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Abstract

Given a geometric Brownian motion S = (S/),¢o,77 and a Borel measurable function g : (0,00) —
R such that g(S7) € L,, we approximate g(S7) — Eg(St) by

n
Z Ui—l(S‘E,- - STF])
i=1

where 0 =19<--- <1, = T is an increasing sequence of stopping times and the v,_; are F,, -
measurable random variables such that Ev? | (S;, — S,,_,)* <00 ((# Diefo, 17 18 the augmentation of the
natural filtration of the underlying Brownian motion). In case that g is not almost surely linear, we
show that one gets a lower bound for the L;-approximation rate of 1/./n if one optimizes over all
nets consisting of n + 1 stopping times. This lower bound coincides with the upper bound for all
reasonable functions ¢ in case deterministic time-nets are used. Hence random time nets do not
improve the rate of convergence in this case. The same result holds true for the Brownian motion
instead of the geometric Brownian motion.
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1. Introduction and result

The question, we are dealing with, arises from stochastic finance, where one is interested
in the L,-error which occurs while replacing a continuously adjusted portfolio by a
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discretely adjusted one. Assume a finite time horizon 7 >0 and a standard Brownian
motion B = (B),,y defined on a complete probability space (2, 7,P) with By =0,
continuous paths for all w € Q, and & being the completion of o(B; : t € [0, T]). Define
(Z iepo, 1 to be the usual augmentation of the natural filtration generated by B and S =
(S1)ep0.7) to be the standard geometric Brownian motion

Sy=eB1/2,
Let us consider the discounted Black—Scholes model (with variance one for notational
simplicity) and a Borel-measurable pay-off function g : (0,00) — R such that g(S7) € L,.
If one wants to estimate the minimal quadratic hedging risk for g(Sr), where the portfolio

may be rebalanced at the time-knots (ri)f’;()l coming from an increasing sequence of
stopping times

O=t<n<---<1,=T,

then one is concerned with the optimization problem

) )

Ly

V05 esUn—1

[9(S7) = Eg(ST] =Y vi-1(Se, — S,
i=1

where the v;_; are certain %,  -measurable random variables (at first glance, one might
replace Eg(S7) by ¢ € R in order to optimize over ¢ as well, but one quickly checks that
¢ = Eg(S7) is optimal because of the martingale setting). For equidistant nets questions of
type (1) have been studied by Zhang [11], Gobet and Temam [6], and others. In [3], general
deterministic not necessarily equidistant, nets were considered taking into account
properties of g. In particular, it turned out that for each g, such that there are no ¢p,c; € R
with g(S7) = ¢o + ¢ S7 a.s., one has a lower rate of 1//n for (1) if one optimizes over all
deterministic time-nets of cardinality n 4+ 1 [3, Theorem 4.4, Lemma 4.9, Proof of Theorem
6.2]. Note, that g(S7) = co + ¢1 St a.s. implies a perfect approximation in (1).

The natural question arises what happens to the lower rate if we take random time-nets
(in our understanding, always an increasing sequence of stopping times). It seems that the
techniques from [3] do not apply in this case. On the other hand, Martini and Patry [10]
identified the optimal strategy when one optimizes over random time-nets with a pre-given
cardinality. Their included numerical example indicates an improvement of the
approximation error by some factor compared to the case deterministic nets are used.
However, a lower bound for the approximation rate was not considered. So the question
was still open whether random time-nets improve the approximation rate. In the present
paper, we give an answer to this problem as follows: firstly, one cannot achieve a rate
better than 1/./n, which is the same lower bound as for deterministic nets mentioned
above. Secondly, for all reasonable ¢ (see Theorem 1.2 and Remark 1.3) this lower bound
is, up to a factor, the same as the upper bound obtained for deterministic nets. Hence one
cannot take advantage from random time-nets in this case. To formulate our result we
introduce, for a random variable Z € L), p € [2,00), and M = (M,),¢(o ) being either the
Brownian motion B = (B), ) or the geometric Brownian motion S = (S;),g ), the
approximation number

a(Z|L,)=inf , )

L,

[Z-EZ]- ) vi(Mo, — M)
i=1
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where the infimum is taken over all sequences of stopping times 0 = 1o <7< -+ - <1, =T
and &, _,-measurable v;_; : Q@ — R with v;_1(M,, — M,,_,) € L,. As main result we get

Theorem 1.1. Let M be either the Brownian motion B or the geometric Brownian motion S
and let g : R — R be a Borel function with g(M 1) € L,. If there are no constants cy,c; € R
with g(M 1) = co + ci Mt a.s., then there is some ¢>0 such that

11 )
ay(g(MT)|L2)>Eﬁ forn=1,2,....
The theorem is proved in Section 2. To discuss the upper bound 1/4/n in some detail we

need more notation. As before, let M € {B,S} and g : R — R be a Borel function with
g(M7) € L,. There is some ¢>0 such that

c _ Eg(x+ Br_;) : M = B, ;
(=Y EgxeSy_): M =S )

is a well-defined C*°-function on (—¢, T) x R and (—¢, T) x (0,00), respectively, (for a
moment we extend B and S to [0, T + ¢]) and satisfies there

0G o 0°G 1: M =B,

— =0 with oc(x)::{ M—s
x:M=S.

R “)

This is well-known where the argument for the extension by (—e, 0] can be found, for
example, in [3, Lemma A.2]. By It6’s formula we deduce, as usual, that

3G
g(M7) = Eg(M7) +/ = (u, M,)dM, as.
0

The following upper bound was proved in [3, Section 6].

Theorem 1.2. Let g : (0,00) — R be a Borel function such that g(St) € L, and G be given by
(3) for M = S. Assume that there is some 0 € [0, 1) such that

oll o 0°G
sup (T —1)°||S} == (&, Sy)|| <oo. ®)
1€[0,T) 0x Ly
Then there exists some ¢>0 such that for each n=1,2,... there is a deterministic net

0= tf)")<t(]") <. <t =T such that

“~ 0G , (,
[9(S7) = Eg(ST) = Y == (1", S0 J(So = Sy )

i=1

<.
Lz ﬁ
Basic examples satisfying (5) are given in part (iii) of the following remark.

Remark 1.3. (i) If g(S7) € L,, then Esup[<b|%_§(l, S)S,|><o0o for all b e[0,T) (cf. for
example [3]) so that, in Theorem 1.2,
2

oG
[E.a(li—l,stil)(sti — St;—l) <0oQ. (6)

(i1) An analogue of Theorem 1.2 for M = B follows from [3] as well (see [7]). Moreover,
in [8] it is shown that g(S7) € L, without an additional assumption (like for example (5))
does not imply the conclusion of Theorem 1.2 (cf. Section 3).
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(iii) Since ¢ — ||Sf(a2 G/ox*)(t,S))| 1, 1s continuous and increasing on [0,7) (see [2]
where ¢ is non-negative, which does not play any role for this assertion) it is not difficult to
check that

t
sup (T — l)”/
1€0,7) 0 Ly
for some 7 € (0,1) implies (5) with 0 = (74 1)/2 € (1/2,1) [1, Proof of Theorem 2.5 ].

Condition (7) is investigated in [1,5] in detail. For example, it is shown (under the
normalization 7' = 1) in [5] that (7) is equivalent to

glexp(- — 1/2)) € (D12(w), La(1)y 005

where  is the standard Gaussian measure on R, D;,(u) the Malliavin Sobolev space with
respect to u, and (X, X1), o the real interpolation space with parameters (1, o) formed by
the Banach spaces X, and X;. This means, a minimal degree of smoothness of /(x) =
g(exp(x — 1/2)) implies (5) for some 0 € [0, 1). Basic examples for (5) are

0’G
2 (us SLI)

S2——
“ Ox

du<oo (7

g1(x)=(x — K)* with 0 =1,

g (x)=((x — K)")* with 0 =

. 3
93(X) =)k o)(x) With 9:2’

)

W
R

o

T . 3
ga(x)=h, (5 + log x) with 0 = 2 + 3

where K>0, a € (0,1/2), and h,(y):=y~* if y>0 with /,(y)=0 otherwise (see [11,6,3,1]).
(iv) The results in [3] are formulated for non-negative g because of their interpretation as
pay-off function. The proofs are valid for general g, as used here, without modification.

The second upper bound, we want to recall, is taken from [4].

Theorem 1.4. Let g(y)= [; K(x)dx, y=0, where K :[0,00) - R is a Borel function
integrable over compact intervals. Assume that 2<p<qg<oo and

St
E U/O |K(x)|dx

Then there exists some ¢>0 such that forn =1,2,... and tﬁ"):ziT/n one has that

2

+ IK(ST)Iq] <oo. ®)

3G
[9(S7) = Eg(ST)) = Y 2= (17, S0 JS0 = Sy )

i=1

c
<—.
L, v

The assumption of Theorem 1.4 is strictly stronger than that of Theorem 1.2. For
example, g; from Remark 1.3(iii) falls into the setting of Theorem 1.4, but not ¢,, g3, and
g4 At the moment we do not see any major obstacles to adapt the setting of [4] to prove an
analogue of Theorem 1.4 for the Brownian motion. However, this would exceed the scope
of this paper and is not rigorously done yet. Combining Theorems 1.1, 1.2, and 1.4 we
derive
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Corollary 1.5. (i) Let g : (0,00) — R be as in Theorem 1.2 such that condition (5) is satisfied
for some 0 € [0, 1). If there are no constants cy, c| € R such that g(St) = co + ¢1ST a.s., then
there is some c¢=1 such that

1 s c
— < S —
o SRS
foralln=1,2,... . The optimal rate is obtained by deterministic time-nets.

(ii) Let p € [2,00) and g(y) = g K(x)dx be as in Theorem 1.4 such that condition (8) is
satisfied for some q € (p,00). If g is not linear, then there is some c=1 such that

1 S c
—= < SIL,)< —
o SaSIL) <
foralln=1,2,... . The optimal rate is obtained by equidistant time-nets.
Proof. Part (i) follows from Theorems 1.1 and 1.2. We turn to part (ii). Taking n = 1 in
Theorem 1.4 gives g(St) € L,. Since g is not linear, but continuous, there do not exist

constants ¢y, c; € R such that g(S7) = ¢y + 1St a.s. Consequently, Theorem 1.1 implies
that

1
ca.nvn

foralln=1,2,... . Letting tf-"):ziT/n and

<ay(9(ST)IL2) <ay(g(ST)ILy)

i—1°

", 0G
A=) = (" S S =S 1)
we get a martingale (4}) 9,7y Where one may use (6). Theorem 1.4 and g(St) € L, imply
A} € L, so that
»

oG
E a(tf'i)l’ Sr‘.ﬁ)l)(‘st?”)/\t - St;’—l/\t) <00

for t € [0, T] and

aS(9(SPIL) <Ig(ST) — Eg(ST)] — Ayl < ‘%’ O

2. Proof of Theorem 1.1

Before we turn to the Proof of Theorem 1.1 directly we start with some

Preparations: Sometimes we use E,(-) = E(-|# ,) for p being a stopping time. To compute
aM(Z|L,) we recall that the optimal v;_; are explicitly known once the time-net is chosen.
In fact, for a sequence o = (0;);_, of stopping times 0<o¢< --- <0,<7T and M € {B, S},
we exploit the Kunita—Watanabe type projection

n
PY Ly — Ly givenby PYZ:=> v 1(o, M)(M,, — My,_,)

i=1
with
EZ(M,, — My, )| Fs.)
B(My, — My 17 )

U[_l(O', M)=
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and A;={E(M,, — M,,_)*|F,, ,)#0} to get

1Z—-PYZ|, =infS || Z =) vi((My, — M, )

n

i=1 L,

[EU?_I(MJI. - M, )2 <00, V;—1 18 F,,_,-measurable

In the Proof of Theorem 1.1, we want to restrict ourselves to sequences of stopping times
0:60<O’1< <U”= T—é, 0 E(O,T), with

2T
Sup [63(0) = 01-1(@)| < = -

,1

For this, we need the following two lemmas, where Lemma 2.2 confirms the intuition that
the approximation is getting better when the time-net is refined.

Lemma 2.1. Assume that t9,71,...,7n : Q — [0, T], N=1, are stopping times. Then
np=max{min{z;,...,7;, H0<j,<--- <jy_ <N}
defines a sequence of stopping times 0 <y, <n, < --- <yy < T such that for all v € Q one has
{to(w), ..., v (@)} = {no(w), . .., ny(w)}.
The proof is obvious.
Lemma 2.2. Let 0<to< -+ <1, <T and 0<ny< - -- <ny < T be stopping times such that

{T()((U), ey Tl’l(w)} g {’70(@), ceey HN(('U)}
for all w € Q. Then, given Z € L, and M € {B, S}, one has that

2
N
inf E <Z = (M, — M:ml))
k=1
p 2
< infE(Z — Z Ui—l(Mr,- - MT[I)>
i=1

where the infima are taken over all 7,  -measurable w_\ and F . _ -measurable v;_| such
that
2 2 2 2
Eup_ (M, —M,, ) <oco and [Ev;_j(M. — M, ) <oo.

Proof. Assume we are given v;_1, i = 1,...,n, as above. If we choose

U1 =

n
Vi1 X (e <ty <)

i=1

fork =1,..., N, then it follows that u;_; is #, _ -measurable. Since () is a refinement of
(t;), it holds

N n
Z uk—l(MVIk - M11k,1) = Z Uifl(Mr,- - Mr;,|)~
k=1 i=1
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Moreover, one quickly checks that
e (M, — My DIz, < Y iy (M, — My, )l <oo. O
=1

Finally, the following lemma provides the necessary integrability properties (partially
implicitly) needed in the Proof of Theorem 1.1.

Lemma 2.3. Let M € {B,S}. For a Borel function g:R — R such that g(Mrt) € L,
k,1€{0,1,2,...},j€{1,2}, and b € [0, T) one has that

: 2
oG
E sup |Mf|k|Ms|’<@(s,Ms)) <00,

0<s<t<bh

where G is given by (3) and 0°:=1.

Proof. For o defined in (4) and 1 <p,g<oo with 1 = (1/p)+ (1/g) we get

; 2
J

E sup |M,|"|Ms|’(—q(s,Ms))
ox/

0<s<t<h

kg 12\ P i 20\ /4
<|E sup w E sup oc(MS)/a—G(s,MS)
o<s<i<h | o(My)? 0<s<b ox/
|M,'

2p 1/2p 1/2p
< | E sup ([E sup |M,|2kp>
0<s<b 0<r<b

24\ /4
x| E sup
0<s<b

by Hoélder’s inequality. It is known that the first two factors are finite for all 1<p<oo.
Hence, we have to find a 1<g<oo such that the third factor is finite as well. We
indicate the argument, but leave out some details because it should be standard. First we
write

O‘(M.Y)Zj

O‘(MS)IZ]_G(S: My)

X/

o) 8 (5,) = B Mt (B

with y(x,y):=g(x +y) for M = B and y(x,y)=¢(xy) for M =S, where M and B are
independent copies of M and B, and

¢
1,B _ LS —
ps (é)_pg (6)'_T_Sa

2,B — 62 _ 1
O i
SR

2,8 — _ _
ps (é)_(T—S)z T_S T_S,
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see [9] and [3, Lemmas A.1 and A.2]. Letting 1<f <2< fB<oo with 1 = (1/8)+ (1/p),
we obtain

oG 2
E sup |a(MY 5= (s My)| < sup (Elp; (Br-y)lfy”

0<s<b X/ 0<s<b

x E sup (Elp(M,, Mr_o)|f 4"

0<s<bh
Consequently, it suffices to verify that
E sup (Elp(My, M)l Y7 =E sup [EQg(M )" |17 )"

0<s<bh 0<s<h
is finite for an appropriate 1<g<oo. But this can be obtained by Doob’s maximal
inequality and the hyper-contraction property of the Ornstein—Uhlenbeck semi-group (the
latter yields for b € [0, T) and a Borel function 4 : R — R such that h(Br) € L, for some
1 <r<oo some 1 € (r,00) such that E(i(Br)|Fp) € L). O

Proof of Theorem 1.1. The strategy of our proof is as follows: after some preparations in
step (a) we expand, in step (b), the integrand of the stochastic integral to be approximated
into a zero and first order term (hé + h} and hé + 2, respectively) and a corresponding
remainder (hé and h% + h%, respectively). The Fact 2.4 shows that the dominating part in
the approximation is the first order term. This leads to a lower bound for the
approximation error under condition (9) for the time-nets. Condition (9) will be removed
in step (c). Step (d) concludes the proof by verifying that the constant involved in the lower
bound obtained in step (c¢) is positive when g is not almost surely linear.

(a) Let us first assume 0 € (0, 7), n € {1,2,...} with n= 12T, and a sequence of stopping
times

2T
0=0,<---<0,=T -9 such that sup |o;(®) — g;_1(®)|< P 9)
w,i

Recall that G is given by (3). By the Kunita—Watanabe projection we know that the
optimal v; in

inf

T—éaG n
/0 a(usMu)dMu_;Uifl(Ma,-_Ma,-,l)

L,
2 2 ~
Ev;_ (M, — M, )" <oo,v;—1 is F4_,-measurable

are given by
-5
70 % 0 M) AM My~ M, )1,
[E((Maf - Mo'i—l)2|°?76"’l)

with A;={E(M,, — M,, V|7 o1)#0}. It should be noted that we may replace in v!_| (o, M)
the term [ °(9G/0x)(u, M,)dM,, by

v (o, M)= [E(

XA4;

T g
/ G . M,)dM, or / G . M,)dM,
0 ax Gio ax
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so that v/ (o, M) only depends on ¢,_; and ¢; but not on whole time net and not on 7' — ¢
(as long as ;< T — 9).

(b) Now we decompose (0G/0x)(t, M,). This is done differently in the case of the
Brownian motion and the geometric Brownian motion. In order to distinguish between the
two cases we denote G in the case of the Brownian motion by G; and in the case of the
geometric Brownian motion by G,. From (4) it follows that

0’G,  19°G, 3’Gy x*9'G, G,
Z -0 d ll

oot T2 ox e e T2 e Y o
on [0, 7T) x R and [0, T') x (0, 0c0), respectively. For 0<s<t<T It6’s formula yields, a.s.,

=0

12
9 18y = " 5.8yt [ SD B as,

2
= 0 (5 8y + S (BB - B
2 2
+ U aaGQ‘ (u, B,)dB, — aanl (s, B)(B, — B)}
=(hy + h} + h)(s, 1)

and, a.s.,

tAa2 2
5= 52650+ [ S ws)ds, - / 5,52 (0,5 du
_ G G,
Ao (80 + 53 (558 = S))
’G G
+ [ / O 08048, ~ 52 (5, 5,)(5, - .y)}

2
/S Gz(uS)du

=} + It 4 15 + 3)(s, ).
We obtain two-parameter processes (h[ (5, 1)(s,9es With index-set
A={(s,)|0<s<t< T}

such that h (s, 1) is & ,-measurable and where we may suppose that all trajectories are
continuous on 4. Assume stopping times 0<o<t< T and that /4 is one of the above hk
Defining Z = (Z.) ¢, by

le::h(o-s u)%{a’<u$r}
we get that Z is adapted and that all trajectories are left side continuous and have right
limits. Now we estimate

Eo( [ ZodM (M. — M,)) ?

Eo(M: — M,)’

P(h(o, ), M;0,1)=[E, </T Z,dM, — Aa(M; — Mg))

with A={E,(M, — M,)* #0}.
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Fact 2.4. For 6 € (0,7T), ¢ € (0,1/3), and stopping times 0<o<t<T — 6 with 1 —o<¢
one has

E / (o, u)*oa(M,)* du< oo

if h= h}, M=B, a(x)=1 or h= hf, M =S, and o(x) = x. Moreover, a.s. it holds
that

@) P(h(a,-),M;0,7)> l(mz (6, M)’ E,((M M),),

(i)) P()(a, "), B; 0, 7) <46°E, SUp, o o (58 (v B)— %f; (0.B,))’,
(iii) P(h(s, ), S;0,7)< 25 Eosup,<,c. (C% (1, S,) — £% (0, S,))S?,
(iv) P(3(0, "), S:0,7) < ESUDy < ycyer (SuSe 5% (v, S0,

where ¢>0 is an absolute constant, hI::h} if M = B, hp:hf if M=S, and (M), =
Jo (M) du.

The basic reason for the lower estimate in Theorem 1.1 is the lower estimate from the
above item (i). We postpone the proof of the fact and see first how we can use it. From
sup; |o; — ;1| < 2T—e<1/3 (n=12T), P(h3(ci-1,-),S; 0, 1,0) =0as., (a+b+c+d?>
(@*/2) — 4(b* + & + d?), and Fact 2.4 we derive that

T-5

0G,
/0 oo (.5,)dS, — Z v!_(a,8)(Ss, — Ss,,)

2
n

L,

=03 E|5 PURE1-1..5:011,0) ~ 4P ). Si611,2)

—4P(h§(0',‘_],'),s;6l‘_],a) 4P(h (O-I 1, ) S Gi—1,0 l):|

2

°G
= 2£C E[Z <a 22 (O-l 13 (g 1)) o |(<S)Gi - <S)ai*‘)2

12(2T /n)* 002G, %G,

2

- 1 A/~ /N [E ~_ v I—1» O'

S Yo o S i (axz ©5) =z @1, Se0)

i 0 1SU<0;

2

2T\? G ’
— 4n? <> Esup  sup <SuS 2 - @S )>
n i o1 <v<u<o;
1 G ’
2
>2—€ : ; Ox X2 (Gi-1, 01_1)‘((‘5)0,- - (S>Ui—l)
26 e ’
_ 2 2 2
96T [Esep giilsgbpgm (6x2 (v,8,) — e (0i-1, S0, 1)>

2

2T3 2
_3 E sup (S aa (iz (v, S ))

n 0<v<u<T-9o
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where we have used that n>127T. Assuming a sequence of stopping times ¢ = (cr(”))

satisfying condition (9), we get by Lemma 2.3 and Lebesgue’s dominated convergence that
the second and the third term are converging to zero as n — o0, so that

r=s an )
n—00 (u S )dS - Z Ui (Sa(.”’ - SU@I)

- li /T d asz
- 2c 0

S (w5,
by Fatou’s lemma with v;”

L,

d(s),

L,

™ =9 (6™, S). In the same way one shows

r=s aGl
m in 5. (B dB, — Z o (B, w—Bw)
i—1 L2
1] 713G,
>4/ —
/\/26/0 T W B
for v\, :=v!_ (a™, B).

(c) Now take sequences of stopping times 1) = (r("))” with

0=1"<...<W=T.

Stopping additionally at 27, k = 1,...,n — 1, we get a new sequence n~) = (5"~ V)2
according to Lemma 2.1. Taking 6 € (0, T) and of" ”::1153” DA (T — §) we get sequences
of stopping times ¢~D = (6" V)21 with

0=V ol Z T

and

T 2T
sup 0" ) = g o)< < 5y

which is condition (9). By Lemma 2.2 and step (b) we derive

T oG n
o (6 M) dMy =3 vl (@, MY(M o — M)

L
TaG 2n—1 -
—x(u, Mu) dMu — Z] U?—l(’/’( n— )’M)(Mﬂgznfl) — Mﬂfnl*l))
i=

L,

T— ?) G 2n—1
n / o (M) dM, — D> (@D, MYM ey — M i)
0 =1 i i—1

\/Tl T—0o
>4/=1]—
22c/0

(The last term is finite because of Lemma 2.3.)

Ly
62

2 (u MLI)

Ly
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(d) Assuming

I

would imply (62G/6x2)(T0,MT0) =0 a.s. for some Ty € (0, T) and, by the arguments of
[3, Lemma 4.8], the existence of constants ¢y, c; € R such that g(M7) =cy+cy M7 as.
But this is a contradiction to our assumption. Consequently,

[

To derive Theorem 1.1 it remains to observe that inequality (10) guarantees that
aM(g(M7)|Ly)>0 for all n: in fact, in this case we find ™ = (rg”));;o which realize
aM(g(Mr)|L>) up to a factor 1 + ¢ with ¢>0 and apply step (c) to these nets to end up with
the conclusion of the theorem.

Assuming now a2 (g(M7)|Ly) =0 for some ny would give nets ), 0 = W< <
) = T, with

=0

62
(u, M,)|d
o2 L,

> 0. (10)

62
(u, My)|d
ox2 L

<_

T noy
6G
o (M) dM, — > 0?71(7;(’),M)(M15_,) ~ M) 7

0 i=1

L

for/=1,2,... . Stopping again additionally at kTT, k=1,...,1—1,and finally at T — ¢ as
in step (c), we get a new sequence ¢ with

and |ag)(w) ag) {(@)|<T/I for all k and w. Repeating steps (b) and (c) gives

g+ 1—1

0 = lim inf 5

[—00

T
>lirln inf \/ng+1— IH/ Z—f(u,Mu)dMu
— 00 0

no
_ Z v (D, MY(M o — My )

L,
=09G
— 00 0
ny+1—1
_ Z vi.’_l(a(l),M)(MUy) — MUEQ,)
— .
1 T—6 aZG
21\ 5 M,
\/; /0 oz (e M) Al

which contradicts (10). [
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Proof of Fact 2.4. (i) First we remark that

E / Thl(a, u)?a(M,)* du
T 2 2
= EE/ (a G(o,Ma)(Mu—Ma)) o M,)* du< oo,

ox?
where one can use Lemma 2.3. Moreover, it is easy to see that it is enough to prove
assertion (i) with (9°G/dx?)(s, M,) replaced by 1 on both sides. By Itd’s formula
we get
E,(M. — M,) = 3E, / (M, — M,)d(M), as.
and

E, (M, — M,)* = 6E, / (M, — M,)*d(M), as.

Consequently, by Holder’s inequality,

T 2
<Ea/ (Mu—Ma)d<M>u) _ |

<

(Eo(M, — M,)*)?

[EG(M‘L' - MG)Z[EU(MI - Ma)4

W O — O

[E(F(M‘L' - MG)Z[EJ/ (Mu - Mﬂ)zd(M>u a.s.
so that
JE [ O, = M7 don, <€, [ O, - Moo,

(s [3(M, = M) d(M),)*
HEO'(M‘E - Mﬁ)z

where A={E,(M, — Mﬂ)z;éO}. On the other hand, the Burkholder—Davis—Gundy and
Doob’s maximal inequality give, a.s.,

%4 Q.S

Ly, — (), P <E, sup (M, — Mo <dEL(M, — M,)*

C OSUKST

— 6dE, / (M, — M,Yd(M),
for absolute ¢,d >0 so that

ﬁ [EG(<M>T - <M>a)2< [Ea /T(Mu - Ma)2d<M)u
¢ a
(E (M, — M) d(M),)?
[EO'(M‘E - Ma')2

Y4 Q..

and the assertion follows.
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Item (ii) is left to the reader so that we turn to item

(iii) We let A(u)::a;gz (1, Sy) — 5% (6 Au,Ssny) for ue[0,T) and obtain E =

A(u)2S§ du<oo by Lemma 2.3. For N € {1,2,...} we define
ovu
TN= inf{u € [o,1]] / A(v)dS, >N} AT,

where inf #:=o0, and estimate E, [ [[7" A(v) dSv]zSi du from above. We have that

2

™ aVu 2 € (c+u)Aty
E, / { / A(v) dSb} S?du<E, / [ / A(v) dsb} Stsuney dut as.
4 4 0 4 ‘

For u € [0, T] 1t6’s formula implies, a.s.,

(o+u)Aty 2 5
Es |:/ A(v) dsv} S(a‘+u)A‘L'N
4
2

(o+u)Aty (o+u)ATy oVt
_E, / AP S di + E, / [ / A(v)dSv} S2di
g g g
(o+u)Aty oVt
+ 4E, / { / A(v)dSL} A(HS? dt
2

(o+u)Aty (o+u)Aty oVt
<3E, / A()*S?de + 3, / [ / A(v)dSv} S dr
2

N ™ oVt
<3[E,,/ A(t)szdt+3[E,,/ U A(v)dSL} S?dr

where we used |ab|<(1/2)(a® + b?). As a result, a.s.,

N ovu 2
E, / [ / A(v)dSl} S%du
£ (o+u)Aty 2
<E, / { / A(v)dSv] Stotuynay dut
0 g

™ TN oVt 2
<3¢k, / A(t*S*dt + 3¢, / [ / A(v)dS,,] S?dt,

which implies, a.s.,

™ oVu 2 17
E, / { / A(v)dSl} Sﬁdu<13—838 E, / A()* St de

3¢? 24
<——=—E, sup A(¥)°S]
1 - 3F o<I<1T

where we remark that Lemma 2.3 ensures that

E sup A(1)*S}<oo.

O<I<T
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Letting N — oo implies E [*[[7" A(v)dS,]*S2 du<oo and

O<I<T

T oViu 2 382
E, / [ / A(v)dSv] Sidug 3 E, sup A(t)*S* as.
4 g — 3¢

Finally, from h3(a,0 vu)= [7" A(v)dS,, ue[0,T 3], as. we derive that E [[[h5]*(a,u)
S2 du<oo and, a.s.,

P(h3(a,-), S;0,7)<E, /[h2 (0,u)S%du

T oVu 2
=E, / { / A(v)dSv} S%du

3 2
L[EJ sup A(t)zS‘[‘.

1 - 38 o<t<1T

(iv) The last inequality follows from, a.s.,

P((5,-), 5 0,0) <E, / U216, 1)S2 du
2

T 2
:[E/ U S, an(vS)dv] S2 du
ox2 u
2
<eF, // (a Gz( S)) S2 dvS2 du

o ?
<&E, sup (SuS (? (US)) O

OSVSUST

3. Concluding remarks

(1) For the sake of clarity we restricted ourselves to the Brownian motion and the
geometric Brownian motion as underlying diffusions. It might be possible to extend the
considerations to the setting considered in [1], where each of the cases, the Brownian
motion and the geometric Brownian motion, was considered more general.

(i1) Letting M be the Brownian motion or the geometric Brownian motion, for future work
the following problem could be of interest: what are the sequences f = ()2, with
B, | 0 and sup, /nf, = oo such that there exists a function g = gz ), with g(M ) € L,
and

al(g(M7)|Ly)=p, forn=12,... (11)

(recall that a(-|L,) was introduced in (2)). If we would restrict ourselves to
deterministic time-nets (t;)l_, in the definition of a(-|L,), then the problem is
solved: as shown in [8] for all B, | 0 and M € {B, S} there is a function g, such
that (11) is satisfied (for deterministic nets). Since the techniques from [8] completely
relay on the deterministic structure of the time-nets, the problem seems to be open for
random nets.
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