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Abstract 

In this paper we obtain lower bounds for the tails of the distributions of the first passage-times 
for some stochastic processes. We consider first discrete parameter processes with asymptotically 
small drifts taking values in Iw+ and prove for them a general result giving lower bounds for 
these tails. As an application of the obtained results, we obtain lower bounds for the tails of the 
distributions of the first passage-times for reflected random walks in a quadrant with zero-drift 
in the interior. The latter bounds are then used to get explicit conditions for the finiteness or 
not of the moments of the first passage-time to the origin for a Brownian motion with oblique 
reflection in a wedge. 
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1. Introduction 

This paper deals with lower bounds for the tails of the distributions of the first 

hitting times of compact sets (called simply first passage-times) for one class of one- 
and two-dimensional stochastic processes with a discrete parameter. 

An extensive literature exists on first passage-times for general irreducible count- 
able Markov chains. They are known to be particularly important for the recurrence 
classification due to the fact that generally under moment conditions on their one-step 
transition probabilities the tails of the first passage-times have the same asymptotic be- 
havior as the tails of the first return time to a given state. Many of the papers deal with 
the so-called geometric ergodic Markov chains when the first return and passage times 
has exponential moments and the rate of convergence to the stationary distribution 
is exponential (we invite the reader to consult Meyn and Tweedie, 1993; Nummelin, 
1984; Fayolle et al., 1995). Another class of well-studied processes is one-dimensional 
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Markov processes where one can obtain thorough results on first passage-times, like, 
for example, in the case of birth and death processes. On the other hand, there are 

only few results available in the case of multidimensional Markov processes with sub- 
geometric ergodicity when the first return times do not have exponential moments and 

the rate of convergence is subgeometric. We can mention here the papers by Num- 
melin and Tuominnen (1983) and Nummelin and Tweedie (1994). Such processes 

have got recently a rising interest because of their links with various applications, like 

for instance, statistical physics, the queuing theory, etc. Moreover, the existing results 
deal only with upper bounds on the tails of the first return times and do not pro- 
vide one with lower bounds which are especially of interest in the case of Markov 
processes with subgeometric ergodicity because of their intimate connections with 

lower bounds on the rate of convergence of the transition probabilities to the invariant 
distribution. 

One of the natural approaches to the first passage-time problem for multidimensional 

Markov chains consists in reducing it to the one-dimensional one and then to get some 
information about “transformed” first passage-times. Obviously, by doing so we sim- 

plify the state space but bring a new difficulty: the obtained one-dimensional process 
need not be Markovian. For one-dimensional non-Markov processes with discrete pa- 
rameter, Lamperti (1963) has obtained general conditions on existence or non-existence 

of their first passage-time moments of the integer order greater or equal to one. In As- 
pandiiarov et al. (1994), the criteria of Lamperti were extended to cover the case of 
the moments of arbitrary order. We also weaken the hypotheses of Lamperti. However, 
again these results are not entirely satisfactory because they only provide us with upper 

bounds on the tails of the first passage-times. In the present paper we complete them 
by proving general conditions formulated in submartingale terms for lower bounds for 
the tails of the first passage-times for positive stochastic processes that need not be 

Markov. The main results are given in Theorems 1 and 1’. As a consequence, in 
Corollary 2 we immediately get sufficient conditions of non-integrability of functions 

of the first passage-times. It should be mentioned that although in this study we were 
primarily motivated by discrete-time applications, the recent paper of Menshikov and 

Williams (1994) on continuous-time analogues of the results in Aspandiiarov et al. 
(1994) strongly indicates that Theorems 1 and 1’ and Corollary 1 can also be extended 
to the continuous-time setting. 

In Section 3 we illustrate the obtained results on two-dimensional driftless reflected 
random walks in a quadrant. We get lower bounds for the tails of their first passage- 
times (Theorem 3) and prove the non-integrability of functions f of the first passage- 

times of the type f(x) = ..x’/~ log-’ x . . . log,’ x (resp. f(x) = log x log,’ x . . . log,& x), 
in the case CI > 0 (resp. CI = 0) for any k 2 1 (CI is one parameter depending on the 
geometrical data corresponding to the reflected random walk). This gives a negative 
answer to the question of existence of the moment of the critical order cr/2 raised 
in Aspandiiarov et al. (1994) where it has been proved that pth moment of the first 
passage-times is finite (resp. infinite) if p < u/2 (resp. p > a/2). Besides, it refutes one 
conjecture in Fayolle et al. (1995) on ergodicity of the reflected random walks in the 
case c( = 2. In a forthcoming paper (Aspandiiarov and Iasnogorodski, 1994) we will 
show that the estimates of Section 3 give in fact fairly sharp bounds for tails of the 
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distributions of the first passage-times (for instance, in the case a = 0, the functions 
f(x) = log x log,’ x . . . log,’ x 1og;$+x) x will be integrable for any x > 0 and k B 1). 

The second class of two-dimensional processes treated in the paper is Brownian mo- 
tion with oblique reflection in a wedge constructed in Varadhan and Williams (1985). 
We get a sufficient condition for existence and non-existence of the moments of the 
order p > 0 of its first passage-time to the origin (Theorem 5). The criterion is an 
analogue to the classical one of Spitzer for the first exit times from a wedge by pla- 
nar Brownian motion and in very particular case p = 1 has been proved earlier by 
Varadhan and Williams (1985). Its proof is based on the lower bounds for the reflected 
random walks, the results of Aspandiiarov (1995) on the approximation of Brownian 
motions with oblique reflection and the results on the existence of the first passage-time 
moments in Aspandiiarov et al. (1994) and suggests another way of using Theorem 1. 
Let us finally mention that using a different approach based on the continuous-time ana- 
logues of the results in Aspandiiarov et al. (1994), Menshikov and Williams (1994) 
gave a direct proof of Theorem 5 in all except the critical case p = u/2. Moreover, 
they are able to prove finiteness of the pth moments in the case 0 -C p < u/2 c 1 
which is not covered by our results. 

2. Non-negative stochastic processes with asymptotically small drift 

Let (sZ,F-,P) be a probability space equipped with a filtration {gn}nbs. Let x be 
a positive number and let {X,, n 20) be a discrete-time {&}-adapted non-negative 
stochastic process such that X0 = x. For each A>O, we will denote by rA the following 
first passage-time into the interval [O,A]: 

TA E r;A=inf{n>O; &<A}. 

(as usual inf 0 = +oo.) For each B 20, let 

iB=inf{naO; &2B}. 

We recall a result proved in Aspandiiarov et al. (1994) (Lemma 2) which plays a key 
role in the investigation of the non-existence of means of functions of the passage- 
times rA. 

Lemma 1. Suppose there exist positive constants A, C and D such that for any n 2 0, 

-x,fI&)> -c on {ZA >n} (1) 

and, for some r > 1, 

(2) 

Then, for any v E (0, l), there exist positive E and 6 that do not depend on A such 
that for any n: 

P(~A>n+&,,,I%) > l-v on {&*,>A(1+6)}. (3) 
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Remark 1. Let us now explain why we call the processes {X,, n 20) the processes 
with asymptotically small drift. Suppose that in addition to the conditions of Lemma 
1 there exists a positive constant c such that for any n > 0 

E((X,+i -X,)2 )4)<c on (7.4 > n}. 

As easy then to see, there exists a positive constant cl such that 

(1’) 

IEGG+ -X,19n)l<$ on (7~ >n}. (4) 
n 

In fact, it suffices to apply (2) and the inequality x2r - y2’ >2ry2’-‘(x - y), for x, y > 0 

(valid since f(x) = x 2r is convex) to get the upper bound in (4), whereas the lower 

one follows from (1) and (1’). 

The main result of this section is the following lower bound for tails of rA. 

Theorem 1. Let {X,, naO} be an {&}-adapted stochastic process taking values in 
an unbounded subset of lR+ and satisfying the conditions of Lemma 1 with some 
positive constants r,A,C and D. Suppose that X0 = x > A and ZA is finite with 
probability 1. Suppose also there exist a positive constant BQ > A and a (&j-adapted 
process (U,, n 20) with the following two properties: 

1. The process (Unr,r4A;B, n 20) is an untformly integrable submartingale for all 
B>Bo; 

2. There exist functions G : R+ -+ R+ and H : R+ + R+ such that for all BaBo: 

G(B) on {TA > 61, 
u -d 

7AATB H(A) on {ZA d ?B}. 

Then, for any v E (0,l) there exist positive constants cl = cl(v,r, C,D) and so = 
so(v, r,A, Bo, C, D) such that for s > SO: 

p(zA >s> > (1 - v)(Uo - H(A)) / , 
G(cI&) ’ (5) 

Remark 2. As can be seen from the proof the quantities cl and so can be defined by: 

Cl = l/v6 SO = E max(A2( 1 + ~5)~, Bi), 

with any positive constants E = E(V, r, C, D) and 6 = 6(v, r, C, D) satisfying the inequal- 
ity (3 ) in Lemma 1. 

Remark 3. Even though the process X does not appear clearly in the formulation of 
Theorem 1, it influences the behavior of U through the random times rA, 1~. 

We first give one immediate consequence of Theorem 1 whose intuitive meaning 
is that if X is a process with asymptotically small drifts and if {F(X,), n 20) is a 
submartingale with some positive function F, then lower bounds for the tails of the 
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first passage-time are at least of the asymptotic order 0( l/F(&) as s -+ co. More 

specifically, we have: 

Corollary 1. Let {X,,, n20) be a process satisfying the hypotheses of the last theo- 
rem. Suppose also that there exists a positive function F increasing on some interval 
[B,oo) such that the process {F(X,,,,,), n 20) is a submartingale. If the process 
{X,, n>O} satisfies the condition IX;- - XY~_, 1 <KB, for all large enough B and 
for some positive constant K, then for any v E (0,l) there exist positive constants 
cl = q(v,r,B,C,D,K) and SO = so(v,r,A,B,C,D) such that whenever X0 =x satisjes 
x>AVB we have for s>so: 

p(zA >s)> (1 - v)@‘(x) - F(A)) / / 
F(CI fi) (6) 

Proof. It suffices to set U,, = F(X,), G(x) = F(x(1 + K)), H(x) = F(x). 0 

Let us now discuss the meaning of Theorem 1 and the method of using it for multi- 
dimensional Markov processes. Suppose we are given a multidimensional Markov pro- 
cess {Z,, n 20) and we would like to find lower bounds for the tails of its first 
passage-times. The algorithm based on Theorem 1 is very natural and is as follows. 
We first try to find a positive not necessarily one-to-one function f defined on the 

original state space such that the image-process {X,,, n 20) defined by X = f (2) 
satisfies the conditions of Lemma 1. The important restriction on the choice of f is 
that the knowledge of the asymptotic behavior of tails of the first passage-times for 
X should provide the adequate information for the original process Z. Once such f 
is found, the next step consists in constructing a submartingale {U,,, n 2 0) satisfying 
the conditions of Theorem 1. As a rule, we look for U among U = g(Z), where g is 

another positive mapping of the original state space. Such functions g are sometimes 
called Lyapunov functions. It is important to mention here that generally the processes 
X and U can be related to each other only implicitly. Finally, applying Theorem 1 we 
get lower bounds for the tails of the “transformed” positive processes which in turn 
give us the desired lower bounds for the process {Z,, n 2 0). 

Let us notice here that one hidden difficulty in applying Theorem 1 for multidimen- 
sional Markov chains in the method described above is that generally the jumps of 
the process U = g(Z) are not bounded at the random time zg so that the function G 
from Theorem 1 may take infinite values which makes the lower bound trivial. The 
following observation and corresponding modification of Theorem 1 might be of use. 

Notice first that the condition on G deals only with U,, on {ZA < zg}. The modifica- 
tion of Theorem 1 given below (Theorem 1’) shows that if we can “truncate” infinite 
jumps of the process Z only at ZB without changing the process {g(Z,,,,,,,,), n 20) on 
{n A TA < TB} in such a way that the images UB = g(Z@)) under g of the “truncated’ 
processes are still submartingales, then we still get lower bounds of the first passage- 
times for the process X = f(Z) and, hence, for the tails of the first passage-times for 
the original process {Z,, n 20). An example of this approach will be given in the next 
section where we treat two-dimensional reflected random walks in a quadrant. 
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In a similar way based on truncating, one can extend Corollary 1 to the situations 
where the process {&, n 20) does not satisfy the condition IX:, - Xis_, ( <KB. 

Theorem 1’. Let {X,,, nBO} be an {Fn}-adapted stochastic process taking values 
in an unbounded subset of Iw+ and satisfying the conditions of Lemma 1 with some 
positive constants r,A, C and D. Suppose that X0 = x > A and 7~ is finite with 
probability 1. Suppose also that for some positive Bo > A we are given a family of 
{&)-adapted processes { { I!J,‘~‘, n > 0}, B 2 Bo} with the following properties: 

1. The initial values Ur’ = Uo do not depend on B. 
2. For all B3Bo, the processes {Ui”,iA,i,, n 20) are untformly integrable sub- 

martingales; 
3. There exist functions G : R+ + lR+ and H : R+ -+ R+ such that for all BaBo: 

U(B) < TAASB 
( 

G(B) on {TA > fB}, 
H(A) on {zA<?B}. 

Then, for any v E (0, l), (5) holds with s > SO, where the positive constants cl = 
q(v, r, C, D) and SO = so(v, r, A, Bo, C, D) are given in Remark 2. 

Proof of Theorems 1 and 1’. We only prove Theorem 1. The proof of Theorem 1’ can 
be obtained from it by replacing U by UcB) and is omitted. The idea of the proof is 

inspired by that of Theorem 3.2 in Lamperti (1963). Let v be any fixed number from 
(0,l). By Lemma 1 there exist positive E = E(V, r, C, D) and 6 = 6(v, r, C, D) such that 
for any n: 

P(rA>n+EX,2,, 14) 3 1 -v on {XnAZA >A(1 +Q}. 

As is easy to see, this implies that for any stopping time p we have 

p(rA > I_1 + $& I&) > 1 - V On {&/,i, > A( 1 + 6)) n {p < Co}. 

Let us fix any B such that B > max(A(l + o),Bo). We set p = ?B. Then, the last 
inequality permits us to deduce that 

P(r,z, &B2) 2 R(rA > ?B + &XtBATA, ?, < TA) 
= E(l( i,<r,)P(zA > ?B + &X;B,yTA Is?, 1) (7) 
2 (1 - v)R(?s < ZA). 

A good control of the last probability in (7) is given by the properties of the process 

{ uiB), It > 0). Namely, from 1 and (r.4 A ̂ ;B) < 00 we have 

U. < EUcB) - TAATB 

Hence, from assumption 2, 

UobE(U(B)l ?A TA<iB) +E(Ug)l T,+?,)<H(A) + @B)f’(z~ > SB>. 

and 
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Putting this estimate into (7), we get that for B > max(A( 1 + 6) Bo), 

p(zA >EB2)> (1 - v)(Uo -f&f)) 
, A 

G(B) ’ 

This implies that for all s > smax(A2(1 + S)2,Bi), 

IyZA >s)> (1 - v)(Uo -H(A)) , , 
%I’% ’ 

as was to be shown. 0 

Theorems 1 and 1’ easily give a sufficient condition of the non-integrability of func- 
tions of rA. To formulate it we need to introduce the following: 

Definition 1. Let f be a positive function defined on [O,co). It is said to satisfy the 

condition (R), if there exist positive af > 1 and ir such that lim sup,_,[f(afx)/f(x)] 
<Al_. 

Corollary 2. Let f : R+ 4 R+ be some positive function such that it increases in 
some neighborhood of CO, and f(s) -+ +ca as s --+ +cQ,. In conditions of Theorem 1 
(or 1’) suppose that G is a positive continuous function satisfying the condition (R) 
such that 

J +03 f'(s)ds 

m =03. 

Suppose also that whenever X0 = x > A, we have UO > H(A). Then whenever 
& = x > A, E (f (TA )) is injinite. 

Proof. We see that since G satisfies the condition (R) and G is a positive continu- 

ous function, then there exist positive constants UG > 1, To such that for all x 3 1, 

G(ao~)/G(x) <Zo. By Lemma 1 there exist positive constants ~0, 60 such that (3) holds 
with E = ~0, 6 = 60. Obviously, (3) will also hold with any cd&o A 1, 6 = 60. Let no 
be any positive integer such that aG2no <EC, and let ~1 = CZ;~~“. Then, by Theorem 1’ 
and Remark 2, (5) holds with 

cl = l/6, SO = ~1 max(A2(1 + c~o)~,B~). 

Using the condition (R), we have that for all s Z 1, G(cr &)/G(G) <F?$‘. Now the 
assertion of the corollary follows from the following observations: 

p( f @A ) 2 f(s)) = P(zA 2s) for all sufficiently large S and 

Ef(z.4) is infinite iff P(f czA > 2 f(s)> df (s) is infinite. [7 
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3. Two-dimensional driftless Markov chains in wedges with boundary reflection 

3.1. Notation and statement of results 

In the sequel g is the quadrant given by 5 = {(x, y) E IF!?; x 2 0, y 3 0). The two 

sides of the quadrant are denoted by &?i and a& where agi = {(x, y) E 5; x # 

0, y = 0} and a& = {(x, y) E 6; y # 0, x = O}. The interior of G is referred 
to as go. Next, for any set F C: I@ and m E 0,1,2,. . . we denote by Cm(F) the set 
of real-valued functions that are m times continuously differentiable in some open set 
containing/F. C;(F) denotes the class of functions in Cm(F) which together with their 
first m derivatives are bounded on F. 

Let (52, F,P) be a probability space equipped with a filtration {Fn}na~. We are 

dealing with a discrete-time homogeneous irreducible aperiodic {Pn}-adapted Markov 
chain {Z,, n > 0) defined on (Sz, F, P), with values in Z:. Its transition mechanism is 

given as follows. The Markov chain starting from the point Z = (x, y) of h$ jumps to 
the point (x + i, y + j), i, j E Z, i, j > - 1 with the probability pzj, i, j E Z, i, j 2 - 1 

(respectively P;,~, pzj, p:,) according as (x,y) E Go (respectively a$, ac’, c%$” = 
(0,O)). Regarding the transition probabilities we assume the following moment condi- 
tions: 

1. For any i, j p,!, _ 1 = pT1,j = p: _ 1 = pyl,j = 0 (this simply means that our chain 

cannot jump out of the quadrant) and: 

y E SUP iC; C(lil” + IjlK)P!,j < 00, 
( 

Vl = 0,1,7- > 2. 
i,i I 

2. In the interior 5”. 

We assume that the Markov chain has one-step zero mean drift, i.e. 

C ipJlj = C jP& = O. 
U i,i 

(9) 

(10) 

We also assume that the covariance matrix of the one-step jump distribution is non- 

degenerate, i.e. xzx; - (?io)2 > 0, where x:,x! and go by 

(11) 

Geometrically, this condition simply means that the Markov chain cannot jump only 

along a fixed straight line. 
3. On the boundary aE. 
Let pi = Ci,j ip,$, & = Cijjp,$, ;TI = Cij i&, 42 = C,,j.i& and let the 

vectors of boundary reflection be defined by P’ = &I, p2), Q’ = (?1,?2). We suppose 

that the boundary reflection field is non-degenerate in the following sense: ?j2 # 0, 

;rl # 0. 
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Definition 2. Let F be any Bore1 subset of R2. For any Z E Z$, the first passage-time 
in F of the Markov chain {z,, n 2 0) with .& = Z is defined by 

-z T{F) = %,I,) = inf(n30; 2, E F}. 

In particular, if FA = {z; IzI <A}, we denote by TA: 

PA = T{,) = inf{n>O; lZ,l GA}. 

In Aspandiiarov et al. (1994) it has been established that the existence of a parameter 

cx = a(~~,~$~“, &/&&/iJi) with exact value will be given in (18) such that the 

following result holds: 

Theorem 2. (I) If M < 0, then the Markov chain {z,, n >O} is transient. If a > 0, 
then the chain is recurrent. 
(II) Suppose that 0 < c1 < y. Then th_e following 

1. For any p < u/2, there exists A0 > 0 such 

IFI > 20, 

E( ?$O ) is finite. 

statements hold 
that whenever 20 = Z E 77: satishes 

Furthermore, if x > 2, then for any p < 42 there exist positive Ao,& such that for 
any A 220 whenever 20 = Z E Z$ sati.$es IZI > 2, 

E(T) <CoIZl? (12) 

2. For any p > a/2 there exist positive 20, & such that for any A>Ao whenever 
ZO = Z E Z$ satisjies IZI > &A, 

E(Fs) is in@zite. 

Let us define the functions Logkx by 

Log,x 5 1, Logkx = logk(x+ck), kbl, 

where the constants ck are chosen in such a way that Log, 0 = 1. The principal results 

of this section are stated as follows. 

Theorem 3. Let {z,,, n 3 0) be the Markov chain dejined above. Suppose that 0 d x < 
7. Then there exist positive constants 2 1, 2, > 1, ?i and %J such that for any A >A, 

whenever 20 = Z E Z: satisfies IZI > CIA, the following bound holds for all s > &A2: 

( Z,A’s-4 if a > 0, 
P(cps)2 El 

i lads > 
lj-u = 0. 

In particular, tf x > 0 (resp. a = 0), then for any k 3 1, 

E( $ Log;’ (?z). . . Log;’ (5)) is injinite, 

(resp. E(Log (?$) Log,’ (?;) . . . Log& (Q-)) is injinite). 

(13) 
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Remark 3. This result shows that the moment of the critical order a/2 does not exist 
which answers the open question in [AIM]. Furthermore, it disproves one conjecture 
in Fayolle et al. (1995) (Section 4.3) stating that in the case c1 = 2 the Markov chain 

{Z,, n 20) can still be ergodic provided that the jumps are uniformly bounded by 
a constant and some third-order moment conditions of the transition mechanism are 

imposed. 

Remark 4. We will also give a simple proof of the following result proved in Asymont 

et al. (1994) (Theorem 1): {Z,,, n > 0) is recurrent in the case CI = 0. 

Remark 5. In the forthcoming paper (Aspandiiarov and Iasnogorodski, 1994) we will 

complete the results of Theorems 2 and 3 by proving the following assertions: 
1. Suppose that 0 da < y. Then for any positive 6 there exist positive constants 

22, & and Fi such that for any 2 222 whenever 20 = Z E H$ satisfies IZ] > 2, the 
following bound holds for all s > ?i, 

(14) 

2. If 2 < o! < y (resp. 0 dcr62), then for any q > a/2 (resp. q > 1) and for any _ _ 
integer k > 1, there exists a positive constant ,& such that for any A 2 A2 whenever 
50 = Z E Z: satisfies ]ZI > A, 

E( FiLoggq (Fz)) is finite in the case CI > 2, 

E($Log;‘(~)...Log;?,(~~)Log;4(~)) is finite in the case O<a<2, 

&Log (c) Log;’ (c) . . . Log;’ (c) Log;:, (c)) is finite if 01 = 0. 

The proof of these results goes along the same lines as those of Theorems 3 and 4 in 
Aspandiiarov et al. (1994). Namely, we first introduce the “transformed” Markov chain 

{Z,, 12 3 0) in a new wedge G as the image of the Markov chain {Z,, n 3 0) under 
some linear isomorphism @ of R2. Then using the results of Section 2 we establish 

the analogues of our main results for {Z,, n ~0). This will almost immediately give 
the desired results for the original Markov chain {Z,,, n > 0). 

3.2. “Transformed” setting and some technical results 

As a preliminary step in the proofs of our main results we recall the construction 
of “transformed” Markov chains given in Aspandiiarov et al. (1994). Let us consider 
the linear isomorphism @ of R2, defined by 

u = (bx - Fy)a, 

v = dl - F2ya, 
(15) 
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Fig. 1. 

where 

(16) 

As it is easy to see, this transformation has the following property: the image of the 
covariance matrix A0 under @ is unit. Next, the wedge G under @ is transformed into 

the wedge G of angle 5, given in the standard polar coordinates by G = {(p, 0), p > 0, 
0 E [0, t]}, where with r is defined by 

i” = arccos(-v), 5 E (0, n). 

Let oll,c(2 be the angles that makes the vectors @(P’) (resp. 

normals to the corresponding sides of the wedge G positive 
comer. It follows from the moment condition (3), that ~1, c12 E 

(17) 

@(Q’)) with the inward 
angles being toward the 

(-n/2, n/2) (see Fig. 1). 

The parameter tl appearing in the statement of the last theorems is simply 

a1 +a2 

u=5’ 
(18) 

We now introduce the “transformed” Markov chain {Z,, n 2 O}. For each n 3 0, let us 

set 

z, = @(Z,). 

The Markov chain {Z,, n 2 0) takes values in 

(19) 

G4=@@:) = {(u,u) E R2; u = a(bx - Fy), v = aydg, (x,y) E Z:}, 

and is governed by the following transition mechanism. For all integer i, j 2 - 1 the 

Markov chain jumps from points (u,u) E G4 to (U + a(bi - Fj), u + ajdg) 
with probabilities pFj, i, j E Z, i, j b - 1 (respectively P,!~, Pfj, P:j) according as 

(x, y) E Go (respectively, 8G’, aG2, aG3 - (O,O)), where 

G = Q(G), Go = @(Go), aG, = qaG, 1, aG2 = dyac,). (20) 

Definition 3. Let F be any Bore1 subset of lR2. For any z E G4, the first passage-time 
of the Markov chain {Z,, n > 0) with ZO = z in F is defined by 

T{F} = q:(F) = inf(nb0; Z, E F}. 
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In particular, if FA = {z; IzI <A}, we denote by TA: 

TA = T{,} = inf(nb0; [Z,l <A}. 

In order to prove the main results we need to introduce a family {$,j,,IIIpz, /Ii, /Cl E 

(-71/2,71/2)) f o non-negative functions on G which are defined in polar coordinates 

(p, 0) as follows. For any pi, /?I E (-7c/2, z/2) we set /I = (PI + 82)/l and 

P”cos(B(MU PI +Bz #O, P>O, OE W,i”l> 
$,,,.,jZ(~yQ= hip+ ItanNQ, PI +82 =O, p>O, 0 E P,51, 

0, p = 0. 

Convention. 
1. Whenever /Ii and 82 are fixed the symbol p should be understood as /I = 

(Dl + P2Yt 

2. For any positive functions f and h defined on G the equality 

f(z) = h(p, 0) should be understood as f(z) = h(p(z), d(z)), 

where (p(z), 0(z)) are the standard polar coordinates of z. 

At this point we need some further notation. 

Notation. For any n>O we define A, = Z,,+l - Z,,. For any f E C2(G\(0,0)), A = 
(Al,Az) E R2 we denote by 

D2f(z, A, A) = 

For any &+I-measurable function F the symbol Ez,F stands for E(FI Z,). For pi, /j2 E 
(-rcn/2,7c/2), r E (0, rc), and A > 0 we introduce: 

c(P) = 

i 

CO~-“WI I V IP2l> if P # 0, 

1 if /I = 0. 

1 
G(8) = 

{ 

if B # 0, 

exp(-51 tan pi I) if /I = 0. 

d(P) = 
B if B # 0, 

cosC’j3i if p = 0. 

if P # 0, 

ifa= 
(21) 

(22) 

(23) 

(24) 

Finally, throughout the rest of the paper q is a fixed positive number such that 

> 
. (25) 
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Let us fix /Ii and 82 E (-7c/2,7c/2). The following properties of the function $fl,,p2 

will play a crucial role in the proof of Theorem 3. Their proofs are easy and can be 

found in Aspandiiiarov (1994, Ch. B). 

1. &,,b2 is a harmonic function in G\(O,O). 
2. The “monotonicity” property. 

If p # 0, then for any z E G\(O,O), 

IZI B B cos(lP1I v 1/121)~~~,,Bz(z)61zI . (26) 

If p = 0, then there exist a positive constant cl such that for all IzI > 2 we have 

log Izl ~IG;R,,p*(z)~c1log 14 (27) 

3. If we are given the inward pointing non-degenerate vector field { u(z),z E 8G1 u 
8G2) defined by 

u(z) = I q = (- sinai,cosat) if z E aGi, 

u2 = (sin (5 - c(2), - cos(5 - 1x2)) if z E aG2, 

then for each i = 1,2, 

(r(z), VrG’B,J1(Z)) = 
pIZIB-’ sin@i - xi) if j3 # 0, z E aGi, 

(lzl cos/?i)-’ sin(j?i - C(i) if j3 = 0,~ E aGi. (28) 

4. For any integers i, k such that 0 bid k and for any s # 0 there exists a positive 
constant c = c(pi, 82, s, k) such that for any z E G\(O, 0), 

(29) 

In particular, there exist positive constants CI,CZ such that for any z E G\(O,O), A E R2, 

IKo&,,&)J)l <cl IzI-‘~m~(zM~ 

l~2~p,r&JJ)l ~~21~I-2~~,,~~~~~l~12. 
(30) 

Furthermore, in the case j = 0, there exist positive constants c3,q such that for all 

z E G\(O,O), 

l~o~mdz>~~)l dc3l~l-‘l~l, 

1P2~~,,&,~,~)I d~4l~l-~l~l~. 
(31) 

Let f E C3(0,m). We have the first-order Taylor’s expansion: 

f O ~hBzVn+l> - f O k$,,&n> 

= f'o~~,,p,(Z,)(~~~,,pz(Z,),A,)+R,(Z,,A,,f,P,l) (32) 

and the second-order Taylor’s expansion: 
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where the remainders R,(Z,, A,,, f, /?, k) for k = 1,2 can be written in the following 
integral form: 

R,(Z,,&,f,B,k) = 6 / 
1 dk+l 

dtk+‘{f 0 v$,,/I~(Z, + t&)1(1 - t)k dt, k = 1,2. (34) 
. 0 

The following result shows that under suitable conditions on f and on the means of 
the increments Zn+r - Z,, the asymptotic behavior of the conditional expectations of 
f o$b,,pz(Z,+l) - f o&,,p2(Z,) can be completely described in terms of the conditional 

expectations of the principal terms in the Taylor’s expansion (33). 

Definition 4. Let 99 be the following class of non-negative functions defined on lR+: 

f :[W+--,IW+;f EC’(O,oo) 

- = 0 1 f”‘(x) 
0 f”(x) x 

and $$/ = 0 (1) as x + 00, 

‘dv>O, litt&f ~“~()~~~ >O an:hm,i lf’~($“~ >O, 

there exist positive a~ > 1 and Af such that lim sup If “(qx)l - 
x-ice (f”(X)1 <Af 

Lemma 2. Let /31 and /& E (-rc/2,7c/2) be real numbers such that /?, + j3z 20. Set 
B = (/?I +/32)/t. Let f be a function from 9 such that in the case B # 0 (resp. 
/? = 0) lf”(XP)lX2B--2 ( resp. If”(logx)Ix-*) is monotone on some interval [&XI). 
Suppose there exist positive constants Xin(0, 1) and c such that for all n 20 and 
for all z, Pz-a. s. 

~~~(lA,12fXmax(l,lf”(lA,lS)11A,128-2)~c if P # 0, 

~~~(lA,12’Xmax(l,If”(lloglA,lI)IlA,l-2)6c ifP = 0. 
(35) 

Then there exist positive constants A, b, C such that for any n 2 0 and for any IzI > A 
the following two statements hold P,-a.s.: 

(a) On {Z, E Go} n {lZnl >A}, 

1% (f 0 ‘+%~z(Zn+l) - f 0 $wJZ,)) I4f” 0 ~~,,pGN412B-2. 

Furthermore, 

(36) 

s&f” O &&J2(Z~))EZ”(f O +&%(Zn+l) - f O ti&%,Bz(Z?I)) 

2Clf” O $~,,&z)llzn128-2. 

(b) For each i = 1,2 we have on {Z, E 8Gi} n { lZ,l > A}, 

IEZ,(f O 4$?,.B*(Zn+l) - f O 4$?,./?2vn))l 

G blf’ O ~~,,~~(z~)l~~~,~*,(z,))z,l-2 if Pi = Q3 

blf’o$p p CWllZnlB-’ I> 2 otherwise. 

(37) 

(38) 
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Furthermore, 

WU’ O ~~,,b(Z~) sin(bi - Q))EZ,(f 0 449,.p2(Zn+i 1 - f 0 4@,,p2(Zn)) 

~Clf’O~~,,p,(Z,)sin(Bi - @i)llZnlp-‘. 
(39) 

Proof. Let n be any fixed non-negative integer. We will first estimate the conditional 

expectation of the remainder R,(Z,,, d,,f,/3,2). Namely, we will show that there exist 
positive constants C = C(x) and ;i such that for all n, if lZ,l is large enough, the 
following estimate holds: 

~z~~l~,~~~,~~,f,P,~~l~~~I~~l2CI-2-’llf”~~~,,~~~2n~l. (40) 

We will only prove (40) in the case /I >O. The proof in the other case can be carried 

out using the same ideas and is left to the reader. Let 6 E (0,l) be some fixed real 
number. Then, 

Ez~R,(Z,,d,,f,P,2)=Ez”(R,(Z,,d,,f,P,2){1~14,lg61~,/) + l(l~nl>slz,l,H 

= I + II. (41) 

To estimate the first term in (41) we will look at the integral form of R,. Easy 

calculations based on properties of functions $b,,p2 show that there exists a positive 
constant ci (here as elsewhere in the proof of the lemma the constants ci do not depend 

on n) such that 

III = I~z~(R,(Z~,~,,~,B,~)~(I~.~~~IZ,~))I 

=S CIEZ, 
11 

I 
(If’0 $/3 p c-53 + t4l)llZn + t&lP-3 I, * 

0 

+ If” 0 4$,,p2(Zn + t&)llZ + t412b-3 

+ lf"'wh%un + aINZn + t43~-3Mn13(1 - t)*dt)l+l,,<6lz.,) 
1 

. 

Fix any positive v <x/28. Then, using the assumptions on f we deduce from the last 
bound that there exists a positive constant c2 such that for all large enough lZ,l, 

ii 

1 

III 6 c2Ezn (If" O 44h.p2vn + adlMw2G + ad)'+"lZn + t4b-3 
0 

+If" O v+L&n + t&)llzI + t412p-3 + If” 0 4$,,fi,(Zn + aZ)J 

x (&LP,G + t4d)-‘lZn + t413~-3)l~,13(1 - t)2dt)l(,A,,<alz”,) . (42) 

Next, easy geometrical arguments show that for any t E [0, 11, 

lznl+ldnI 2 lZn+tdnl>,IZn+t(d,)+l - lt(d,)-/>Ai;fRl lZ,+d) - l(d,)-I 
+ 

> sin 5 V t lZ,l - l(4)-1, ( > (43) 
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where (_d,)+ = ((A;)+,(&)+), (A,)- = ((A:)-,(A:)-). Since the jumps of the Markov 
chain {Z,, n 20) towards the origin are bounded from below, then the last inequalities 
imply that for any t E [0, l] and for all large enough lZ,l, 

Iznl + IAnI IZ, + td,l bsin f V 5 12,(/2, ( > (44) 

On the other hand, the “monotonicity” property of $P,,B* ensures the existence of 

positive constants ~3, ~4, cg and cg such that 

c3lZn + ~~nlB~$p,,p2(Zn + tdn)<C41Zn + tLi,l~ (45) 

and 

Let us put the estimates (45), (46) into (42). Then, using again the assumptions on 

f and the “monotonicity” property of $bl,a2 we easily see that there exists a positive 

constant c7 such that for all large enough lZ,l, 

It then follows from (35) that there exist positive constants cs,c9 such that whenever 

lZ,l is large enough and Z,, E &, 

III d Cslf” O kb,,pGIN IZ,12~-2+v~-“~z,{~d,~2+~1~,~~,~~,z~,)} 

d C9lf” 0 $p,,p2(Zn)l lz,~2~-2+v~-~. (47) 

Let us determine the bounds of the second term in (41) dealing with the big jumps. 
To this end instead of working with the integral form of R,(Z,,, A,,, f,p,2) given by 

(34) we will look directly at its expression that follows from (33). Namely, 

11 = ~zJ(lA”l>slz,l)(f O bh32Vn+l) - f O ~hB2G) 

- f’ 0 rl/p,,a(Z,)(D~~,,~*(Zn),A,) - ; f” 0 ~~,,~z(Z,)(v~~clg,,~z(Z,),A,)~ 

-~f'0~~,,a(Z,)0~~~,./12(Zn,An,An))}. (48) 

As is easy to see, the properties of $p,,& ensure that there exist positive constants 
~10,. . . , cl6 such that 

tip,,~~(G + &)~cdA,lp on {I& >WLl}. (49) 

and 
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Then, the assumptions on f and (48)-(50) yield that there exist positive constants 

c&Cl6 such that 

XEZ n ~(I~~128v+21~nlBy+11~,I + l&l2 + I~,I~“l~,12)~~,~“,>S,Z”,~} 

G ~15~z”w”(l~nIB)I l~~12B+2~v~~,4.,>s,z”,)~ 

+ 4f” 0 $~,,&,)l Izn12B-2+2Bv-x. (51) 

To estimate the term including f”( IA,lp) we recall that lf”(~fi)Ix~fl-~ is a monotone 

function on some interval [B, co). If it is non-increasing, then by “monotonicity” pop- 

efiY of $p,.p2 there exist positive constants c17,crs,ct9 such that for all large enough 

IzlL 

EZnuf”(141~)l l~,12~+2~v1~(4,,>6,z,I)) 

If” O &%J2(Zn)l lzI12p-2 

<c18Iznl 2~v--xEz,{~d,~2+x}~c,9~Z,~2By-x. (52) 

In the other case, when the function lf”(x~)I~~~-~ IS non-decreasing, one can see from 

the assumptions on f that there exist positive constants QO,C~I such that for all large 

enough lZ,l, If” 0 $p,,p,G)I l-Gl28-2 2~20 and 

< c21 IZn12% 

This result and Eqs. (5 1) and (52) imply immediately that there exists a positive 

constant ~22 such that for all large enough lZ,l, 

(III <C22If"(Z,B)I Jz*p-2+2~"-x. (53) 

This and (47) give the desired conclusion with ;ci = x - 2Bv. 
Next, we investigate the principal terms in the second-order Taylor’s expansion (33). 

We separate two cases. 
(a) Suppose Z,, E Go. Then it can be seen from the moment conditions on the tran- 

sition mechanism of the Markov chain {Zn, n > 0}, the form of transformation @ and 

properties of $b,, p2 that for any n 2 0, 

(54) 
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where d(P) was introduced in (24). Therefore, we have from (33), 

~Z,(f0$/9,,B2(Zn+l) - f"k%,Bz(Zl))= p*(B)f" O $h,&)1Z1*~-* 

+Ez,MZn,&,f,B,2). (55) 

But (40) shows that for all large enough IZnl: 

l~z~~,(~~,~,,f,B,~)161f"~~~,.~~(~~)ll~~12B-2-~. (56) 

with some positive constant Fj. The bounds (36) and (37) follow readily from (55) 

and (56). 
(b) Let Z, E aGi for some i E { 1,2}. In this case we have from the moment con- 

ditions on the transition mechanism of the Markov chain {Zn, n >O}, the form of 

transformation @ and (28) that for any n > 0, 

EZ (Wp B G),&) = diW)IZIp-l sin(Bi - a.1 Is z 1 9 

where d, = l@(P)/,& = I@(Q’)l. Hence, on {Z, Magi}, i = 1,2, 

(57) 

EZ,(fo~~,,Bz(Z,+l)-fo~~,,82(Zn)) 

= &W)sWi - ai)lZnlB-'f'o &p2(Z) 

+ ~~"o~~,,B~(Z~)E~~{(V~~,.~~(Z~),A,)*} 

+ ~f'o~~,,~z(Z,)~z~(~*~~,.~2(Zn,An,An)} +Ez"{R,(Z,,A,,f,B,2)) 

= &d(/?)Sin(pi - Cti)lZnl'-'f' 0 rl/a,,p2(&)+ I. (58) 

Next, it can be easily deduced from the bounds (30) (40), the “monotonicity” property 
of $p,,pz and the assumptions on f, that there exist positive constants ~23, ~24 such that 

for all large enough IZ, 1, 

III =s c23{lf” O ~~,.82(~n)l~~,,~2(zn)lznl-2 + If’O Ic’8,,~*~~~~l~~/,,,,*~~~~l~~1-* 

+ If" O ~~,,~*(z,)llz,12a-*-‘1) dc24lf’ O ~~,.a*(z~)l~~,,82(~~)l~~l-2. (59) 

Now the inequalities (38) and (39) are immediate consequences of (58) and (59) and 
(26) written in the following form: 

~pIBl,p~(~)lzI-* = 0W’) as Izl -+ cm. 0 

In the sequel we will denote by {X,, n 20) the process defined by 

x = b&m 
{ 

if cI # 0, 
n 

exp(&,,.,(Z,)) if a = 0. 
(60) 

Lemma 3. The process {X,, n 30) satisjes the conditions of Lemma 1 with some 
r,A = &C,D. 

Proof. The proof in the case a > 0 is a direct consequence of the previous lemma. As 
far as the other case is concerned, the proof is very similar to that of Lemma 2, and 
we omit it here. 0 



S. Aspandiiarov, R. IasnogorodskilStochastic Processes and their Applications 66 (1997) 115-145 133 

3.3. Proof of Theorem 3 

The essential part of the proof consists in proving the following: 

Theorem 3’. Let {Z,,, n 2 0) be the Markov chain dejinedabove. Suppose that 0 Q R < y. 
Then there exist positive constants Al, Cl > 1, Cl and SO such that for any A >A1 
whenever ZO = z E Z$ satisfies IzI > CIA, the following bound holds for all s >soA*: 

qA”s- f if cr>O, 
P(TA >s)2 6 

loIds > 

if a = 0. 
(61) 

Let {X,, n 20) be the process defined in (60). Using the “monotonicity” property of 

4+ a,,a2 it is easy to see that in order to prove the last theorem it suffices to demonstrate 
the corresponding statements for rA (recall that rA= inf{n 20; X, <A}). Suppose for a 

while that we have proved Remark 4. From Theorem 2 and Remark 4 it follows that the 
Markov chain {Z,, n 2 0) is recurrent (recall that c( 20). This and the “monotonic&y” 

property of tifl/a,,s imply in turn that with probability 1, TA < o(, for any positive A. 
Our plan of the proof is as follows. We first prove the following weaker result on 

non-integrability of functions of the first passage-times and during the proof we obtain 
as well the desired estimates of Theorem 3’. 

Proposition 1. Let {Z,,, n >O} be the Markov chain defined above. Suppose that 
O<a < y. Then there exist positive constants Cl, Al such that for any A>AI, 

1. In the case CI >O, whenever ZO = z E G4 satisfies IzJ > CIA, 

E( Tiai210g-’ ( TA)) is infmite; (62) 

2. In the case CI = 0, whenever ZO = z E G4 satis-es Iz[ > CIA, 

E(log(T~) log,’ (TA)) is infinite. (63) 

To prove this proposition we would like to construct a family of the processes U@), 
functions G,H satisfying the conditions of Theorem 1’ such that in the case o! > 0 
(resp. c( = 0), 

./ 

+CC f/*--1 & 

G(G) logs 
is infinite; 

+CC ds 

sG(&)log, s 
is infinite 

(64) 

and to use Corollary 2. 
Before going into details, let us briefly describe the ideas of the proof and make 

some preliminary observations. Suppose for a while the original process {Z,, n 3 0) has 
the bounded jumps. Then the process {X,,, n 3 0) also has bounded jumps and, in par- 
ticular, IX:, -Xi,_ 11 <B for all large enough B. In this case, if we find a non-negative 
increasing function F such that the processes {F(XnArAr\is), n 20) are submartingales 
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for all large enough A, B such that A <B and in the case M > 0 (resp. GC = 0), 

s 

+CC s’-‘ds 

F(s) log s 
is infinite 

( s 

+oO ds 
(65) 

resp. 
sF(s)log, s 

is infinite 
) 

, 

then UC’), G, H can be simply defined by U,?’ = F(X,), G(x) = F(k), H(x) = F(x). 
Let us try to find such F. We will search for F in the class of functions satisfying 
the conditions of Lemma 2. One restriction on F follows immediately from (65): this 

condition shows that in the case cx > 0 (resp. c( = 0) the order of the asymptotic growth 

of F(x) at infinity should not exceed 0(x’ log” (x)) (resp. O(logx log; (x))) for any 
E > 0. Let us find out what other properties of F can be deduced from the fact that for 

all large enough A <B, the processes {F(X,,~T,r,~B), IZ 30) are submartingales. Let us 
define the function F by 

F(x) = F(xi ) if a > 0, 

F(exp(x)) if a = 0. 
(66) 

Then F also satisfies the conditions of Lemma 2 and we know that there exist positive 
constants c,Ao such that on {Z, E Go} U { lZ,l >Ao}, 

s&p’ 0 k,a,(Zn))E(F(X,+l) - F(X,)I%) 

= s&3’ 0 kx,(Zn)~k(~o h,12(Zn+~) - Fo ha,(Zn)) 

3 cl?’ 0 ~~,,u,(Zn)lIZn120L-2. (67) 

These inequalities show that if the processes {F(XnAraAiB), n 30) are submartingales 
for all large enough A, B such that B >A >Ao, then lim SU~~+~ p(x) 3 0. Easy cal- 
culations show that p(x) 20 for all large enough x, if and only if the function F 
satisfies for all large enough x, 

xF”(x) + ( 1 - a)F’(x) 2 0, (68) 

(notice that this condition readily implies that lim inf,,, F(x)xP > 0). Suppose now 

F satisfies (68). Then (67) and the “monotonicity” property of I,&,,~, imply that there 
exists a positive constant A 1 > A0 such that for all A, B such that B > A > A,, 

E(F(X(,+I)M,AT,) - F(X,~,~,)l%)30 on {Z, E Go}. 

On the other hand, even if the function F satisfies the condition (68) and A >A,, on 
{Zn E 8Gi) n {IZnl >A}, i= 1,2 we only have 

IW’(X,+I) - WGP%;I)I = IJ%,(~o chc/rl,m,G+l) - Fo $m,,.,G))I 

G Cl? O ~~,,n,(Zn>I~~,,a,(Z*)lZnl-2, (69) 

with some positive constant C. The last bound shows that in general the processes 

{F(X,,,, ig ), IZ 20) are not submartingales and we cannot simply set U, = F(X,) in 
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our construction. The idea that will permit us to overcome this problem is very simple 

and is as follows. We perturb the process {F(XnAra ,, rB), n 2 0) by adding a process 

{e 0 iqB*(Z,hmn is ), n >O}, with some /Ii, fl2 E (-n/2, x/2) such that pi >czi, /I* >c12 
and some positive function e satisfying the following conditions: 

1. e satisfies the conditions of Lemma 2 with just defined pi; 

2. e’(x) >O on some interval (B, cc) and e(x) = o(F(x)) as x -+ co; 
3. As IzI 4 cc, 

$~,,&)I~ O h,,a&)I lzl-2 = o(Z’ O $/r,,&)Izl~-l) 

Z” 0 lj/j,,~2(z)~z~2~-2 = o(F” 0 ljz,,,,(z)Jz12u-2). (70) 

where the function e(x) is defined by C?(x) = e(x’/p). 

For example, we can take F(x) = cx’( 1 - x-xX), e(x) =x2po with positive constants 

c,x and po suchthat (cc-1)+<2po<a-xor, ~~(0,1Acc-‘) inthe case 01>0 and 

F(x) = log(x)( 1 - log;‘(x)), e(x) = (1 - log;*‘(x)) with x E (0, 1 ), [ > 1 in the case 
CI = 0. 

Next, applying Lemma 2 we see that there exist positive constants 2 and b such 
that for all large enough jZnl: 

1. On {Z, E Go}, 

(71) 

E(eoiQrD2(Zn+i) - eo$~/~~2(Z~)I%) = E(~(Z,+I) - e(Z,)14) 

2 % 0 I+$ fl (Z,)lZ$‘. I. z (72) 

Taking into account (70) and comparing (67), (69) with (71)-(72) we see that for all 
large enough A and B such that B >A, the processes { U,‘i’,,A ia, n 2 0} defined by 

uAi),,Ai, = F(-%A~~AP~) + e~r+${$~(Z~~~~~f~), Vn>O. 

have the desired submartingale property. Moreover, using the assumption e(x) = o(F(x)) 
as x --+ 00, it can be seen that the function G corresponding to the “perturbed” processes 

VJ/%.i,, n >O} still verifies the condition (64). This will then finish the proof of 

Proposition 1. The same arguments can be applied in the general case, when the jumps 
of the process {Z,, n 20) are not necessarily bounded. In this case we will first 
“truncate” the process and then apply the last arguments to the obtained “truncated’ 
process. 

Let us now proceed. For each positive B, we define the following “truncated’ pro- 
cess Z@): 

z@) = z,, 
0 

Z(B) = ZiB, + &), 
n+l 

where 

if lAnl <2B, 
if lAnl 22B. 
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Let Bl =Bl(m, mt) and 82 =B ( 2 ~1, ~5) be any fixed real numbers such that 
pi E (-42,x/2) and Q</$, for i = 1,2. Set /I = (81 + /?2)/5. Let x E (0,l A ~a-‘), 
c > 1 and let ps be any fixed number such that a - (q A a) <2pc < a - ICC. Let us define 
the function g by 

(A,&)(1 - (1 + &,,a,(z>)-X> 

g(z) = 

i 

bk*2(z)(l - wy,dm 
+(I - L%;*iw~,,~2w)~ 

0 

+ $g,zP(z) if tx >O, IzI >O, 

if a = 0, 121 >O, 

if (zl = 0. 

For each n 20, we finally set 

u@) = g(z;B)). n 

Our previous discussion in the case when the process {Z,, n 2 0) has bounded jumps 

makes credible the following claim. 

Lemma 4. For all initial values Zr’ = Z, and for all large enough A and B such 
that A c B the processes { U,(z),,A fB, n 3 0) are submartingales. 

Suppose for a while that this lemma has been proved. 
Let us check the conditions of Theorem 1’. As is easy to see, the “monotonicity” 

property of ~E,,lz~*~,,~2 and the choice of PO, PI, 82 imply that there exists a positive 

constant A” such that for all IzI >A: 

g(z) d 
{ 

2&/,,,~,(Z) if a>O, 

+X,,l,(z)(l -Log-*(&,(z))) + 1 if M = 0. 

Therefore, for all A > AT B > A and for all n we have on {n < (TA A ?B)}: 

2X; < 2B” if a>O, 

GB’ G log&,)( 1 - Log-X(logX,)) 
+ 16 log(B)( 1 - Loggx(log B)) + 1 if a = 0. 

Similarly, for any A > A” and any B > A we have on { ZA 6 ‘?B}: 

u(B) < 
2Aa if ci > 0, 

T/4 log(A)( 1 - LoggX(logA)) + 1 if c( = 0. 

By our construction of the process {Z,$“), n > 0) and the “monotonicity” property of 

* a, ,a* we have that there exist positive constants CO, cl, c2 such that for all large enough 
B>A: 
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Therefore, there exists a positive constant cs such that for all large enough B > A we 

have on {ZA > ?B} 

u(B) < 

{ 

c3Bc( if a > 0, 

” ’ 2log(B) if a = 0. 

This demonstrates that for all large enough A and B the family { qTj,A ig, n 2 0} is 

uniformly integrable and satisfies condition (3) of Theorem 1’ is satisfied with the 

following functions G, H: 

2s” 
H(s) = 

if a > 0, 

log(s)( 1 - Log-x(log s)) + 1 if a = 0. 

and 

(-Q) = C3Sa if a > 0, 

2 log(s) if a = 0. 

(73) 

(74) 

Notice that the function G satisfies condition (R). We are now ready to conclude the 

proof of the theorem. 
Let us fix any At such that 

(1) 2, > (2”;” 1) (2 as in Lemma 3). 

(2) For any B, A such that B > A > 11 the process { UifJA,, ia, IZ 3 0} is an uniformly 
integrable submartingale. 

Let us take any fixed A greater than 2 1. Then, a routine checking shows that there 
exists a positive constant ??t > 1 that does not depend on A such that whenever 

Z, = z E G4 satisfies IzI > CIA: 

u. = u(B) > 1C/a,,cx,(zP22W) if M > 0, 
0 ’ 

&,,~,(z)(l - Log-X(~~,,~,(z)))~H(A) + 1 if a = 0. 

Next, using the choice A > 2 and Lemma 3, we see that the process {X,, n >O} 

satisfies the conditions of Lemma 1 and there exist constants ~,6 independent of A 
such that inequality (3) holds with v = i. Obviously, we can suppose that E < 1. Let 

us fix such E, 6. Finally, let Bo be any fixed positive number such that Bo > A( 1 + 6). 
Let us take, for instance, Bo = 2A( 1 + 6). 

Summing up the last arguments, we see that the family of the stochastic processes 

{{U:B’, n30}, B>Bo} with Uf) = g(z) satisfies conditions of Theorem 1’ with the 
functions G, H defined by (73). It then follows from the assertions of Theorem 1’ and 
Remark 5 that whenever Za = z E G4 satisfies jz1 > CIA the following bound holds 
for all s > 4a( 1 + c~)~A~, 

H(A) if a > 0, 
p(zA > s) > g(z) - H(A) ~ 2G(fi) 

’ 2G(fi) 1 

2G(fi) 
if a = 0. 
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But from the “monotonicity” property of I,&,,~, we know that for any A > 0 and any 
s > 0, we have the following inclusion: {ZA > s} c{T,,,,,, > s} (recall that C(a) was 
defined in (23)). This observation easily implies that (61) holds with Al = AlC(a), 
Cl = G/C(a), so (= 4( 1+ s)2/(C(a>)2 and some positive Cl < 1. The statements (62) 

and (63) are now immediate consequences of (61). 
To complete the proof of Theorem 3’ we only need to prove Lemma 4. Notice that 

to this end it suffices to prove 

Lemma 5. For each A and B, let us set S, = inf {n 2 0; \.Z,I B B}. Then, for all initial 
values ZO the processes { UnfiAhs,, n 2 0) are submartingales for all large enough A, B 
such that B > A. 

In fact, suppose that we have proved Lemma 5. We have to show that for all large 
enough A and B such that A < B: 

Ez$g(Z$ > - g(Z~E’>>~O on {n < (TA A 63)). 

But, the statement of Lemma 5 ensures us that for all large enough 1 and r! such 

that z < z, the LHS in the last formula is non-negative on {n < (T”’ A Se)}. It only 

remains to set ? = c(cr)B, z = C(c()A and to notice that by our construction of the 

process {ZA”‘, n 3 0) and the “monotonicity” property of the function &,,, we have 

{n < (r/j A SB)} = {Vk ~n,A<Xk<B}c{V~Gn,~<IZkI<~}. 0 

Proof of Lemma 5. To move the lemma we have to show that there exists i>O such 

that 

We 

Let 
We 
and 

I 

for all A>Aand B>A: 

Ez!&(Zit{) - g(ZAB)))20 on {n < (TA A SB)}. 

notice that on {n < (TA ASS)}, Z,$” = Z,. Then, on {n <(7’,‘, ASS)}, 

-QB)(S(Z~B,), ) - s(Z(9) n n 

=~z,Mzl+I) -dz))+~znwL + 4J(~A,~<ZB)) - dZn+l)) 

= ~z”Mzn+l) - d&l)) +~z,{MGl) - g(Zn + 41))l(~An~>2B))~ 

~~z”(idzn+l) - g(W) - ~z,MzI + A&l,p2B)). (75) 

us investigate the asymptotic behavior of the second term in the last expression. 
easily see that there exists a positive constant co such that for all large enough A 
B>A on {n<(T’,/\&)}: 

Ez,(g(Z, + d,)1(14.1~2B))dCOEz~((~~,,,2(Zn + &)l(ld,l>ZB))). 
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Recall that on {n < (r~ A Se)}, A < \.Z,j < B. Hence, there exists a positive constant 

2s such that for all large enough A and B > A on {n < (TA A SB)}, 

On the other hand, using the choice of q: q < ((y - 2)/2 A “/ - rx) we get that there 
exist positive constants cl, c2 such that 

< 
i 

Cl <Cl lZnl”-2-‘1, if ct>2+n 
Ez”(ld,l”-2-9ld,l2+211 (~~.~~~~z,~~)~czIZ,(“-~-~ if ~62 + v. 

Finally, we obtain that there exists a positive constant c3 such that for large enough A 

and B > A we have on {n < (TA A SB)}: 

EZ,(dzn + d,)l(ld.,~2B))~C31Z,la-2-~. (76) 

We turn now to the estimate of the first term on the RI-IS of (75). Applying twice 
Lemma 2 and the “monotonicity” property of I+&,,~, it can be easily seen that there 
exist positive constants cd.. .c19 such that for all large enough IZnl: 

1. If a > 0, then on {Z, E Go}, 

~Z,,(dZn+I > - dZ?I)) 2 ~4~,~,~~1~~~~(~,12c(-2 - c5~~~-‘-2(z~)lz~12~-2 

> C~~Zn~E-Xu--2 - c, IZ, 12p”-2. 

and on {Z, E aGi}, i = 1,2, 

Ez,,(g(Z,+i) - g(Z,))acs sWi - GLi)~~~-‘-‘(Z~)/Z~la-’ 

- C9C41CI,T,~~l~Zn~2~-2~Cl~~Zn~2~~-’ - CllIZJ-Xa-2. 

2. If a = 0, then on {Z, E Go}, 

(77) 

(78) 

~z,,kIG+1) - ~~z~~~3c,~rG.~,‘,*~~~~~o~-1-~~~,,~~~~n~l~nl-2 

- cl3~~~~~~~~~~~o~-1~~~,,~~~~~~~~~~;”i-’~~~,,~~~~~~~l2,l2~-2 

2 1~~1-2~~~-1~1~“1~~~14~~~~ -*-‘(lm - Cd%~+‘(l4>) 

and on {Z,, E aGi}, i = 1,2, 

(79) 

~Z,MZn+l) - CAL))2 - Wfh,,m,GNznI-2 

+c17 sin(Bi - ~i~{~~~~,~~~z~~1o~~~~~,~~~Z~~~~~11o~~X~~1~~~~,~*~Z~~~lz~IB~’ 

2 - c181&t-210g(lznI) + c191~~l-1~~g-1~l~~I~~~g,xi-1~l~,I~. (80) 

Therefore, using the choice of 1, {, po (x E (0,l A ycc-’ ), i > 1 and M: - (9 A a> < 2~70 < 
CI - ~a), we deduce from (77)-(80) that there exists a positive constant c20 such that 
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for all large enough A and for all B > A, on {n < (T, A SB)}: 

LY pz-2 

&“(g(zn+l) - g(zI))> 

{ 

c20’zn’ - 

if ci > 0, 

~20~Zn(-210g~1(~Zn~)log~i~1(~Z,~) if ct = 0. 

Joining together this and (76) we obtain that for all large enough A and for all B > A 
the RHS in (75) is non-negative on {n < (7’,‘, A &)}. 0 

The rest of the proof of Theorem 3 is very easy. Let, for instance, 0 < CI < y. 

Theorem 3’ yields the existence of positive constants Ci, Al, Cl ,sg, such that for any 
A 2Al whenever ZO = z E G4 satisfies (zj > CIA, we have for all s > ssA2, 

P(TA > s)>c,Aas-“2. (81) 

Recall that the Markov chain {Z,, n 2 0) was introduced as the image of the Markov 
chain {Z,,, II 2 0) under @ defined by (15) and (16). It is easy to see that there exist pos- 
itive constants E(Q), C(@) such that for any positive A, {Y E iw:; jZ[ < Ac( @)} c{? E 

R:; l@(Z)1 <A} c{Z E rW$ : /:I <A&D)}. Th ese inclusions and (81) show that for 
any A > Al whenever .& = Z E Z: satisfies IZI > C,Ae(@) we have for all s > SO A2, 

P(?E(rg)A > s) ac,AYUi2. 

Letting 

terminates the proof of ( 13). 0 

Proof of Remark 4. It suffices to show that the Markov chain {Z,, n 3 0) is recurrent. 
To this end it will now be checked that the conditions of the following well-known 
result (see, for instance, Asmussen (1987), Proposition 5.3) are satisfied. 

Lemma 6. Let {U,, n20) be a discrete-time irreducible aperiodic Markov chain 
with some countable state space @. Then the Markov chain is recurrent, ifs there 
exist a function f dejined on 4!!, and a jinite set F, such that for any m: 

E{f(U,+~)-f(U,)lU,=a}~o, va#F, 

and the set {a E 42; f(a) <K} is finite for each K. 

(82) 

In fact, let us fix any real numbers /Ii = P~(GI~, 5) and /?2 = pz(ai, 0 such that: j?i E 
(-742,742) and C(i < pi, for i = 1,2 and any positive number po such that 2~0 < q. 
We define the function f by 

f(z) = ~&,,(4 + $D;;;;‘“(4~ z E G (83) 

where s is any fixed real number such that s E (0,l). Applying twice Lemma 2, one 
can see using the choice of po (namely, 2~0 < yl), s and pi, p2 that for all large 
enough A the processes {ZnAra, n 20) are supermartingales. On the other hand, it is 
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immediate that the set {z E G4; f(z) < K} is finite for each K. This finishes the 

proofs of Remark 4 and Theorem 3. 0 

4. Reflected Brownian motion in a wedge 

In this section we will obtain partial analogues of the results of Section 3 for 
reflected Brownian motions in a wedge. To state these results we need to intro- 

duce some additional notation. Let F be any subset of Iw’. We denote by DF = 
D([O, m),F) the space of right continuous functions o : [O,CXI) + F with left-hand 

limits endowed with the Skorohod topology. The subset of DF of continuous func- 
tions is denoted by CF. The symbol g will stand for the a-algebra of DF gen- 
erated by coordinate functionals n,, 0 <u < t. Let Y,, denote the canonical process 
on DF. Let G be the wedge with the comer at the origin 0, and with an arbi- 

trary angle 5 < rc, given in polar coordinates by G = {(p, Q, 0 < 8 d r, p > O}. 
Let cli,cc~ be any fixed numbers such that c11 + 1x2 > 0 and 1~~1 < n/2, j = 1,2. As 
usual, let c1 = (ai + c12)/5. Let us fix any non-zero zo E G. 

Suppose at + CQ < 25 (resp. al + a2 225). By definition, Brownian motion (resp. 

stopped Brownian motion) with oblique reflection vi, 19 in the wedge G starting from 

zo is a G-valued process that solves the submartingale problem (resp. stopped sub- 
martingale problem) associated with (i A, ut,u2) starting from zo (A is the standard 
laplacian operator in rW2). Intuitively, Brownian motion (resp. stopped Brownian mo- 
tion) with oblique reflection is a process that behaves in the interior of the wedge like 
a planar Brownian motion, reflects instantaneously at the boundary of the quadrant, the 
directions of reflection being given by the vectors ui,uz) and spends zero time at the 

origin (resp. reach almost surely the origin and remains there). For precise definitions 
we refer to Varadhan and Williams (1985) or Aspandiiarov (1995). As it follows from 
the results of Varadhan and Williams (see Theorems 3.4,3.10,3.1 l), if ai + ~12 < 2t: 

(resp. ai + LYZ >25), then Brownian motion (resp. stopped Brownian motion) with 
oblique reflection exists and is unique in law. In both cases, it will be denoted by 

{W,, t30). 
For each x 2 0, we introduce the first passage-time S, by 

S, = inf{t>O; IW,\ <x}. 

Then Theorem 2.2 in Varadhan and Williams (1985) shows that P(So < 03) = 1, if 
and only if c( > 0. 

The main result of this section is the following condition for the existence of pth 
moments of SO. 

Theorem 4. 1. Zf LY > 2, then for all p < u/2, ES: is finite. 
2. Zf CI > 0, then there exist positive T and c such that for all t > T, 

P(S0 > t,+. 

In particular, for all pas/2, ES: is injinite. 
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Remark 6. As a consequence of the last theorem we immediately obtain the following 
criterion of existence of ES, derived in Varadhan and Williams (1985) (see Corol- 

lary 2.3): 

Es0 is finite iff c( > 2. 

Remark 7. Using a direct approach based on the analogues of the results in Aspandiiarov, 

et al. (1994), Menshikov and Williams (1994) have recently showed that the condition 
a > 2 in the first part of Theorem 4 can be removed. 

Proof. The idea of the proof is to use the results on approximation of the process 
{ W,, t >O} by Markov chains in G with boundary reflection and the results on the 
first passage-times for these Markov chains of Section 3 (more precisely, Theorem 4 

and (61)). 
Step 1: We need to recall some preliminary results. 

(a) As was shown in Aspandiiarov (1995), there exists a Markov chain {Zk, k >O} 
with bounded jumps governed by the transition mechanism described in Section 3 
such that its corresponding al, a2 defined as in Section 3.2 coincide with the angles of 
boundary reflection CII , ~12 for the process { W,, t > O}. 

Let us state the result on existence of the approximating family of Markov chains 
for the process {W,, t 30) established in Aspandiiarov (1995) (see Theorem 2 and 
Remark 3 therein). For each N > 1, we set 

G;={(-$,$): (i,j)c=Z:}. 

Proposition 2. Let (z,“)N> 1 be any sequence such that ‘dN > 1, zt E Gc and lim zt = 

zo as N -+ co. Then there exists a family of Gd-valued discrete parameter Markov 
chains {{Z,“, k 2 0}, N 3 1) with the same transition probabilities as {Zk, k 2 0) such 
that Z[ = z,“fi and the “resealed” Markov chains { W;", t 2 0) defined by 

WN = ZN WI 
I -yF’ t>O 

converge weakly in Do to the process { W,, t > O}. 

(b) Let us now fix any sequence (2,” )N 3 1 such that VN B 1, z$’ E Gy and lim zt = zo 

as N + co. We also fix the Markov chains {{Z,“, k 2 0}, N 3 1) and { W;", t > 0) with 
the properties described in the last proposition. Let P$, (resp. PzQ) be the distribution 

of the process {W;“, t 30) (resp. {W,, t 20)) on Do ‘under P. 
(c) The next ingredient of the proof is the following: 

Proposition 3. For any fixed x > 0, there exists a set Hz c Do such that 
1. Pz,(H,) = 1. 
2. The function Yr : Da ----f [O,oc)) defined by 

YX(w) = inf{t>O, (0~1 <<x}, co E DC, 

is continuous in the Skorohod topology of Do on H,. 



S. Aspandiiarov, R. IasnogorodskilStochastic Processes and their Applications 66 (1997) 115-145 143 

Proof. The main role is played by the continuity of the coordinate functionals rrn, : 

DG -+ G(x,(o) = o(t)) on some subset of DG of Pz, - probability 1 and the follow- 

ing easy consequence of the strong Markov property of planar Brownian motion and 

reflected Brownian motion in a half-plane. For any fixed x > 0, A > 0, there exists a set 
Fx,d c DG such that Pz,,(F,,d) = 1 and, for any o E Fx,d, there exists t E (Y;,y% + A) 
such that Iw(t)l -c x_ The rest of the proof is carried over using standard arguments 
and we omit it here. 0 

(d) Let us set, for each x > 0 and N > 1, 

qN = inf{k>O; lZ,“l<x}, 

Sr = inf{t>O; IW;Nl<x}. 

It follows from the last proposition and the continuous mapping theorem that for each 

x > 0, SC converges weakly to S, as N 4 03. Notice also that for any x > 0, N 3 1, 

(84) 

Step 2: Here we relate the results on the first passage-times SF for the Markov 

chains { IV;“, t > 0) to their counterparts for the process {IV,, t 3 0). This will give the 

desired result. 
1. Let cx > 2 and let p < m/2. We fix any positive 1 such that x < /.20(/2. It then 

follows that for all large enough N we have, x < IztI < 2(zol. We recall that the 
Markov chain Z has bounded jumps and the parameter y corresponding to it is infinite. 

Therefore, we can apply Theorem 4 to obtain that for any p < 5, there exist positive 
C(p) and Ao(p) such that for all A B&(p) whenever ZO = z E G4 satisfies lz\ > A, 

ET; < C( P)[z/~~. (85) 

Let po be any number such that p < po < u/2. It easily follows from (84)-(85) that 

there exists No = No(x, p, PO) such that for all N >NO, 

E(S,N>p = E(T;fi)p/Np d C(~>l#l~~, 

E(S,N)J’O = E(<Nfi)Po,Po <C(po)lzf(2J’o. 

This shows that the family {(S~)P, N BNo} is uniformly integrable. Therefore, by 

weak convergence of SF to Sz (see, for instance, Theorem 5.4 in Billingsley (1968)), 

E(S,N)P --f E(S,)P and E(S,)P = E(S,)P <22pC(p)Iz~12p. 

Notice that the last inequality holds for any x < Iz01/2 and C(p) is independent of 1. 
Therefore, letting in the last inequality x --) 0 and using the monotone convergence 
theorem we finally arrive at 

(86) 
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2. Let now p 2 ~112. Recall that by (61) there exist fixed positive constants Ci > 1, 
Al and Cl ,SO such that for any A 2A 1, whenever 20 = z E Gq satisfies (zl > CIA, the 
following estimate holds for all s > soA2: 

P(T, > s)3E,A”s-‘li2. (87) 

Let us fix any positive x such that x < lz01/2Ci. This choice of x ensures that for 

all large enough N, Ci x < Iztl. Using this, (84) and (87) we get the existence of Ni 
such that for any N > Ni and for all t > sox2: 

P(S,N > t) = P(TNfi > Nt)>clf-x/2 

Passing to the limit as N + co and using the weak convergence of 5’: to S,, we 

obtain that for all except countably many t > sox2, 

P(S, > t) = kirn, P(S,N > t)>i51ft-ai2. 

This obviously implies that for all except countably many t > sox2, 

P(So > tpc,$. cl (88) 

Remark 8. It can be obtained from the estimates (86) and (88) and the explicit con- 

struction of constants C(p), Cl, SO, Ci and x that if CI > 2, then for any p < a/2 there 
exist constants bl, b2 depending on p, aI, CQ,[ such that 0 < bl d b2 < cc and 
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