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Abstract

The important application of semi-static hedging in financial markets naturally leads to the notion of
conditionally quasi self-dual processes which is, for continuous semimartingales, related to conditional
symmetry properties of both their ordinary as well as their stochastic logarithms. We provide a structure
result for continuous conditionally quasi self-dual processes. Our main result is to give a characterization
of continuous Ocone martingales via a strong version of self-duality.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The duality principle in option pricing relates different financial products by a certain change
of measure. It allows to transform complicated financial derivatives into simpler ones in a suitable
dual market. For a comprehensive treatment, see [6,7] and the literature cited therein.

Sometimes it is even possible to semi-statically hedge path-dependent barrier options with
European ones. These are options which only depend on the asset price at maturity. Here semi-
static refers to trading at most at inception and a finite number of stopping times like hitting times
of barriers. The possibility of this hedge, however, requires a certain symmetry property of the
asset price which has to remain invariant under the duality transformation, possibly after a power
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transform. This leads naturally to the concepts of self-duality, resp. quasi self-duality; see [2]
and more recently [3,15]. For references to the large literature of the special case of put-call
symmetry, see [3,8-10,22].

Continuous symmetric processes have been characterized in [22], and it is shown therein that
the conditional symmetry property is related to the conditional self-duality of their stochastic
exponentials. We extend this study by exploring the structure of conditionally quasi self-dual
processes as well as characterizing continuous Ocone martingales using results from [23] and
a strong version of self-duality. Ocone martingales are a very important class of conditionally
symmetric martingales; indeed, Tehranchi raised in [22] the question whether all conditionally
symmetric martingales are Ocone. This question is still open. We do provide, however, an
example of a non-Ocone martingale in continuous time which is process, but not conditionally
symmetric.

2. Definitions and general properties

We work on a filtered probability space ({2, F, F, P) where unless otherwise stated, the fil-
tration satisfies the usual conditions with Fy being trivial up to P-null sets, and fix a finite but
arbitrary time horizon 7 > 0. All stochastic processes are RCLL and defined on [0, T'] unless
otherwise stated. We understand positive and negative in the strict sense.

Definition 1. Let M be an adapted process. M is conditionally symmetric if for any stopping
time 7 € [0, T'] and any non-negative Borel function f

E[fMr —M)| Fl=E[f My — Mp)| F]. ey

Here it is permissible that both sides of the equation are infinite. If M is an integrable
conditionally symmetric process, then condition (1) implies that M is a martingale by choosing

fx)=x(=xT—x7).

Definition 2. Let S be a positive adapted process. S is conditionally self-dual if for any stopping
time t € [0, T'] and any non-negative Borel function f we have

L] [0(5)

These definitions are new, and are motivated by the fact that in applications to semi-static
hedging one typically considers hitting times of barriers which are stopping times. They differ
from the ones used in [22] which uses bounded measurable f instead, and in particular
deterministic times. However, all corresponding results in [22] applied in this paper can be
adapted to our setting.

In the case when § is a martingale, we can define a probability measure Q, the so-called dual
measure, via

dg St
dp So

fri| . @

3

Similarly, if E [«/ST] < oo,or E [S% ] < oo foraw € [0, 1], respectively, we define probability
measures H, sometimes called ‘half measure’, respectively P%, via

dH /57 dpv  S¥

dP T E[JSr]T  dP _ E[s¥] @
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Note that the integrability of ST = Sp exp(X7) under P implies the existence of the moment
generating function of X7 under H for an open interval including the origin, i.e. X7 has all
moments under H.

By Bayes’ formula, the conditional self-duality condition (2) can be expressed for a martingale
S in terms of the dual measure Q defined in (3) as

B[]

Lemma 3 (/22, Lemma 3.2]). A positive continuous martingale S is conditionally self-dual if

and only if
ST\
Fi|=E —
] P{(Sf)

(0]

for all complex p = a + ib with a € [0, 1] and all stopping times t € [0, T].

}}:| (6)

For the measure H (corresponding to w = 1/2) the following proposition has been stated
in slightly different settings in [3,15,22], and also for w = 1, i.e. for Q. Similar unconditional
multivariate results are given in [16].

Proposition 4. Let S = exp(X) be a martingale. Then S is conditionally self-dual if and only if
for any stopping time t € [0, T] and any non-negative Borel function f
Epu[f (X1t — X)| Fel=Epi—w [ f (Xe — X7)| F7] (N
holds for at least one (and then necessarily for all) w € [0, 1].
For the half measure we immediately obtain the following special case.
Corollary 5. Let S = exp(X) be a martingale. Then S is conditionally self-dual if and only if X

is conditionally symmetric with respect to H.

Proof of Proposition 4. As a consequence of the martingale property of S and Holder’s inequal-
ity we have that both Ep[e?X7=X0)| 7], for all w € [0, 1], as well as | Ep[ e X7=X0)| 7]
for all complex p = a 4+ ib witha € [0, 1], T € [0, T], are finite a.s.

Let S be conditionally self-dual, w € [0, 1], so that (6) implies the following two equalities:

Ep [ew(xrfxa fr] = Ep [e(lfuo(xrfxf)

Ep [e<w+i9)<xr—xf>

bl

7. (8)
fr] — Ep I:e(l—w—ie)(XT—Xr)

for 6 € R. By applying Bayes’ formula we obtain

Ff] _Ep [ew+iOXr=X0)| F,]
Ep [evXr=X0] F,]

]:t] _ Ep [e(lfw*iG)(XT*Xr) -7:1]7

Ep [e0-0)X1=X0| F,]

7. ©)

bl

Epu [eimxr—xr)

Epiw [ 0 (Xe=X7)

so that in view of (8), (9) the r.h.s. coincide and so do the 1.h.s. Since the conditional character-
istic functions (X7 — X;) under P" coincide with the ones of (X; — X7) under P1=% we end
up with (7) for the claimed cases.



1768 T. Rheinlinder, M. Schmutz / Stochastic Processes and their Applications 123 (2013) 1765-1779
On the other hand, for an arbitrary w € [0, 1], the P-martingale property of S, and by Bayes’
formula we see that the Lh.s. (and hence the r.h.s.) of the following equations coincide:

A (10)

Ep [ 7]
Ep [0-00r—X0] 7,]
— Ep [e“—w><XT—Xf> J—}]_l : (1)

Epu [e—w<Xr—Xr)

fr] — Ep [ew<xT—Xf>

Epl—w I:efw(er)(T)

;f,] —

Furthermore, we have for all complex p = a + ib with a € [0, 1] that

Epu [e<p—w><Xr—Xf) fr] = Epio [e<w—p)(XT—Xr>

}'T].

Combining this equality with the fact that the r.h.s. of (10) and (11) coincide we obtain the
equality of the Lh.s. of the following two equations

oP(X7—X7) oy
Epw [— ]—',} A

_7:{] =Ep I:eP(XT*Xr)

7|

ew(XT*Xr)

(1= (X7 =Xo)
EPI*M’ 71 N v_. v

fr] = Ep [e(l—pxxr—xr)

7.

e(I—w)(X7—X7)

fr} Ep [e(l—wxxr—xa

The conditional self-duality property then follows by using the equality of the r.h.s. of the above
equations and Lemma 3. [

The following definition and proposition follow the unconditional versions stated in [15]; see
also [3].

Definition 6. An adapted positive process S is conditionally quasi self-dual of order o € R if
for any stopping time 7 < T and any non-negative Borel function f it holds that

L[] [() ()]

In particular, forall t < T
S\¢
E =2
’ [ < S )

Proposition 7 (Characterization of Conditional Quasi Self-Duality). S is conditionally quasi
self-dual of order o # 0 if and only if S* is conditionally self-dual.

7=

Proof. This follows by considering for each f the functions g defined by g(x) = f (x%),
respectively i given by h(x) = f (x!/%),x > 0. O

3. Conditionally quasi self-dual continuous martingales

The goal of this section is to clarify the structure of conditionally quasi self-dual processes in a
continuous martingale setting which comprises some Brownian motion-driven stochastic volatil-
ity models in financial applications. Following [22] we assume throughout this section that every
(F;)-martingale is continuous. We refer the reader to [19] for all unexplained terminologies.
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For every continuous conditionally symmetric martingale Y, Yy = 0, such that its stochastic
exponential £(Y) is a martingale, one can define the change of measure

d 1
% = S(Y)T = exp <YT - 5 [Y]T> .

In the sequel, we assume that Y is a continuous martingale with Yo = 0. Let X = Y — % [Y]

and observe that [X] = [Y], hence Y = X + % [X]. We assume w.l.o.g. that Sp = 1 and set
S = exp(X) = £(Y). By Corollary 5, the conditional self-duality of a martingale S is equivalent
to the conditional symmetry of X under the measure H. The next result is significantly more
difficult to prove.

Theorem 8 (Tehranchi [22, Theorem 3.1]). The continuous martingale S is conditionally self-
dual if and only if S is of the form S = E(Y) for a conditionally symmetric continuous local
martingale Y.

One particular problem in this context is that stochastic exponentials can be strict local
martingales in which case it would not be possible to use them as density processes for the
measure transform leading to the dual market in financial interpretations. An example class of
positive conditionally self-dual continuous martingales is provided by stochastic exponentials of
conditionally symmetric BM O-martingales; see [13] for a detailed exposition of BM O-theory.

Proposition 9. Let Y be a continuous conditionally symmetric martingale such that there exists
a constant C with

sup E[|Yr — Y[ |Fz] < C. (13)
0<t<T

Then Y is a BM O-martingale and its stochastic Doléans-exponential € («Y) is a martingale for
each o € R. Moreover, the following two assertions are equivalent.

(i) S = E(Y) is a positive conditionally self-dual martingale which satisfies for some p > 1 the
reverse Holder inequality R,(P), or, equivalently the Muckenhoupt inequality A,(Q) for
q = (p + 1) / p, both with the same constant.

(i) Y is a conditionally symmetric BM O-martingale.

Proof. Condition (13) implies that Y € BM O. Consequently, by Theorem 2.3 in [13], £ («Y) is
a martingale (and not a strict local martingale).

The uniform boundedness for all stopping times of the Lh.s. of (5) for f(x) = [x|?
corresponds to R, (P), and of the r.h.s. of (5) for f(x) = |x|? to A;(Q). The equivalence of
(1) and (ii) then follows from Theorems 2.3, 2.4 and 3.4 in [13], together with Theorem 8. [J

The process X = log(S) is, in contrast to Y, typically not a martingale. As X =Y — % [Y],

the minimal martingale measure P (see [21]) for X is well-defined if £ (%Y ) is a martingale,

and has then the density
dP 1 Ly, Ly, + Lixg
— =exp|=Yr— = =exp| = — .
ap P\ TR P\ Tglhir

The minimal entropy martingale measure QF for X is a martingale measure which minimizes
the relative entropy with respect to P over all martingale measures for X. It can be characterized
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as the martingale measure for X with finite relative entropy such that

dQE T
F=6XP<C+/O ndX; |,

where 7 is a predictable process with the property that [ nd X is a Q-martingale for all martingale
measures Q with finite relative entropy; see [11]. It follows from Corollary 5 that under mild
conditions the measure H with density

dH Ly
ap =~ TP T AT

is a martingale measure for X. The preceding discussion shows that typically, H is the minimal
entropy martingale measure with n = 1/2. This is in general different from the minimal mar-
tingale measure; see [11, p. 1036]. Moreover, it is remarkable that QE = H has such a simple
form, which has consequences for the structure of conditionally symmetric martingales. In fact,
for all € [0, T'] the measure H' with density

dH' 1
1P = exp|c + EX, (14)
is a martingale measure for X on [0, ¢] but the normalizing constant ¢; depends of course on ¢.

Definition 10. Let M be a continuous local martingale, and denote the right-continuous and
complete filtration generated by M as F¥. M is said to have the PRP (predictable representation
property), if every F™ -adapted local martingale N can be written as N = Ny + [ © dM for some
predictable, M-integrable process ¢

Proposition 11. Let Y be a continuous P-martingale which is conditionally symmetric up to T
and which has the PRP. Assume that S = £(Y) is a martingale, and that the minimal martingale
measure P exists forX=Y -5 LY. Then Y is a Gaussian martingale.

Proof. By [19, Exercise VIII 1.27.], the fact that ¥ has the PRP under P implies that X has the
PRP under P. Moreover, the existence of P implies the existence of the probability measures H’
as defined in (14) because

E [exp (%X,)] <E [exp (2 [X]lﬂ —F |:E [g

Since Y is conditionally symmetric up to T, it follows from Theorem 8 that S is conditionally
self-dual, and hence, by Corollary 5, X is a conditionally symmetric martingale under each
H'. In particular, H' is a martingale measure for X on [0, z]. The PRP implies by the second
fundamental theorem of asset pricing, see Theorem 1.17 of [4], that P = H' on F; which yields

1 1 1 1
exp(2 —[Y],) = exp (EX’+§[X]’) = exp (c,—i—EXt),

for all t < T. It follows that [Y] = [X] must be deterministic, and therefore Y is a Gaussian
martingale. [J

The next result completely characterizes conditionally quasi self-dual continuous semimartin-
gales in terms of conditional symmetry. In the case of non-vanishing « it is essentially a corollary
to [22, Theorem 3.1].
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Proposition 12. A continuous positive semimartingale S is conditionally quasi self-dual of non-
vanishing order « = 1 — 2«, if and only if S* is a martingale and S = e“M1E(M) for a
continuous conditionally symmetric local martingale M. For o = 0 we assume in addition that
S = exp(M) for an integrable process M. In that case, S is conditionally quasi self-dual of order
zero if and only if M is a continuous conditionally symmetric martingale.

Proof. For « # 0, S is conditionally quasi self-dual if and only if S“ is conditionally self-dual
for some «, hence in particular a positive continuous martingale. We can then write by Theorem 8

$% =& (aM) = exp <aM — %az [M]) = Mg (A1)«

for some conditionally symmetric local martingale M. On the other hand, if § = ¢“IMIg(M), we
have

§% = e Mlepn® = exp <aM+ <K — %) o [M]) .

Since S¢ is a positive martingale it follows that S* = £(N) for a continuous local martingale N.
The uniqueness of the canonical semimartingale decomposition implies N = o M which implies
that

In the case when « # 0, dividing by « yields the result. If « = 0, we start by assuming that S
is conditionally quasi self-dual of order o« = 0. For an arbitrary non-negative Borel function f,
define g = f o log. By assumption we have for any stopping time 7 € [0, T']

E[f My — M) Fr] = E [ g (exp(Mr — My))| Fr|
= E[g(exp(M; — M))| ;] = E[ f (M; — M7)| F-1,

for an arbitrary non-negative Borel function f, i.e. M is conditionally symmetric combined
with the integrability assumption, also a martingale, and it is clearly continuous. Furthermore,
S = exp(M) = e2™1£(M) holds.

Conversely, if M = log(S) is a continuous conditionally symmetric martingale, then for all
non-negative Borel functions f define g = f o exp so that

E(f(exp(Mr — M) Fr) = E(g (Mp — M7)| Fr)
= E(g(M; — M7)| F?)
= E(f(exp(M; — M7))| F7),
which implies the conditional quasi self-duality of order zero. [J
Example 13 (Geometric Brownian Motion). The results presented lead to the following view of

the symmetries of geometric Brownian motion. Let ¥ = o W for a standard Brownian motion W
and o > 0. Since Y is a continuous conditionally symmetric martingale, Theorem 8 yields that

1 1
EY) =exp <Y -3 [Y]) = exp <0W - 502t>
is a conditionally self-dual process. Denoting by X a shift parameter, we consider the process

1 A
S = exp (aW — Eazt + x:) =exp (k[Y]) E(Y), where k = —.
o
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By Proposition 12 § is conditionally quasi self-dual of order zero if and only if X = %02 (since
we have the ordinary exponent of a continuous conditionally symmetric martingale) and, in view
of the fact that S*, 0 =1 -2« =1 — 3—2‘, is a martingale, it is conditionally quasi self-dual of
order «; cf. e.g. [2,3].

4. Ocone martingales and strong self-duality

In this section we discuss a connection between Ocone martingales and a strong version of
self-duality of their associated stochastic exponentials, as motivated by the discussion in [22].
However, the previously introduced conditional notions of symmetry resp. self-duality are not
quite fitting for such a discussion as Ocone martingales in particular enjoy a stronger notion of
symmetry.

Definition 14. Let M be a continuous P-martingale vanishing at zero such that [M],, = oo,
and consider its Dambis—Dubins—Schwartz (DDS) representation M = By. The process M is
called an Ocone martingale if B and [ M] are independent.

It has been proved in [23] that if a martingale is Ocone and has the PRP, then it is Gaussian.
A more interesting example of an Ocone martingale is given by the solution of the stochastic
differential equation

dMl = V[ dBt N
th = _MV[ dl + RV V[ dW[,
where i > 0 and B, W are two independent Brownian motions. This follows by [1, Chapter 2,

Theorem 2.6], since [M] = f V2dt is independent of B. Moreover, Lévy’s stochastic area
process is also an Ocone martingale; see [23].

Definition 15. An adapted process X is process symmetric if X ~ —X (i.e. the finite dimen-
sional distributions of X and — X are the same). In particular, for semimartingales X with Xq = 0
this is equivalent to

Elew(i | T@,dx,)] —elew (i [ ' nax.)| voes.

where S denotes the space of deterministic and bounded Borel functions on [0, T'].

Remark 16. Ocone martingales are always process symmetric; see Tehranchi [22].

It is important to stress that different symmetry concepts are not equivalent. Since for example
conditional symmetry implies the martingale property for integrable processes, we have that an
integrable process symmetric X which is not a martingale cannot be conditionally symmetric.
For example, if Z is a symmetric integrable random variable, then the process (Z1);¢(o,7] is still
process symmetric but not a martingale. Less obvious is that there are also process symmetric
martingales which are not conditionally symmetric.

Example 17. (i) The martingale M = [ B? dB is process symmetric since

—/32d3=f(—3)2d(—3).
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Since

_1
o[ (151) o
dt

we have that the Brownian filtration F = (F;) equals the filtration F™ generated by M.
Moreover, M has the PRP, but is non-Gaussian, and hence not Ocone.

(i) It is worth noting, in light of Theorem 22, that the stochastic exponential £(M) is a strict
local martingale. This follows e.g. by Corollary 2.2 of [14] since the with M associated
auxiliary diffusion

dY, = Y*dt + dB,

does explode.

(iii) However, M is not conditionally symmetric. Choose 0 < ¢ < T and assume by means of
contradiction that M is conditionally symmetric. In particular,

E[(Mr — M)’ | F] = E[(M; — Mr)*| ],

since the symmetry is satisfied by the positive and the negative part of the third conditional
moment, so that

E[(Mr — M,)*|F1]1 =0

holds a.s., where we have used that E [|[M7 — M;|?] < oo. However, noting that Wy =
B:+s — B; defines a Brownian motion independent of F; and that B; is F;-measurable, we
can write
T—t
Mr — M, = WdWy + B} Wr_; + B,(W7_, — (T —1)).
0

By a straightforward but lengthy calculation, the third conditional moment of this martingale
increment can, for ¢t < T, be written as a nontrivial polynomial in B;, which, for # > 0, will not
take a.s. only values in the roots of the polynomial, i.e. we end up with a contradiction.

It is observed by Tehranchi [22] that continuous Ocone martingales are conditionally sym-
metric with respect to deterministic times. The next result shows that this is still true for bounded
stopping times.

Lemma 18. A continuous Ocone martingale M with natural filtration F = (F;) is conditionally
symmetric.

Proof. Since M is Ocone we have M = By for a Brownian motion B (with natural filtration
B = (B;)) being independent of [M]. Denote by G = (G;) the right-continuous enlargement of
the filtration B; v o ([M]). Following [5, p. 129] we have that for t being an F-stopping time it
follows that [M]; is a G-stopping time. Indeed, by denoting A; = inf{s : [M]; > ¢} we have

Ml <t} ={r < A} e Fa, C [ oM ) C[\Brye VoMl =G,
>0 >0
where in our case T < T < oo and [M] is continuous, so that we end up with a finite stopping
time. As in the proof of Lemma 2 on p. 129 in [5] the Ocone property and lemma 1 on p. 129
in [5] imply that 8 is a G-Brownian motion. By [12, Theorem 13.11] 8], = Bu+im], — Bim), is a
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Brownian motion independent of Gy, . Hence, for t < T' < oo we have for any non-negative
Borel function f

E[f(Mr — M)|F:] = ELELf (Bimir — B ) 1Gim, 11 F+]
= E[E[f (B, — Bimip) |G N1 Fe 1 = ELf (My — M7)|F2],
so that M is conditionally symmetric. [

We assume w.l.o.g. that So = 1 and set S = exp(X) = £ (Y) where X (and then Y) is a
continuous semimartingale.

Recall that S is the space of deterministic and bounded Borel functions on [0, T']. For ¢ € S,
weset X = [¢dY — 5 [¢?d (Y], and S? := exp (X?) = £ ([ ¢ dY). In the case that all S?
are martingales, we define dual probability measures Q% via

d0?
407 _ 9.
dp
Definition 19. We say that S = £(Y), for a continuous martingale Y, is strongly self-dual if for

all ¢ € S, the S? are martingales and that with equality in distribution as a process living on
[0, 7],

{s?, P} ~ {% Q¢}.

In the case when S is strongly self-dual then, by choosing ¢ = 1, it also implies an uncondi-
tional form of the self-duality property known as put-call symmetry, which is the most frequently
used definition in the previous literature.

Lemma 20. S is strongly self-dual if and only if for all ¢ € S, the S® are martingales and
{x?, P}~ {-x?, 0%}. (15)
Proof. Note that the martingale assumptions are the same. Assume that S is strongly self-dual.
For an arbitrary non-negative functional F define G via
G :=Folog.
Then

Ep[Fx!.0<t =) =Ep[Gesf.0<1 =) =Ege |:G <SL¢,0§r§ T>:|

t
= Ego [F(-X},0=1=T)],
so that (15) follows. The converse direction follows similarly. [

For the record, we state the next proposition which is analogous to Corollary 5. If for
¢ € S, exp (X?) is a P-martingale, then

1o
cp = E | exp EXT < 00,
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so we can define probability measures H? (analogous to the half measure H) via

dH? | Lo
— = €X - .
ap ~ 0 TP\270r

Proposition 21. S is strongly self-dual if and only if for all ¢ € S we have that the S® are
martingales and the X9 are process symmetric under the measures H?.

Proof. The strong self-duality implies the martingale assumptions and with Lemma 20 it implies
for arbitrary A, ¢ € S that

1 T
c(;lEp |:exp <§X?+i/ k,dX?>:|
0
-1 1 ¢ . ’ ¢
=cy EQ¢ exp 5(—XT)+1 A rd(=X) )|,

while from the definitions of H? and Q¢

T o\ | _ —1 l ¢ - ! ¢
Ego |exp|i MdXy )| =c, Ep|exp| X7 +i A dX{
0 2 0
T 1 T
_ ¢ -1 D A _v?
Eye |:exp( 1/ AldXt)i| Cy Ep |:exp<2XT+1/ Ard(—X{ )>:|
0 0

1 T
o Bgs [ew (5xt+1 [ aac-xp) |

Since A and ¢ were arbitrarily chosen, we end up with the process symmetries of the processes
X? under H?.
Conversely, the process symmetries imply for arbitrary A (and ¢) € S that

T
coE ex —£X¢+' A dX?
oLy p AT l ) t t
T ¢
= cyEpo |exp (5 (~X7) +i ) rd(=X") 1.

while again by the definitions of H? and Q%

T 1 T
Ep [exp (l/ Aldxf’)} = csEpo |:exp (—Ex‘ﬁ —|—i/ AldX?>:|
0 0
T T
Ego [exp <—i/0 ,\tdx;”ﬂ Ep [exp (X? + i/o Atd(—x;”)>]

1 T
= cyEps [exp (—5(—)(?) —i—i/o As d(—X?))]

Hence, in view of the imposed martingale assumptions, the strong self-duality now follows by
Lemma 20. [

In the following result we show that the Ocone property translates one-to-one via lifting by
stochastic exponentiation into the strong self-duality property.

and

and
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Theorem 22. A continuous martingale Y is an Ocone martingale if and only if £(Y) is strongly
self-dual.

Proof. Let first ¥ be a continuous Ocone martingale, and set for ¢ € S

?:Y—/M[Y]

Here we suppress the dependency of Y on ¢ for ease of notation.
By Theorem 1 and Comment 2 of Vostrikova and Yor [23], it holds that Y is a continuous
Ocone martingale if and only if

(i) Forall¢ € S,

{v, P}~ {Y, 0%}, (16)
or equivalently,
{ly1, Py~ {Ir1. 0*}; (17)

note that [Y] = [?]
(i) € (f ¢ dY) is a martingale forall ¢ € S.

We now show that {X ¢ P} ~ {—X ¢ Q‘/’} for all ¢ € S, which implies (in view of (ii)) by
Lemma 20 strong self-duality of § = £(Y). First note that ¥ under Q? is also Ocone and thus,
in particular process symmetric. Furthermore, we have for all 1, € S by the aforementioned
properties of Ocone martingales, cf. also Lemma 2.5 of [17], that

E [exp (i/OTAthzd))}
_E[exp <if0T ( t¢de __/ ord [YL>>]
= Egs |exp i/OT)\td(/Otd’sd?s - %/I(PSZd[?]S))}

= Epe |exp

= Ego | exp

s fon{ o[ /w»ﬁ

:EQ¢ exp (—i/ )»,dX?)]
L 0

which proves the claim and hence the first implication.
As for the other direction, we will show property (17) for all ¢ € S. Let £ ( [ody ) =

exp(X¢) where X% = f ¢dY — % f ¢2 d [Y], and define probability measures Q‘l> via

dQ®/dP =€ (/qde) — exp (x?).
T
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We assume first that ¢ is bounded away from zero, and that Y is a square-integrable
martingale, i.e. E [¥?] < oo for all # > 0. Note that [X?] = [ ¢*>d [Y] and therefore [Y] =
[ ¢72d[X?]. We have for every non-negative functional F, with F(U) denoting F (U;; 0 <
t < T) for any stochastic process U,

Egs [F([YD] = Ep [exp X¢ (qu d|[ X"’])] = E o [F (/ ¢‘2d[X¢’]>:|.

On the other hand,

pIF (Y] )1—Ep[ (f¢‘2d [x?] )]

Hence the strong self-duality of § implies by Lemma 20 that [Y] under Q% has the same law
as [Y] under P, for all ¢ € S which are bounded away from zero. Equivalently, for all such
¢; N € Narbitrary; 0 <#; <--- <ty < T;and arbitrary u = (uy,...,un) € RN we set

W) =exp (i (ur Y], +-+unl¥ly)),

and have that

T 1 T
E [W(u)eXp (/O b dY, - 5/0 ¢3dm,ﬂ = Eg [0()]

= E[P)]. (18)

Let now ¢ € S be arbitrary, i.e., in particular ¢ may vanish on a set I" C [0, T]. We denote
by ¢™ € S functions which coincide with ¢ as long as |¢;| > 1/n, and which equal 1/n if
|p:| < 1/n, so that " — ¢ pointwise. By dominated convergence for stochastic integrals
(see [19, Theorem IV.2.12]), it follows that in probability,

e[ omn) (o),

We will now show that the family {U,},cy is uniformly integrable. For this, it suffices to show
that

sup E [Uy, log (Uy)] < o0.
n

Indeed, using that so far Y was assumed to be a square-integrable martingale, and therefore
E[[Y],] < oo forall > 0 (see [18, Corollary 11.6.3]),

E[Uylog (Un)] = E yom / o dy, — / ( f”))zd[Y]t}

o5 / 9" dY, - / (#7) ai+ 5 | Nl S”)zdm,]
= E _5/0 ( ('”) d[Y]t}

—E B/OT ( ,(’“)2 d[Y]t:| :

=F
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since by what has already been proved, [Y] has the same distribution under both Qd’(") and
P since the ¢ are bounded away from zero. We have, since ¥ was assumed to be square-
integrable,

£l ! (”)2dY < E[[Y
[5/0 (t) [],]_const. [[Y ]7] < oo.

Hence the U,, are uniformly integrable, and we conclude by (18) that

T 1 T
E [mmexp (f b dY, — Ef ¢3d[Y1,)}
0 0
T T
—limE [W(u)exp (/ o dy, — 1/ ( f’“)z d[Y],)]
n 0 2 Jo

=E[V@W)].

Therefore [Y] has the same distribution under both Q% and P for all ¢ € S. It follows by the
aforementioned result of [23] that ¥ is an Ocone martingale.

In the case that Y is a continuous martingale, not necessarily square-integrable, the result
follows by localization: there is an increasing sequence of stopping times (7},) such that Y77 is
bounded, e.g. 7,, = inf{r : |Y;| = n}. Therefore the previous result applies on [0, T, ], each n.
Letting n tend to infinity yields then the general result. [J

This result should be seen in the context of Tehranchi’s [22] Theorem as given in Theorem 8.
In both results, a certain symmetry property (conditional respectively Ocone symmetry)
translates into a self-duality property (conditional respectively strong) of the associated stochastic
exponential. The structure of the proofs, however, is completely different. While Tehranchi’s
proof rests on his characterization that for a continuous local martingale Y conditional symmetry
is equivalent to the property that Y7 given F; Vo ([Y]r) is normally distributed with expectation
Y; and variance [Y]y — [Y], forall 0 < ¢ < T, we work with properties of Ocone martingales as
developed in [17,23].

The notion of strong self-duality is justified by an economic interpretation, namely that the
distribution of the price process S? for arbitrary parameter function ¢ € S remains invariant
under the dual market transformation. Furthermore, it is shown in Theorem 22 that it is equivalent
to the Ocone property of its stochastic logarithm.

The relationship between conditional and strong self-duality is however beyond the scope of
this paper, since this amounts to the at present open conjecture by Tehranchi whether there exists
any non-Ocone conditionally symmetric martingale. To emphasize it once more, the stochastic
logarithm of a continuous positive strongly self-dual martingale is Ocone (see Theorem 22),
while the stochastic logarithm of a continuous positive conditionally self-dual martingale is
conditionally symmetric (see Theorem 8). Hence finding a counter-example to Tehranchi’s
conjecture would show that the two notions of self-duality are different, whereas if the conjecture
were true, the two notions would in fact amount to the same. In the latter case it would be still
interesting to note that the two proofs are vastly different. Regarding duality relations between
exotic options, the notion of strong duality seems to be the appropriate concept; see [20].
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