin to the robustified score statistic 
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of Basawa et al. (1985) which is preferred to the direct comparison of the least squares 

and a robust estimate, a type of Wald statistic to which our tests is asymptotically 

equivalent, for computational reasons. This approach is in line with the estimating 

equation approach of Godambe and Heyde (1987) which focuses on the estimating 

equations rather than the resulting estimator. A similar philosophy is evident in 

Basawa (1985) and Basawa et al. (1985) where a preliminary estimator is adjusted by 

the estimating equations to provide a robust estimator. Unlike the leave-k-out 

diagnostics of Bruce and Martin (1989) and the tests of Fox (1972) our concern is less 

with the identification of particular outliers and more with establishing the presence of 

outliers that influence the parameter estimates. 

The properties of the tests result from the derivation of the asymptotic distribution 

of functions of the estimated residuals from fitting a model to a stochastic process, 

where the residuals are standardised using a robust estimate of scale. A robust 

estimate of scale is used to prevent the masking of outliers by inflated estimates of 

scale. The procedure is described in Section 2, some examples are given in Section 

3 and some simulations are discussed in Section 4. 

2. The test statistics 

Let {X,, F,,; II 2 l} be a stochastic process and suppose we have some model 

E(X,IF-I) =fn =.a@, 

where BE KY, and&(Q) is some gnP 1 measureable function which is twice differentiable. 

Further, let 

R, = X, -f,(Q) 

and suppose that for CJEP, 

E(Rn’ 1 Pn- 1) = gn’ = g:(d, a). 

In our applications we estimate the parameters I!I by the conditional least squares 

estimators e,, which are solutions of the estimating equations 

W,(Q) = j$l q Rj = 0, 

which usually do not involve an estimation of scale and then separately estimate 

a measure of scale, 0, from the estimated residuals 

kj = Xj -h(e;l). 

Let 10 be an even function and define h, = E{Xo(R,,/g,,(O, a)) 1 Fn- 1} where this 

conditional expectation is computed according to some model for the process. 

Typically for such models h, will be free of f3 and C. We then estimate o by solving 

(2.1) 

and denote this estimate of c by 6. 
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Our main practical concern is the detection of outliers and non-symmetric error 

distributions so that our model for the process under the null hypothesis will at least 

specify that the conditional distributions of the R, given Fn-i are symmetric about 

zero. Then for any odd function $, 

E(ti(Rn/~n) I %-I) = 0 

so that the process 

(2.2) 

SZ”(u, 0) = i $tRjlgj) 

j= 1 
(2.3) 

will be a martingale under the null hypothesis. Note that Si” is a natural generalisa- 

tion of the sign test to other measures of location. 

Theorem 2.1 shows that under regularity conditions a; “2Si1’(6,,, a,,) is asymp- 

totically normal with variance e and we use this asymptotic variance to construct an 

outlier detection test, typically under some model for R,/g,,. That is if 

la, “2sj11’(B,, &,)I > z,,e:, 

we would conclude that for some n the f,(Q) are not solutions of 

E($(R,)/g, 1 Fn- 1) = 0. This may then be due to the presence of asymmetric outliers or 

error distributions. Simulations in Section 4 below reveal that tests based on Si” for 

typical $ associated with measures of location can have poor power unless the 

estimating equations that define 8,’ include the constraint that 1 Rj = 0 and that some 

sensitivity is lost when the contamination is symmetric. 

In order to increase the power and generality of our tests, we consider a statistic 

related to the robustified score statistic of Basawa et al. (1985). Let I!?,’ and 8, be as 

above and let 

SY’(O, a) = i WjtitRjlgj) 
j=l 

for some vector of predictable weights wj~R” be a martingale estimating equation. 

Typically, these estimating equations are constructed to guard against various types 

of outliers. Under the regularity conditions of Theorem 2.1, the statistic 

will have asymptotically a chi-square distribution. Once again large values of this 

statistic lead us to conclude that thef,(@ are not solutions of E($(R, ( Fn- 1) = 0. Note 

that if cr2 were known then a Taylor series expansion of Sp’(&“, a2) , where g,, is 

a solution of Sa’(0, g2) = 0, about 6n shows that tests based on Sp’ are asymptotically 

equivalent to testing if the means of the distributions of &,, and g,, are the same, i.e. 

testing if &,, and 6n are estimating the same parameters. The simulations of Section 

4 show that for the examples considered the power of tests based on SL2’ is superior to 

that of the sign test or that of tests based on Si”. 

Our main technical result involves the joint distribution of a test statistic and 

location and scale parameters. We suppose throughout that a,, I, and rl, are diagonal 
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matrices and further suppose that $’ and xb exist so that Taylor’s theorem or the mean 

value theorem is applicable. A suitable $ is Tukey’s bisquare. For a function g(IJ)ER* 

where PER’ we take dg(/I)/dfi to be the r x s matrix with (j, k) element dg,/dp,. The 

theorem is stated in terms of a general S, which may be taken to be either of S!,‘) or 

Sy’. In the former case note that S,, a, and w, are all one dimensional. 

Theorem 2.1. Zf 

a, “2Sn(f( &N(O, v*), (2.4) 

I, “* W&J, &N(O, Cl) , (2.5) 

f; "2Qn(d, &N(O, Z,) (2.6) 

” 

-l/2 
a, 

c 

E(Rj~(RjlSj)IFj-l)ln1'2~C1, (2.7) 
j=l 

E(RjXo(Rj/gj) I Fj- 1)k “‘5G_> (2.8) 

dS Lln(&, 8,) = - a, 1/Z ” 
d6 B d I’ 

l’Q+L1 (0, rr), 
n, n 

dS, LZ”(&, a,)(& a) = ail’* da _ 

&,a I- ” l’*J-+L*(e, a), 
I” 

(2.11) 

Cl&,, 8,) = I- 1’2 d wn n a- #“.&Ii "*:Gl(8, CT), (2.12) 

G,,(@,, 8,) = I’- “* dQn ” da fi 1’25G2(R 4, (2.13) ~“,d 
I 

dQi, 
G&n, 8,) = c-1’2 =I, 1'2:GG3(8, a), 

where Cl and G2 are non-singular. Let B = (L, G, ’ - L, CT1 G3 G; ‘). Then 

a; “*S,(&, b&N(O, e), 

(2.14) 

where 

e=~2+BC1BT+L2G;1C2G;TL~-C1BT-BC~-C3G;TL~-L2G;1C~ 

+ BC2GTTL; i- L,G;‘C;B? (2.15) 
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Proof. Taylor series expansions of S,(f!,,, 8,) around (0, rr), IV,,(&) about 0, Q,(e,, 8,) 

about (0, 0) and (2.10))(2.14) show that the asymptotic distribution of a; i/‘&(6,,, 8,) 

is the same as that of 

a, 1’2S,(e, 6) - BZ, i” I%‘,, - L2 G; i f; i” Q,,. 

The theorem now follows from Cramer Wold device and the martingale central limit 

theorem using (2.4)-(2.9). 

Further, note that for many $, under our hypothesis of symmetric errors, the 

asymptotic variance may be considerably simplified. 

Corollary 2.2. Zf the conditional distributions of the R, given Fn_ 1 are symmetric about 

zero and if Ic, is an odd function then 

e=q2+BClBT+L2G;1C2G;TL~-C1BT-BCI. 

Remarks. (1) Note that under the conditions of Corollary 2.2, L2,,(0, g) is a martingale 

and the law of large numbers for martingales will often imply that LZ(8, 0) = 0. 

Similar results hold for G3(0, a) as x’~, is an odd function. Thus one will often have 

that 

e = q2 + LIG;‘C,G;TLT - CIGTTLT - LIG;‘Cl. 

In this case the asymptotic distribution of our test statistics will not depend on the 

distribution of 8,. This is true of all the examples we consider below and in such cases 

for practical convenience we estimate o2 by the median absolute deviations multiplied 

by @-‘(a) which is still an M-estimator, see Hampel et al. (1986, p. 107). 

(2) Conditions (2.10)-(2.13) generally require consistency of & and c?, and a conti- 

nuity condition on L1 (0, o), etc. See Klimko and Nelson (1978) Nelson (1980) Section 

6.3 of Hall and Heyde (1980) and Crowder (1986) for related results. 

3. Examples 

Example 3.1. First-order autoregression, p = 0.4, g2 = 1. 

We examine a first order autoregression X, = gX,_ 1 + E, where IpI < 1, and the 

e, are independently and identically distributed as standard normal variables with 

mean 0 and variance g2. 

Let kj = Xj - flXj- 1. We consider the statistics 

” 

To = n-“2 c sign(Rj), 

j= 1 

T,=n- n l/2$1’ = n-l/2 
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Fig. 1. Outcomes of a first-order autoregressive process: (a) outlier detected; (b) outlier not detected. 

and 

r, = n-1/292’ = n-l’2 
n 

It is easily shown that the asymptotic distributions of To, T1, and T2 are normal with 

zero mean and variances 1, E($(Z)‘), and Vi0~/(1 - p2), where 

vi = CW2(Z)) + E2($‘(Z) - 2w’mKwG))1> (3.1) 

respectively where Z has a standard normal distribution. Note that in this example for 

T, both Ci and Li are zero so that S, and W, are uncorrelated. This leads to the 

expectation, confirmed in the simulations below, that tests based on To and T, will be 

useless in this case. 
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Two simulated outcomes of this process with one additive outlier of size + 4 at 

point 28 is given in Fig. 1. For the data of Fig. l(a) the value of T, was - 0.6774 which 

was less than - 1.96 x VIAz/( 1 - 8’) = -0.426. In this case the least squares esti- 

mate of b was 0.3486 whilst a robust estimate using Huber’s $ with k = 1.7 and the 

median absolute deviation multiplied by @- ‘(1) to estimate scale was 0.2987. In Fig. 

l(b) the value of T2 was -0.365 and - 1.96 x V1b2/(1 - a’) = 0.472. Here the least 

squares estimate was 0.3969 and a robust estimator computed using Hubers $ as 

above was 0.3788. These simulated outcomes illustrate how the procedure only 

detects the presence of outliers that are influencing the parameter estimates rather 

than identifying particular outliers. 

Example 3.2. First-order autoregression, /I = 0.4, CT = 1 with mean cn = 1. 

We consider the application of our results to the first order autoregressive process 

X, = CI + /3X,_ 1 + R, where - cc < 3 < m, lfil < 1 and the R, form a sequence of 

independently and identically distributed random variables with zero means and 

common variance 02. In this example the estimating equations for & include the 

constraint that xRj/gj = 0. We retain the outlier construction of Example 3.1. 

Now Rj = Xj - 6, - pXj_i and we let 

n 

T,, = t~l’~ 1 sign(ij), 
j=l 

T1 = ,m1/2‘3” = y l/2 
n 

and 

T2 = ,-1/2S(2) = n-l/2 
n 

The asymptotic variance of To was shown in Huggins (1989) to be 1 - 2/7c and that 

of T1 can be shown to be Vi, given by (3.1). The asymptotic distribution of T2 is 

bivariate normal with covariance matrix 

1 
V1 

EMI - B) 

r/(1 - p) x2/(1 - /I)’ + a2/(1 - B”) ’ 

where again V, is given by (3.1). 

Example 3.3. A regression model with autoregressive errors. 

In this example we illustrate how our results may be applied in more complex 

situations. The works of Basawa et al. (1985) and Kulkarni and Heyde (1987) have 

both considered the regression model with autoregressive errors, 

x, = BTC, + Y,, Y, = NY,-1 + E,, 
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where (c( ( < 1 and the E, are independently N(0, 1) random variables. We consider here 

the simple regression 

Xn=B1 +BzCn+ Y” 

and take a, = I, = n. 

Then 

Following Basawa et al. (1985) and Kulkarni and Heyde (1987) let 

n-1 

&I = d&J, F” = 1 a'&, 

j= 1 

where E, = X, - uX,_~ - bI(l -CL) - P2(Cn - CL,_,), and let 

1-a 

S,= i Cj-OrCj-1 gj 
j=l I 1 ~j-1 

We suppose that c = lim{n-‘x(Cj - aC’_ , I), d = lim{n-‘C(Cj - CtCj- 1) and 

limn-‘CCf exist, and let kI = E(Z$(Z)), k2 = E(ti2(Z)), where Z y N(0, 1). Then it 

can be verified that 

[ 

(I-r$ c 0 

q2=k2 c d 0 9 Cl = 
0 0 k,/(l - a”) 1 

(1 - cq c 0 

L1 = ,5($‘(Z)) c d 0 

[ 

, 

0 0 k,/(l - a2) 1 
G, = C1 and Cl = Llkl/E($‘(Z)). 

4. Simulations 

We consider here a small simulation study of Examples 3.1 and 3.2 to examine the 

powers of the tests using two types of contamination, additive and innovations outlier 

models, commonly used in other studies, Denby and Martin (1979), Martin and Yohai 

(19X6), and Bruce and Martin (1989). An additive outlier is an outlier added to the 

process, that is if X, is the stochastic process of interest we observe Y,, = X, + Z,i_, 

where Z, takes the values 0 or 1 and 4, is some contaminating process. For 

innovations outliers the model is X,, =f,(0) + E, + Z,&, where 2, and 4, are as 
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above. In view of the differentiability requirements of Theorem 2.1 we use Tukey’s 

bisquare 

if 1x1 < a, 

otherwise 

to illustrate our technique and the median absolute deviation multiplied by @- ’ (a) to 

estimate scale. 

We consider outlier configurations consisting of a single additive outlier of + 4 at 

point 28, a single innovations outlier of + 4 at point 28, and an additive outlier of 

+ 4 at point 28 and another additive outlier of - 4 at point 72. The results are based 

on 1000 simulations. 

For Example 3.1 the tests were conducted at a nominal level of 0.1 and the null 

distribution of all three statistics gave approximately this significance. The power of 

T, and Ti remained close to 0.1 for all three outlier configurations. The power 

of T2 was approximately 0.34, for one additive outlier, approximately 0.3 for 

one innovations outlier, and approximately 0.4 for the two outliers of opposite 

sign. This example illustrates the clear superiority of T, without the constraint that 

~Rj/gj = 0. 

For Example 3.2 the simulated tests were again conducted at a nominal level of 0.1 

and under the null distribution all tests had approximately this power. For one 

additive outlier the powers of To, T1 and T2 were approximately 0.12,0.33 and 0.43, 

respectively, and were similar for the innovations outlier. In the symmetric outliers 

case the powers were approximately 0.1, 0.17 and 0.42, respectively. If the contamina- 

tion consisted of three additive outliers of size + 4 at points 28,50 and 72 the power of 

the tests were approximately 0.26,0.87 and 0.88. If the additive outlier at point 50 was 

changed to - 4 the powers were 0.11, 0.34 and 0.54. 
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