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Abstract

In this paper, we establish the dimension-free Harnack inequality on configuration spaces by using the
coupling argument. Furthermore, a unified treatment is also used to prove the equivalence between the
Harnack inequality on configuration space and that on the corresponding base space under a very mild
condition.
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1. Introduction

The second quantization of a Markov semigroup, which can be realized by an independent
particle system on the configuration space (cf. [16, (5.3)]), is a fundamental model in the study
of infinite-dimensional analysis. Second quantization is a powerful tool used in quantum field
theory for describing the many-particle systems. We refer to [10,15] for physical background of
the second quantization semigroup. A key point for the study of this model is to characterize
the second quantization semigroup by using properties of the base process. For known results
concerning particle systems on configuration spaces, we refer to [13,14,23,5] for functional
inequalities and exponential convergence, [8] for the Feller and strong Feller properties, and [24]
for small time behaviors. In this paper, we aim to establish the dimension-free Harnack inequality
in the sense of [17] on configuration spaces. See e.g. [22] and the references therein for
applications of the dimension-free Harnack inequality.
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Let us first introduce the basic framework. Let (M, F ) be a measurable space, and let
P(x, dy) be a transition probability on M . Then

P f (x) :=


M

f (y) P(x, dy), x ∈ M, f ∈ Bb(M)

gives rise to a Markov operator P . Here and in what follows, Bb(M) (resp. B+

b (M)) denotes the
set of all bounded measurable (resp. bounded non-negative measurable) functions on M . Denote
by δx the Dirac measure concentrated at x ∈ M . Consider the infinite configuration space

Γ :=


γ =

∞
i=1

δxi ; xi ∈ M


equipped with the σ -field induced by {γ → γ (A); A ∈ F }. In many cases, one may be restricted
to the locally finite configuration space

Γ0 :=

γ ∈ Γ ; γ (K ) < ∞ for compact K ⊂ M


,

on which the induced σ -field coincides with the Borel σ -field of the vague topology. See [1]
for more details on analysis and geometry on configuration spaces. Let Bb(Γ ) be the set of all
bounded measurable functions on Γ , and B+

b (Γ ) the set of all non-negative elements in Bb(Γ ).
The Markov operator PΓ considered in this paper is

PΓ F(γ ) :=


MN

F


∞

i=1

δzi


∞

i=1

P(xi , dzi ), γ =

∞
i=1

δxi , F ∈ Bb(Γ ).

The central purpose of this paper is to discuss the dimension-free Harnack inequality for
PΓ . It is well-known that the coupling argument, developed in [2,20], is quite efficient for
proving a Harnack inequality (see also [9,11,22]). Therefore, it is natural for us to investigate the
Harnack inequality for PΓ via the coupling approach. Since the underlying space Γ is infinite-
dimensional, on the other hand, we can use techniques in infinite-dimensional analysis to handle
this problem. A unified treatment will be presented (see Section 3 below).

In order to formulate the Harnack inequality for PΓ , we need a distance-like function on
Γ × Γ . Let

I : MN
→ Γ , (xi )i≥1 →

∞
i=1

δxi .

For any non-negative function ϕ on M × M , define

ϕΓ (γ, η) = inf


∞

i=1

ϕ(xi , yi ); (xi )i≥1 ∈ I −1(γ ), (yi )i≥1 ∈ I −1(η)


, γ, η ∈ Γ . (1.1)

The organization of this paper is as follows. The Harnack inequality for PΓ is established in
Section 2 via a coupling approach. We first present a general result, and then as an application
diffusion processes on the configuration space over a Riemannian manifold are considered. The
results are also applied to study the strong Feller property, hyper-bounded property, and entropy-
cost inequality. In Section 3, a unified treatment is used to prove that under a very mild condition
PΓ satisfies the Harnack inequality iff so does P . Finally, we present a fundamental property of
ϕΓ in Section 4.
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2. Coupling approach

This section is devoted to establish the Harnack inequality for PΓ via a coupling argument.
We first present a general result and then apply it to the diffusions on the configuration space
over a Riemannian manifold as a special case.

2.1. A general result

Theorem 2.1. Assume that for any x, y ∈ M there exist an M-valued random variable ξx,y and
a [0, ∞)-valued random variable Rx,y such that

P f (x) = E f (ξx,y), P f (y) = E

Rx,y f (ξx,y)


, f ∈ Bb(M). (2.1)

(1) Let p ∈ (1, ∞) and ϕp : M × M → [0, ∞) such that
ER p/(p−1)

x,y
p−1

≤ eϕp(x,y), x, y ∈ M. (2.2)

Then

(PΓ F(γ ))p
≤

PΓ F p(η)


eϕΓ

p (γ,η), F ∈ B+

b (Γ ), γ, η ∈ Γ .

(2) Let ϕ be a non-negative function on M × M such that

E[Rx,y log Rx,y] ≤ ϕ(x, y), x, y ∈ M. (2.3)

Then

PΓ log F(γ ) ≤ log PΓ F(η) + ϕΓ (γ, η), 1 ≤ F ∈ Bb(Γ ), γ, η ∈ Γ .

Proof. (1) It suffices to prove the statement for ϕΓ
p (γ, η) < ∞. Fix any (xi )i≥1 ∈ I −1(η) and

(yi )i≥1 ∈ I −1(γ ) such that
∞

i=1

ϕp(xi , yi ) < ∞.

By (2.1) and (2.2), we may construct a family of independent M × [0, ∞)-valued random
variables {(ξi , Ri ); i ≥ 1} such that for any i ≥ 1 and f ∈ Bb(M),

P f (xi ) = E f (ξi ), P f (yi ) = E

Ri f (ξi )


,


ER p/(p−1)

i

p−1
≤ eϕp(xi ,yi ).

Now it holds from Hölder’s inequality that
PΓ F(γ )

p
=


E


∞

i=1

Ri


F


∞

i=1

δξi

p

≤


EF p


∞

i=1

δξi

E


∞

i=1

Ri

p/(p−1)
p−1

=

PΓ F p(η)

 ∞
i=1


ER p/(p−1)

i

p−1

≤

PΓ F p(η)

 ∞
i=1

eϕp(xi ,yi )
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=

PΓ F p(η)


exp


∞

i=1

ϕp(xi , yi )


.

This completes the proof of the first assertion by minimizing in (xi )i≥1 ∈ I −1(η) and (yi )i≥1 ∈

I −1(γ ).
(2) By (2.1) and (2.3), for any fixed (xi )i≥1 ∈ I −1(η) and (yi )i≥1 ∈ I −1(γ ), we may construct

a sequence of independent M × [0, ∞)-valued random variables {(ξi , Ri ); i ≥ 1} such that

P f (xi ) = E f (ξi ), P f (yi ) = E[Ri f (ξi )], E[Ri log Ri ] ≤ ϕ(xi , yi )

for all i ≥ 1 and f ∈ Bb(M). By the Young inequality (see e.g. [3, Lemma 2.4]), we obtain

PΓ log F(γ ) = E


∞

i=1

Ri


log F


∞

i=1

δξi



≤ log EF


∞

i=1

δξi


+ E


∞

i=1

Ri


log


∞
j=1

R j



= log PΓ F(η) +

∞
j=1

E


∞

i=1

Ri


log R j



= log PΓ F(η) +

∞
j=1

E[R j log R j ]

≤ log PΓ F(η) +

∞
j=1

ϕ(x j , y j ),

which finishes the proof since (xi )i≥1 ∈ I −1(η) and (yi )i≥1 ∈ I −1(γ ) are arbitrary. �

This result implies the Harnack inequality for a large number of Markov semigroups of
independent particle systems such that the semigroup Pt of the single particle process satisfies
a Harnack inequality derived from the coupling argument, see e.g. [20,9,11] for Harnack
inequalities associated to various SDEs and SPDEs using coupling.

2.2. Diffusion processes on the configuration space over a Riemannian manifold

As applications of Theorem 2.1, in this subsection we consider the particular case where the
base process is a diffusion on a Riemannian manifold. We will assume throughout this subsection
that M is a complete connected Riemannian manifold and let Pt be the semigroup generated by
L := ∆ + Z for some C1-vector field Z . To establish the Harnack inequality, we shall assume
that the curvature of L is bounded below, i.e. there exists a constant K ∈ R such that

Ric(X, X) − ⟨∇X Z , X⟩ ≥ −K |X |
2, X ∈ T M. (2.4)

Let ρ be the Riemannian distance on M . According to [17], this condition implies the dimension-
free Harnack inequality

(Pt f (x))p
≤ Pt f p(y)

× exp


K pρ(x, y)2

2(p − 1)(1 − e−2K t )


, x, y ∈ M, t > 0, f ∈ B+

b (M) (2.5)
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for all p ∈ (1, ∞). Indeed, according to [18,21], (2.4) is equivalent to (2.5) for all/some
p ∈ (1, ∞), as well as the log-Harnack inequality

Pt log f (x) ≤ log Pt f (y) +
Kρ(x, y)2

2(1 − e−2K t )
, x, y ∈ M, 1 ≤ f ∈ Bb(M).

When Z = ∇V for some V ∈ C2(M) such that µ(dx) := eV (x)dx is infinite, where dx stands
for the Riemannian volume measure, Pt is symmetric in L2(µ). Moreover, PΓ

t is a realization of
the second quantization of Pt (see [16, (5.3)]), which is symmetric in L2(πµ), where (and in the
sequel) πµ stands for the Poisson measure with intensity µ.

Recall that

{ρ2
}
Γ (γ, η) = inf


∞

i=1

ρ(xi , yi )
2
; (xi )i≥1 ∈ I −1(γ ), (yi )i≥1 ∈ I −1(η)


, γ, η ∈ Γ .

Throughout this subsection, we shall simply set

ρΓ (γ, η) :=

{ρ2

}
Γ (γ, η)

1/2

= inf




∞
i=1

ρ(xi , yi )
2

1/2

; (xi )i≥1 ∈ I −1(γ ), (yi )i≥1 ∈ I −1(η)


if there is no confusion. When Z = ∇V for some V ∈ C2(M) with µ(M) = ∞ mentioned
above, it is proved in [12] that ρΓ is the intrinsic distance for the Dirichlet form associated to the
semigroup PΓ

t .

Theorem 2.2. Assume that (2.4) holds. For any p ∈ (1, ∞),


PΓ

t F(γ )
p

≤

PΓ

t F p(η)


exp


K pρΓ (γ, η)2

2(p − 1)(1 − e−2K t )


(2.6)

holds for all γ, η ∈ Γ , t > 0, and F ∈ B+

b (Γ ). Moreover, the log-Harnack inequality

PΓ
t log F(η) ≤ log PΓ

t F(γ ) +
KρΓ (γ, η)2

2(1 − e−2K t )
, γ, η ∈ Γ (2.7)

holds for all t > 0 and F ∈ Bb(Γ ) with F ≥ 1.

Remark 2.3. Let µ be an infinite measure on M . According to Proposition 4.1 below, if

lim
r↓0

sup
x∈M

µ

{y ∈ M; ρ(x, y) < r}


= 0

and there exist some constants C ≥ 1 and N ∈ N and a fixed point o in M such that

µ

{x ∈ M; ρ(x, o) < n + 1}


≤ Cµ


{x ∈ M; ρ(x, o) < n}


< ∞

holds for all n > N , then ρΓ (γ, η) = ∞ for (πµ × πµ)-a.e. (γ, η) ∈ Γ × Γ . Therefore, under
this circumstance Theorem 2.2 is trivial in the sense of (πµ × πµ)-a.e.

Since the Harnack inequality implies the strong Feller property (see e.g. [22, Theo-
rem 4.4(2)]), the following result is a direct consequence of Theorem 2.2.
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Corollary 2.4. For any t > 0, PΓ
t has the ρΓ -strong Feller property, i.e.

lim
ρΓ (γ,η)→0

PΓ
t F(η) = PΓ

t F(γ ), γ ∈ Γ , F ∈ Bb(Γ ).

Remark 2.5. When L = ∆ on Rd , the ρΓ -Feller property is confirmed in [8, Theorem 7.1]
on the smaller space Γ0. Therefore, Corollary 2.4 provides a much stronger and more general
assertion.

Proof of Theorem 2.2. Fix an arbitrary t > 0. According to Theorem 2.1, for any x, y ∈ M it
suffices to construct a random variable (ξx,y, Rx,y) on M × [0, ∞) such that

Pt f (x) = E f (ξx,y), Pt f (y) = E

Rx,y f (ξx,y)


, f ∈ Bb(M), (2.8)

ER p/(p−1)
x,y

p−1
≤ exp


K pρ(x, y)2

2(p − 1)(1 − e−2K t )


, (2.9)

and

E[Rx,y log Rx,y] ≤
Kρ(x, y)2

2(1 − e−2K t )
. (2.10)

We will adopt the coupling by parallel displacement introduced in [2], which goes back to [7].
As explained in [2, Section 3], due to [19, Chapter 2] we may simply assume that M does not
have cut-locus so that the parallel displacement

Px,y : Tx M → Ty M

along the minimal geodesic from x to y is smooth in (x, y).
Now, let Bt be the d-dimensional Brownian motion and let Xs solve the Itô differential

equation in the sense of [6]:

dItô Xs =
√

2usdBs + Z(Xs)ds, X0 = x,

where ut is the horizontal lift of Xs on the frame bundle O(M). Then

Pt f (x) = E f (X t ), f ∈ Bb(M). (2.11)

On the other hand, let Ys solve the equation

dItôYs =
√

2PXs ,Ys usdBs + Z(Ys)ds − hs∇ρ(Xs, •)(Ys)ds, Y0 = y,

where

hs := 1{s<τ }

2K e−K sρ(x, y)

1 − e−2K t
, τ := inf{s ≥ 0; Xs = Ys}.

Then the equation for Ys has a unique solution and Xs = Ys holds for s ≥ τ . By Itô’s formula
and the second variational formula (cf. [2] and references within), we have

dρ(Xs, Ys) ≤ Kρ(Xs, Ys)ds − hsds.

Applying the Gronwall lemma to the above inequality, it holds that

ρ(Xs, Ys) ≤
eK s(e−2K s

− e−2K t )ρ(x, y)

1 − e−2K t
, 0 ≤ s ≤ t.
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In particular, one has ρ(X t , Yt ) = 0, and so X t = Yt =: ξx,y . To formulate Pt f (y) using ξx,y ,
rewrite the equation for Ys as

dItôYs =
√

2PXs ,Ys usdB̃s + Z(Ys)ds, Y0 = y,

where

B̃s := Bs −
1

√
2

 s

0
hr (PXr ,Yr ur )

−1
∇ρ(Xr , •)(Yr ) dr, s ≥ 0.

By the Girsanov theorem, (B̃s)s∈[0,t] is a d-dimensional Brownian motion under the probability
measure Rx,yP, where

Rx,y := exp


1
√

2

 t

0
⟨hs(PXs ,Ys us)

−1
∇ρ(Xs, •)(Ys), dBs⟩ −

1
4

 t

0
h2

s ds


.

Therefore, due to (2.11) and ξx,y = X t = Yt , we obtain (2.8).
In order to get (2.9) and (2.10), we first observe that t

0
h2

s ds ≤
4K 2ρ(x, y)2

(1 − e−2K t )2

 t

0
e−2K s ds =

2Kρ(x, y)2

1 − e−2K t
.

Let

Mt =
1

√
2

 t

0


hs(PXs ,Ys us)

−1
∇ρ(Xs, •)(Ys), dBs


.

Then

Rx,y = exp


Mt −
1
2
⟨M⟩t


and

⟨M⟩t =
1
2

 t

0
h2

s ds ≤
Kρ(x, y)2

1 − e−2K t
.

Thus,
ER p/(p−1)

x,y

p−1
=


E exp


p

p − 1
Mt −

p2

2(p − 1)2 ⟨M⟩t +
p

2(p − 1)2 ⟨M⟩t

p−1

≤


E exp


p

p − 1
Mt −

p2

2(p − 1)2 ⟨M⟩t

p−1

× exp


p

2(p − 1)2 ·
Kρ(x, y)2

1 − e−2K t
· (p − 1)


≤ exp


K pρ(x, y)2

2(p − 1)(1 − e−2K t )


,

where in the last step we have used the fact that exp


p
p−1 Mt −

p2

2(p−1)2 ⟨M⟩t


is a super-

martingale. Furthermore, since

log Rx,y = Mt −
1
2
⟨M⟩t

=
1

√
2

 t

0


hs(PXs ,Ys us)

−1
∇ρ(Xs, •)(Ys), dB̃s


+

1
4

 t

0
h2

s ds,
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we arrive at

E[Rx,y log Rx,y] = ERx,yP[log Rx,y] =
1
4

ERx,yP

 t

0
h2

s ds


≤

Kρ(x, y)2

2(1 − e−2K t )
.

The proof is now completed. �

We can also use the Harnack type inequality to describe the hyper-bounded property and the
entropy-cost inequality. Denote by ∥PΓ

t ∥p→q the operator norm from L p(πµ) to Lq(πµ). Recall
that ρΓ is a non-negative measurable function on Γ × Γ (cf. [12]). For a measurable function
F ≥ 0 on Γ with πµ(F) = 1, let C (Fπµ, πµ) be the class of all couplings of Fπµ and πµ, and
let

W ρΓ

2 (Fπµ, πµ) = inf
Π∈C (Fπµ,πµ)


Γ×Γ

ρΓ (γ, η)2 Π (dγ, dη)

1/2

be the transportation-cost from Fπµ to πµ induced by the cost-function (ρΓ )2.

Corollary 2.6. Assume that (2.4) holds for Z = ∇V for some V ∈ C2(M) such that µ(dx) :=

eV (x)dx is infinite.

(1) For any t > 0 and p ∈ (1, ∞), we have

∥PΓ
t ∥p→∞ ≤


essπµ inf

γ∈Γ


Γ

exp


−

K pρΓ (γ, η)2

2(p − 1)(1 − e−2K t )


πµ(dη)

−1/p

(2.12)

and

∥PΓ
t ∥p→q ≤


Γ

πµ(dγ )
Γ exp


−

K pρΓ (γ,η)2

2(p−1)(1−e−2K t )


πµ(dη)

q/p


1/q

, q ∈ [1, ∞).

(2.13)

(2) For any t > 0,
Γ

(PΓ
t F) log PΓ

t F dπµ ≤
K

2(1 − e−2K t )
W ρΓ

2 (Fπµ, πµ)2, F ≥ 0, πµ(F) = 1.

Remark 2.7. In the situation of Corollary 2.6. Similarly as in Remark 2.3, if

lim
r↓0

sup
x∈M

µ

{y ∈ M; ρ(x, y) < r}


= 0

and there exist some constants C ≥ 1 and N ∈ N and a fixed point o in M such that

µ

{x ∈ M; ρ(x, o) < n + 1}


≤ Cµ


{x ∈ M; ρ(x, o) < n}


< ∞

holds for all n > N , then Corollary 2.6(1) is nothing but trivial since ρΓ
= ∞(πµ × πµ)-a.e.

implies that the right-hand sides of both (2.12) and (2.13) become infinities.

It is straightforward to obtain Corollary 2.6 from the Harnack inequality (2.6) and the log-
Harnack inequality (2.7) (see e.g. [4, proof of Lemma 4.2] and [22, proof of Proposition 4.6]).
For the sake of completeness and reader’s convenience, we include here a simple proof.
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Proof of Corollary 2.6. (1) Let F be a non-negative measurable function on Γ such that
∥F∥p ≤ 1. According to Theorem 2.2, one has


PΓ

t F(γ )
p exp


−

K pρΓ (γ, η)2

2(p − 1)(1 − e−2K t )


≤ PΓ

t F p(η), γ, η ∈ Γ .

Integrating both sides w.r.t. πµ(dη) in the above inequality and noting that πµ is an invariant
probability measure of PΓ

t , we get


PΓ

t F(γ )
p

Γ

exp


−

K pρΓ (γ, η)2

2(p − 1)(1 − e−2K t )


πµ(dη) ≤ πµ(F p) ≤ 1, γ ∈ Γ ,

which yields that

PΓ
t F(γ ) ≤


Γ

exp


−

K pρΓ (γ, η)2

2(p − 1)(1 − e−2K t )


πµ(dη)

−1/p

, γ ∈ Γ .

Therefore,

∥PΓ
t ∥p→∞ = sup

F≥0,∥F∥p≤1
∥PΓ

t F∥∞

= sup
F≥0,∥F∥p≤1

essπµ sup
γ∈Γ

|PΓ
t F(γ )|

≤


essπµ inf

γ∈Γ


Γ

exp


−

K pρΓ (γ, η)2

2(p − 1)(1 − e−2K t )


πµ(dη)

−1/p

,

and

∥PΓ
t ∥p→q = sup

F≥0,∥F∥p≤1


Γ

|PΓ
t F(γ )|q πµ(dγ )

1/q

≤


Γ

πµ(dγ )
Γ exp


−

K pρΓ (γ,η)2

2(p−1)(1−e−2K t )


πµ(dη)

q/p


1/q

.

(2) Let F ≥ 0 such that πµ(F) = 1. Applying (2.7) to PΓ
t F in place of F , it follows that

PΓ
t {log PΓ

t F}(γ ) ≤ log PΓ
t {PΓ

t F}(η) +
KρΓ (γ, η)2

2(1 − e−2K t )
.

Taking integral for both sides w.r.t. Π ∈ C (Fπµ, πµ) and using the symmetry of PΓ
t , we

arrive at
Γ

(PΓ
t F) log PΓ

t F dπµ =


Γ

F PΓ
t {log PΓ

t F} dπµ

=


Γ×Γ

PΓ
t {log PΓ

t F}(γ )Π (dγ, dη)

≤


Γ×Γ


log PΓ

t {PΓ
t F}(η) +

KρΓ (γ, η)2

2(1 − e−2K t )


Π (dγ, dη)
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=


Γ

log PΓ
t {PΓ

t F} dπµ

+
K

2(1 − e−2K t )


Γ×Γ

ρΓ (γ, η)2 Π (dγ, dη).

This completes the proof by optimizing in Π ∈ C (Fπµ, πµ) and noting that
Γ

log PΓ
t {PΓ

t F} dπµ ≤ log

Γ

PΓ
t {PΓ

t F} dπµ = log πµ(F) = log 1 = 0. �

3. A unified treatment

Let p ∈ (1, ∞), ϕp : M × M → [0, ∞), and C p be a non-negative constant. In this section, a
unified treatment will be used to discuss the relationship between the Harnack inequality on base
space

(P f (x))p
≤

P f p(y)


eC pϕp(x,y), f ∈ B+

b (M), x, y ∈ M (3.1)

and that on the corresponding configuration space
PΓ F(γ )

p
≤

PΓ F p(η)


eC pϕΓ

p (γ,η), F ∈ B+

b (Γ ), γ, η ∈ Γ . (3.2)

Theorem 3.1. (1) First, (3.1) implies (3.2).
(2) Conversely, if there exists a sequence {(xi , yi ) ∈ M×M; i ≥ 1} such that


∞

i=1 ϕp(xi , yi ) <

∞, then (3.2) implies (3.1).

Remark 3.2. If ϕp is a distance on M , then the condition in Theorem 3.1(2) is automatically
fulfilled (simply set xi = yi = o for i ≥ 1, where o is any fixed point in M).

Proof of Theorem 3.1. (1) (a) For a measurable function F on Γ , let

F̂(x) = F


∞

i=1

δxi


, x = (xi )i≥1 ∈ MN.

Then F̂ is measurable on MN equipped with the product σ -field FN. Indeed, we only need to
check this for F(γ ) = γ (A), A ∈ F . But for this F ,

F̂(x) =

∞
i=1

δxi (A) =

∞
i=1

1A(xi )

is clearly measurable on MN.
(b) Fix any x = (xi )i≥1 ∈ I −1(γ ) and y = (yi )i≥1 ∈ I −1(η). Since

P⊗N F̂(x) = PΓ F(γ ), P⊗N F̂ p(y) = PΓ F p(η),

it suffices to prove that
P⊗N F̂(x)

p
≤

P⊗N F̂ p(y)


exp


C p

∞
i=1

ϕp(xi , yi )


. (3.3)

(c) By a standard approximation argument, we only need to prove (3.3) for

F̂(x) = f (xi1 , . . . , xin ), x = (xi )i≥1 ∈ MN,
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where f ∈ Cb(Mn), 1 ≤ i1 < i2 < · · · < in, n ∈ N. Noting that ϕp is non-negative, it remains
to prove that


P⊗n f (xi1 , . . . , xin )

p
≤

P⊗n f p(yi1 , . . . , yin )


exp


C p

n
k=1

ϕp(xik , yik )


. (3.4)

We shall prove this inequality by iterating in n.
(d) If n = 1, (3.4) follows immediately from (3.1). Assume that (3.4) holds for n = m. By

(3.1) and the assumption, we obtain
P⊗(m+1) f (xi1 , . . . , xim , xim+1)

p
=

P


P⊗m f (xi1 , . . . , xim , •)

(xim+1)

p

≤ P


P⊗m f (xi1 , . . . , xim , •)
p

(yim+1) × eC pϕp(xim+1 ,yim+1 )

≤ P


P⊗m f p(yi1 , . . . , yim , •) exp


C p

m
k=1

ϕp(xik , yik )


(yim+1)

× eC pϕp(xim+1 ,yim+1 )

= P⊗(m+1) f (yi1 , . . . , yim , yim+1) × exp


C p

m+1
k=1

ϕp(xik , yik )


.

That is, (3.4) holds for n = m + 1. Therefore, the first assertion follows.
(2) According to the assumption, one can fix a sequence {(xi , yi ) ∈ M × M; i ≥ 1} with

∞
i=1

ϕp(xi , yi ) < ∞.

Obviously, it suffices to prove (3.1) for f ∈ B+

b (M) with f ≤ 1. Now, let f ∈ B+

b (M) satisfy
f ≤ 1. For any x, y ∈ M , let x0 = x, y0 = y. Taking

F(γ ) = eγ (log f ), γ =

∞
i=0

δxi , η =

∞
i=0

δyi

in (3.2), and noting that

PΓ F(γ ) =

∞
i=0

P

elog f (xi ) =

∞
i=0

P f (xi ),

PΓ F p(η) =

∞
i=0

P

ep log f (yi ) =

∞
i=0

P f p(yi ), ϕΓ
p (γ, η) ≤

∞
i=0

ϕp(xi , yi ),

we arrive at
∞

i=0

(P f (xi ))
p

=


PΓ F(γ )

p
≤ PΓ F p(η) exp


C p

∞
i=0

ϕp(xi , yi )



=


∞

i=0

P f p(yi )


∞

i=0

eC pϕp(xi ,yi )



=

∞
i=0


P f p(yi )


eC pϕp(xi ,yi )


.
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Then there must exist some i1 ∈ N0 := N ∪ {0} = {0, 1, 2, . . .} such that

(P f (xi1))
p

≤

P f p(yi1)


eC pϕp(xi1 ,yi1 ).

Similarly, taking

F(γ ) = eγ (log f ), γ =


i∈N0\{i1}

δxi , η =


i∈N0\{i1}

δyi

in (3.2), we get
i∈N0\{i1}

(P f (xi ))
p

≤


i∈N0\{i1}


P f p(yi )


eC pϕp(xi ,yi )


.

Then there must exist some i2 ∈ N0 \ {i1} such that

(P f (xi2))
p

≤

P f p(yi2)


eC pϕp(xi2 ,yi2 ).

Repeating this argument, we conclude that

(P f (xi ))
p

≤

P f p(yi )


eC pϕp(xi ,yi )

holds for all i ∈ N0. Particularly, taking i = 0 gives (3.1). �

We conclude this section by pointing out that we also have a similar result concerning the
log-Harnack inequality. Let ϕ be a non-negative function on M × M , and C be a non-negative
constant. Consider

P log f (x) ≤ log P f (y) + Cϕ(x, y), x, y ∈ M, 1 ≤ f ∈ Bb(M) (3.5)

and

PΓ log F(γ ) ≤ log PΓ F(η) + CϕΓ (γ, η), γ, η ∈ Γ , 1 ≤ F ∈ Bb(Γ ). (3.6)

Theorem 3.3. (1) First, (3.5) implies (3.6).
(2) Conversely, if there exists a sequence {(xi , yi ) ∈ M × M; i ≥ 1} such that


∞

i=1 ϕ(xi , yi ) <

∞, then (3.6) implies (3.5).

The proof is similar to that of Theorem 3.1, and therefore, we omit it here.

4. About ϕΓ

In this section, we will present a fundamental property of ϕΓ . Recall that ϕ is a non-negative
function on M × M , and ϕΓ is defined by (1.1).

For x ∈ M and r > 0, let

Bϕ(x, r) = {y ∈ M; ϕ(y, x) < r}.

For simplicity, set Bϕ
n = Bϕ(o, n), where n ∈ N and o is a fixed point in M . Let µ be an infinite

measure on (M, F ) such that µ(Bϕ
n ) < ∞ for all n ∈ N.

In the following proposition, we will use the following two assumptions:

(A1) limr→0 supx∈M µ

Bϕ(x, r)


= 0;

(A2) there exist some constants C ≥ 1 and N ∈ N such that µ(Bϕ
n+1) ≤ Cµ(Bϕ

n ) holds for all
n > N .



232 C.-S. Deng / Stochastic Processes and their Applications 124 (2014) 220–234

A sufficient condition for (A2) is that µ has the volume doubling property with doubling
constant C , i.e.

µ

Bϕ(x, 2r)


≤ Cµ


Bϕ(x, r)


, x ∈ M, r > 0.

Indeed, it follows from the volume doubling property that for all n ∈ N

µ(Bϕ
n+1) ≤ Cµ


Bϕ

(n+1)/2


≤ Cµ(Bϕ

n ).

On the other hand, (A2) is strictly weaker than the volume doubling property. For instance, for
µ(dx) = ex dx on R with o = 0 and ϕ being the Euclidean distance, we have

sup
n≥1

µ

Bϕ

n+1


µ

Bϕ

n
 = sup

n≥1

en+1
− e−n−1

en − e−n = sup
n≥1

e − e−2n−1

1 − e−2n
≤

e

1 − e−2 < 4.

Then (A2) holds with C = 4 and N = 1. However, observing that

sup
r>0

µ

Bϕ(x, 2r)


µ

Bϕ(x, r)

 = sup
r>0

ex+2r
− ex−2r

ex+r − ex−r = sup
r>0


er

+ e−r 
= ∞, x ∈ M,

µ does not satisfy the volume doubling condition.
Recall that πµ denotes the Poisson measure with intensity µ.

Proposition 4.1. Assume that both (A1) and (A2) hold. Then ϕΓ (γ, η) = ∞ for (πµ ×πµ)-a.e.
(γ, η) ∈ Γ × Γ .

Proof. (1) Let

ϕ(x, γ ) = inf
y∈suppγ

ϕ(x, y), x ∈ M, γ ∈ Γ ,

and

D(γ, ε) =


x ∈ M; ϕ(x, γ ) ≥ ε

, γ ∈ Γ , ε ∈ (0, 1).

Noting that

Bϕ
n \

 
x∈(suppγ )∩Bϕ

n+1

Bϕ(x, ε)

 ⊂ D(γ, ε),

it holds that

µ

D(γ, ε)


≥ µ(Bϕ

n ) − µ

 
x∈(suppγ )∩Bϕ

n+1

Bϕ(x, ε)


≥ µ(Bϕ

n ) − γ (Bϕ
n+1) sup

x∈M
µ

Bϕ(x, ε)


(4.1)

for all γ ∈ Γ , ε ∈ (0, 1), and n ∈ N.
(2) Recall that the Poisson measure πµ has the characteristic functional

Γ
eiγ ( f ) πµ(dγ ) = exp


M


ei f

− 1


dµ


, f ∈ L1(µ) ∩ L∞(µ). (4.2)
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Since µ(Bϕ
n ) < ∞ for all n ∈ N and µ(Bϕ

n ) → ∞ as n → ∞, we deduce from (4.2) that for
any t ∈ R

Γ
exp


it

γ (Bϕ
n )

µ(Bϕ
n )


πµ(dγ ) = exp


M


exp

 it

µ(Bϕ
n )

1Bϕ
n


− 1


dµ


= exp


µ(Bϕ

n )


exp

 it

µ(Bϕ
n )


− 1


→ eit as n → ∞,

which implies that γ (Bϕ
n )

µ(Bϕ
n )

→ 1 in law and so in probability πµ. Then we can choose a

subsequence {nk; k ≥ 1} ⊂ N such that
γ (Bϕ

nk )

µ(Bϕ
nk )

→ 1 as k → ∞ for πµ-a.e. γ ∈ Γ . Thus,

there exist N0 ∈ N and Γ ′
⊂ Γ with πµ(Γ ′) = 1 such that

γ (Bϕ
nk

) ≤ 2µ(Bϕ
nk

), k > N0, γ ∈ Γ ′. (4.3)

(3) Due to (A2), we obtain from (4.1) and (4.3) that

µ

D(γ, ε)


≥ µ(Bϕ

nk
) − 2µ(Bϕ

nk+1) sup
x∈M

µ(Bϕ(x, ε))

≥ µ(Bϕ
nk

) − 2Cµ(Bϕ
nk

) sup
x∈M

µ(Bϕ(x, ε))

for all γ ∈ Γ ′, ε ∈ (0, 1) and k > N ∨ N0. By the assumption (A1), one can choose ε0 ∈ (0, 1)

such that

sup
x∈M

µ(Bϕ(x, ε0)) ≤
1

4C
.

Then we arrive at

µ

D(γ, ε0)


≥

1
2
µ(Bϕ

nk
), γ ∈ Γ ′, k > N ∨ N0.

Letting k → ∞, we get µ

D(γ, ε0)


= ∞ for πµ-a.e. γ ∈ Γ . Therefore, we conclude that

η

D(γ, ε0)


= ∞ for (πµ × πµ)-a.e. (γ, η) ∈ Γ × Γ . Now the desired assertion follows

immediately by noting that

ϕΓ (γ, η) ≥ ε0η

D(γ, ε0)


, γ, η ∈ Γ . �
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