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Abstract

It is known that large deviations of sums of subexponential random variables are most likely realised
by deviations of a single random variable. In this article we give a detailed picture of how subexponential
random variables are distributed when a large deviation of the sum is observed.
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1. Introduction

Let X1, X2, . . . be a sequence of i.i.d. random variables with common distribution µ defined
on a probability space (Ω ,F ,P), and let

Sn = X1 + · · · + Xn, n ≥ 1.

The most classical problem in large deviations is establishing asymptotic expressions for

F̄n(x) := P[Sn > x] (1.1)
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when this quantity converges to zero. The answer depends heavily on the nature of the tails
of the distribution µ. When the moment generating function is finite in a neighborhood of the
origin (Cramér’s condition) Cramér derived asymptotic expressions for F̄n(x) valid uniformly
over different ranges of x-values. These results were later refined by Petrov (cf. [15].) In this
case Gibbs conditioning principle provides an answer to how a large deviation of the sum is
typically realised: subject to the large deviation, the random variables {X i } become independent
in the limit, but their marginal distribution is modified in such a way that the behavior imposed
on the sum now becomes typical. In particular, no single random variable becomes excessively
large compared to the others.

The situation is totally different when Cramér’s condition is violated. It is known since the
classical works of Heyde [10] and Nagaev [12] that large deviations of sums of independent
heavy tailed random variables are typically realised by one random variable taking a very large
value. In this article we investigate the conditional distribution of the random variables {X i }1≤i≤n
subject to a large deviation of their sum Sn . It turns out that as n → ∞ this conditional
distribution converges to a product of n −1 copies of µ, while the remaining variable realises the
large deviation event by taking a very large value. We determine when the fluctuations around that
value have a scaling limit, and we show that given the sum exceeds a large value, the maximum
is asymptotically independent of the smallest variables.

2. Notation and results

Let {Xn}n∈N be a sequence of i.i.d. random variables with common distribution µ defined on
a probability space (Ω ,F ,P). We denote by F their distribution function F(x) = µ(−∞, x].
We are interested in the case where F is in the class of subexponential distributions, that is

lim
x→∞

F̄(x + y)

F̄(x)
= 1 ∀y ∈ R, (2.1)

with F̄(x) = P[Xk > x], and

lim
x→∞

F̄n(x)

nF̄(x)
= 1 ∀n ∈ N, (2.2)

where F̄n(x) is defined in (1.1). If the support of µ is contained in the positive half-line, then
(2.1) is implied by (2.2), and in that case subexponentiality can be defined by the latter condition
alone. Since it is generally true that for all n ∈ N we have

lim
x→∞

P[ max
1≤k≤n

Xk > x]

nF̄(x)
= 1.

Eq. (2.2) states that the tail of the sum in a sample of independent µ-distributed random variables
is determined by the tail of the largest variable. These distributions arise naturally when modeling
heavy tailed phenomena. For instance, individual claims in insurance or large interarrival times in
queuing systems are usually modeled by distributions of this kind. Typical members of this class
include distributions with regularly varying, lognormal-type, or Weibull-type tails. Sufficient
conditions for a given distribution to be subexponential that are straightforward to check can
be found in [14].
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An immediate consequence of (2.2) is the existence of a sequence dn → ∞ such that

lim
n→∞

sup
x≥dn

 F̄n(x)

nF̄(x)
− 1

 = 0. (2.3)

Since it is important in applications to have estimates for the threshold dn for which (2.3) holds,
a large amount of work has been done in this direction. Interested readers can find reviews on the
topic in [13,15]. A very nice account is also provided by Mikosch and Nagaev in [11]. Denisov
et al. give an up-to-date treatment of this problem in [5].

When the distribution µ satisfies a local version of (2.2), a local version of (2.3) is valid.
Let ∆ = (0, s] for some s > 0 and denote by x + ∆ the interval (x, x + s]. We say that µ is
∆-subexponential if µ[x + ∆] > 0 for all sufficiently large x and

lim
x→∞

µ[x + y + ∆]

µ[x + ∆]
= 1 ∀y ∈ R, (2.4)

and

lim
x→∞

P[Sn ∈ x + ∆]

nµ[x + ∆]
= 1 ∀n ∈ N. (2.5)

The concept of ∆-subexponentiality was introduced in [2] by Asmussen et al. A ∆-
subexponential distribution is also m∆-subexponential for all m ∈ N, m∆ = (0,ms], and
subexponential in the sense of (2.1) and (2.2) (cf. [2].) Even though there are examples of
subexponential distributions that are not ∆-subexponential for finite ∆, most distributions that
are used in practice are. This can be easily verified using the sufficient conditions for ∆-
subexponentiality provided in [2]. The asymptotics for the large deviation probabilities are now
given by

lim
n→∞

sup
x≥dn

P[Sn ∈ x + ∆]

nµ[x + ∆]
− 1

 = 0, (2.6)

and sufficient conditions on dn for (2.6) to hold can be found in [5].
We are interested in the conditional distribution of the variables {Xn} subject to a large

deviation of their sum. Assuming that (2.6) holds for some interval ∆ that may be finite or
infinite, we would like to determine the asymptotic behavior of

µ∆
n,x [A] = P[(X1, . . . , Xn) ∈ A | Sn ∈ x + ∆]

when n → ∞ and x ≥ dn . Note that when ∆ = (0,∞) the definition of ∆-subexponentiality
reduces to the standard definition of subexponentiality and (2.6) reduces to (2.3). This allows to
treat rare events of the form {Sn ∈ (x, x + s] } or {Sn > x} simultaneously in Theorem 1 below.

A related question was raised in [9] where certain subexponential families µ of lattice type
are considered under {Sn = x(n)}, and it is shown that the finite dimensional marginals of the
conditional distribution converge to a product of copies of µ. In [8] the authors consider a family
of discrete distributions µ that includes those with regularly varying tails, subject to {Sn = x}

where n is fixed and x → ∞, and they show a version of (2.9) below. In this article we show
that for all ∆-subexponential distributions µ, the conditional distribution of the n − 1 smallest
variables subject to {Sn ∈ x + ∆} approaches in total variation a product of n − 1 copies of µ as
n → ∞, as long as x ≥ dn ∨ ℓn . The sequence ℓn is defined in (3.3), it can be easily computed
from F , and in most interesting cases turns out to be smaller than dn .
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We will denote by T : ∪n∈NRn
→ ∪n∈N Rn the operator that exchanges the last and the

maximum component of a finite sequence:

T (x1, . . . , xn)k =


max

1≤i≤n
xi if k = n,

xn if xk > max
1≤i<k

xi and xk = max
i≥k

xi ,

xk otherwise.

Theorem 1. Suppose µ is ∆-subexponential, take dn as in (2.6) and ℓn as in (3.3). If qn =

dn ∨ ℓn , then

lim
y→∞

sup
n∈N

sup
x≥ qn∨y

sup
A∈B(Rn−1)

|µ∆
n,x ◦ T −1

[A × R] − µn−1
[A]| = 0. (2.7)

Remarks. 1. Since qn → ∞, (2.7) is equivalent to the following two conditions

lim
n→∞

sup
x≥ qn

sup
A∈B(Rn−1)

|µ∆
n,x ◦ T −1

[A × R] − µn−1
[A]| = 0, (2.8)

and

lim
x→∞

sup
A∈B(Rn−1)

|µ∆
n,x ◦ T −1

[A × R] − µn−1
[A]| = 0, ∀n ∈ N. (2.9)

Even though (2.9) alone implies (2.8) for some sequence qn , Theorem 1 also contains information
about the threshold qn in (2.8) that can be useful for applications.

2. Note that µ∆
n,x ◦ T −1

[A × R] is the measure assigned to A ∈ Rn−1 by the conditional
distribution of the n − 1 smallest variables. In other words, Theorem 1 states that under (2.3),
conditioning on {Sn ∈ x + ∆} affects only the maximum in the limit, and the n − 1 smallest
variables become asymptotically independent. Such a result is rather uncommon, and when µ
satisfies Cramér’s condition an analogous statement is not true. Now, any limit theorem for
i.i.d. random variables with distribution µ can be cast in this setting. For instance, we could
obtain conditional limit theorems for the statistics of any order k > 1: the k-th order statistic
of (X1, . . . , Xn) subject to the condition Sn ∈ x + ∆, x ≥ qn , asymptotically behaves like the
(k − 1)-th order statistic of an independent sample.

Unlike the asymptotic independence of the smallest variables, the fluctuations of the maximum
Mn = max1≤i≤n X i and its dependence on the smallest variables are influenced by the form
of conditioning. When ∆ = (0, s] the condition we impose on the sum is very restrictive and
the fluctuations of the maximum are determined by the fluctuations of the sum of the smallest
variables. This can be easily seen since µ∆

n,x [Mn +
∑n−1

j=1(T X)i ∈ (x, x + s] ] = 1 by definition.
Therefore, if the (unconditioned) distribution of Sn−1/bn converges to a stable law H , it follows
immediately from Theorem 1 that under µ∆

n,x we have

Mn − x

bn

d
−→ −H. (2.10)

Note that the converse is also true. In particular, the fluctuations of the conditional maximum
are typically two-sided and they have a nontrivial scaling limit if and only if µ is attracted to
a stable distribution. In [1] Theorem 1 is proved for a particular family of lattice distributions
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subject to {Sn = x}, and this observation is used to obtain a limit theorem for the fluctuations of
the maximum in a system of interacting particles.

On the other hand when we condition on {Sn > x} it turns out that the maximum coordinate
is asymptotically independent of the smallest variables, its fluctuations around x are one-sided,
and they have a nontrivial scaling limit if and only if µ is in the maximum domain of attraction
of an extreme value distribution. For ease of notation, we will now drop ∆ = (0,∞) from the
notation,

µn,x [A] = P[(X1, . . . , Xn) ∈ A | Sn > x].

Let νx stand for the conditional distribution of X i subject to X i > x . That is,

νx [A] = P[X i ∈ A | X i > x] =
µ[A ∩ (x,∞)]

F̄(x)
.

We will use ‖ν‖t.v. to denote the total variation norm of a signed Borel measure on Rn . That is

‖ν‖t.v. = sup
A∈B(Rn)

|ν(A)|.

Theorem 2. Suppose µ is subexponential. Then

lim
y→∞

sup
n∈N

sup
x≥qn∨y

‖µn,x ◦ T −1
− (µn−1

× νx )‖t.v. = 0, (2.11)

where qn is the sequence appearing in Theorem 1.

Since the distribution of (X1, . . . , Xn) subject to {Sn > x} is clearly exchangeable, the position
of the maximum coordinate is uniformly distributed among 1, . . . , n. Theorem 2 states that the
conditional distribution of the maximum coordinate becomes asymptotically a randomly located
νx , while the law of the remaining n − 1 variables is the product µn−1 as was established in
Theorem 1.

It is interesting to examine whether (2.11) entails a limit theorem for the fluctuations of the
maximum around x , that is, whether there exists a scaling function ψ(·) such that under µn,x we
have

Mn − x

ψ(x)
d

−→ Λ, (2.12)

for some nontrivial distribution Λ. In view of Theorem 2 this is equivalent to asking when

νx [(x + uψ(x),∞)] =
F̄(x + uψ(x))

F̄(x)
(2.13)

converges as x → ∞ to a nontrivial function of u. This is precisely the subject of [3], where
Balkema and de Haan determine all possible scaling limits of residual life times as the survival
time goes to infinity, and the corresponding domains of attraction. It follows from their results
(Theorems 1, 3 and 4 there) that nontrivial limits in the right hand side of (2.12) can only be of
two types.

1. An exponential distribution of rate 1 if and only if µ is in the maximum domain of attraction
of the Gumbel distribution. In this case ψ can be determined by requiring the expression in
(2.13) to converge to e−u .
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2. A Pareto distribution on R+ with Λ̄(u) = (1 + u)−α and α > 0, if and only if µ has regularly
varying tails with index −α, that is F̄(x) = x−αL(x) as x → ∞, and L is a slowly varying
function. Note that this is equivalent to µ being in the maximum domain of attraction of the
Fréchet distribution with index α (cf. [4].) In this case ψ(x) = x .

That regularly varying distributions satisfy our main assumption (2.3) is a long known fact
(cf. [10,12].) In particular, if α > 2 one can choose dn =


tn log n for any t > α − 2 (cf. [13].)

The articles [5,11] are excellent references for subexponential distributions in the maximum
domain of attraction of the Gumbel distribution and the corresponding sequences dn for which
(2.3) holds.

Remarks. 1. Theorem 2 and the discussion following it generalise a result of Mikosch and
Nagaev (Proposition 4.4 in [11]) where they prove (2.12) for some of the most commonly used
subexponential distributions.

2. Theorem 2 also generalises an old result by Richard Durrett [6]. In that article it is proved that
if µ is regularly varying with index α < −2 and E[X1] = −b < 0, then

S[n·]

n

 Sn > 0


⇒ Jα,b1{U≤·} − b ·,

where U is uniform in [0,1] and Jα,b is independent of U with Pareto distribution. As in Corollary
3 in [1], Theorem 2 also establishes a conditional invariance principle for the sum of the random
variables cut-off at a level εn.

The rest of the article is devoted to the proof of the theorems.

3. Proof of the theorems

Given a vector x = (x1, . . . , xn) ∈ Rn we denote by Mx the coordinate of maximum size and
by mx its position. Precisely,

Mx = max
1≤k≤n

xi and mx = k ⇔ xk > x j , j < k, and xk ≥ x j , j ≥ k.

We will denote by σ j the operator that exchanges the j-th and the last coordinate of x, that is

σ j (x1, . . . , x j , . . . , xn−1, xn) = (x1, . . . , xn, . . . , xn−1, x j ).

With this notation we may write T x = σmxx. Let also X = (X1, . . . , Xn), Xn−1
=

(X1, . . . , Xn−1). We begin with a proof to Theorem 2 that only works when µ is supported
on the positive half-line, but has the advantage of being intuitive and straightforward.

Proof of Theorem 2 when µ is supported on [0,∞). Observe that if m is a probability
measure on a σ -field F , A ∈ F is such that m[A] > 0, and m A is the measure m conditioned on
A, that is m A[B] = m[B | A], then m A is the solution to the minimisation problem

min
ν[A]=1

H(ν|m), (3.1)

where the supremum is taken over all probability measures on F supported in A, and H(ν|m)
is the relative entropy of ν with respect to m, i.e. H(ν|m) =


f log f dm if ν ≪ m with

f = dν/dm, and H(ν|m) = ∞ otherwise. To see this, integrate over A the elementary inequality
f log f ≥ c f − ec−1 and optimise for c ∈ R.
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By Csiszár’s parallelogram identity

H(π |m)+ H(ν|m) = 2H


π + ν

2

m


+ H


π

π + ν

2


+ H


ν

π + ν

2


and Pinsker’s inequality H(π |ν) ≥ 2‖π − ν‖2

t.v., we get

H(π |m)+ H(ν|m)− 2H


π + ν

2

m


≥ ‖π − ν‖2

t.v..

Hence, if π solves (3.1) and ν[A] = 1 we have ‖π − ν‖2
t.v. ≤ H(ν|m)− H(π |m).

Now take A = {
∑

xi > x}, m = µn, π = µn,x , and ν = µ∗
n,x =

1
n

∑n
j=1 σ

j (µn−1
× νx ).

Note that µ∗
n,x [Sn > x] = 1, since µ is supported on [0,∞) and νx (x,∞) = 1. The density of

µ∗
n,x with respect to µn is given by

fn(x) =
1
n

n−
j=1

1{x j > x}

F̄(x)
=

Nn(x)

nF̄(x)
,

where Nn(x) stands for the number of coordinates in x that are greater than x . Hence,

‖µn,x − µ∗
n,x‖

2
t.v. ≤ H(µ∗

n,x |µ
n)− H(µn,x |µ

n) = log


F̄n(x)

nF̄(x)


+

∫
log Nn(x) dµ∗

n,x .

The last integral can be estimated as follows.∫
log Nn(x) dµ∗

n,x =

∫
log Nn(x) dµn−1dνx =

∫
log


1 + Nn−1(xn−1)


dµn−1

≤

∫
Nn−1(xn−1)dµn−1

= (n − 1)F̄(x).

If we let x → ∞, or if we keep x ≥ dn (with nF̄(dn) → 0) and let n → ∞, we have
‖µn,x − µ∗

n,x‖t.v. → 0 by (2.2) or (2.3), respectively. �

We continue now with some elementary observations that will be useful for both proofs.
The convergence in (2.4) is in fact uniform over compact y-sets. This follows from the uniform

convergence theorem for slowly varying functions (see [4], Theorem 1.2.1), as (2.4) implies that
x → µ[log x +∆] is slowly varying. In particular, if bn is any sequence growing to infinity there
exists a sequence mn → ∞ such that

lim
n→∞

sup
x≥mn

sup
0≤y≤bn

µ[x − y + ∆]

µ[x + ∆]
− 1

 = 0. (3.2)

Take a sequence bn such that Sn−1/bn is tight and choose a sequence ℓn ≫ bn such that

Dn(L) := sup
x≥ℓn

sup
|y|≤Lbn


1 −

µ[x − y + ∆]

µ[x + ∆]


−→ 0 as n → ∞, ∀L > 0. (3.3)

To see that such a sequence exists, iterate (3.2) using the fact the limit is uniform in x ≥ mn to
get

lim
n→∞

sup
x≥mn

sup
−Lbn≤y≤bn

µ[x − y + ∆]

µ[x + ∆]
− 1

 = 0. (3.4)

Now, if ρn is any sequence increasing to infinity we may choose ℓn = mn + ρnbn .
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The sequence qn in the statement of the theorems is chosen as qn = dn ∨ ℓn . Very often, in
fact in all cases we are aware of where a threshold dn in (2.3) or (2.6) is explicitly known, and
certainly for the dn constructed in [5], we can choose ℓn ≤ dn so the supremum in the Theorems
is taken for x ≥ dn .

Finally, note that for any B ∈ B(Rn) we have

P[T X ∈ B, Sn ∈ x + ∆] =

n−
j=1

P[T X ∈ B, Sn ∈ x + ∆, mX = j]

≥

n−
j=1

P[σ j X ∈ B, Sn ∈ x + ∆, mσ j X = n]

= n P[X ∈ B, Sn ∈ x + ∆, mX = n]. (3.5)

The last equality holds because P is invariant under σ j . The penultimate inequality holds because
mσ j x = n ⇒ mx = j (notice however that if µ is atomless this inequality and (3.6) below are in
fact equalities.) In view of (3.5) we have

µ∆
n,x ◦ T −1

[B] ≥
n P[X ∈ B, Sn ∈ x + ∆, mX = n]

P[Sn ∈ x + ∆]
. (3.6)

Proof of Theorem 1. Consider A ∈ B(Rn−1) as in the statement of the theorem and fix L ∈ N.
We have

P[X ∈ A × R, Sn ∈ x + ∆, mX = n]

≥ P[X ∈ A × R, Sn ∈ x + ∆, |Sn−1| < Lbn, mX = n]

≥ P[X ∈ A × R, Sn ∈ x + ∆, |Sn−1| < Lbn, MXn−1 ≤ x − Lbn]

=

∫
Xn−1∈A∩G

µ[x − Sn−1 + ∆] dP,

where

G = G(n, L , x) =


u ∈ Rn−1

:

n−1−
i=1

ui

 < Lbn, Mu ≤ x − Lbn


. (3.7)

Notice that when u ∈ G and x ≥ ℓn we have

µ


x −

n−1−
i=1

ui + ∆


≥ (1 − Dn(L))µ[x + ∆],

so that (3.6) can be reinforced to

µ∆
n,x ◦ T −1

[A × R] ≥ (1 − Dn(L))
nµ[x + ∆]

P[Sn ∈ x + ∆]
P[Xn−1

∈ A ∩ G]

giving the estimate

µ∆
n,x ◦ T −1

[A × R] − P[Xn−1
∈ A]

≥ −


P[Xn−1

∉ G] + Dn(L)+

 nµ[x + ∆]

P[Sn ∈ x + ∆]
− 1

 .
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Denote the expression in the parenthesis on the right hand side above by R(n, L , x). We can get
an upper bound by applying the same estimate for Rn−1

\ A, the complement of A. Combining
the two bounds we get

|µ∆
n,x ◦ T −1

[A × R] − P[Xn−1
∈ A]| ≤ R(n, L , x).

Now the sequence Sn−1/bn is tight, so we have

lim
L→∞

sup
n

P[|Sn−1| ≥ Lbn] = 0. (3.8)

On the other hand, it is known (see [7], Section lX.7) that

lim
L→∞

sup
n

n[F(−Lbn)+ F̄(Lbn)] = 0, (3.9)

and since ℓn ≫ bn we have

sup
x≥ℓn

P[MXn−1 > x − Lbn] = 1 − inf
x≥ℓn


1 − F̄(x − Lbn)

n−1
−→ 0 as n → ∞.

Combining this limit with (3.8) we see that P[Xn−1
∉ G] vanishes uniformly on x ≥ ℓn as

n → ∞ and then L → ∞. Relation (2.8) now follows from (2.6) and (3.3). Relation (2.9) is
proved similarly, using (2.4) and (2.5). �

Proof of Theorem 2. The proof follows the general outline of Theorem 1.
It is sufficient to show that

lim
n→∞

sup
x≥dn∨ ℓn

sup
U∈R

|µn,x ◦ T −1
[U ] − µn−1

× νx [U ]| = 0, (3.10)

where the supremum above is taken over the class R of finite disjoint unions of rectangles
A j × B j with A j ∈ B(Rn−1) and B j ∈ B(R). Recall the definition of G ⊂ Rn−1 in (3.7)
and define I = (x + Lbn,∞). Using (3.6) we have

µn,x ◦ T −1


j

A j × B j


=

−
j

µn,x ◦ T −1
[A j × B j ]

≥

−
j

nP[Xn−1
∈ A j , Xn ∈ B j , Sn > x, mX = n]

F̄n(x)

≥
n

F̄n(x)

−
j

P[Xn−1
∈ A j ∩ G, Xn ∈ B j ∩ I ]

=
nF̄(x)

F̄n(x)
µn−1

× νx


j

A j × B j


∩ (G × I )


.

Just as in the proof of Theorem 1 this gives that for all U ∈ R we have

µn,x ◦ T −1
[U ] − µn−1

× νx [U ] ≥ −


µn−1

× νx

(G × I )′


+

nF̄(x)

F̄n(x)
− 1


≥ −


µn−1

[G ′
] + νx [I ′

] +

nF̄(x)

F̄n(x)
− 1


≥ −R(n, L , x) ∀x ≥ ℓn .
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In the previous equation and in the following the prime symbol denotes the complement of a set
in the appropriate space: (G × I )′ = Rn

\ (G × I ), I ′
= R \ I and G ′

= Rn−1
\ G.

Since R is closed under complementation we can also get an upper bound by applying the
previous inequality for U ′ to get

|µn,x ◦ T −1
[U ] − µn−1

× νx [U ]| ≤ R(n, L , x).

The proof is now completed by letting x or n → ∞, then L → ∞ as before. �
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