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Abstract 

In this paper, we introduce the concept of the vague convergence of locally integrable 
martingale measures in distribution, which is an organic combination of the vague convergence 
of Radon measures and the weak convergence of martingales in distribution. The conditions are 
provided for vague convergence of martingale measures. We also study the convergence of 
stochastic integrale with respect to martingale measures in distribution. 
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0. Introduction 

The purpose of this paper is to study the vague convergence of locally integrable 

martingale measures in distribution, which is an organic combination of the vague 

convergence of Radon measures and the weak convergence of martingales in distribu- 

tion. 

In Section 1, we will review the principal results of Walsh (1986): existence of 

a predictable (resp. optional) random measure which we will call the angle bracket 

(resp. square bracket) random measure of the orthogonal (resp. strongly orthogonal) 

martingale measure. We will prove the existence of compensator of the jump measure 

associated to a c$dl$g martingale measure and study the relation of an orthogonal 

(resp. strongly orthogonal) martingale measure with independent increments and its 

characteristics. In Section 2, we will introduce the concept of the vague convergence of 
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locally integrable martingale measures in distribution. The general theory of the limit 

theorems of semimartingales in Jacod and Shiryaev (1987) will be applied to study the 

limit theorems of martingale measures. We apply the characteristics of martingale 

measures to describe the convergence of martingale measures as the semimartingale 

case. The conditions will be provided for the vague convergence of stochastic inte- 

grals, which were introduced by Walsh (1986) and El Karoui and Meleard (1990) in 

Section 3. 

1. Definition and basic properties of martingale measures 

Let E be a locally compact Hausdorff space with countable basis, B(E) the Bore1 

a-field on E and &X(E) the linear space formed by all Radon measures on a(E). Then 

there exists a metric function d such that (&e(E), d) is a separably complete space and 

p,,Ap (pLn vaguely converges to p in d(E)) is equivalent to d(p,, 1-1) + 0 when n + co 

(see Yan, 1988, Theorem VI-4.8). Thus, A(E) is a Polish space with the topology of the 

vague convergence of measures. 

Definition 1.1. Let (Q, 9, F,, P) be a filtered probability space satisfying the “usual 

conditions”. 

(1) {M,(A): t 2 0, A E B(E)) is an PC-martingale measure if 

(i) M,(A) = 0 for all A E B(E), 

(4 {M,(A)), > o is a Ft-locally integrable martingales for all A E B(E), 

(iii) for all t > 0, M,(.) is a L2-valued a-finite measure (see El Karoui and Meleard, 

1990). 

(2) A martingale measure M is said to be orthogonal if, for any two disjoint sets 

A and B in B(E), the martingales {M,(A)), 2 o and (M,(B)}, > o are orthogonal, that is, 

(M(A), M(B)) = 0. 
(3) A martingale measure M is said to be strongly orthogonal if, for any two 

disjoint sets A and B in B(E), the quadratic covariation of martingales M(A) and 

M(B), CM(A), M(B)1 = 0. 

It is clear that strong orthogonality implies orthogonality. 

Definition 1.2. Let M be an F-,-martingale measure. M is said to be an R-martingale 

measure if M,(u;) and M,_(w;) belong to d(E) for all t > 0, o E Q. 

Definition 1.3, If M is a martingale measure and if, moreover, for all A E 93(E) the map 

t + M,(A) is continuous, we will say that M is continuous. If the map t + M,(A) is 

cddlhg, we will say that M is cadlag. 

In this paper, we study only cadlag martingale measure. 
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Definition 1.4. Let M and N be two g,-martingale measures on the separable locally 

compact spaces E and E’, respectively. If, for all A E 93(E) and B E g(E’), M(A)N(B) is 

an F,-martingale, then we say that M and N are orthogonal. 

Theorem 1.5. (1) If M is an F-,-orthogonal martingale measure, there exists a random 

a-finite positive measure \l(ds, dx) on 99’+ x g(E), predictable, such thatfor all A E C?3(E) 

the process {v( [0, t] x A)), > 0 is predictable and satisfies 

v( [0, t] x A) = (M(A)), P-ax b’t > 0, A E g(E), 

We denote v = (M). 

(2) If M is an F+trongly orthogonal martingale measure, there exists a random 

a-finite positive measure p(ds, dx) on 9#+ x S?(E), optional, such that for all A E %9(E) 

the process {,u([O, t] x A)>, t ,, is optional and satisfies 

,a( [0, t] x A) = [M(A)ll P-a.s. Vt > 0, A E S?(E). 

[f v = (M), then v is the dual predictable projection of u. We denote u = [M], 

Proof. (1) has been proved by Walsh (1986). The proof of (2) is exactly same as Walsh’s 

proof. Cl 

Definition 1.6. Let M be an orthogonal martingale measure. M is called integrable if 

EI?(IW+ x E) < co. M is called locally integrable if there exist a sequence of compact 

subsets K,,r E and a sequence of stopping times T,, t m such that 

Ev( [0, T,] x K,) < m for all n 2 1. 

Proposition 1.7. Let M he an R-martingale measure. We denote by 

M(jtJ xdx) = M, - M,_. Put 

(1.1) 

It is called the random measure associated to the jumps of M, which is an integer-valued 

random measure on 99+ x 99(&(E)), where S?(JZZ(E)) is the Bore1 a-field af k’(E). Then 

r has the dual predictable projection we denote it by ,0. 

Proof. It is the same as Proposition II-l.16 of Jacod and Shiryaev (1987). 0 

Definition 1.8. Let M be an p”,-adapted orthogonal R-martingale measure and let v, /J 

be the same as in Theorem 1.5 and Proposition 1.7, respectively. We say that (v, p) is 

the characteristics of M. 
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Let A4 be an orthogonal martingale measure, (M) = v. We can construct 

a stochastic integral with respect to M by the method which is used in the construc- 

tion of Ito’s integral (Walsh, 1986). Let us consider the set Y which consists of all 

functions of the following form 

which satisfy E(l,_ x E h2(o, s, x)v(ds, dx)) < cc, where Bi E B(E), hi are g,-measur- 

able bounded functions and 

Ls = f:P x $3(E) measurable, E 
(S 

f2v(w, ds, dx) < cc . 

R, xE 1 I 

If h is a function in Y’, it is easy to verify that we can define a martingale measure by 

h’M,(A) = i hi[M,, h ((A n Ri) - M.7, i\ t(A n Bi)lt VA E g(E) 
i=l 

and (h. M) = h2(s, x)v(ds, dx). Since Y is dense in Lf , the linear mapping 

h + {h.M,(A), t 2 0, A E B(E)} 

can be extended to Lz as usual. Iffe Lz, fM is called the stochastic integral with 

respect to M. 

Letfe Lz. Thenf. M is a martingale measure. Moreover, if M is continuous,f. M is 

continuous. Iff, g E Lz and A, B E g(E), we have 

fh x)ds, Wds, W 

Let M be an R-martingale measure. For anySE CK([w+ x E), which is the space of all 

continuous functions defined on Iw, x E vanishing outside a compact subset of 

52 + x E, thenf. M is still an R-martingale. Put X = j, i,f(s, x) M (ds, dx), we have X is 

a real-valued martingale. Suppose that y is the random measure associated to the 

jumps of X and i is the dual predictable projection of y. For any g E C,(R), we have 

s’s 0 Iw 
dx)y(ds, dx) = j; j&,, g ( jE.i(s> x)r(dx)) dds, dy). 

This implies 

ss 0 R 
g(xV(ds> dx) = j; jMIR g (j/h 4AW) B(ds, dy). (1.2) 

Definition 1.9. Let M be an p-,-adapted martingale measure. 

(a) M is said to be with independent increments (MMII) if for all 0 I s I t the 

random measure M, - M, is independent from the o-field F”,. 
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(b) M is said to be with stationary independent increments (MMIIS) if M is MM11 

such that the distribution of the variable M, - M, only depends on the difference 

t - s. 

(c) If M is an R-martingale measure, a time t 2 0 is called a fixed time of 

discontinuity for M if P(M( {t} x dx) # 0) > 0. 

Since the set of fixed times of discontinuity of an R-martingale measure is at most 

countable, an R-martingale measure with stationary independent increments has no 

fixed time of discontinuity. 

Theorem 1.10. (1) Let M be an $-,-adapted orthogonal R-martingale measure. If M is 

MMII, then there is a version (v,/?) of its characteristics that is deterministic. 

(2) Suppose that M is an P-,-adapted strongly orthogonal R-martingale measure, then 

M is MMII if and only if there exists a version (v,/j) of its characteristics that is 

deterministic. 

Proof. (1) Suppose that M is MMII. Then M(A) is a process with independent 

increments for all A E g(E), hence v( [0, t] x A) is a.s. deterministic. Next, SI is a Pois- 

son random measure, hence /3 is a a.s. deterministic. 

(2) It is sufficient to show that M is MM11 under (v, /3) being deterministic. We only 

show that if Ai, . . . ,A, are disjoint sets in B(E), then X, = (M,(A,), , M,(A,)) is 

a [W”-valued martingale with independent increments. Since M is a strongly ortho- 

gonal martingale measure, M(At), M(Aj) (i #j) have no common jumps. Let ;1 and 

1+ denote the dual predictable projections of the random measures associated to the 

jumps of X and M(Ai), respectively. We have 2 = I;= 1 ;li and (Xc) = (aij) are 

deterministic by the hypothesis and (1.2) where aii = (M’(A,)) and Uij = 0, i # j. This 

implies X is a [W”-valued martingale with independent increments by Theorem H-4.15 

in Jacod and Shiryaev (1987). 0 

2. Vague convergence of locally integrable martingale measures 

The setting is as follows: for every n 2 1 we consider a stochastic basis 

B” = (Q”, F’, F;, P”), E” denotes the expectation with respect to P”. All sets, vari- 

ables, processes, martingale measures, etc. with the superscript n are defined on a’“, 

usually without mentioning. The stochastic measures that we will mention are all 

Radon stochastic measures on spaces what they are defined. 

Definition 2.1. Let M” and M be martingale measures. We say that M” vague 

converges to M in distribution and write M”- cy M if, for allfe CK([w+ x E), 

x)M(ds, dx). 
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In this section, we shall only deal with locally integrable orthogonal martingale 

measures. For simplicity, we still call them martingale measures. In the following, we 

suppose M is a martingale measure on a stochastic basis $3 = (Sz, Y, y-t, P). 

Theorem 2.2. Let E = {aI, . . . , ak} and let m”‘, . . . , mnkand ml, , mk he a sequence of 

k orthogonal local square integrable martingales. Put M:(A) = If= 1 m”‘SO,(A). If 

(m”‘, ,mnk)z(ml, . . . ,mk) and 

for all N > 0, then M”---+ ‘y M, where M,(A) = CT=, mf6,i(A). 

Proof. We know that M” and M are martingale 

Mileard, 1990). We choose the discrete topology on 

compact space. Since 

measures (see El Karoui and 

E. Then E is a separable locally 

for all N > 0 and (m”‘, , mnk)z(ml, . . , mk), we have {(m”‘, . ,mnk)},, >, is U.T. 

(see Jakuboski et al., 1989 or Memin and Slominiski, 1991) and (f(., a,), m”‘, 

. ..) mnk)~((f(., a,), ml, ,mk) for all f~ C,(R+ x E). Hence If=, l,f(s, ai)dmz’z 

C;=, j,R )d i ( s, aj m, see Jakuboski et al., 1989). We have M”z M. Cl 

Theorem 2.3. Let u” and u be E-valued predictable cadlag processes and let mn and m be 

locally square integrable martingales. Put M:(A) = lb I,(ui)dm:, M,(A) = Jb I,(tl,)dm, 

for all A E g(E). If(u”, m”)z(u, m) and sup, E”(sup, 5 ,,,jAm,“I) < co, for all N > 0. We 

have M”z M. 

Proof. For allfE CK(lR+ x E), sincefis uniformly continuous and (I/‘, m’)z(u, m), we 

have (j”(., u”), m”)z((f(., u), m). sup,, E”(supsa N(Am:I) < co implies {m”jN >, is U.T. 

By Theorem 2.6 in Jakuboski et al. (1989), we get s, J’(s, u:)dmi rj, f(s, u,Jdm,. Thus, 

ss ’ f(s, x) M”(ds, dx) 5 
0 E ss 

0 E./IS. x)M(ds, W. 

Hence, M”- r9 M. Cl 
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Theorem 2.4. Let M” and M be martingale measures, (M”) = vn, (M) = v. 
(i) Suppose for any compact subset K of E, 

lim lim sup P”(v”( [0, N] x K) > a) = 0, VN > 0 (2.1) 
aAn n-cc 

and 

IA,@, x) M”(ds, dx), . , IAk(s, x)M”(ds, dx) 

_S? 

4 s 

I/i1(s, x)M(ds, dx), . . . > IAr(s, x) M(ds, dx) 

0 E 

‘iy 

(2.2) 

for any compact set B c R + x E and any sequence {A 1, , Ak) of v-continuous sets 

which are subsets of B. Then M”---+ ‘YJ M. 

(ii) Let M”-+ r-v M and-for all E > 0, 

lim lim sup P”(v”(A,) > E) = 0 
m+uj “+T 

(2.3) 

f or every sequence {A,,),,>, of closed s-continuous sets such that 

lim,,, P(v(A,,) > E) = 0 for all E > 0. Then we haoe 1; JEIA(s, x)M”(ds,dx)r 

j, J&s> x)M(ds, dx) f or all v-continuous set A which is subset of some compact 
set. 

Proof. (i) Let f~ C,(R+ x E). Then there exists a compact subset K of R, x E such 

that K 2 supp(f) and v(aK) = 0, P-as. by Lemma 4.3 in Kallenberg (1983). Suppose 

a <,f < b, for all m 2 1, then there exists a = a, < a, < ... < ak = b such that 

Ui - ui- 1 < l/m and v[(~{(s, x): f(s, x) = ai}) n K] = 0, P-a.s. (Kallenberg, 1983, 

Lemma4.3)fori= 1, . . . . k.PutAi= C(S,x):ai_l <f(s,x)<ai} nK,i= 1, . . . . k,we 
have Ai are disjoint and v(dAi) = 0, P-as. Therefore, (2.2) holds for Ai. Put 

&(s, X) = If= 1 Ui- 1 IAr(s, x). From (2.2) we have 

fm(s, x)M”(ds, dx)z 
ss 

fm(s, xj M(ds, dx). (2.4) 
0 E 

Noting that s~pIf-_~I I l/m, by Lenglart’s inequality, we get 

CS(s, x) - fm(s, x)1 MY& dx) 

I $ + P"(v"([O, N] x K) > 6m2), (2.5) 
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MS, 4 -fm(s, x)lM(ds, d4 

I ; + P(v([O, N] x K) > 6m2) 

for all N > 0, E > 0 and 6 > 0. 

By the hypothesis and E > 0, 6 > 0 are arbitrary, we have 

(2.6) 

[f(s, x) --f&, x)]M(ds, dx) 

from (2.6). Hence, as m + co, we get 

x)M(ds, dx)z j’ j o J(s, x)M(ds> dx). 

(2.5) implies that 

= 0. 

We deduce s, lEj(s, x)M”(ds, dx)zJ, J,f(s, x)M(ds, dx) by Theorem 4.2 in 

Billingsley (1968). Therefore M”z M. 

(ii) Suppose A is a Bore1 subset of some compact set K and ~(84) = 0, P-a.s. Since 

E is locally compact, we can suppose that A c K”. We know that 8A is a compact 

subset from the hypothesis. For all m 2 1, there are x7, . . . , XL in 8A such that 

84 c u;:, S(xT, rm), h w ere 0 < r, 10 and S(x, r) is the open sphere with center x 

and radius r. Put E, = K\[A u Ufm, S(xy, rni)] and G, = K\[(K\A) 

u us:, S(xT, r,)], then E, and G, are closed sets and E,,,fl G, = 8. By using 

Lemma 3.4 in Kallenberg (1983), we can choose r,,, such that ~(a_!?,) = 0, P-a.s. Hence, 

there exists fm E: C,(R+ x E) such that f,(x) = 1 on G, and fm(x) = 0 on E,. Since 

M”z M, we have 

s’s o Ehd~> xPf’W> d-45 j-0 [EMs, x)M(ds, dx) 

when n -+ co. Further, noting that Ifm(s, x) - IA@, x)1 = 0 for (s, x) E E, u G, and 

(fm(s, x) - I,(s, x)1 I 1 for (s, x) E E’, n G’, we get 

t 
P” sup 

( lss 
[IAs, x) -MS, 41 M”(ds, dx) > e 

tSN 0 E I > 

I f + P”(v”(E’, n G’,) > 6) 

2 $ + P”(v”(E’, n G’,) > 6), V’N > 0, E > 0, 6 > 0. 
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The condition (2.3) implies 

[IA@, x) -&(s, x)]M”(ds, dx) 
m+cc n-r, 

Since n,Em n G, = JA and 

CZA(s, x) -MS, 41 MC& dx) 

< E + limsupP(v(E, n G,) > s’), V’E > 0, 
m*5c 

we have 

ss o Efm(~, x)M(ds, dx)z IA@, x)M(ds, dx). 

Hence, we deduce Jd SE ZA(s, x)M”(ds, dx)3 1; JEZa(s, x)M(ds, dx) by Theorem 4.2 in 

Billingsley (1968). I? 

Remark. This is the extension of Theorem 5.2 in Thang (1991). 

In the following, we only study the limit theorems of R-martingale measures. 

Let v”, v E A’(E) be random measures on g(E). We say that vn converges to v in 

distribution and write ~“4 v if for any fE C,(E), s,f(x)v(dx)z j,f(x)v(dx). 

Theorem 2.5. Let M” and M be R-martingale measures, (M”) = v”, (M) = v, 8” and 

0 be the dual predictable projections of the random measures associated to the jumps of 
M” and M, respectively. M has noJixed time of discontinuity and MMZZ. Suppose that 

(i) vn4 v, 

(ii) For eachfE C,([w+ x E), 

j; j&,,, [ jEfk x)y@x)]2 /jn(ds, dy) < ~0, 

j; j_ [ j/k r)W4]2 Btds> dy) < ~0 

and 

for all t > 0, 6 > 0, 
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(iii) For allfe CK([w+ x E) and g E C,‘(R) 

j: jMtE,g( .c. 
.f(s, x) y (dx)) B”(ds> dy)3 j’, jAtr, g ( j/k x) y (dx)) ,Ws, dy) 

for all t > 0. g E CJ(rW) means that g is a continuousfunction which is 0 around 0 and 

outside a compact subset of Iw. 

Then M”-% M. 

Proof. Since M is MMII, we know that v and /I are deterministic by Theorem 1.9. Put 

X” = j, lEf(s, x) M”(ds, dx), X = j, jEf(s, x) M(ds, dx) for allfe C,(R + x E), then X” 

and X are square integrable martingales and X is independent increments without 

fixed time of discontinuity. Let A” and i. be the dual predictable projections of the 

random measures associated to the jumps of X” and X, respectively. For all 

g E C,’ ([w), we have g.lL”z g.1 by the condition (iii) and (1.2). And condition (i) implies 

<Xn>r = 
ss 
1 Efz(s, x)v”(ds, dx): 1: jEf(s, x)v(ds, dx) = (X), 

for all t > 0. (ii) means that lim,,, lim SUP_~ P”(x2Z1,,, , .,.&’ > 6) = 0 for all t > 0, 

6 > 0. Hence, X”:X by Theorem VIII-2.18 in Jacod and Shiryaev (1987). 0 

Theorem 2.6. Let M” and M be R-martingale measures with independent increments and 

M have no fixed time of discontinuity, vn, v, p”, /I be random measures given in Theorem 

2.5. Suppose that for eachf E C,(lQ+ x E) and for all t > 0, 

Then M” 5 M if and only if 

Y 
(i) vn --, 11, 

(ii) For allf~ CK([w+ x E), g E CO+@) and t > 0, 

j; jMcE,g( j~f(s~x)y(dx))P’(ds~dv)-Sb jA,E1g( j/s>x)y(dx))b’(Wy). 

Proof. For eachf6 CK(R+ x E), put 

X” = 
ss 

o /s, x)M”(ds, dx), x= 
ss 

0 /(s, x)M(ds, dx), 

then X” and X are square integrable martingales with independent increments and 

X has no fixed time of discontinuity. Let i”, 3, be the same as in the proof of Theorem 
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2.5. Under the condition lim,,, lim s~p,,,lx(~ I;,,, ,a; ./2: = 0 for all t > 0, X”zX if 

and only if (Xn)t+ (X), and g.&‘-+g.& for all t > 0 and g E C,‘(R) by Theorem 

VII-3.7 in Jacod and Shiryaev (1987). Theorem is proven. 0 

Theorem 2.7. Let M” he R-martingale measures and M be a continuous MMII, 

(M”) = v”, (M) = v. Suppose that ~‘2 v, P”(sup,~ s NI M”( {s} x K)( > a)-+O, as 

n+ m, for all a > 0, N > 0 and compact set K and / M”( {s} x K)J I C, where 

1 M”({s} x K)J denotes the total cariation of random measure M”({s} x dx) on K. Then 

M”z M. 

Proof. Since v”z v and v is deterministic. then 

I 

SJ .f(s, x)4& dx) o J(s. x)v”(ds, dx): ’ 
is 0 E 

for all t > 0 and 0 <fe CK(R+ x E). Suppose that X”, X, ;I” are the same as in the 

proof of Theorem 2.6, then 

(Xn)t = 
jj 

1 /(s, x)v”(ds, dx): j; jEf(s, x)v(ds, dx) = (X), (2.7) 

for all t > 0. And 

s.i.; I CI:,,, > 0; ./1; = CI.‘([O, t] x { 1x1 > a$) (2.8) 

for all g E C,‘(R), where a > 0, C > 0 such that g I C and g(x) = 0 for 1x1 I a. 

Since lim,, ~ P”(sup,, s NjAX,“( > a) = 0 is equivalent to 

lim,,, Pn(;ln([O,t]x{(x(>aS)>E)=O, VE>O 

(see Jacod and Shiryaev, 1987, Lemma VI-4.22). And since 1 AX: I 

I C1 sup, s ,I MY(s) x K)I I C1 C and 

P” 
( 

sup/AX:/ >a 
> ( 

<P” supC,IM”({s}xK)/ >a 
5 s N ., s N 1 

, 

where sup,(f(x)( I C1, K is a subset of R, x Eand supp{f} c K, we have g.I$zO 

for all N > 0 by the hypothesis and (2.8). Hence, XnzX by (2.7) and Theorem 

VIII-3.11 in Jacod and Shiryaev (1987) U 

By Theorem 2.7, we immediately get the following corollary. 

Corollary 2.8. Let E = {aI, . . . , uk} and let m”‘, . . . , mnh (resp. m’, . . , mk) be k ortho- 

gonal (resp. orthogonal continuous) locally integrable martingales. I Am"'] I b, 

(m”‘) = Cni, (m’) = C’, i = 1, . . . ,k, n 2 1, i.“’ be the dual predictable projections 
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of the random measures associated to the jumps of m"'. Put 

M”(A) = i mniaai(A), M(A) = i mid,,(A). 
i= 1 i=l 

Suppose that 

(i) Cyiz Cf, i = 1, . , k and lim,, m sup, P”(Cr= 1 Cyi > 0) = Ofor all t > 0. 

(ii) lim,, 21 P”(n”‘(C0, tl x {I I x >a}>v)=Oforalle>O,anda>O. 

Then M”? M. 

Theorem 2.9. Let M” be strongly orthogonal R-martingale measures and let M be 

a continuous MMII. [M”] = pL”, (M) = v. Suppose IM”({tj x K)I 5 C for all t > 0, 
n 2 1 and compact set K c [w, x E. We have the equivalence between 

(i) M”z M, 

(iii) v” 4 v and lim n-mpY~xCO>tl xi1 I x >a})>~)=Oforallt>O,a>O,~>0, 

f E C,(R+ x E), where v” is the dual predictable projection of u”, Ai is the dual predict- 

able projection of the random measure associated to jumps of l, SE f (s, x) M”(ds, dx). 

Proof. For all f E CK(R+ x E), assume that X” and X are the same as in the proof of 

Theorem 2.7. We have ) AX” 1 < C by the hypothesis. Under this condition, we deduce 

equivalence between: 

(a) XnZ X, 

(b) [X”],: (X),, for all t > 0, 

(c)(X”)r~(X)randlim,,,P”(ij([O,t]x{~x~ >a})>a)=Oforallt >O,a ~0, 

E > 0 by Theorem VIII-3.11 in Jacod and Shiryaev (1987). Theorem is proved. Cl 

Theorem 2.10. Let M” and M be the same as in Theorem 2.9. Suppose that,for all 6 > 0, 

t > 0, f E CAR+ x E), 

lim lim sup P 
(I-cc n+cc 

{ jli~,~~/~~(s.x)y(dx)lI:,~~~,~,,,~~~.I,..:B”(dr.dy)>8)=0. (2.9) 

We have the equivalence between 

(i) M”z M, 

(ii) $5 v. 
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Proof. For allfe C,([w+ x E), assume that X” and X are the same as in the proof of 

Theorem 2.7. (2.9) means that lim,,, limsup,,, P”(lxJli,,, ,,;.1: > 6) = 0 for all 

t > 0, 6 > 0. Under this condition, we deduce equivalence between 

(a) X’Z X, 

(b) [X”],: (X), for all t > 0 

by Theorem VIII-3.12 in Jacod and Shiryaev (1987). 0 

Corollary 2.11. Let M” be R-martingale measures with independent increments and 

M be a continuous MMII. Suppose that 

lim,,, sup (M”({s)xK)j >E =0 
s s N > 

for all N > 0, a > 0 and compact set K c [w, x E and 

Then M”z M if and only if ~“5 v. 

Proof. By Theorem 2.7, it is sufficient to prove necessity. Suppose that M”z M. We 

s’s f(s, x) M”(ds, dx)z 
0 E 

for allfe C,(Iw+ x E). Assume that X” and X are the same as in the proof of Theorem 

2.6, then X”, X are square integrable martingales with independent increments and 

X is continuous. When n + co, we have 

t * 
sup f (s, x) v”(ds, dx) - 
,<N Is s 0 E ss 

o E.f(s> x)v(ds, dx) + 0 

for all t > 0. Hence lim,,, s,” JEf2(s,x)vn(ds, dx) = 1,” lEf2(s,x) v(ds, dx). That is, 

link,+ cc j,” JEf(s,x) v”(ds, dx) = s,” J,f(s,x)v(ds. dx) for all f 2 0 in C&F! + x E). To 
drop the condition f> 0, we can consider f = f’ -f and notice that 

s,” jESi (s,x)v(ds, dx) is deterministic, we have v”zv. 0 

3. Convergence of stochastic integrals in distribution 

Letf” andfbe real-valued measurable functions on (iw, x E, Z#+ x W(E)) and v is 

a Radon measure on %?+ x93(E). We will say that j” converges continuously to 
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f(v-as.) and write ‘yz;f(v - a.s.)” if there exists a v-null set B E a+ x B(E) such that, 

if (t, x) # B thenf”(t,, x,) -)f(t, x) whenever (t,, x,) + (t, x). 

Clearly, if,f” converges uniformly to a continuousf, then,f”zf(v-as.) for all Radon 

measure v on B+ x 5?(E). 

Theorem 3.1. Let f” E L2, and f E Lf, he real-valued measurable functions. Under the 

conditions of Theorem 2.;: $fS”z;f(v-a.s.) and if {f”} are uniformly bounded, we have 

f”.M”zf.M. 

In particular, iff” and f are functions on R, x E vanishing outside a common compact 

set K c R+ xE, we have 

x) M”(ds, dx)z 
ss 

f(s, x) M(ds, dx). 
0 E 

Proof. Note that (f”.M”) = (f’“)2.v”, (f M) =f2.y. Since g is uniformly continuous 

for all g E C,(Lw+ x E), we have (gf”)2 z(gf’)2(v-a.s.) and (gf”)‘, (gf )’ vanish outside the 

compact set Supp(g). As v is stochastic contiunous, we deduce that 

si 
(gf”)2 v”(ds, dx): 

0 E ss 

0 E (gf’)’ v(ds, dx) 

by Lemma 6.2 in Kasahara and Watanaba (1986). For any compact set K c Iw+ x E, 

N > 0, 

sup I(f”.M”)({s} x K)j = sup 
\ s N Is 

f”(s, x)M”((s} x dx) 
\cN K 

i C sup 1 MY(s) x K)I, 
s 5 N 

where C is a constant, this implies that 

P” 
( 

sup I(f”.M”)((s} x K)( > E I P” sup IM”({s} x K)1 
\ 5 N J ( 5 s N 

>; + 0 

by the hypothesis. We get f”. M” 2 f M by Theorem 2.7. Cl 

We next relax the assumption that (f”_ n 2 1) vanish outside a compact set. Let 

Kr c K2 c ... be a compact exhaustion of E with K, c Ki+l (n 2 1). 

Theorem 3.2. Letf” E L$ and f E L: be uniformly bounded real-valued functions. Under 

the conditions of Theorem 2.7, iff 2 f(v-a.s.) and if for all E > 0, t > 0, 

lim lim sup P” 
k+m n-a 

K f”(s, x)2 V(ds, dx) > E = 0. 
’ L 

(3.1) 
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Thenf”.M”z’f.M and 

X” = x)M”(ds, dx)z [’ 1 f(s, x) M(ds, dx) = X. 
0 E 

Proof. It is clear that f”. M” 3 f M by Th eorem 3.1. We only prove the second 

conclusion. 

Let (Pi, k = 1,2, . , be continuous functions such that Ik, I (Pi I IK,,, and define 

X”k LIZ ss o E nhM” (s, XWf’W, d-4, p zz ss (Pk($.f@, x)M(ds> dx). 
0 E 

For every k L 0, since 

(Xnk>t = 
ss 
1 Ed@).f’“‘(~, xb”(ds, dx): j; j$(x)f'(s, x)v(ds, dx) = (x~)~ 

by Lemma 6.2 in Kasahara and Watanaba (1986) for all t > 0 and (Xnk),, (Xk)! are 

increasing processes and (Xk)t is deterministic, we have (X”k) 5 (Xk). But again, 

P” SU~IAX:~I > & I P” SUP IfVfn({S} XK,+,)( >; 

c<N 1 ( \ s N 

this implies that lim,,, P”(sup,~.IAX$ >.a) = 0 for all N >O, E > 0 and 

1 AXnk) I C1 by the hypothesis. Hence Xnk 5 Xk by Theorem VIII-3.1 1 in Jacod and 

Shiryaev (1987). By Lenglart inequality, Theorem 4.2 in Billingsley (1968) and condi- 

tion (3.1), as in the proof of Theorem 2.4, we finish the proof of the Theorem. 0 

Theorem 3.3. Letf” andf he as in Theorem 3.2, but we drop (3.1), instead we assume that 

for every N > 0, 

lim limsup sup{ If”@, x)1: 0 < s I N, x $ Kk) = 0. 
k-m n-m 

(3.2) 

Put X” = jb jJ”(s,x) M”(ds, dx), Xnk = Jb jE5,K,f”(s,x) M”(ds, dx). Suppose that for all 

t > 0, & > 0, 

lim lim sup ?((X”k)f > E) = 0. 
k-m, n-m 

(3.3) 

Under the conditions of Theorem 2.7, we have X”410 IEf(S,x)M(ds, dx). 

Proof. This theorem is proven with the same method as in Kasahara and Watanaba 

(1986). Let us describe quickly the principal steps of the proof. 
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Let qk be as in the proof of Theorem 3.2 and put 

g= T 
ss 

Cqk+ I (4 - (~&)lfn~(~, W(dS, dx), \Jk n 2 1 
0 E 

and for all k 2 1, 

T 

ak = 

ss 
Cvk+ I(X) - ~&)lf~(s> x)4& d4, 

0 E 

then <I::ak as n + cc by the hypothesis and Cp= 1 ak I 1,’ IEjZ(ds, x)v(ds, dx) < CC 

(recall that f E LJ!). By Lemma 6.7 in Kasahara and Watanaba (1986) there exist 

k, 2 k, I ... -t co such that 

(3.4) 

and 

k$, d+ ,z, ‘k, n--r cc. 

Let C’)(t, x) =f”(t, x)IK,_(x), fi2) = f” -c”. Define 

W” = 
ss 

o E~:2’(s, x)M”(ds, dx), y"= 

ss 

’ fn(l)(s, x)M”(ds, dx). 
0 E 

Observe that, if m I k, then 

T 

ss 
If:‘+, x)1 ‘vn(ds, dx) 

0 E‘\K.II 

T 

2 

SI 
[(Pk,+l(x) - CP~(X)~~“~(S, x)v”(ds> W 5 ; cf. 

0 E k=m 

Thus (3.4) implies that 

(3.5) 

T 

lim lim sup P” (S s If:“(s, x)1 2vn(ds, dx) > E 
> 

= 0 t/E > 0. (3.6) 
m-cc n+aj 0 ELK,+, 

Since, if k, 2 m > 1, 

) ( wyt - (Xnyt( 5 I( W”, W” - Xnm)J + I( W” - X”“, Xnm)*l 

5 ( fJP>y ( W” - pyy + (yyw ( W” - ,7y 

/ k, \ 112 / k, \ l/2 

Therefore, by (3.4) and (3.5) we easily 

lim lim sup P”( ( ( Wn), - (Xnm)tl 
m+m n-m 

see that for all E > 0, 

> E) = 0. (3.7) 
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Combining (3.7) and (3.3) we observe that for all E > 0, 

lim lim sup P”( ( w>, > E) = 0. 
m-r, n+m 

This means that W” z 0. By (3.6) and the conditions of Theorem 3.2, we have 

_Y . 
Y"+ ss f(s, x) M(ds, dx). 

0 E 

Hence, X” = Y” + W” 5 fb fds, 4Mk-k dx). 0 
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