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Abstract

We investigate systems of interacting stochastic differential equations with two kinds of heterogeneity:
one originating from different weights of the linkages, and one concerning their asymptotic relevance when
the system becomes large. To capture these effects, we define a partial mean field system, and prove a law
of large numbers with explicit bounds on the mean squared error. Furthermore, a large deviation result is
established under reasonable assumptions. The theory will be illustrated by several examples: on the one
hand, we recover the classical results of chaos propagation for homogeneous systems, and on the other
hand, we demonstrate the validity of our assumptions for quite general heterogeneous networks including
those arising from preferential attachment random graph models.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The application of mean field theory to large systems of stochastic differential equations
(SDEs) was initiated by McKean’s seminal work [26–28]. In the classical case, an N -dimensional
interacting particle system is governed by SDEs of the form

dX N
i (t) =

1
N − 1

∑
j ̸=i

(
X N

j (t) − X N
i (t)

)
dt + dBi (t), t ∈ R+,

X N
i (0) = X i (0), i = 1, . . . , N , (1.1)
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with independent starting random variables X i (0) and independent Brownian motions Bi . As the
number of particles increases, the pair dependencies in this coupled system decrease with order
1/N such that a law of large numbers applies (see Theorem 1.4 of [36]). Defining

dX̄ N
i (t) =

1
N − 1

∑
j ̸=i

(
E[X̄ N

j (t)] − X̄ N
i (t)

)
dt + dBi (t), t ∈ R+,

X̄ N
i (0) = X i (0), i = 1, . . . , N , (1.2)

there exists for every T ∈ R+, a constant C(T ) ∈ R+ independent of N such that

sup
i=1,...,N

E

[
sup

t∈[0,T ]
|X N

i (t) − X̄ N
i (t)|2

]1/2

≤
C(T )
√

N
. (1.3)

In other words, in a large system, the behaviour of a fixed number of particles evolving according
to (1.1) is well described by the so-called mean field system (1.2), where all stochastic processes
are stochastically independent, a phenomenon that is called propagation of chaos. Thus, mean
field theory provides a model simplification by reducing a many-body problem as in (1.1) to
a one-body problem as in (1.2), with explicit L2-estimates on the occurring error. Moreover, it
can be shown that the empirical measure of the particles satisfies a large deviation principle as
N → ∞, see [13,25]. There is a huge literature dealing with this or related topics, and we only
mention the review papers [20,36].

The systems (1.1) and (1.2) describe statistically equal or exchangeable particles: any
permutation of the indices i ∈ {1, . . . , N } leads to a system with the same distribution (cf. [40]).
In particle physics such an assumption is certainly reasonable and underlies many other similar
models of mean field type, see for example the two treatises [37,38] for numerous examples.

However, when mean field models are considered in applications other than statistical
mechanics, the homogeneity assumption may not be appropriate in all situations. For instance,
in [9,22] the processes (1.1) are used to model the wealth of trading agents in an economy, who
are typically far from being equal in their trading behaviour (there are “market makers” and
others). Similarly, the stochastic Cucker–Smale model that is considered in [2,7] describes the
“flocking” phenomenon of individuals. Also here, it seems natural that one or several “leaders”
may have a distinguished role, setting them apart from the remaining system. Moreover, in
systemic risk modelling, the particles represent financial institutions that interact with each other
through mutual exposures, see [6,18,23] for some approaches in this direction. The different
players in the banking sector vary considerably in size and importance, which is obvious from the
fact that some banks were considered too big to fail during the financial crisis of 2007–08. Further
fields of applications where mean field theory is used for interacting particle systems include
genetic algorithms [29], neuron modelling (see [19] and references therein) and epidemics
modelling [24].

Partly triggered by the examples in the previous paragraph, this paper aims to investigate
deviations from homogeneous systems to heterogeneous systems. First, we allow for different
interaction rates between pairs (instead of 1/(N − 1) throughout), and second, we permit
the subsistence of a core–periphery structure in the mean field limit, that is, some particles
may have a non-vanishing influence even when the system becomes large. Another restriction
we will relax in our analysis concerns the driving noises of the interacting SDEs: instead of
independence we explicitly allow for different degrees of dependence in the noise terms, even
asymptotically. Until now there is only a small amount of literature that generalizes (1.1) in
these directions: in [4,11,23,31,32,39] the particles are divided into different groups within which
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they are homogeneous (and the number of members in each group must tend to infinity for the
law of large numbers), and [10,12], where one major agent exists and propagation of chaos
for the minor agents is considered conditioned on the major one. Other papers that consider
general heterogeneous systems include [14], where the propagation of chaos result is assumed,
and [16,17,21], where a law of large numbers for the empirical measure is proved under various
conditions. Regarding the last mentioned papers, two aspects are worth commenting on. First,
assuming that finitely many core particles do exist in the system, their contribution to the
empirical distribution becomes less and less as N → ∞ although their impact may very well stay
high. Thus, in this case the empirical distribution may fail to describe the behaviour of the system
as a whole. Second, whereas for homogeneous systems the convergence of the empirical measure
is equivalent to the existence of a mean field limit in the sense of (1.3) (see e.g. Proposition 2.2(i)
of [36]), this is no longer true for heterogeneous systems. For core particles, the left-hand side of
(1.3) need not converge to 0 even if the empirical distribution converges, say, to a deterministic
limit. For example, in the case of [10,12] with one core particle, an unconditional propagation
of chaos result does not hold for this particle without further assumptions (even if it does for the
periphery particles).

Due to the two aforementioned reasons, we will not work with the empirical distribution in
this paper but state and prove mean field limit theorems for the particles on the process level. In
Section 2 we start by introducing the precise interacting particle model we want to investigate.
Then we define a corresponding partial mean field model, for which we prove a law of large
numbers type result (Theorem 3.1) with explicit convergence rates in Section 3. It generalizes
(1.3) by taking into account the different kinds of heterogeneity due to varying pair interaction
rates, a distinction between important/core and less important/periphery pair relationships, and
interdependencies between the driving noise terms.

The main difficulty here is to identify the correct rates that govern the distance between the
original system and the mean field approximation. As we will see, a total of twelve rates is
required, each expressing a connectivity property of the underlying interaction and correlation
networks. This is inevitable in contrast to [10,12] where the stochastic dependencies among the
particles are annihilated simply by conditioning. In order to elucidate the meaning of each rate,
we discuss three exemplary situations in detail. In Section 3.1, in particular in Example 3.4, we
show that in the quasi-homogeneous case, all twelve rates typically boil down to a single rate like
in (1.3). In Section 3.2, we explain why the prerequisites for Theorem 3.1 in the heterogeneous
case are essentially sparsity assumptions on the particle network, which are satisfied for instance
if this network is generated from a preferential attachment mechanism, see Section 3.3. In order
to show the last statement, we have to derive the asymptotics of the maximal in- and out-degrees
of directed preferential attachment graphs, see Lemma 3.8. This result may be of independent
interest and generalizes that of [30] for undirected graphs.

The second main result of our paper is a large deviation principle for the difference X N
− X̄ N ,

which is presented in Section 4 as Theorem 4.1. In contrast to homogeneous systems, where such
a principle is proved for the empirical measure (see [13,25]), we work on the process level again
and therefore need to require the existence of all exponential moments. Section 5 contains the
proofs.

2. The model

Before we introduce the model we analyse in this paper, we list a number of notations that
will be employed throughout the paper.
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R+ The set [0,∞) of positive real numbers;
[z] The largest integer smaller or equal to z ∈ R;
N The natural numbers {1, 2, . . .};
A, x The typical notation for a matrix A = (Ai j : i, j ∈ N) ∈ RN×N

and a vector x = (xi : i ∈ N)′ ∈ RN, with all binary relations
such as ≤, or operations relying on them such as the absolute
value | · | or taking the supremum being understood
componentwise when applied to matrices and vectors;

(·)′ The transposition operator;
AB, Ax, eA Matrix–matrix and matrix–vector multiplication and the

matrix exponential, all defined in analogy to the
finite-dimensional case, provided that the involved series
converge;

x .y The entrywise product x .y = (xi yi : i ∈ N)′ for x, y ∈ RN;
|A|∞, |x |∞ |A|∞ := supi∈N

∑
j∈N |Ai j | and |x |∞ := supi∈N |xi | for

A ∈ RN×N and x ∈ RN;
|A|d |A|d := supi∈N |Ai i | for matrices A;
A× The matrix A with all diagonal entries set to 0;
I The identity matrix in RN×N or Rd×d for some d ∈ N;
L p The space L p(Ω ,F,P), p ∈ [1,∞], endowed with the

topology induced by ∥X∥L p := E[|X |
p]1/p, and to be

understood entrywise when applied to matrix- or
vector-valued random variables;

E[X ],Var[X ] Componentwise expectation and variance for random
variables in RN×N or RN;

Cov[X, Y ],Cov[X ] The matrices whose (i j)th entry is Cov[X i , Y j ] and
Cov[X i , X j ], respectively, when X and Y are random vectors;

x∗ x∗(t) := sups∈[0,t] |x(s)| for t ∈ R+ and functions
x : R+ → R, again considered entrywise when x takes values
in RN×N or RN;

Dd
T , D∞

T The space of Rd -valued (resp. RN-valued) functions on [0, T ]
whose coordinates are all càdlàg functions;

Cd
T ,C∞

T Elements of Dd
T and D∞

T where each coordinate is a
continuous function;

ACd
T , AC∞

T Elements of Dd
T and D∞

T where each coordinate is an
absolutely continuous function;

Dd
T , D∞

T The σ -field on Dd
T (resp. D∞

T ) generated by the evaluation
maps πt (x) = x(t), x ∈ Dd

T (resp. D∞

T ), for t ∈ [0, T ];
U, J1 The uniform topology and the Skorokhod topology on Dd

T and
D∞

T (in the latter case they are defined via the product of the
d-dimensional topologies);

Md
T The space of all (θ1, . . . , θd ) where each θi is a signed Borel

measure on [0, T ] of finite total variation |θi |([0, T ])

Given a stochastic basis (Ω ,F ,F = (F(t))t∈R+
,P) satisfying the usual hypotheses of com-

pleteness and right-continuity, we investigate a network described by the following interacting
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particle system (IPS):

dX i (t) =

∞∑
j=1

ai j (t)X j (t) dt +

∞∑
j=1

σi j (t)X j (t−) dL i (t) +

∞∑
j=1

fi j (t) dB j (t)

+

∞∑
j=1

ρi j (t) dM j (t), t ∈ R+, i ∈ N,
(2.1)

subject to some F(0)-measurable RN-valued initial condition X (0). We will also use the more
compact form

dX (t) = a(t)X (t) dt + σ (t)X (t−).dL(t) + f (t) dB(t) + ρ(t) dM(t), t ∈ R+, (2.2)

for (2.1). The ingredients satisfy the following conditions:

• The two measurable functions t ↦→ a(t) and t ↦→ σ (t) are decomposed into a = aC
+ aP

and σ = σC
+ σ P such that for all T ∈ R+ and i, j ∈ N,

A⋄

i j (T ) := sup
t∈[0,T ]

|a⋄

i j (t)| < ∞, Σ ⋄

i j (T ) := sup
t∈[0,T ]

|σ ⋄

i j (t)| < ∞, ⋄ ∈ {C,P}. (2.3)

We define Ai j (T ) := AC
i j (T ) + AP

i j (T ) and Σi j (T ) := ΣC
i j (T ) + Σ P

i j (T ).
• L is an RN-valued F-Lévy process (i.e. an F-adapted Lévy process whose increments are

independent of the past σ -fields in F) with finite second moment and mean 0.
• M is an RN-valued square-integrable martingale on any finite time interval, and B is

an RN-valued predictable process such that each coordinate process is of locally finite
variation. We assume that B and the predictable quadratic variation process ⟨M,M⟩ have
progressively measurable Lebesgue densities b : Ω ×R+ → RN and c : Ω ×R+ → RN×N.

• f is the sum of two deterministic measurable functions f C, f P
: R+ → RN×N, and ρ the

sum of two predictable processes ρC, ρP
: Ω × R+ → RN×N.

Of course, the stochastic integrals behind (2.2) must make sense: each single integral must be
well defined and the infinite sums must converge in an appropriate sense. A sufficient condition
for the existence of the infinite-dimensional integral is the existence of the one-dimensional ones
plus the summability of their L2-norms.

Next, we shall explain the rationale behind the IPS model (2.2) and the specific choices for
the involved processes. By the definition given in (2.1), the processes (X i : i ∈ N)′ are coupled in
two ways: first, they interact internally with each other through a drift term (determined by a) and
a volatility term (determined by σ in conjunction with L); and second, they are exposed to the
same external forces (given by B and M), where f and ρ determine the level of influence these
noises have on the particles. In particular, by tuning the parameters a, σ , f and ρ appropriately,
one obtains a large range of possible dependence structures for the model (2.2).

The question this paper aims to attack is how and to which degree the complexity of the
high-dimensional IPS (2.2) can be reduced. Of course, if each entry of the matrices a, σ , f
and ρ is either zero or large, there is no hope in simplifying the model. Therefore, our focus
lies on particle networks, where only a small number of pairs have strong interaction, while the
majority of links in the system are relatively weak. This is implemented in the decomposition of
a, σ , f and ρ into a core matrix (superscript C) and a periphery matrix part (superscript P). It
is important to notice that our distinction between core and periphery is not made on the basis
of the particles, but on the linkages between them. This allows for greater modelling flexibility
since it includes multi-tier networks in our analysis.
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In the presence of non-negligible pair interactions, it is natural to apply the mean field limit
only to the links encoded by the periphery matrices. Therefore, we propose the following partial
mean field system (PMFS) as an approximation to the IPS (2.2):

dX̄ (t) =

(
aC(t)X̄ (t) + aP(t)E[X̄ (t)]

)
dt +

(
σC(t)X̄ (t−) + σ P(t)E[X̄ (t)]

)
.dL(t)

+ f C(t)b(t) dt + f P(t)E[b(t)] dt + ρC(t) dM(t), t ∈ R+,

X̄ (0) = X (0).

(2.4)

Written for each row i ∈ N, this is equivalent to:

dX̄ i (t) =

∞∑
j=1

(
aC

i j (t)X̄ j (t) + aP
i j (t)E[X̄ j (t)]

)
dt

+

∞∑
j=1

(
σC

i j (t)X̄ j (t−) + σ P
i j (t)E[X̄ j (t)]

)
dL i (t)

+

∞∑
j=1

(
f C
i j (t)b j (t) + f P

i j (t)E[b j (t)]
)

dt

+

∞∑
j=1

ρC
i j (t) dM j (t), t ∈ R+,

X̄ i (0) = X i (0).

(2.5)

It is clear that a priori there is no reason for (2.4) to be a good approximation for (2.2).
Therefore, in the next section, we will give precise L2-estimates in terms of the model coefficients
for the difference between the IPS and the PMFS. Moreover, we will determine conditions under
which this difference becomes small such that we can indeed speak of a law of large numbers.

3. Law of large numbers

The first main result of this paper assesses the distance between the original IPS (2.2) and
the PMFS (2.4). To formulate this, we have to introduce some further notation. For T ∈ R+, we
define

va(T ) := sup
i∈N

∞∑
j=1

Ai j (T ), va,d(T ) := sup
i∈N

AC
i i (T ), vσ (T ) := sup

i∈N

∞∑
j=1

Σi j (T ),

vL := sup
i∈N

∥L i (1)∥L2 , vb(T ) := sup
i∈N

sup
t∈[0,T ]

∥bi (t)∥L2 , vX := sup
i∈N

∥X i (0)∥L2 ,

v f (T ) := sup
i∈N

sup
t∈[0,T ]

∞∑
j=1

(| f C
i j (t)| + | f P

i j (t)|),

vρ,M (T ) := sup
i∈N

sup
t∈[0,T ]

⎛⎝ ∞∑
j,k=1

⏐⏐E[ρC
i j (t)ρ

C
ik(t)c jk(t)]

⏐⏐+ ⏐⏐E[ρP
i j (t)ρ

P
ik(t)c jk(t)]

⏐⏐⎞⎠1/2

,

(3.1)
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and introduce the rates

r1(T ) :=

⏐⏐⏐AP(T )|Cov[X (0)]|(AP(T ))′
⏐⏐⏐1/2
d
, r2(T ) :=

⏐⏐⏐Σ P(T )|Cov[X (0)]|(Σ P(T ))′
⏐⏐⏐1/2
d
,

r3(T ) :=

⏐⏐⏐AP(T )|Cov[L(1)]|(AP(T ))′
⏐⏐⏐1/2
d
, r4(T ) :=

⏐⏐⏐Σ P(T )|Cov[L(1)]|(Σ P(T ))′
⏐⏐⏐1/2
d
,

r5(T ) := sup
t∈[0,T ]

⏐⏐⏐ f P(t)Cov[b(t)]( f P(t))′
⏐⏐⏐1/2
d
, r6(T ) := sup

t∈[0,T ]

⏐⏐⏐E [ρP(t)c(t)(ρP(t))′
] ⏐⏐⏐1/2

d
,

r7(T ) :=
⏐⏐AP(T )AC(T )×

⏐⏐
∞
, r8(T ) :=

⏐⏐Σ P(T )AC(T )×
⏐⏐
∞
,

r9(T ) := sup
s,t∈[0,T ]

⏐⏐⏐AP(T )| f C(s)Cov[b(s), b(t)]( f C(t))′|(AP(T ))′
⏐⏐⏐1/2
d
,

r10(T ) := sup
s,t∈[0,T ]

⏐⏐⏐Σ P(T )| f C(s)Cov[b(s), b(t)]( f C(t))′|(Σ P(T ))′
⏐⏐⏐1/2
d
,

r11(T ) := sup
t∈[0,T ]

⏐⏐⏐AP(T )|E[ρC(t)c(t)(ρC(t))′]|(AP(T ))′
⏐⏐⏐1/2
d
,

r12(T ) := sup
t∈[0,T ]

⏐⏐⏐Σ P(T )|E[ρC(t)c(t)(ρC(t))′]|(Σ P(T ))′
⏐⏐⏐1/2
d
.

(3.2)

Theorem 3.1. Fix some T ∈ R+, and grant the general model assumptions as given in Section 2.
Furthermore, assume that each of the numbers in (3.1) is finite. Then (2.2) and (2.4) have a
pathwise unique solution X and X̄ , respectively, and there exist constants K (T ) and Kι(T ),
ι = 1, . . . , 12, which depend on the model coefficients only through the numbers in (3.1), such
that

sup
i∈N

(X i − X̄ i )∗(T )


L2 ≤ K (T )
12∑
ι=1

Kι(T )rι(T ). (3.3)

The proof of Theorem 3.1 will be given in Section 5. Compared to the homogeneous case
of [36], we have to take care of several kinds of heterogeneous dependencies in the system:
different weights on the edges, the distinction between core and periphery links, and possibly
dependent driving noises. Hence, the main idea behind the proof of Theorem 3.1 is to analyse
the different channels along which the error induced by the partial mean field approximation can
spread through the system, and then to obtain the total L2-error by Gronwall’s lemma. Taking
into account all possible ways core and periphery links can interact with each other, yields twelve
rates in contrast to a single one in (1.3). Since our proof makes explicit use of covariances, the
linearity of the interaction terms is crucial. We will further comment on this in Remarks 3.5 and
3.7.

Remark 3.2. Our calculations produce the following constants in (3.3):

K (T ) :=
√

2 exp((T 1/2va(T ) + 2vσ (T )vL )2T ), (3.4)

and

K1(T ) := E(T )T, K2(T ) := 2vL E(T )T 1/2,

K3(T ) :=
2
3

E(T )vσ (T )V (T )T 3/2, K4(T ) :=
√

2vL E(T )vσ (T )V (T )T,
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K5(T ) := T, K6(T ) := 2T 1/2,

K7(T ) :=
1
2

E(T )V (T )T 2, K8(T ) :=
2

√
3
vL E(T )V (T )

K9(T ) :=
1
2

E(T )T 2, K10(T ) :=
2

√
3
vL E(T )T 3/2,

K11(T ) :=
2
3

E(T )T 3/2, K12(T ) :=
√

2vL E(T )T,

where

E(T ) := eva,d(T ),

V (T ) :=
√

2e(va (T )T 1/2
+2vLvσ (T ))2T (vX + v f (T )vb(T )T + 2vρ,M (T )T 1/2) . □

Remark 3.3. There are several possibilities to extend Theorem 3.1 without substantially new
arguments.

(1) It is straightforward to show that Theorem 3.1 can be extended to the case where the
interaction matrices a and σ are replaced by (still deterministic but possibly history-
dependent) linear functionals.

(2) Suppose that L = Γ L0 with some matrix Γ ∈ RN×N and some other Lévy process L0 with
finite variance and mean zero. Furthermore, Γ = ΓC

+ Γ P and accordingly LC
= ΓCL0

and LP
= Γ PL0. What one would like to do when passing to the PMFS (2.4) is to replace

L there by LC. How does this affect the estimate (3.3) in Theorem 3.1? A similar analysis
as for Theorem 3.1 reveals that an extra rate

r13 :=

⏐⏐⏐Γ PCov[L0(1)](Γ P)′
⏐⏐⏐1/2
d

appears with constant K13 := 2vσ (T )V (T )T 1/2.
(3) Two further generalizations are discussed in Remarks 3.5 and 3.7. □

It is obvious that the usefulness of Theorem 3.1 depends on the sizes of the rates in (3.2): only
if they are small, the PMFS (2.4) is a good approximation to the IPS (2.2). Moreover, there are
two different views on Theorem 3.1: first, if we assume that the underlying network of the IPS
is static, it gives an upper bound on the L2-error when the IPS is approximated by the PMFS;
and second, if the interaction network (i.e. a, σ , f and ρ) is assumed to evolve according to an
index N ∈ N, Theorem 3.1 gives conditions under which the difference between the IPS and the
PMFS converges in the L2-sense to 0, that is,

sup
i∈N

∥(X N
i − X̄ N

i )∗(T )∥L2 → 0, N → ∞

(this happens precisely when all rates in (3.2) converge to 0 as N → ∞, and the numbers in (3.1)
are majorized independently of N ). It is also this second point of view that is the traditional one
in mean field analysis and that justifies the title “Law of large numbers” for the current section.

In the following subsections we will study three examples of dynamical networks and the
corresponding conditions for the law of large numbers to hold for the PMFS.

3.1. Propagation of chaos

We first discuss the phenomenon of chaos propagation, and our results will particularly
extend the results of [18], Section 17.3, [23], Corollary 4.1, and [36], Theorem 1.4, by including
inhomogeneous weights in the model. The setting is as follows:
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(1) The underlying network changes with N ∈ N. In particular, we will index X and X̄ , the
coefficients a, σ , f and ρ as well as the rates in (3.2) by N .

(2) All structural assumptions in Section 2 hold and the numbers in (3.1), some of which now
depend on N , are uniformly bounded in N .

(3) The core matrices aN ,C(t), σ N ,C(t), f N ,C(t) and ρN ,C(t) are diagonal matrices for all times
t ∈ R+.

(4) For each N ∈ N, (L i , bi ,Mi , ρ
N ,C
i i , X N

i (0) : i ∈ N) is a sequence of independent random
elements (note that the noises indexed by a fixed i may depend on each other).

(5) For each T ∈ R+, the following rates converge to 0 as N → ∞:

r N
a (T ) := sup

i∈N

⎛⎝ ∞∑
j=1

(AN ,P
i j (T ))2

⎞⎠1/2

, r N
ρ,M (T ) := sup

i∈N
sup

t∈[0,T ]

⎛⎝ ∞∑
j=1

E[(ρN ,P
i j (t))2c j j (t)]

⎞⎠1/2

,

r N
σ (T ) := sup

i∈N

⎛⎝ ∞∑
j=1

(Σ N ,P
i j (T ))2

⎞⎠1/2

, r N
f (T ) := sup

i∈N
sup

t∈[0,T ]

⎛⎝ ∞∑
j=1

( f N ,P
i j (t))2

⎞⎠1/2

.

These hypotheses ensure that all pair dependencies between the processes X N
i , i ∈ N, vanish

when N → ∞. As a result, in the PMFS, the independence of the particles i at t = 0 propagates
through all times t > 0: the PMFS decouples in contrast to the original IPS.

Example 3.4. In classical mean field theory as in the references mentioned in the introduction,
the N th network consists of exactly N particles. In other words, aN

i j , σ N
i j , f N

i j , ρN
i j and X N

i (0) are
all 0 for i > N or j > N . Moreover, all pair interactions are assumed to be of order 1/N , that
is, we have for each T ∈ R+,

AN ,P
i j (T ) =

Ai j (T )
N

, Σ N ,P
i j (T ) =

Σi j (T )
N

, i, j ∈ N, (3.5)

where Ai j (T ),Σi j (T ) ∈ R+ are uniformly bounded in i, j ∈ N. Furthermore, the driving noises
are supposed to be independent for different particles and to enter the PMFS completely. This
means that (3) and (4) hold and that f N ,P

= ρN ,P
= 0. It is easily shown that under these

specifications the rates in (5) above converge to 0 as N → ∞: r N
ρ,M (T ) and r N

f (T ) are simply 0,
and r N

a (T ) and r N
σ (T ) are of order 1/

√
N as N → ∞. □

We still need to show that under assumptions (1)–(5) above, all rates r N
ι (T ), ι = 1, . . . , 12,

converge to 0 as N → ∞. Since AN ,C(T ) is diagonal, we have AN ,C(T )× = 0, and since the
driving noises for different particles are independent, all covariances (or covariations) vanish
outside the diagonal. Thus, we have

r N
1 (T ) ≤ vXr N

a (T ), r N
2 (T ) ≤ vXr N

σ (T ), r N
3 (T ) ≤ vLr N

a (T ),

r N
4 (T ) ≤ vLr N

σ (T ), r N
5 (T ) ≤ vb(T )r N

f (T ), r N
6 (T ) = r N

ρ,M (T ),

r N
7 (T ) = 0, r N

8 (T ) = 0, r N
9 (T ) ≤ vb(T )v f (T )r N

a (T ),

r N
10(T ) ≤ vb(T )v f (T )r N

σ (T ), r N
11(T ) ≤ vρ,M (T )r N

a (T ), r N
12(T ) ≤ vρ,M (T )r N

σ (T ),

which all converge to 0 as N → ∞ by hypothesis. The following remark continues Remark 3.3
regarding further generalizations of Theorem 3.1.

Remark 3.5. In the setting of this subsection there are actually no core relationships between
different particles: every pair interaction rate tends to 0 with large N . If we even assume that
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there is no dependence at all originating from the noises (i.e. f N ,P
= ρN ,P

= 0 above), the
propagation of chaos result can easily be extended to suitably bounded nonlinear Lipschitz
interaction terms instead of the matrices aN and σ N (for example, the drift coefficient for
X N

i could be of the form 1
N

∑N
j=1 aN

i j (X N
i , X N

j ), where aN
i j are uniformly bounded Lipschitz

continuous functions admitting Lipschitz constants that are independent of i , j and N ). Since
the bound on page 175, line 13, of [36] only uses independence (but not exchangeability), and
Gronwall’s lemma also applies in the heterogeneous case (as our proof of Theorem 3.1 shows),
the proof of [36], Theorem 1.4, can be applied with obvious changes. □

3.2. Sparse interaction versus sparse correlation

The propagation of chaos result in the last subsection was based on two core hypotheses:
asymptotically vanishing pair interaction rates and the independence of the particles’ driving
noises. The motivation for establishing Theorem 3.1, however, is to deal with situations where
these two conditions are precisely not satisfied, that is, when the coefficients a, σ , f and ρ
of (2.2) are decomposed into a core and a periphery part in a non-trivial way. In fact, in this
subsection, we discuss a typical situation where the full generality of Theorem 3.1 is required.
Before that, we recall that we consider networks indexed by N ∈ N, and that we are interested
in the cases when the rates in (3.2) vanish when N becomes large.

General assumptions
The following list of hypotheses describes the setting in this subsection.

(1) The statements (1) and (2) of Section 3.1 hold.
(2) M is an RN-valued F-Lévy process, implying that ci j (t) = Cov[Mi (1),M j (1)]t .
(3) At stage N , the system consists of N particles, that is, we have aN

i j = σ N
i j = f N

i j = ρN
i j =

X N
i (0) = 0 as soon as i > N or j > N .

(4) Let N0 ∈ N be independent of N and suppose that N > N0. We assume that C :=

{1, . . . , N0} contains the core particles, while PN
:= {N0 + 1, . . . , N } contains the

periphery particles, whose number increases with N . Correspondingly, aN ,C and σ N ,C

(resp. aN ,P and σ N ,P) characterize the influence of the core (resp. periphery) particles in
the system. In other words, we assume that j ∈ C implies that aN ,P

i j (t) = σ
N ,P

i j (t) = 0 for
all i ∈ N and t ∈ R+, while j ∈ PN implies aN ,C

i j (t) = σ
N ,C

i j (t) = 0 for all i ̸= j and
t ∈ R+. We assume that the diagonals of aN and σ N are completely contained in aN ,C and
σ N ,C, respectively. It follows that the partitions of aN and σ N can be illustrated as follows
(omitting all zero rows and columns, and using ∗ for all potentially non-zero elements):

aN ,C/

σ N ,C =

N0 N⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · ∗ 0 · · · · · · 0
...

. . .
...

...
. . .

. . .
...

∗ · · · ∗ 0 · · · · · · 0
∗ · · · ∗ ∗ 0 · · · 0
...

. . .
... 0

. . .
. . .

...
...

. . .
...

...
. . .

. . . 0
∗ · · · ∗ 0 · · · 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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aN ,P/

σ N ,P =

N0 N⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ∗ · · · · · · ∗

...
. . .

...
...

. . .
. . .

...

0 · · · 0 ∗ · · · · · · ∗

0 · · · 0 0 ∗ · · · ∗

...
. . .

... ∗
. . .

. . .
...

...
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗ · · · ∗ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5) There is a finite number of systematic noises, namely B1, . . . , BN00 and M1, . . . ,MN00 ,
for some fixed N00 ∈ N independent of N . These noises are important to a large part
of the system, and there are idiosyncratic noises BN00+i and MN00+i that only affect the
specific particle i ∈ {1, . . . , N }. Thus, we assume for all i = 1, . . . , N and t ∈ R+ that
ρ

N ,P
i j (t) = f N ,P

i j (t) = 0 for j ∈ {1, . . . , N00} ∪ {N00 + i} and ρN ,C
i j (t) = f N ,C

i j (t) = 0 for
the other values of j . Hence, f N and ρN are of the form

f N ,C/

ρN ,C =

N00 N00+N⎛⎜⎜⎜⎜⎝
∗ · · · ∗ ∗ 0 · · · 0
...

. . .
... 0

. . .
. . . 0

...
. . .

...
...

. . .
. . . 0

∗ · · · ∗ 0 · · · 0 ∗

⎞⎟⎟⎟⎟⎠ ,

f N ,P/

ρN ,P =

N00 N00+N⎛⎜⎜⎜⎜⎝
0 · · · 0 0 ∗ · · · ∗

...
. . .

... ∗
. . .

. . .
...

...
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗ · · · ∗ 0

⎞⎟⎟⎟⎟⎠ .

(6) We have for all T ∈ R+

AN ,P
i j (T ) =

φN
i j (T )

RN
A
, Σ N ,P

i j (T ) =
ψN

i j (T )

RN
Σ

, i, j = 1, . . . , N , (3.6)

where the rates RN
A and RN

Σ satisfy

RN
A

√
N

→ ∞,
RN
Σ

√
N

→ ∞, N → ∞, (3.7)

and the numbers φN
i j (T ), ψN

i j (T ) ∈ R+ satisfy

φ(T ) := sup
i, j,N∈N

φN
i j (T ) < ∞, ψ(T ) := sup

i, j,N∈N
ψN

i j (T ) < ∞.

Note that we always have φN
ii (T ) = ψN

ii (T ) = 0.
(7) For different i, j ∈ N, the noises Mi and M j as well as Bi and B j are uncorrelated.
(8) The rates r N

f (T ) and r N
ρ,M (T ) from Section 3.1 converge to 0 as N → ∞ for all T ∈ R+.

(9) For each N ∈ N, the initial values (X N
i (0) : i ∈ PN ) are mutually uncorrelated.

Conditions (4) and (5) determine the core–periphery structure of the IPS. In practice, a fixed
distinction between core and periphery particles is often not possible because a large number of



C. Chong and C. Klüppelberg / Stochastic Processes and their Applications 129 (2019) 4998–5036 5009

particles may be engaged in some strong and some weak linkages at the same time. As already
pointed out, this does not affect the applicability of Theorem 3.1, since the concept of core
and periphery refers to the linkages there. The choice of fixed core and periphery particles in
this subsection is only a special case thereof, intended to simplify the arguments below. Next,
regarding (6), one can take RN

A = RN
Σ = N for concreteness, which can then be compared with

Section 3.1. Furthermore, let us point out that assumption (7) is only for convenience (namely
that f N and ρN carry the whole correlation structure of the noises). Indeed, it is always possible
(under our second-moment conditions) to replace any stochastic integral ρ · M , where M is a
Lévy process with an arbitrary correlation structure, by ρ ′

· M ′, where M ′ consists of mutually
uncorrelated Lévy processes (of course, (8) would change accordingly). Finally, if X N (0) is
independent of the driving noises, (9) can be enforced simply by switching to the conditional
distribution given X N (0).

Under (1)–(9) it is easy to prove that the rates r N
1 (T ), r N

2 (T ), r N
5 (T ) and r N

6 (T ) converge to 0
when N → ∞. For the latter two, this can be deduced in the same way as in Section 3.1 because
the driving noises of different particles are uncorrelated. For the first two rates, we use that the
starting random variables of periphery particles are assumed to be uncorrelated. Hence, we have
by (3.7), as N → ∞, that

r N
1 (T ) = sup

i∈N

⎛⎝∑
j∈PN

(AN ,P
i j (T ))2Var[X N

j (0)]

⎞⎠1/2

≤ φ(T )vX

√
N

RN
A

→ 0,

r N
2 (T ) = sup

i∈N

⎛⎝∑
j∈PN

(Σ N ,P
i j (T ))2Var[X N

j (0)]

⎞⎠1/2

≤ ψ(T )vX

√
N

RN
Σ

→ 0.

However, the conditions above are in general not sufficient to imply the smallness of the other
rates in (3.2). We need to add extra hypotheses.

Sparseness assumptions
For each of the remaining rates, we further examine what type of conditions are needed to

make them asymptotically small. As we shall see, it is always a mixture of a sparseness condition
on the interaction matrices AN and Σ N and a sparseness condition on the correlation matrices
f N and ρN .

r N
3 (T ) and r N

4 (T ): We first present a counterexample to show that we have to require further
conditions. Consider the simple case where L i = L1 for all i ∈ N and that AN ,P

i j (T ) = 1/RN
A for

all T ∈ R+ and i, j ∈ {1, . . . , N } with i ̸= j . Then

r N
3 (T ) = sup

i∈N

⎛⎝ ∑
j,k∈PN \{i}

(
1

RN
A

)2

Cov[L j (1), Lk(1)]

⎞⎠1/2

≤ vL
N

RN
A
,

which need not to converge to 0 in general. A similar calculation can be done for r N
4 (T ). In

order to make the rates r N
3 (T ) and r N

4 (T ) small, there are basically two options: we require the
interaction matrices AN ,P and Σ N ,P to be sparse, or we require the correlation matrix of L to be
sparse. Any other possibility is a suitable combination of these two.

(10a) The noises (L i : i ∈ PN ) corresponding to periphery particles only have sparse correlation
(which, in particular, includes the case of mutual independence as in Section 3.1). More
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precisely, we require

pN
L := #{(i, j) ∈ PN

× PN
: Cov[L i (1), L j (1)] ̸= 0}| = o

(
(RN

A )2
∧ (RN

Σ )2) (3.8)

for large N . Then

r N
3 (T ) = sup

i∈N

⎛⎝ ∑
j,k∈PN

AN ,P
i j (T )AN ,P

ik (T )Cov[L j (1), Lk(1)]

⎞⎠1/2

≤ φ(T )vL

√
pN

L

RN
A

→ 0,

and, similarly, r N
4 (T ) → 0 as N → ∞.

(10b) The matrices AN ,P(T ) and Σ N ,P(T ), which describe the influence of periphery particles
on the system, are only sparsely occupied, in the sense that every particle in the system
is only affected by a small number of periphery particles. In mathematical terms, this
condition reads as

pN
A,1(T ) := sup

i∈N
#{ j ∈ PN

: AN ,P
i j (T ) ̸= 0} = o(RN

A ),

pN
Σ (T ) := sup

i∈N
#{ j ∈ PN

: Σ N ,P
i j (T ) ̸= 0} = o(RN

Σ ).
(3.9)

In this case, we get

r N
3 (T ) = sup

i∈N

⎛⎝ ∑
j,k∈PN

AN ,P
i j (T )AN ,P

ik (T )Cov[L j (1), Lk(1)]

⎞⎠1/2

≤ φ(T )vL
pN

A,1

RN
A

→ 0,

and similarly r N
4 (T ) → 0 as N → ∞.

r N
7 (T ) and r N

8 (T ): These two rates express the connectivity between core and periphery
particles. In general, they will not become small with large N . For instance, if AN ,C

i j (T ) = 1
for all j ∈ C and i ̸= j , and AN ,P

i j (T ) = 1/RN
A for all j ∈ PN and i ̸= j , then

r N
7 (T ) = sup

i∈N

∑
j∈PN

∑
k∈C

AN ,P
i j (T )AN ,C

jk (T ) = N0
N

RN
A
,

which does not necessarily converge to 0. An analogous statement holds for r N
8 (T ). For

r N
7 (T ), r N

8 (T ) → 0 we have to require that the lower left block of AN ,C, which describes the
influence of core particles on periphery particles, or the matrices AN ,P(T ) and Σ N ,P(T ), which
describe the influence of periphery particles on the system, be sparse (or a combination thereof):

(11a) The influence of core on periphery particles is sparse. In other words, we suppose for the
maximal number of periphery particles a single core particle interacts with through the
drift:

pN
A,2 := sup

j∈C
#{i ∈ PN

: AN ,C
i j (T ) ̸= 0} = o(RN

A ∧ RN
Σ ). (3.10)

Then,

r N
7 (T ) = sup

i∈N

∑
j∈PN

∑
k∈C

AN ,P
i j (T )AN ,C

jk (T ) ≤ N0φ(T )va(T )
pN

A,2

RN
A

→ 0

as well as r N
8 (T ) → 0 as N → ∞.
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(11b) AN ,P(T ) and Σ N ,P(T ) are sparse in the sense of (3.9). Then r N
7 (T ), r N

8 (T ) → 0 follow
similarly.

r N
9 (T ), r N

10(T ), r N
11(T ) and r N

12(T ): Similar considerations as before show that these four rates
do not converge to 0 in general. Instead, we again need to require some mixture of sparsely
correlated driving noises and sparsely occupied matrices AN ,P and Σ N ,P:

(12a) We assume that for all T ∈ R+

pN
f (T ) := sup

j∈{1,...,N00}

#{i ∈ PN
: f N ,C

i j ̸≡ 0 on [0, T ]} = o(RN
A ∧ RN

Σ ), (3.11)

pN
ρ (T ) := sup

j∈{1,...,N00}

#{i ∈ PN
: ρ

N ,C
i j ̸≡ 0 on [0, T ]} = o(RN

A ∧ RN
Σ ). (3.12)

Then, recalling that the components of b and M are mutually uncorrelated,

r N
9 (T ) = sup

i∈N
sup

s,t∈[0,T ]

( ∑
j,k∈PN

N00∑
l=1

AN ,P
i j (T )AN ,P

ik (T )

×

⏐⏐⏐ f N ,C
jl (s) f N ,C

kl (t)Cov[bl(s), bl(t)]
⏐⏐⏐

+

∑
j∈PN

(AN ,P
i j (T ))2

⏐⏐⏐ f N ,C
j(N00+ j)(s) f N ,C

j(N00+ j)(t)Cov[bN00+ j (s), bN00+ j (t)]
⏐⏐⏐)1/2

≤ φ(T )vb(T )v f (T )

√
N00 pN

f (T ) +
√

N

RN
A

→ 0,

r N
11(T ) = sup

i∈N
sup

t∈[0,T ]

( ∑
j,k∈PN

N00∑
l=1

AN ,P
i j (T )AN ,P

ik (T )
⏐⏐⏐E[ρN ,C

jl (t)ρN ,C
kl (t)]

⏐⏐⏐Var[Ml(1)]

+

∑
j∈PN

(AN ,P
i j (T ))2

⏐⏐⏐E[(ρN ,C
j(N00+ j)(t))

2]
⏐⏐⏐Var[MN00+ j (1)]

)1/2

≤ φ(T )vρ,M (T )

√
N00 pN

ρ (T ) +
√

N

RN
A

→ 0,

and similarly r N
10(T ), r N

12(T ) → 0 as N → ∞.
(12b) AN ,P(T ) and Σ N ,P(T ) are sparse in the sense of (3.9). Then one can deduce r N

ι (T ) → 0
for ι = 9, 10, 11, 12 as before.

We conclude this subsection with two remarks.

Remark 3.6. In the sparseness conditions (3.8)–(3.12), it is not essential that the majority
of entries is exactly zero. As one can see from the definition of the rates (3.2), they depend
continuously on the underlying matrix entries. It suffices therefore that the matrix entries are
small enough in a large proportion. □

Remark 3.7. What can be said about Theorem 3.1 in the general case of nonlinear Lipschitz
coefficients aN and σ N , apart from the special case discussed in Remark 3.5? In fact, a law
of large numbers in the fashion of Theorem 3.1 can still be shown, but under more stringent
conditions: namely we have to require condition (10b) above in addition, with AN ,P and Σ N ,P
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now containing the Lipschitz constants of the interaction terms. The reason is that (10b) suffices
to make r N

ι (ι ∈ {3, 4, 7, . . . , 12}) small. The remaining four rates are unrelated to aN and σ N

and therefore not affected by their nonlinear structure. It is important to notice that conditions
like (10a) and (12a) are no longer sufficient to make the corresponding rates small. The reason is
that they are conditions of correlation type. Since correlation is a linear measure of dependence,
it is not surprising that these conditions are not suitable for the nonlinear case. We do not go into
the details at this point. □

3.3. Networks arising from preferential attachment

As demonstrated in the last subsection, the crucial criterion for the rates (3.2) in Theorem 3.1
to vanish asymptotically with growing network size is a combination of sparse interaction and
sparse correlation among the particles. Condition (3.9) plays a distinguished role here: when
valid, it implies that eight out of twelve rates in (3.2) are small. Moreover, it is the key factor
for a nonlinear generalization of Theorem 3.1 to hold or not; see Remark 3.7. The aim of this
subsection is therefore to find algorithms for the generation of the underlying networks such
that the resulting interaction matrices satisfy (3.9). We will assume that aN ,P(t) = aN ,P and
σ N ,P(t) = σ N ,P are independent of t ∈ R+, such that also AN ,P(t) and Σ N ,P(t) as well as pN

A,1(t)
and pN

Σ (t) (see (3.9) for their definitions) are independent of t . Furthermore, we only concentrate
on pN

A,1 as the analysis for pN
Σ is completely analogous.

We will base the creation of the IPS network on dynamical random graph mechanisms. Since
we are mainly interested in heterogeneous graphs, we will investigate the preferential attachment
or scale-free random graph [5]. There are many similar but different constructions of preferential
attachment graphs; in the following, we rely on the construction of [8] for directed graphs. We
remark that the random graphs to be constructed will be indexed by N , corresponding to a family
of growing networks for the IPS. In particular, “time” in the random graph process must not be
confused with the time t in the IPS (2.2); the correct view is rather that the IPS network has been
built from the random graphs before time t = 0, and, of course, independently of all random
variables in (2.2).

The preferential attachment algorithm works as follows: we start with G(0) = (V, E(0)), a
given graph consisting of vertices V = N and edges E(0) = {e1, . . . , eν}, where ν ∈ N and ei

stands for a directed edge between two vertices. We allow for multiple edges and loops in our
graphs. Without loss of generality, we assume that the set of vertices in G(0) with at least one
neighbour is given by {1, . . . , n(0)} with some n(0) ∈ N. Furthermore, we fix α, β, γ ∈ R+ with
α + β + γ = 1 and α + γ > 0 and two numbers δin, δout

∈ R+. For N ∈ N, we construct
G(N ) = (V, E(N )) from G(N − 1) according to the following algorithm.

• With probability α, we create a new edge eν+N from v = n(N − 1) + 1 to a node w that
is already connected in G(N − 1). Here w is chosen randomly from {1, . . . , n(N − 1)}
according to the probability mass function

din
G(N−1)(w) + δin

ν + N − 1 + δinn(N − 1)
, w ∈ {1, . . . , n(N − 1)},

where din
G(v) denotes the in-degree of vertex v in a graph G. We define n(N ) := n(N −1)+1

and E(N ) := E(N − 1) ∪ {eν+N }.
• With probability β, a new edge eν+N is formed from some vertex v ∈ {1, . . . , n(N − 1)}

to some w ∈ {1, . . . , n(N − 1)} (the case v = w is possible). Here v and w are chosen
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independently according to the probability mass functions

dout
G(N−1)(v) + δout

ν + N − 1 + δoutn(N − 1)
,

din
G(N−1)(w) + δin

ν + N − 1 + δinn(N − 1)
, v, w ∈ {1, . . . , n(N −1)},

respectively, where dout
G (v) denotes the out-degree of vertex v in a graph G. Moreover, we

set n(N ) := n(N − 1) and E(N ) := E(N − 1) ∪ {eν+N }.
• With probability γ , a new edge eν+N from some v ∈ {1, . . . , n(N −1)} tow = n(N −1)+1

is formed. Here v is chosen randomly according to the probability mass function

dout
G(N−1)(v) + δout

ν + N − 1 + δoutn(N − 1)
, v ∈ {1, . . . , n(N − 1)}.

We set n(N ) := n(N − 1) + 1 and E(N ) := E(N − 1) ∪ {eν+N }.

Evidently, we always have |E(N )| = ν + N while the number n(N ) of non-isolated vertices in
G(N ) is random in general.

The most important result for our purposes is the following one. We define

M in(N ) := max{d in
G(N )(i) : i ∈ N}, Mout(N ) := max{dout

G(N )(i) : i ∈ N}, N ∈ N0,

as the maximal in-degree and out-degree in G(N ), respectively.

Lemma 3.8. The maximum in-degree M in(N ) and out-degree Mout(N ) of G(N ) satisfy the
following asymptotics:

cin(N )M in(N ) → µin, cout(N )Mout(N ) → µout, N → ∞. (3.13)

Here the convergence to the random variables µin and µout, respectively, holds in the almost sure
as well as in the L p-sense for all p ∈ [1,∞), and (cin(N ))N∈N and (cout(N ))N∈N are sequences
of random variables which can be chosen such that for every ϵ ∈ (0, α + γ ) we have a.s.

cin(N )−1
= O

(
N

α+β

1+δin(α+γ−ϵ)

)
, cout(N )−1

= O
(

N
β+γ

1+δout(α+γ−ϵ)

)
, N → ∞. (3.14)

It follows from this lemma that for every ϵ ∈ (0, α + γ ), we have a.s.

M in(N ) = O
(

N
α+β

1+δin(α+γ−ϵ)

)
, Mout(N ) = O

(
N

β+γ

1+δout(α+γ−ϵ)

)
, N → ∞.

In particular, if G(N ) is used to model the underlying network of aN (i.e. an edge in G(N ) from
i to j is equivalent to aN

i j ̸= 0), we have

pN
A,1 ≤ Mout(N ) = O

(
N

β+γ

1+δout(α+γ−ϵ)

)
, N → ∞.

In other words, the first part of condition (3.9) holds as soon as RN
A , as specified through (3.6)

and (3.7), increases in N at least with rate

N
β+γ

1+δout(α+γ−ϵ) (3.15)

for some small ϵ. For example, in the classical case of Example 3.4 where RN
A = N , this is

always true except in the case α = δout
= 0, where all edges start from one of the initial

nodes with probability one. We conclude that in all non-trivial situations of the preferential
attachment model, the resulting networks are sparse enough for the law of large numbers implied
by Theorem 3.1 to be in force.
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4. Large deviations

In Theorem 3.1 we have established bounds on the mean squared difference between the
IPS (2.2) and the PMFS (2.4). In Sections 3.1–3.3 we have given examples of dynamical
networks in which these bounds converge to 0 as the network size increases. A natural question
is now whether a large deviation principle holds as N → ∞, which would then assure that
the probability of X N deviating strongly from X̄ N decreases exponentially fast in N . As in
the sections before, we assume here that the network for the IPS and the PMFS is indexed
by N ∈ N. In the classical case of homogeneous networks, [13] is the first paper to prove a
large deviation principle for the empirical measures of the processes (1.1). For heterogeneous
networks, however, the empirical measure might no longer be a good quantity to investigate:
the weight of a particle now depends on which particle’s perspective is chosen. A sequence of
differently weighted empirical measures seems to be more appropriate, but then their analysis
becomes considerably more involved. Therefore, in this paper we take a more direct approach
and study the large deviation behaviour of the difference X N

− X̄ N itself. In order to do so, we
have to put stronger assumptions on the coefficients than in the previous sections. These are as
follows.

(A1) X N (0), for each N ∈ N, and B are deterministic.
(A2) For all N ∈ N we have σ N

= 0. All other coefficients aN ,C, aN ,P, ρN ,C and ρN ,P are
constant in time. Moreover, only the first γ (N ) (resp. Γ (N )) columns of ρN ,C and ρN ,P

(resp. aN ,C and aN ,P) may contain non-zero entries, where γ (N ) is sequence increasing to
infinity, and there are constants C1,C2 ∈ R+ such that Γ (N ) ≤ C1 exp(C2γ (N )) for all
N ∈ N.

(A3) All numbers in (3.1), which are indexed by N now, are bounded independently of N .
(A4) (Mi : i ∈ N) is a sequence of independent mean-zero Lévy processes whose Brownian

motion part has variance ci and whose Lévy measure is νi . Moreover, there exists a real-
valued mean-zero symmetric Lévy process M0 with E[euM0(1)] < ∞ for all u ∈ R+ that
dominates Mi , that is, its characteristics c0 and ν0 satisfy ci ≤ c0 and νi (A) ≤ ν0(A) for
all i ∈ N and Borel sets A ⊆ R.

(A5) Assume that G N (t, s) := γ (N )eaN t aN ,PeaN ,CsρN ,C, s, t ∈ [0, T ], converges uniformly to
a limit G(t, s) ∈ RN×N:

sup
i, j=1,...,γ (N )∨Γ (N )

sup
s,t∈[0,T ]

|G N
i j (t, s) − G i j (t, s)| → 0, sup

i, j∈N
sup

s,t∈[0,T ]
|G i j (t, s)| < ∞,

N → ∞.

(A6) With RN (t) := γ (N )eaN tρN ,P, t ∈ [0, T ], there exists R(t) ∈ RN×N such that

sup
i, j∈N

sup
t∈[0,T ]

|Ri j (t)| < ∞, sup
i, j=1,...,γ (N )∨Γ (N )

sup
t∈[0,T ]

|RN
i j (t) − Ri j (t)| → 0, N → ∞.

(A7) The following two quantities are finite:

q1 := lim sup
N→∞

q1(N ) := lim sup
N→∞

sup
i∈N

γ (N )
∞∑
j=1

∑
k ̸= j

|aN ,P
i j aN ,C

jk |,

q2 := lim sup
N→∞

q2(N ) := lim sup
N→∞

sup
i,k∈N

γ (N )
∞∑
j=1

|aN ,P
i j ρ

N ,C
jk |.
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(A8) Define for m ∈ N ∪ {0}

Ψm(u) := logE[euMm (1)] =
1
2

cmu2
+

∫
R

(euz
− 1 − uz) νm(dz), u ∈ R+.

We assume that the following holds for every d ∈ N: denoting for m ∈ N, r ∈ [0, T ] and
θ ∈ Md

T

Hm(θ, r ) :=

∫ T

r

∫ T

s

d∑
i=1

G im(t − s, s − r ) θi (dt) ds +

∫ T

r

d∑
i=1

Rim(t − r ) θi (dt),

the sequence
(∫ T

0 Ψm(Hm(θ, r )) dr
)

m∈N
is Cesàro summable, i.e. the following limit

exists:

lim
N→∞

1
γ (N )

γ (N )∑
m=1

∫ T

0
Ψm(Hm(θ, r )) dr. (4.1)

Theorem 4.1. Let T ∈ R+. Under (A1)–(A8), the sequence (X N
− X̄ N )N∈N satisfies a large

deviation principle in (D∞

T , J1) with a good rate function I : D∞

T → [0,∞], that is, for every
α ∈ R+ the set {x ∈ D∞

T : I (x) ≤ α} is compact in D∞

T (with respect to the J1-topology), and
for every M ∈ D∞

T we have

− inf
x∈int M

I (x) ≤ lim inf
N→∞

1
γ (N )

logP[X N
− X̄ N

∈ M]

≤ lim sup
N→∞

1
γ (N )

logP[X N
− X̄ N

∈ M] ≤ − inf
x∈cl M

I (x),

where int M and cl M denote the interior and the closure of M in (D∞

T , J1), respectively.
Moreover, the rate function I is convex, attains its minimum 0 uniquely at the origin and is
infinite for x /∈ AC∞

T .

Remark 4.2.

(1) We cannot drop the requirement σ N
= 0 or condition (A4) in Theorem 4.1 because

otherwise, the processes X N and X̄ N will typically not have exponential moments of all
orders, whose existence is essential for our proof below. This kind of problem does not
arise when empirical measures are considered as in [13,25] for the homogeneous case.

(2) The Cesàro summability condition (A8) accounts for the possible inhomogeneity of the
coefficients and the distribution of the noises. It holds in particular for the homogeneous
case. Since a convergent series is Cesàro summable with the same limit, it also holds when
we have asymptotic homogeneity (in the sense that the sequence inside the sum of (4.1)
converges as m → ∞).

Example 4.3. We apply Theorem 4.1 to the model considered in Theorem 3.1 of [23], which in
particular covers McKean’s example [36]. At stage N , we have particles 1, . . . , N , divided into
two groups Θ N

1 and Θ N
2 of [ηN ] and N − [ηN ] elements, respectively, where η ∈ (0, 1). We

assume that the attribution of particles to the two groups is stable in N , in the sense that Θ N
1 ↑ Θ1

and Θ N
2 ↑ Θ2 where Θ1 and Θ2 form a partition of N into two infinite subsets. The particles’
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interaction is described by aN ,C
= −I and

aN ,P
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ϵ

[ηN ] − 1
if i ̸= j, i, j ∈ Θ N

1 ,

ϵ

N − [ηN ]
if i ∈ Θ N

1 , j ∈ Θ N
2 ,

1
[ηN ]

if i ∈ Θ N
2 , j ∈ Θ N

1 ,

0 if i = j or i, j ∈ Θ N
2 ,

with some ϵ ∈ (0, 1). Here and throughout this example, we use the convention that all matrix
identities at stage N are understood for the upper left N × N -submatrix. All entries outside this
submatrix are automatically set to zero.

Furthermore, we assume that ρN
= ρN ,C

= I and σ N
= 0 for all N ∈ N. The initial condition

and the driving noises are supposed to satisfy assumptions (A1) and (A4) of Theorem 4.1.
We also suppose that the Lévy processes Mi have the same distribution among i ∈ Θ1, and
among i ∈ Θ2, respectively. Then it is evident that also assumptions (A2) and (A3) hold with
γ (N ) = Γ (N ) = N . Moreover, since ρN ,P

= 0, we have RN
= 0 and therefore (A6). Since aN ,C

and ρN ,C are diagonal, we deduce that q1 = 0 and

q2 = lim sup
N→∞

sup
i,k=1,...,N

N |aN ,P
ik ρ

N ,C
kk | = lim sup

N→∞

sup
i,k=1,...,N

N |aN ,P
ik | ≤ η−1

∨ (1 − η)−1 < ∞,

which shows (A7).
Regarding (A5), we have G N (t, s) = NeaN t aN ,PeaN ,CsρN ,C

= eaN t NaN ,Pe−s by definition.
Now classical theory for ordinary differential equations (ODE) asserts that (G N (t, s))·, j , for
j = 1, . . . , N , is the solution to the ODE system

dx N , j,s(t) = aN x N , j,s(t) dt, x N , j,s(0) = NaN ,P
·, j e−s . (4.2)

By symmetry, we have x N , j,s
i (t) = yN , j,s

1 (t) for all i ∈ Θ N
1 and x N , j,s

i (t) = yN , j,s
2 (t) for all

i ∈ Θ N
2 , where the two-dimensional function (yN , j,s

1 (t), yN , j,s
2 (t)) solves the ODE

d

(
yN , j,s

1

yN , j,s
2

)
(t) = −

(
yN , j,s

1

yN , j,s
2

)
(t) dt +

(
1 − ϵ ϵ

1 0

)⎛⎝yN , j,s
1

yN , j,s
2

⎞⎠ (t) dt,

(
yN , j,s

1

yN , j,s
2

)
(0) =

⎛⎜⎝
(1 − ϵ)N
[ηN ] − 1

e−s

N
[ηN ]

e−s

⎞⎟⎠ if j ∈ Θ N
1 , and

(
yN , j,s

1

yN , j,s
2

)
(0) =

⎛⎝ ϵN
N − [ηN ]

e−s

0

⎞⎠ if j ∈ Θ N
2 .

(4.3)

The dependence on N is only via the initial condition, so clearly, as N → ∞,

sup
j=1,...,N

sup
s,t∈[0,T ]

(|yN , j,s
1 (t) − y j,s

1 (t)| + |yN , j,s
2 (t) − y j,s

2 (t)|) → 0, (4.4)

where (y j,s
1 , y j,s

2 ) satisfies the same ODE in (4.3), but with initial condition ((1 − ϵ)η−1, η−1)e−s

if j ∈ Θ1, and (ϵ(1 − η)−1, 0)e−s if j ∈ Θ2. Then (A5) holds with

G(t, s)i j =

{
y j,s

1 (t) if i ∈ Θ1,

y j,s
2 (t) if i ∈ Θ2.
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Due to symmetry, G(t, s)i j only depends on whether i and j belong to Θ1 or Θ2. In the
following, we therefore write G(t, s)kl , where k, l ∈ {1, 2}, if i ∈ Θk and j ∈ Θl . Now suppose
that d ∈ N, r ∈ [0, T ] and θ ∈ Md

T are given. If we write θ̄1 =
∑

i∈Θd
1
θi and θ̄2 =

∑
i∈Θd

2
θi ,

then for m ∈ Θk , where k ∈ {1, 2},

Hm(θ, r ) = H̄k(θ, r ) :=

∫ T

r

∫ T

s
(G1k(t − s, s − r ) θ̄1(dt) + G2k(t − s, s − r ) θ̄2(dt)) ds.

Hence, the quantity in (4.1) is given by (Ψ̄1 and Ψ̄2 denote the logarithmic moment generating
function of Mi for i ∈ Θ1 and i ∈ Θ2, respectively)

lim
N→∞

1
N

(
|Θ N

1 |

∫ T

0
Ψ̄1(H̄1(θ, r )) dr + |Θ N

2 |

∫ T

0
Ψ̄2(H̄2(θ, r )) dr

)
= η

∫ T

0
Ψ̄1(H̄1(θ, r )) dr + (1 − η)

∫ T

0
Ψ̄2(H̄2(θ, r )) dr,

which is easily seen to be well defined, proving the last hypothesis (A8).

5. Proofs

We start with some preparatory results that are needed for the proof of Theorem 3.1.

Lemma 5.1. Under the assumptions of Theorem 3.1, we have

sup
i∈N

X̄∗

i (T )


L2 ≤ V (T ),

where V (T ) is given in Remark 3.2.

Proof. It is a consequence of (2.4) and the Burkholder–Davis–Gundy inequality that for all
t ∈ [0, T ] and i ∈ N,(X̄ i )∗(t)


L2 ≤

X i (0)


L2 +

∫ t

0

∞∑
j=1

Ai j (T )
(X̄ j )∗(s)


L2 ds

+ 2Var[L i (1)]

⎛⎜⎝∫ t

0

⎛⎝ ∞∑
j=1

Σi j (T )
(X̄ j )∗(s)


L2

⎞⎠2

ds

⎞⎟⎠
1/2

+

∫ t

0

∞∑
j=1

⏐⏐ fi j (s)
⏐⏐b j (s)


L2 ds

+ 2

⎛⎝ ∞∑
j,k=1

∫ t

0
E
[
ρC

i j (s)ρC
ik(s)c jk(s)

]
ds

⎞⎠1/2

.

Therefore, if we define w(t) := supi∈N ∥(X̄ i )∗(t)∥L2 , we obtain

w(t) ≤ vX + v f (T )vb(T )T + 2vρ,M (T )T 1/2
+ va(T )

∫ t

0
w(s) ds

+ 2vLvσ (T )
(∫ t

0
(w(s))2 ds

)1/2
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≤ vX + v f (T )vb(T )T + 2vρ,M (T )T 1/2
+ (va(T )T 1/2

+ 2vLvσ (T ))
(∫ t

0
(w(s))2 ds

)1/2

.

Now we square the last inequality, apply the basic estimate (a + b)2
≤ 2(a2

+ b2) and use
Gronwall’s inequality to deduce our claim, namely that

w(T ) ≤
√

2e(va (T )T 1/2
+2vLvσ (T ))2T (vX + v f (T )vb(T )T + 2vρ,M (T )T 1/2) . □

Lemma 5.2. Let T ∈ R+ and assume the finiteness of the numbers (3.1). We fix some j ∈ N
throughout this lemma and define for t ∈ [0, T ],

Y j (t) := Y 1
j + Y 2

j (t) + Y 3
j (t) + Y 4

j (t) + Y 5
j (t)

:= (X j (0) − E[X j (0)]) +

∑
k ̸= j

∫ t

0
aC

jk(s)(X̄k(s) − E[X̄k(s)]) ds

+

∞∑
k=1

∫ t

0

(
σC

jk(s)X̄k(s−) + σ P
jk(s)E[X̄k(s)]

)
dL j (s)

+

∞∑
k=1

∫ t

0
f C

jk(s)(bk(s) − E[bk(s)]) ds +

∞∑
k=1

∫ t

0
ρC

jk(s) dMk(s).

Furthermore, introduce the integrals

I j
0 [x](t) := x(t), I j

n [x](t) :=

∫ t

0
aC

j j (s)I j
n−1[x](s) ds, n ∈ N, (5.1)

where x : [0, T ] → R is a measurable function such that the integrals in (5.1) exist for t ∈ [0, T ].
Then

X̄ j (t) − E[X̄ j (t)] =

∞∑
n=0

I j
n [Y j ](t) =

5∑
ι=1

∞∑
n=0

I j
n [Y ι

j ](t), t ∈ [0, T ], (5.2)

where the sums converge with respect to the maximal L2-norm X ↦→ ∥X∗(T )∥L2 .

Proof. We deduce from (2.4) that

X̄ j (t) − E[X̄ j (t)]

= (X j (0) − E[X j (0)]) +

∑
k ̸= j

∫ t

0
aC

jk(s)(X̄k(s) − E[X̄k(s)]) ds

+

∫ t

0
aC

j j (s)(X̄ j (s) − E[X̄ j (s)]) ds +

∞∑
k=1

∫ t

0

(
σC

jk(s)X̄k(s−) + σ P
jk(s)E[X̄k(s)]

)
dL j (s)

+

∞∑
k=1

∫ t

0
f C

jk(s)(bk(s) − E[bk(s)]) ds +

∞∑
k=1

∫ t

0
ρC

jk(s) dMk(s)

= I j
1 [X̄ j − E[X̄ j ]](t) + Y j (t).

(5.3)
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Iterating this equality n times, we obtain

X̄ j (t) − E[X̄ j (t)] =

n−1∑
ν=0

I j
ν [Y j ](t) + I j

n [X̄ j − E[X̄ j ]](t), t ∈ [0, T ]. (5.4)

Next, observe that for any càdlàg process (X (t))t∈R+
with ∥X∗(T )∥L2 < ∞ we have(I j

ν [X ])∗(T )


L2 ≤ ∥X∗(T )∥L2
(AC

j j (T ))ν

ν!
,

which is summable in ν. Thus, recalling from Lemma 5.1 that both Y j and X̄ j − E[X̄ j ] have
finite maximal L2-norm, we can let n → ∞ in (5.4) and get

X̄ j (t) − E[X̄ j (t)] =

∞∑
ν=0

I j
ν [Y j ](t), t ∈ [0, T ],

which is the first assertion. The second part of formula (5.2) holds by linearity. □

Proof of Theorem 3.1. The existence and uniqueness of solutions to (2.2) and (2.4) follow from
the general theory of SDEs, see [33], Theorem V.7. Since the numbers (3.1) are finite, there are
no difficulties in dealing with infinite-dimensional systems as in our case.

It follows from (2.2) and (2.4) that the difference between X and X̄ satisfies the SDE

d(X (t) − X̄ (t)) =
(
a(t)(X (t) − X̄ (t)) + aP(t)(X̄ (t) − E[X̄ (t)])

)
dt

+
(
σ (t)(X (t−) − X̄ (t−)) + σ P(t)(X̄ (t−) − E[X̄ (t)])

)
.dL(t)

+ f P(t)(b(t) − E[b(t)]) dt + ρP(t) dM(t), t ∈ R+,

X (0) − X̄ (0) = 0.

Thus, denoting the left-hand side of (3.3) by ∆(T ), we obtain from the Burkholder–Davis–Gundy
inequality and Jensen’s inequality that

∆(T ) ≤ va(T )
∫ T

0
∆(t) dt + 2vσ (T )vL

(∫ T

0
(∆(t))2 dt

)1/2

+

⏐⏐⏐⏐∫ T

0

aP(t)(X̄ (t) − E[X̄ (t)])


L2 dt
⏐⏐⏐⏐
∞

+

⏐⏐⏐⏐ (σ P(X̄ − E[X̄ ]) . L
)∗

(T )


L2

⏐⏐⏐⏐
∞

+ T sup
t∈[0,T ]

⏐⏐⏐  f P(t)(b(t) − E[b(t)])


L2

⏐⏐⏐
∞

+

⏐⏐⏐ (ρP
· M)∗(T )


L2

⏐⏐⏐
∞

≤ (T 1/2va(T ) + 2vσ (T )vL )
(∫ T

0
(∆(t))2 dt

)1/2

+

4∑
ι=1

∆ι(T ),

(5.5)

where ∆ι(T ) stands for the last four summands in the line before. So Gronwall’s inequality
produces the bound

∆(T ) ≤ K (T )
4∑
ι=1

∆ι(T ), (5.6)

where K (T ) =
√

2 exp((T 1/2va(T ) + 2vσ (T )vL )2T ). We now consider each ∆ι(T ) separately.
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For ι = 3 we simply have

∆3(T ) = T sup
t∈[0,T ]

sup
i∈N

⎛⎝ ∞∑
j,k=1

f P
i j (t) f P

ik(t)Cov[b j (t), bk(t)]

⎞⎠1/2

= T r5(T ). (5.7)

For ι = 4 another application of the Burkholder–Davis–Gundy inequality yields

∆4(T ) ≤ 2 sup
i∈N

⎛⎝ ∞∑
j,k=1

E
[∫ T

0
ρP

i j (t)ρ
P
ik(t) d[M j ,Mk](t)

]⎞⎠1/2

≤ 2T 1/2 sup
i∈N

sup
t∈[0,T ]

⎛⎝ ∞∑
j,k=1

E
[
ρP

i j (t)c jk(t)ρP
ik(t)

]⎞⎠1/2

= 2T 1/2r6(T ).

(5.8)

For ι = 1, we use Lemma 5.2 including the notations introduced there as well as the
fact that for all stochastic processes (X (t))t∈R+

and (Y (t))t∈R+
with càdlàg sample paths, we

have

sup
r,s∈[0,T ]

⏐⏐E [I j
n [X ](s)I k

m[Y ](r )
]⏐⏐ ≤

(AC
j j (T ))n

n!

(AC
kk(T ))m

m!
sup

r,s∈[0,T ]
|E[X (s)Y (r )]| (5.9)

for any j, k ∈ N and m, n ∈ N ∪ {0}. In this way, we obtain

∆1(T ) =

⏐⏐⏐⏐∫ T

0

aP(t)(X̄ (t) − E[X̄ (t)])


L2 dt
⏐⏐⏐⏐
∞

= sup
i∈N

∫ T

0


∞∑
j=1

aP
i j (t)(X̄ j (t) − E[X̄ j (t)])


L2

dt

≤

5∑
ι=1

sup
i∈N

∫ T

0


∞∑
j=1

aP
i j (t)

∞∑
n=0

I j
n [Y ι

j ](t)


L2

dt

=

5∑
ι=1

sup
i∈N

∫ T

0

⎛⎝ ∞∑
j,k=1

∞∑
n,m=0

aP
i j (t)a

P
ik(t)E

[
I j
n [Y ι

j ](t)I k
m[Y ι

k](t)
]⎞⎠1/2

dt

≤ e|AC(T )|d
5∑
ι=1

sup
i∈N

∫ T

0

⎛⎝ ∞∑
j,k=1

AP
i j (T )AP

ik(T ) sup
r,s∈[0,t]

⏐⏐E[Y ι
j (s)Y ι

k(r )]
⏐⏐⎞⎠1/2

dt

=: e|AC(T )|d
5∑
ι=1

Rι(T ).

(5.10)

Using Lemma 5.1, the five terms in (5.10) can be estimated as follows:

R1(T ) ≤ T sup
i∈N

⎛⎝ ∞∑
j,k=1

AP
i j (T )AP

ik(T )|Cov[X j (0), Xk(0)]|

⎞⎠1/2

= T r1(T ),

R2(T ) ≤ sup
i∈N

∫ T

0

∞∑
j=1

AP
i j (T ) sup

s∈[0,t]
∥Y 2

j (s)∥L2 dt
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≤ sup
i∈N

∫ T

0

∞∑
j=1

AP
i j (T )

⎛⎝∑
k ̸= j

∫ t

0
AC

jk(s)∥X̄k(s) − E[X̄k(s)]∥L2 ds

⎞⎠ dt

≤
T 2

2
V (T ) sup

i∈N

∞∑
j=1

∑
k ̸= j

AP
i j (T )AC

jk(T ) =
T 2

2
V (T )r7(T ),

R3(T ) ≤ sup
i∈N

∫ T

0

( ∞∑
j,k=1

AP
i j (T )AP

ik(T ) sup
s∈[0,t]

⏐⏐⏐⏐E[((σC X̄ + σ PE[X̄ ]
)

j · L j

)
(s)

×

((
σC X̄ + σ PE[X̄ ]

)
k · Lk

)
(s)
]⏐⏐⏐⏐)1/2

dt

≤ sup
i∈N

∫ T

0

( ∞∑
j,k=1

AP
i j (T )AP

ik(T )Cov[L j (1), Lk(1)]

×

∫ t

0
E
[⏐⏐⏐(σC(s)X̄ (s) + σ P(s)E[X̄ (s)]

)
j

×
(
σC(s)X̄ (s) + σ P(s)E[X̄ (s)]

)
k

⏐⏐] ds
)

1/2 dt

≤
2
3

T 3/2vσ (T )V (T )r3(T ),

R4(T ) ≤ sup
i∈N

∫ T

0

⎛⎝ ∞∑
j,k=1

AP
i j (T )AP

ik(T )

×

∫ t

0

∫ t

0

⏐⏐⏐⏐⏐
∞∑

l,m=1

f C
jl (s) f C

km(r )Cov[bl(s), bm(r )]

⏐⏐⏐⏐⏐ dr ds

)1/2

dt

≤
T 2

2
sup
i∈N

⎛⎝ ∞∑
j,k=1

AP
i j (T )AP

ik(T ) sup
s,t∈[0,T ]

⏐⏐⏐⏐⏐
∞∑

l,m=1

f C
jl (s) f C

km(t)Cov[bl(s), bm(t)]

⏐⏐⏐⏐⏐
⎞⎠1/2

=
T 2

2
r9(T ),

R5(T ) ≤ sup
i∈N

∫ T

0

⎛⎝ ∞∑
j,k=1

AP
i j (T )AP

ik(T ) sup
s∈[0,t]

⏐⏐⏐⏐⏐
∞∑

l,m=1

E
[
(ρC

jl · Ml)(s)(ρC
km · Mm)(s)

]⏐⏐⏐⏐⏐
⎞⎠1/2

dt

≤ sup
i∈N

∫ T

0

⎛⎝ ∞∑
j,k=1

AP
i j (T )AP

ik(T )
∫ t

0

⏐⏐⏐⏐⏐
∞∑

l,m=1

E
[
ρC

jl(s)clm(s)ρC
km(s)

]⏐⏐⏐⏐⏐ ds

⎞⎠1/2

dt

≤
2
3

T 3/2r11(T ).
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The last step in the proof is the estimation of ∆2(T ). To this end, we make use of the
Burkholder–Davis–Gundy inequality another time and get

∆2(T ) ≤ sup
i∈N

((σ P(X̄ − E[X̄ ])
)

i · L i
)∗

(T )


L2

≤ 2vL sup
i∈N

(∫ T

0
E
[(
σ P(t)(X̄ (t) − E[X̄ (t)])

)2
i

]
dt
)1/2

.

The further procedure is analogous to what we have done for ∆1(T ): instead of aP we have σ P

here. We leave the details to the reader and only state the result, which is

∆2(T ) ≤

∑
ι∈{2,4,8,10,12}

Kι(T )rι(T ).

This completes the proof of Theorem 3.1. □

Our next goal is to prove Lemma 3.8 concerning the rate of growth of the maximal degree in
the preferential attachment random graph as described in Section 3.3. For the undirected version
as in [5], the corresponding result goes back to [30]. Indeed, the proof there basically works for
our case as well, but there are some steps that require different arguments. Thus, we decided to
include the proof to our lemma.

Proof of Lemma 3.8. The statement is evidently true for M in when α + β = 0 (resp. for Mout

when β + γ = 0). In fact, for this extremal case, in every step of the random graph, a new edge
is created pointing to (resp. from) a new node. This means that M in(N ) (resp. Mout(N )) remains
constant for all N ∈ N0, and the claim follows with cin

= 1 (resp. cout
= 1) identically. In

the other cases, we closely follow the proof of Theorem 3.1 in [30]. In addition to the notation
introduced in Section 3.3, we further define for N ∈ N0 and ⋄ ∈ {in, out}:

S⋄(N ) := ν + N + δ⋄n(N ),

X⋄(N , j) := d⋄

G(N )( j) + δ⋄, j ∈ N,
N⋄

j := inf{N ∈ N0 : d⋄

G(N )( j) ̸= 0}, j ∈ N,
s⋄

:= α1{⋄=in} + β + γ1{⋄=out},

c⋄(0, k) := 1, c⋄(N + 1, k) := c⋄(N , k)
S⋄(N )

S⋄(N ) + s⋄k
, k ∈ R+,

Z⋄(N , j, k) := c⋄(N⋄

j + N , k)
(

X⋄(N⋄

j + N , j) + k − 1
k

)
1{N⋄

j <∞}, j ∈ N, k ∈ R+,

G(N ) := σ (eν+i : i = 1, . . . , N ), G(∞) := σ

(
∞⋃

N=0

G(N )

)
.

Obviously, G(N ) is the σ -field of all information up to step N in the preferential attachment
algorithm, and N⋄

j is a stopping time relative to the filtration (G(N ))N∈N for every j ∈ N.
Analogously to Theorem 2.1 of [30], one can now show that for all k ∈ R+ and j ∈ N the
sequence (Z⋄(N , j, k))N∈N0 is a positive martingale relative to the filtration (G(N⋄

j + N ))N∈N0 .
As a consequence, Doob’s martingale convergence theorem implies that

Z⋄(N , j, k) → ζ ⋄( j, k) a.s. (5.11)
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for some random variable ζ ⋄( j, k). The convergence in (5.11) also holds in L p for all p ∈ [1,∞)

because we have

Z⋄(N , j, k)p
≤ C(k, p)Z⋄(N , j, kp) a.s. (5.12)

for some deterministic constant C(k, p) ∈ R+ that is independent of N and j . Indeed, on

{N⋄

j < ∞} we have by definition,

Z⋄(N , j, k)p

Z⋄(N , j, kp)
=

c⋄(N⋄

j + N , k)p

c⋄(N⋄

j + N , kp)

(
X⋄(N⋄

j + N , j) + k − 1
k

)p

×

(
X⋄(N⋄

j + N , j) + kp − 1
kp

)−1

,

where

c⋄(N , k)p

c⋄(N , kp)
=

c⋄(N − 1, k)p

c⋄(N − 1, kp)
S⋄(N )p−1(S⋄(N ) + s⋄kp)

(S⋄(N ) + s⋄k)p

≤
c⋄(N − 1, k)p

c⋄(N − 1, kp)
≤ · · · ≤

c⋄(0, k)p

c⋄(0, kp)
= 1,(

x + k − 1
k

)p(x + kp − 1
kp

)−1

=
Γ (kp + 1)
Γ (k + 1)p

Γ (k + x)p

Γ (x)p−1Γ (kp + x)
x→∞
−→

Γ (kp + 1)
Γ (k + 1)p

,

which shows (5.12). Next, define for N ∈ N0 and j ∈ N,

m⋄(N , j) := max{Z⋄(N − N⋄

i , i, 1) : i = 1, . . . , j, N⋄

i ≤ N }, m⋄(N ) := m⋄(N , n(N )),

µ⋄( j) := max{ζ⋄(i, 1) : i = 1, . . . , j}, µ⋄
:= sup{µ⋄( j) : j ∈ N},

such that in particular the relationship m⋄(N ) = c⋄(N , 1)(M⋄(N ) + δ⋄) holds. It is not hard to
see that (m⋄(N ))N∈N0 , as the maximum of martingale expressions, is a submartingale relative
to (G(N ))N∈N0 . By definition, the sequence (c⋄(N , k))N∈N0 decreases to 0 as N → ∞; more
precisely, we have

c⋄(N , k) = c⋄(N − 1, k)
S⋄(N − 1)

S⋄(N − 1) + s⋄k

≤ c⋄(N − 1, k)
ν + N − 1 + δ⋄(n(0) + N − 1)

ν + N − 1 + δ⋄(n(0) + N − 1) + s⋄k

≤

N−1∏
j=0

(1 + δ⋄) j + δ⋄n(0) + ν

(1 + δ⋄) j + δ⋄n(0) + ν + s⋄k

=

Γ
(

N +
δ⋄n(0)+ν

1+δ⋄

)
Γ
(

N +
δ⋄n(0)+ν+s⋄k

1+δ⋄

) ∼ N−
s⋄k

1+δ⋄ , N → ∞.
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As a consequence, when p is large enough,

E[m⋄(N )p] ≤ E

[n(N )∑
i=1

Z⋄(N − N⋄

i , i, 1)p

]
≤ C(1, p)E

[n(N )∑
i=1

Z⋄(N − N⋄

i , i, p)

]

≤ C(1, p)
∞∑

i=1

E[Z⋄(0, i, p)]

≤ C(1, p)
(

n(0) + p + δ⋄
− 1

p

) ∞∑
i=1

E[c⋄(N⋄

i , p)]

≤ C(1, p)
(

n(0) + p + δ⋄
− 1

p

)(
n(0) +

∞∑
i=1

E[c⋄(i, p)]

)
< ∞,

(5.13)

independently of N . This implies that the submartingale m⋄ converges a.s. and in L p for all
p ∈ [1,∞). It follows from (5.13) that for j ≥ n(0) we have

E[(m⋄(N ) − m⋄(N , j))p] ≤ E

⎡⎣ n(N )∑
i= j+1

Z⋄(N − N⋄

i , i, 1)p

⎤⎦
≤ C(1, p)

(
n(0) + p + δ⋄

− 1
p

) ∞∑
i= j−n(0)+1

E[c⋄(i, p)]. (5.14)

As N → ∞, the left-hand side of (5.14) converges to

E
[(

lim
N→∞

c⋄(N , 1)M⋄(N ) − µ⋄( j)
)p]

,

while the right-hand side is independent of N . Now taking the limit j → ∞ and again assuming
that p is large, we obtain the desired result (3.13). Note at this point that µ⋄ is indeed an a.s.
finite random variable that belongs to L p for all p ∈ [1,∞), which is proved using a similar
argument as in (5.13).

It remains to prove (3.14). To this end, observe that by the law of large numbers, we have
(n(N ) − n(0))/N → α + γ a.s. In other words, there exists for every ϵ ∈ (0, α + γ ), a random
N̄ ∈ N such that for all N ≥ N̄ , we have⏐⏐⏐⏐n(N ) − n(0)

N
− (α + γ )

⏐⏐⏐⏐ ≤ ϵ,

or, equivalently, n(N ) ∈ [n(0) + (α + γ − ϵ)N , n(0) + (α + γ + ϵ)N ]. Consequently, using the
identity

∏n−1
i=0 (a + bi) = bnΓ ( a

b + n)Γ ( a
b )−1, we deduce for all k ∈ N and N ≥ N̄ ,

c⋄(N , k) =

N−1∏
i=0

S⋄(i)
S⋄(i) + s⋄k

≥

N̄−1∏
i=0

S⋄(i)
S⋄(i) + s⋄k

×

N−1∏
i=N̄

ν + i + δ⋄(n(0) + (α + γ − ϵ)i)
ν + i + δ⋄(n(0) + (α + γ − ϵ)i) + s⋄k

=

N̄−1∏
i=0

S⋄(i)
S⋄(i) + s⋄k

N̄−1∏
i=0

ν + i + δ⋄(n(0) + (α + γ − ϵ)i) + s⋄k
ν + i + δ⋄(n(0) + (α + γ − ϵ)i)
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×

N−1∏
i=0

ν + i + δ⋄(n(0) + (α + γ − ϵ)i)
ν + i + δ⋄(n(0) + (α + γ − ϵ)i) + s⋄k

= c⋄(N̄ , k)
Γ
(

N̄ +
δ⋄n(0)+ν+s⋄k
1+δ⋄(α+γ−ϵ)

)
Γ
(

N +
δ⋄n(0)+ν

1+δ⋄(α+γ−ϵ)

)
Γ
(

N̄ +
δ⋄n(0)+ν

1+δ⋄(α+γ−ϵ)

)
Γ
(

N +
δ⋄n(0)+ν+s⋄k
1+δ⋄(α+γ−ϵ)

)
∼ c⋄(N̄ , k)

Γ
(

N̄ +
δ⋄n(0)+ν+s⋄k
1+δ⋄(α+γ−ϵ)

)
Γ
(

N̄ +
δ⋄n(0)+ν

1+δ⋄(α+γ−ϵ)

)N−
s⋄k

1+δ⋄(α+γ−ϵ) , N → ∞.

So choosing c⋄(N ) := c⋄(N , 1) for N ∈ N0 satisfies (3.14). □

Finally, we turn to the proof of the large deviation result in Section 4.

Proof of Theorem 4.1. By definition, X N
− X̄ N satisfies the equation

X N (t) − X̄ N (t) =

∫ t

0
aN (X N

− X̄ N )(s) ds +

∫ t

0
aN ,P(X̄ N (s) − E[X̄ N (s)]) ds

+ ρN ,P M(t), t ∈ [0, T ],

which implies that

X N (t) − X̄ N (t) =

∫ t

0
eaN (t−s)aN ,P(X̄ N (s) − E[X̄ N (s)]) ds

+

∫ t

0
eaN (t−s)ρN ,P dM(s), t ∈ [0, T ]. (5.15)

In order to establish a large deviation principle, it suffices by Theorem 4.6.1 of [15] to prove such
a principle in (Dd

T ,Dd
T , J1) for the first d coordinates of the process X N

− X̄ N , for all d ∈ N.
With the formula

X̄ N
i (t) − E[X̄ N

i (t)] =

∫ t

0
eaN ,C

i i (t−s)
∑
j ̸=i

aN ,C
i j (X̄ N

j (s) − E[X̄ N
j (s)]) ds

+

∞∑
j=1

∫ t

0
eaN ,C

i i (t−s)ρ
N ,C
i j dM j (s),

which is valid for all i ∈ N and t ∈ R+ and follows from the first identity in (5.3), the first d
coordinates of X N

− X̄ N are given by the Dd
T -valued process

Y N
i (t) := Y N ,1

i (t) + Y N ,2
i (t) + Y N ,3

i (t)

:=

∫ t

0

∫ s

0

∞∑
j,k=1

eaN (t−s)
i j aN ,P

jk eaN ,C
kk (s−r )

∑
l ̸=k

aN ,C
kl (X̄ N

l (r ) − E[X̄ N
l (r )]) dr ds

+

∫ t

0

∞∑
j,k,l=1

eaN (t−s)
i j aN ,P

jk

∫ s

0
eaN ,C

kk (s−r )ρ
N ,C
kl dMl(r ) ds

+

∞∑
j,k=1

∫ t

0
eaN (t−s)

i j ρ
N ,P
jk dMk(s), i = 1, . . . , d, t ∈ [0, T ].

(5.16)
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Actually, we will even prove the large deviation principle in (Dd
T ,Dd

T ,U ), which is stronger. To
this end, we introduce the notation

x̂(t) :=

[γ (N )T ]−1∑
k=1

x
(

k
γ (N )

)
1[ k

γ (N ) ,
k+1
γ (N )

)(t) + x
(

[γ (N )T ]
γ (N )

)
1[ [γ (N )T ]

γ (N ) ,T
)(t)

for t ∈ [0, T ] and x ∈ Dd
T . Then by Theorem 4.2.13 of [15] and Lemma 5.3, it suffices to show

a large deviation principle for Ŷ N
= Ŷ N ,1

+ Ŷ N ,2
+ Ŷ N ,3, which is done in Lemma 5.5. The

same principle will then hold for Y N . That the rate function for X N
− X̄ N is convex with unique

minimum 0 at 0, and can only be finite for functions in AC∞

T , is inherited from the rate function
of Ŷ N . □

Lemma 5.3. For each d ∈ N and ι = 1, 2, 3, the Dd
T -valued processes Y N ,ι and Ŷ N ,ι are

exponentially equivalent, that is, we have for all ϵ ∈ (0, 1),

lim
N→∞

1
γ (N )

logP

[
sup

t∈[0,T ]
sup

i=1,...,d
|Y N ,ι

i (t) − Ŷ N ,ι
i (t)| > ϵ

]
= −∞.

Proof. We start with ι = 1. Writing t̂ = [γ (N )t]/γ (N ) and diag(a) := a − a×, we obtain

sup
t∈[0,T ]

sup
i=1,...,d

⏐⏐⏐Y N ,1
i (t) − Ŷ N ,1

i (t)
⏐⏐⏐

≤ sup
t∈[0,T ]

⏐⏐⏐⏐(eaN t
− eaN t̂ )

(∫ t

0

∫ s

0
e−aN saN ,Pediag(aN ,C)(s−r )(aN ,C)×

×(X̄ N (r ) − E[X̄ N (r )]) dr ds
)⏐⏐⏐⏐

∞

+ sup
t∈[0,T ]

⏐⏐⏐⏐eaN t̂
(∫ t

t̂

∫ s

0
e−aN saN ,Pediag(aN ,C)(s−r )(aN ,C)×

×(X̄ N (r ) − E[X̄ N (r )]) dr ds
)⏐⏐⏐⏐

∞

.

(5.17)

We can proceed with these two terms separately. Since |eaN t
− eaN t̂

|∞ ≤ vaeva T /γ (N ), we have
for the first term in (5.17),

P

[
sup

t∈[0,T ]

⏐⏐⏐⏐(eaN t
− eaN t̂ )

(∫ t

0

∫ s

0
e−aN saN ,Pediag(aN ,C)(s−r )(aN ,C)×

×(X̄ N (r ) − E[X̄ N (r )]) dr ds
)⏐⏐⏐⏐

∞

> ϵ

]

≤ P

[
sup

t∈[0,T ]

⏐⏐aN ,P(aN ,C)×(X̄ N (t) − E[X̄ N (t)])
⏐⏐
∞
>

ϵγ (N )
va(eva T )3T 2

]

≤ P

⎡⎣ sup
t∈[0,T ]

sup
i∈N

∞∑
j=1

∑
k ̸= j

⏐⏐aN ,P
i j aN ,C

jk (X̄ N
k (t) − E[X̄ N

k (t)])
⏐⏐ > ϵγ (N )

va(eva T )3T 2

⎤⎦ =: p(N ).
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We note that ξ N
:= X̄ N

− E[X̄ N ] satisfies the integral equation

ξ N (t) =

∫ t

0
aN ,Cξ N (s) ds + ρN ,C M(t), t ∈ R+. (5.18)

Hence, we have

(ξ N )∗(t) ≤

∫ t

0
|aN ,C

|(ξ N )∗(s) ds + (ρN ,C M)∗(t), t ∈ R+,

or after n ∈ N iterations,

(ξ N )∗(t) ≤
(|aN ,C

|t)n

n!
(ξ N )∗(t) +

n−1∑
m=0

(|aN ,C
|t)m

m!
(ρN ,C M)∗(t).

Since (I − A)−1
=
∑

∞

k=0 Ak only has nonnegative entries as soon as A (with |A|∞ < 1) does,
we obtain

(ξ N )∗(t) ≤

(
I −

(|aN ,C
|T )n

n!

)−1 n−1∑
m=0

(|aN ,C
|t)m

m!
(ρN ,C M)∗(t)

if n is large enough such that (va T )n/n! < 1. It is not difficult to recognize that the exact value
of n only affects some constants in the subsequent arguments with no impact on the final result;
we therefore assume without loss of generality that n = 1 (i.e. va T < 1). Then

p(N ) ≤ P

⎡⎣sup
i∈N

∞∑
j=1

∑
k ̸= j

∞∑
l=1

|aN ,P
i j aN ,C

jk |(I − |aN ,C
|T )−1

kl

× sup
t∈[0,T ]

γ (N )∑
m=1

|ρ
N ,C
lm Mm(t)| >

ϵγ (N )
va(eva T )3T 2

]

≤ P

[
1

γ (N )
sup
l∈N

sup
t∈[0,T ]

γ (N )∑
m=1

|ρ
N ,C
lm Mm(t)| >

ϵγ (N )(1 − va T )
q1(N )va(eva T )3T 2

]
.

Let λ(N ) be positive numbers to be chosen later. Using Doob’s maximal inequality for
submartingales, and the independence of the Lévy processes Mi , we arrive at

p(N ) ≤ exp
(

−
ϵλ(N )γ (N )(1 − va T )

q1(N )va(eva T )3T 2

) γ (N )∏
m=1

E
[

exp
(
λ(N )
γ (N )

sup
l∈N

|ρ
N ,C
lm ||Mm(T )|

)]
≤ 2γ (N ) exp

(
−
ϵλ(N )γ (N )(1 − va T )

q1(N )va(eva T )3T 2

)
exp

(
T γ (N )Ψ0

(
λ(N )
γ (N )

sup
l,m∈N

|ρ
N ,C
lm |

))
.

Now define

λ(N ) := γ (N )Ψ−1
0 (1)/

(
sup

l,m∈N
|ρ

N ,C
lm |

)
, N ∈ N.

Since Ψ0 is an increasing, convex function with Ψ0(0) = 0, its inverse Ψ−1
0 is increasing, concave

with Ψ−1(0) = 0, and therefore we have for large N that λ(N ) ≥ Ψ−1
0 (γ (N ))/

(
supl,m∈N |ρ

N ,C
lm |

)
,

which increases to infinity as N → ∞. With this choice of λ(N ), it follows that

lim
N→∞

1
γ (N )

log p(N ) = −∞,
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and the proof for the first term in (5.17) is complete. The second term can be treated in an
analogous way: now the factor γ (N ) does not come from the difference |eaN t

− eaN t̂
|∞, but from

the domain of integration (t̂, t]. The details are left to the reader.
For ι = 2 similar methods apply. Also here we do not give the details. Instead, we sketch the

proof for ι = 3 where some modifications are necessary. Recalling the meaning of Γ (N ) from
(A2), we have

sup
t∈[0,T ]

sup
i=1,...,d

⏐⏐⏐Y N ,3
i (t) − Ŷ N ,3

i (t)
⏐⏐⏐

≤ sup
t∈[0,T ]

sup
i=1,...,d

⏐⏐⏐⏐((eaN t
− eaN t̂ )

(∫ t

0
e−aN sρN ,P dM(s)

))
i

⏐⏐⏐⏐
+ sup

t∈[0,T ]
sup

i=1,...,d

⏐⏐⏐⏐(eaN t̂
(∫ t

t̂
e−aN sρN ,P dM(s)

))
i

⏐⏐⏐⏐
≤ |eaN t

− eaN t̂
|∞ sup

t∈[0,T ]
sup

i=1,...,Γ (N )

⏐⏐⏐⏐(∫ t

0
e−aN sρN ,P dM(s)

)
i

⏐⏐⏐⏐
+ eva T sup

t∈[0,T ]
sup

i=1,...,Γ (N )

⏐⏐⏐⏐(∫ t

t̂
e−aN sρN ,P dM(s)

)
i

⏐⏐⏐⏐ .

(5.19)

We can again consider these two terms separately. For the first one, we have

P

[
|eaN t

− eaN t̂
|∞ sup

t∈[0,T ]
sup

i=1,...,Γ (N )

⏐⏐⏐⏐(∫ t

0
e−aN sρN ,P dM(s)

)
i

⏐⏐⏐⏐ > ϵ

]

≤ Γ (N ) sup
i=1,...,Γ (N )

P

[
sup

t∈[0,T ]

⏐⏐⏐⏐(∫ t

0
e−aN sρN ,P dM(s)

)
i

⏐⏐⏐⏐ > ϵγ (N )
vaeva T

]
≤ Γ (N ) sup

i=1,...,Γ (N )
exp

(
−
ϵλ(N )γ (N )
vaeva T

)

×

γ (N )∏
k=1

E

⎡⎣exp

⎛⎝ λ(N )
γ (N )

⏐⏐⏐⏐⏐⏐
∫ T

0

∞∑
j=1

e−aN s
i j γ (N )ρN ,P

jk dMk(s)

⏐⏐⏐⏐⏐⏐
⎞⎠⎤⎦ .

(5.20)

Observe now that by (A6), we can find a constant C ∈ R+ that is independent of i , k and N such
that

sup
i,k∈N

⏐⏐⏐⏐⏐⏐
∞∑
j=1

e−aN s
i j γ (N )ρN ,P

jk

⏐⏐⏐⏐⏐⏐ ≤ |e−aN sγ (N )ρN ,P
|∞ ≤ eva (T )T sup

i, j∈N
|RN

i j (0)| ≤ C.

Recalling from [34], Theorem 2.7, that the stochastic integral in the last line of (5.20) has an
infinitely divisible distribution with explicitly known exponential moments, we deduce that

E

⎡⎣exp

⎛⎝ λ(N )
γ (N )

⏐⏐⏐⏐⏐⏐
∫ T

0

∞∑
j=1

e−aN s
i j γ (N )ρN ,P

jk dMk(s)

⏐⏐⏐⏐⏐⏐
⎞⎠⎤⎦ ≤ 2E

[
exp

(
λ(N )
γ (N )

C M0(T )
)]
.

Therefore, the remaining calculation can be completed as in the case ι = 1.
For the second term in (5.19), the reasoning is the same, except that the factor γ (N ) is now

due to the domain (t̂, t] of the stochastic integral. Observe at this point that Mk(t) − Mk(t̂) has
the same distribution as Mk(t − t̂) and that |t − t̂ | ≤ 1/γ (N ). Again, we do not carry out the
details. □
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Lemma 5.4. For each ι = 1, 2, 3 the processes (Ŷ N ,ι
: N ∈ N) form an exponentially tight

sequence in (Dd
T ,Dd

T ,U ), that is, for every L ∈ R+, there exists a compact subset K L of Dd
T

(with respect to the uniform topology U) such that
1

γ (N )
logP[Ŷ N ,ι /∈ K L ] ≤ −L .

Proof. We first consider ι = 1. We will adapt the idea of Lemma 4.1 in [1] to our setting. As
shown in part (I) of the proof there, it suffices to show that for every a, ϵ ∈ (0,∞), there exist a
compact set H ⊆ Dd

T , some C ∈ (0,∞) and n ∈ N such that for all N ≥ n,

P[d(Ŷ N ,1, H ) > ϵ] ≤ Ce−γ (N )a, (5.21)

where d( f, H ) := inf{supt∈[0,T ] supi=1,...,d | fi (t) − gi (t)| : g ∈ H} for f ∈ Dd
T . In order to prove

(5.21), we first define for n ∈ N and A ⊆ Rd ,

Hn(A) :=

{
f ∈ Dd

T : f =

[γ (n)T ]−1∑
κ=1

xκ1[ κ
γ (n) ,

κ+1
γ (n)

) + x[γ (n)T ]1
[

[γ (n)T ]
γ (n) ,T

],

x1, . . . , x[γ (n)T ] ∈ A

}
.

It follows from Equation (4.3) of [1] that for N ≥ n, A ⊆ Rd and f ∈ HN (A), we have

d( f, Hn(A))

≤ sup
κ=0,...,[γ (n)T ]−1

sup
λ∈
[
1, γ (N )
γ (n) +1

) sup
i=1,...,d

⏐⏐⏐⏐⏐ fi

(
[ γ (N )κ
γ (n) ] + λ

γ (N )
∧ T

)
− fi

(
[ γ (N )κ
γ (n) ]

γ (N )

)⏐⏐⏐⏐⏐ . (5.22)

Next, let β ∈ (0,∞) and define K := [−1, 1]d such that in particular, Hn(βK ) is a compact set.
Then for every N ≥ n, we have

P[d(Ŷ N ,1, Hn(βK )) > ϵ] ≤ P[Ŷ N ,1 /∈ HN (βK )]
+P[Ŷ N ,1

∈ HN (βK ), d(Ŷ N ,1, Hn(βK )) > ϵ]. (5.23)

The first probability is bounded as follows:

P[Ŷ N ,1 /∈ HN (βK )]

= P
[

sup
i=1,...,d

sup
κ=1,...,[γ (N )T ]

⏐⏐⏐⏐ ∫ κ
γ (N )

0

∫ s

0

∞∑
j,k=1

eaN (κ/γ (N )−s)
i j aN ,P

jk eaN ,C
kk (s−r )

×

∑
l ̸=k

aN ,C
kl (X̄ N

l (r ) − E[X̄ N
l (r )]) dr ds

⏐⏐⏐⏐ > β

]

≤ P

⎡⎣ sup
t∈[0,T ]

sup
i=1,...,d

∞∑
j=1

∑
k ̸= j

⏐⏐aN ,P
i j aN ,C

jk (X̄ N
k (t) − E[X̄ N

k (t)])
⏐⏐ > β

(eva T T )2

⎤⎦ =: p′(N ).

By the same arguments as in Lemma 5.3, one obtains (again assuming va T < 1 without loss of
generality)

p′(N ) ≤ 2γ (N ) exp
(

−
βλ(N )(1 − va T )
q1(N )(eva T T )2

)
exp

(
T γ (N )Ψ0

(
λ(N )
γ (N )

sup
l,m∈N

|ρ
N ,C
lm |

))
.
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We choose λ(N ) := γ (N ) this time. Then we can make log(p′(N ))/γ (N ) arbitrarily small
uniformly for large N by increasing the value of β.

For the second step of the proof of (5.21), we derive from (5.22) that

P[Ŷ N ,1
∈ HN (βK ), d(Ŷ N ,1, Hn(βK )) > ϵ]

≤ P
[

sup
κ=0,...,[γ (n)T ]−1

sup
λ∈
[
1, γ (N )
γ (n) +1

) sup
i=1,...,d

⏐⏐⏐⏐⏐Ŷ N ,1
i

(
[ γ (N )κ
γ (n) ] + λ

γ (N )
∧ T

)

−Ŷ N ,1
i

(
[ γ (N )κ
γ (n) ]

γ (N )

)⏐⏐⏐⏐⏐ > ϵ

]
.

(5.24)

For the further procedure, we split the difference in the last line into two terms in the same
way as in (5.17). We only treat the first corresponding term; the other term can be estimated
similarly. Introducing the notation t N ,n

κ,λ (resp. t N ,n
κ ) for the time point within the first (resp.

second) parentheses of (5.24), and observing that 0 ≤ t̂ N ,n
κ,λ − t N ,n

κ ≤ 2/γ (N )+1/γ (n), we obtain

P
[

sup
κ=0,...,[γ (n)T ]−1

sup
λ∈
[
1, γ (N )
γ (n) +1

) sup
i=1,...,d

⏐⏐⏐⏐((eaN ˆ
t N ,n
κ,λ − eaN t N ,n

κ

)

×

∫ t

0

∫ s

0
e−aN saN ,Pediag(aN ,C)(s−r )(aN ,C)×(X̄ N (r ) − E[X̄ N (r )]) dr ds

)
i

⏐⏐⏐⏐ > ϵ

]
≤ P

⎡⎣ sup
t∈[0,T ]

sup
i=1,...,d

⏐⏐⏐⏐⏐⏐
∞∑
j=1

∑
k ̸= j

aN ,P
i j aN ,C

jk (X̄ N
k (t) − E[X̄ N

k (t)])

⏐⏐⏐⏐⏐⏐
>

ϵ

va(eva T )3T 2
(

2
γ (N ) +

1
γ (n)

)
⎤⎦

≤ 2γ (N ) exp

⎛⎝−
ϵλ(N )(1 − va T )

q1(N )va(eva T )3T 2
(

2
γ (N ) +

1
γ (n)

)
⎞⎠

× exp

(
T γ (N )Ψ0

(
λ(N )
γ (N )

sup
l,m∈N

|ρ
N ,C
lm |

))
,

where the last line follows in a similar fashion as before. With λ(N ) := γ (N ), we can make,
by taking n large enough, the logarithm of the last term divided by γ (N ) arbitrarily small for
N ≥ n. This finishes the proof for ι = 1. The case ι = 2 is analogous, while for ι = 3 the line of
argument remains the same in principle, with slight changes to account for the discretization of
Lévy processes, cf. the proofs of Lemma 5.3 and Lemma 4.1 of [1]. □

Lemma 5.5. The process (Ŷ N
i : i = 1, . . . , d) satisfies a large deviation principle in

(Dd
T ,Dd

T ,U ) with a good convex rate function Id : Dd
T → [0,∞] such that Id (x) < ∞ implies

x ∈ ACd
T . Moreover, we have Id (0) = 0 and this minimum is unique.

Proof. We apply the abstract Gärtner–Ellis theorem of [1], Theorems 2.1 and 2.4, to Ŷ N and
prove the following steps.

(1) The laws of Ŷ N , N ∈ N, are exponentially tight in (Dd
T ,Dd

T ,U ).
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(2) For all θ ∈ Md
T , the limit Λ(θ ) = limN→∞ γ (N )−1ΛN (γ (N )θ ) exists, where

ΛN (θ ) := logE

[
exp

(
d∑

i=1

∫ T

0
Ŷ N

i (t) θi (dt)

)]
.

(3) The mapping Λ is Cd
T -Gâteaux differentiable, in the sense that for all θ ∈ Md

T , there exists
xθ ∈ Cd

T such that for all η ∈ Md
T ,

δΛ(θ; η) := lim
ϵ→0

Λ(θ + ϵη) − Λ(θ )
ϵ

=

d∑
i=1

∫ T

0
xθi (t) ηi (dt). (5.25)

Part of the claim is that the limit in (5.25) exists. Moreover, we have Λ(0; η) = 0 for all
η ∈ Md

T .
(4) We have {x ∈ Dd

T : Λ∗(x) < ∞} ⊆ ACd
T , where

Λ∗(x) := sup
θ∈Md

T

(
d∑

i=1

∫ T

0
xi (t) θi (dt) − Λ(θ )

)
, x ∈ Dd

T .

(5) For every α ∈ R+, the set {x ∈ Dd
T : Λ∗(x) ≤ α} is compact in (Dd

T ,Dd
T ,U ).

Part of the Gärtner–Ellis theorem is that the rate function Id is given by Λ∗, the convex conjugate
or Fenchel–Legendre transform of Λ. Since Λ is a convex function in θ satisfying (3), the
conjugate Λ∗∗ of Λ∗ is again Λ, see Theorem 12 of [35]. Thus, by the first corollary to Theorem 1
in [3], we have Id (0) = Λ∗(0) = 0 and this minimum is unique.

Let us now prove (1)–(5) above. Part (1) has been proved in Lemma 5.4. For (2) we first
compute Λ. For all θ ∈ Md

T , we have (recall that t̂ := [γ (N )t]/[γ (N )], and notice that we do not
use (5.16), but rather (5.15) and the fact that an explicit formula for X̄ N

−E[X̄ N ] can be obtained
by solving (5.18))

ΛN (γ (N )θ ) = logE
[

exp
( d∑

i=1

∫ T

0

(∫ t̂

0

∫ s

0
γ (N )

∞∑
j,k,l,m=1

eaN (t̂−s)
i j aN ,P

jk

× eaN ,C(s−r )
kl ρ

N ,C
lm dMm(r ) ds

+ γ (N )
∞∑

j,k=1

∫ t̂

0
eaN (t̂−s)

i j ρ
N ,P
jk dMk(s)

)
θi (dt)

)]

=

γ (N )∑
m=1

logE
[

exp
( d∑

i=1

∫ T

0

(∫ t̂

0

∫ s

0

∞∑
j,k,l=1

γ (N )eaN (t̂−s)
i j aN ,P

jk

× eaN ,C(s−r )
kl ρ

N ,C
lm dMm(r ) ds

+

∫ t̂

0
γ (N )

∞∑
j=1

eaN (t̂−s)
i j ρ

N ,P
jm dMm(s)

)
θi (dt)

)]

(5.26)

by the independence of the processes Mm . By a stochastic Fubini argument (see Theorem IV.65
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of [33]), the term within the exponential in the previous line can also be written as (š denotes the
smallest multiple of γ (N ) that is larger or equal to s)∫ T̂

0

(∫ T̂

r

∫ T

š

d∑
i=1

G N
im(t̂ − s, s − r ) θi (dt) ds +

∫ T

ř

d∑
i=1

RN
im(t̂ − r ) θi (dt)

)
Mm(dr ),

(5.27)

and has an infinitely divisible distribution such that its logarithmic Laplace exponent in (5.26)
is explicitly known, see [34], Theorem 2.7. It is given by

∫ T̂
0 Ψm(H N

m (θ, r )) dr , where H N
m (θ, r )

denotes the term within parentheses in (5.27). We claim that this term converges uniformly in m
to
∫ T

0 Ψm(Hm(θ, r )) dr . Indeed, by the dominating property of M0, the claim follows as soon as
we can prove that H N

m (θ, r ) → Hm(θ, r ) as N → ∞, uniformly in m ∈ {1, . . . , γ (N ) ∨ Γ (N )}
and r ∈ [0, T ]. This in turn follows from

|Hm(θ, r ) − H N
m (θ, r )|

≤

⏐⏐⏐⏐⏐
∫ T

T̂

∫ T

s

d∑
i=1

G im(t − s, s − r ) θi (dt) ds

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐
∫ T̂

r

∫ š

s

d∑
i=1

G im(t − s, s − r ) θi (dt) ds

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ T̂

r

∫ T

š

d∑
i=1

(G im(t − s, s − r ) − G N
im(t − s, s − r )) θi (dt) ds

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ T̂

r

∫ T

š

d∑
i=1

(G N
im(t − s, s − r ) − G N

im(t̂ − s, s − r )) θi (dt) ds

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ ř

r

d∑
i=1

Rim(t − r ) θi (dt)

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ T

ř

d∑
i=1

(Rim(t − r ) − RN
im(t − r )) θi (dt)

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ T

ř

d∑
i=1

(RN
im(t − r ) − RN

im(t̂ − r )) θi (dt)

⏐⏐⏐⏐⏐
≤ d sup

i,m∈N
sup

s,t∈[0,T ]
|G im(t, s)|

(
γ (N )−1 sup

i=1,...,d
|θi |([0, T ]) + sup

i=1,...,d

∫ T̂

r
|θi |([s, š)) ds

)

+ d sup
i=1,...,d

|θi |([0, T ])
(

T sup
i,m=1,...,γ (N )∨Γ (N )

sup
s,t∈[0,T ]

|G im(t, s) − G N
im(t, s)|

+
va T
γ (N )

sup
N ,i,m∈N

sup
s,t∈[0,T ]

|G N
im(t, s)| + γ (N )−1 sup

i, j∈N
sup

t∈[0,T ]
|Ri j (t)|

+ sup
i, j=1,...,γ (N )∨Γ (N )

sup
t∈[0,T ]

|Ri j (t) − RN
i j (t)| +

va

γ (N )
sup

N ,i, j∈N
sup

t∈[0,T ]
|RN

i j (t)|
)
,

where all terms converge to 0 by hypothesis independently of m and r (for the second summand
one has to notice that the integral term equals

∫ T̂
r

∫ t
t̂ 1 ds |θi |(dt) and thus converges to 0

uniformly in i and r with rate 1/γ (N )). Since the value of Cesàro sums remains unchanged
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under uniform approximations, it follows from assumption (A8) that

Λ(θ ) = lim
N→∞

1
γ (N )

γ (N )∑
m=1

∫ T

0
Ψm(H N

m (θ, r )) dr = lim
N→∞

1
γ (N )

γ (N )∑
m=1

∫ T

0
Ψm(Hm(θ, r )) dr.

Next, we prove the Cd
T -Gâteaux differentiability of Λ. First, regarding the existence of

δΛ(θ; η) in (5.25), we note that the mappings Md
T → L∞(N × [0, T ]), θ ↦→ (Hm(θ, r ) : m ∈

N, r ∈ [0, T ]), are continuous linear operators and therefore Fréchet differentiable, which is
stronger than Gâteaux differentiability. Together with the fact that Ψm is differentiable with
locally bounded derivative, and cm ≤ c0 and νm ≤ ν0 for all m ∈ N, this implies that for
every θ and η,

ϵ−1
∫ T

0
(Ψm(Hm(θ + ϵη, r )) − Ψm(Hm(θ, r ))) dr

converges uniformly in m ∈ N as ϵ → 0. This in turn proves the Gâteaux differentiability of
Λ. Moreover, it enables us to compute the derivative explicitly. Using the chain rule for Fréchet
derivatives, we obtain

δΛ(θ; η) = lim
N→∞

1
γ (N )

γ (N )∑
m=1

∫ T

0
lim
ϵ→0

Ψm(Hm(θ + ϵη, r )) − Ψm(Hm(θ, r ))
ϵ

dr

= lim
N→∞

1
γ (N )

γ (N )∑
m=1

∫ T

0
Ψ ′

m(Hm(θ, r ))Hm(η, r ) dr

= lim
N→∞

1
γ (N )

γ (N )∑
m=1

∫ T

0
Ψ ′

m(Hm(θ, r ))

(∫ T

r

∫ T

s

d∑
i=1

G im(t − s, s − r ) ηi (dt) ds

+

∫ T

r

d∑
i=1

Rim(t − r ) ηi (dt)

)
dr

= lim
N→∞

1
γ (N )

γ (N )∑
m=1

d∑
i=1

∫ T

0

(∫ t

0

∫ s

0
Ψ ′

m(Hm(θ, r ))G im(t − s, s − r ) dr ds

+

∫ t

0
Rim(t − r )Ψ ′

m(Hm(θ, r )) dr
)
ηi (dt)

=

d∑
i=1

∫ T

0

∫ t

0
lim

N→∞

1
γ (N )

γ (N )∑
m=1

(∫ s

0
G im(t − s, s − r )Ψ ′

m(Hm(θ, r )) dr

+Rim(t − s)Ψ ′

m(Hm(θ, s))
)

ds ηi (dt),

where all interchanges of integration, summation and taking limits are justified by dominated
convergence (observe that |Ψ ′

m(u)| ≤ Ψ ′

0(|u|) by hypothesis). From the last equality, we deduce
the existence of xθ ∈ Cd

T satisfying (5.25). Since Hm(0, r ) = 0 and Ψ ′
m(0) = 0, we have

δΛ(0; η) = 0 identically.
Next, we demonstrate (4), namely that Λ∗ only assumes finite values on the set ACd

T ,
that is, Λ∗(x) < ∞ implies that for every ϵ ∈ (0,∞), there exists δ ∈ (0,∞) such that∑d

i=1
∑n

j=1 |xi (b j ) − xi (a j )| < ϵ whenever n ∈ N, 0 ≤ a1 < b1 ≤ · · · ≤ an < bn ≤ T and∑n
j=1(b j − a j ) < δ. In order to do so, we follow the strategy of proof in [1], Theorem 3.1.
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We consider θi :=
∑n

j=1 ξ
j

i (δb j − δa j ) where ξ j
i ∈ Rd is arbitrary. Then we evidently

have θi ((r, T ]) =
∑n

j=1 ξ
j

i 1[a j ,b j )(r ). Denoting CT := T sups,t∈[0,T ] supi,m∈N |G im(t, s)| +

supt∈[0,T ] supi,m∈N |Rim(t)|, we obtain

Λ(θ ) ≤ sup
m∈N

∫ T

0
Ψm(Hm(θ, r )) dr ≤

∫ T

0
Ψ0

(
CT

d∑
i=1

θi ((r, T ])

)
dr

=

∫ T

0

n∑
j=1

Ψ0

(
CT

d∑
i=1

ξ
j

i

)
1[a j ,b j )(r ) dr ≤ sup

j=1,...,n
Ψ0

(
CT

d∑
i=1

|ξ
j

i |

)
n∑

j=1

(b j − a j )

= sup
j=1,...,n

Ψ0
(
CT ∥ξ j

∥1
) n∑

j=1

(b j − a j ),

where ∥ξ j
∥1 :=

∑d
i=1 |ξ

j
i |. As a consequence, we deduce from the definition of Λ∗ that for all

τ ∈ (0,∞) and ∥ξ j
∥1 ≤ τ ,

d∑
i=1

n∑
j=1

ξ
j

i (xi (b j ) − xi (a j )) ≤ Ψ0 (CT τ)

n∑
j=1

(b j − a j ) + Λ∗(x).

Taking ξ j
i as τ times the sign of xi (b j ) − xi (a j ), it follows that

d∑
i=1

n∑
j=1

|xi (b j ) − xi (a j )| ≤ τ−1Ψ0 (CT τ)

n∑
j=1

(b j − a j ) + τ−1Λ∗(x). (5.28)

If Λ∗(x) < ∞, we can now choose τ first and then δ to make the left-hand side arbitrarily small.
It only remains to prove (5), the compactness of the level sets of Λ∗. By step (4) and the lower

semicontinuity of Λ∗, its level sets are closed subsets of ACd
T . Thus, the Arzelà–Ascoli theorem

provides a compactness criterion. First, observe that for all t ∈ [0, T ], we have for x ∈ ACd
T

with Λ∗(x) ≤ α that
d∑

i=1

|xi (t)| = sup
θ∈Θt

d∑
i=1

∫ T

0
xi (t) θi (dt) ≤ α + sup

θ∈Θt

Λ(θ ) < ∞,

where Θt is the finite collection of all θ for which each coordinate is either δt or −δt . Second,
for the proof of the uniform equicontinuity of the functions x ∈ ACd

T with Λ∗(x) ≤ α, we recall
from (5.28) that

d∑
i=1

|xi (t) − xi (s)| ≤ τ−1Ψ0 (CT τ) (t − s) + τ−1α,

which converges to 0 independently of x when s ↑ t and τ → ∞. □
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