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Abstract

Given a geometric Brownian motion S ¼ ðStÞt2½0;T � and a Borel measurable function g : ð0;1Þ !
R such that gðST Þ 2 L2, we approximate gðST Þ � EgðST Þ byXn

i¼1

vi�1ðSti
� Sti�1

Þ

where 0 ¼ t0p � � �ptn ¼ T is an increasing sequence of stopping times and the vi�1 are Fti�1
-

measurable random variables such that Ev2i�1ðSti
� Sti�1

Þ
2o1 (ðFtÞt2½0;T � is the augmentation of the

natural filtration of the underlying Brownian motion). In case that g is not almost surely linear, we

show that one gets a lower bound for the L2-approximation rate of 1=
ffiffiffi
n
p

if one optimizes over all

nets consisting of nþ 1 stopping times. This lower bound coincides with the upper bound for all

reasonable functions g in case deterministic time-nets are used. Hence random time nets do not

improve the rate of convergence in this case. The same result holds true for the Brownian motion

instead of the geometric Brownian motion.
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1. Introduction and result

The question, we are dealing with, arises from stochastic finance, where one is interested
in the L2-error which occurs while replacing a continuously adjusted portfolio by a
see front matter r 2005 Elsevier B.V. All rights reserved.
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discretely adjusted one. Assume a finite time horizon T40 and a standard Brownian
motion B ¼ ðBtÞt2½0;T � defined on a complete probability space ðO;F;PÞ with B0 � 0,
continuous paths for all o 2 O, and F being the completion of sðBt : t 2 ½0;T �Þ. Define
ðFtÞt2½0;T � to be the usual augmentation of the natural filtration generated by B and S ¼

ðStÞt2½0;T � to be the standard geometric Brownian motion

St:¼eBt�t=2.

Let us consider the discounted Black–Scholes model (with variance one for notational
simplicity) and a Borel-measurable pay-off function g : ð0;1Þ ! R such that gðST Þ 2 L2.
If one wants to estimate the minimal quadratic hedging risk for gðST Þ, where the portfolio
may be rebalanced at the time-knots ðtiÞ

n�1
i¼0 coming from an increasing sequence of

stopping times

0 ¼ t0pt1p � � �ptn ¼ T ,

then one is concerned with the optimization problem

inf
v0;...;vn�1

½gðST Þ � EgðST Þ� �
Xn

i¼1

vi�1ðSti
� Sti�1

Þ

�����
�����

L2

, (1)

where the vi�1 are certain Fti�1
-measurable random variables (at first glance, one might

replace EgðST Þ by c 2 R in order to optimize over c as well, but one quickly checks that
c ¼ EgðST Þ is optimal because of the martingale setting). For equidistant nets questions of
type (1) have been studied by Zhang [11], Gobet and Temam [6], and others. In [3], general
deterministic not necessarily equidistant, nets were considered taking into account
properties of g. In particular, it turned out that for each g, such that there are no c0; c1 2 R
with gðST Þ ¼ c0 þ c1ST a.s., one has a lower rate of 1=

ffiffiffi
n
p

for (1) if one optimizes over all
deterministic time-nets of cardinality nþ 1 [3, Theorem 4.4, Lemma 4.9, Proof of Theorem
6.2]. Note, that gðST Þ ¼ c0 þ c1ST a.s. implies a perfect approximation in (1).
The natural question arises what happens to the lower rate if we take random time-nets

(in our understanding, always an increasing sequence of stopping times). It seems that the
techniques from [3] do not apply in this case. On the other hand, Martini and Patry [10]
identified the optimal strategy when one optimizes over random time-nets with a pre-given
cardinality. Their included numerical example indicates an improvement of the
approximation error by some factor compared to the case deterministic nets are used.
However, a lower bound for the approximation rate was not considered. So the question
was still open whether random time-nets improve the approximation rate. In the present
paper, we give an answer to this problem as follows: firstly, one cannot achieve a rate
better than 1=

ffiffiffi
n
p

, which is the same lower bound as for deterministic nets mentioned
above. Secondly, for all reasonable g (see Theorem 1.2 and Remark 1.3) this lower bound
is, up to a factor, the same as the upper bound obtained for deterministic nets. Hence one
cannot take advantage from random time-nets in this case. To formulate our result we
introduce, for a random variable Z 2 Lp, p 2 ½2;1Þ, and M ¼ ðMtÞt2½0;T � being either the
Brownian motion B ¼ ðBtÞt2½0;T � or the geometric Brownian motion S ¼ ðStÞt2½0;T �, the
approximation number

aM
n ðZjLpÞ:¼ inf ½Z � EZ� �

Xn

i¼1

vi�1ðMti
�Mti�1

Þ

�����
�����

Lp

, (2)
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where the infimum is taken over all sequences of stopping times 0 ¼ t0pt1p � � �ptn ¼ T

and Fti�1
-measurable vi�1 : O! R with vi�1ðMti

�Mti�1
Þ 2 Lp. As main result we get

Theorem 1.1. Let M be either the Brownian motion B or the geometric Brownian motion S

and let g : R! R be a Borel function with gðMT Þ 2 L2. If there are no constants c0; c1 2 R

with gðMT Þ ¼ c0 þ c1MT a.s., then there is some c40 such that

aM
n ðgðMT ÞjL2ÞX

1

c

1ffiffiffi
n
p for n ¼ 1; 2; . . . .

The theorem is proved in Section 2. To discuss the upper bound 1=
ffiffiffi
n
p

in some detail we
need more notation. As before, let M 2 fB;Sg and g : R! R be a Borel function with
gðMT Þ 2 L2. There is some e40 such that

Gðt;xÞ:¼
Egðxþ BT�tÞ : M ¼ B;

EgðxST�tÞ : M ¼ S

(
(3)

is a well-defined C1-function on ð�e;TÞ � R and ð�e;TÞ � ð0;1Þ, respectively, (for a
moment we extend B and S to ½0;T þ e�) and satisfies there

qG

qt
þ

a2

2

q2G
qx2
¼ 0 with aðxÞ:¼

1 : M ¼ B;

x : M ¼ S:

�
(4)

This is well-known where the argument for the extension by ð�e; 0� can be found, for
example, in [3, Lemma A.2]. By Itô’s formula we deduce, as usual, that

gðMT Þ ¼ EgðMT Þ þ

Z T

0

qG

qx
ðu;MuÞdMu a:s.

The following upper bound was proved in [3, Section 6].

Theorem 1.2. Let g : ð0;1Þ ! R be a Borel function such that gðST Þ 2 L2 and G be given by

(3) for M ¼ S. Assume that there is some y 2 ½0; 1Þ such that

sup
t2½0;TÞ

ðT � tÞy S2
t

q2G
qx2
ðt;StÞ

����
����

L2

o1. (5)

Then there exists some c40 such that for each n ¼ 1; 2; . . . there is a deterministic net

0 ¼ t
ðnÞ
0 ot

ðnÞ
1 o � � �otðnÞn ¼ T such that

½gðST Þ � EgðST Þ� �
Xn

i¼1

qG

qx
ðt
ðnÞ
i�1;St

ðnÞ

i�1

ÞðS
t
ðnÞ
i

� S
t
ðnÞ

i�1

Þ

�����
�����

L2

p
cffiffiffi
n
p .

Basic examples satisfying (5) are given in part (iii) of the following remark.

Remark 1.3. (i) If gðST Þ 2 L2, then E suptpb j
qG
qx
ðt;StÞStj

2o1 for all b 2 ½0;TÞ (cf. for
example [3]) so that, in Theorem 1.2,

E
qG

qx
ðti�1;Sti�1

ÞðSti
� Sti�1

Þ

����
����
2

o1. (6)

(ii) An analogue of Theorem 1.2 for M ¼ B follows from [3] as well (see [7]). Moreover,
in [8] it is shown that gðST Þ 2 L2 without an additional assumption (like for example (5))
does not imply the conclusion of Theorem 1.2 (cf. Section 3).
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(iii) Since t! kS2
t ðq

2G=qx2Þðt;StÞkL2
is continuous and increasing on ½0;TÞ (see [2]

where g is non-negative, which does not play any role for this assertion) it is not difficult to
check that

sup
t2½0;TÞ

ðT � tÞZ
Z t

0

S2
u

q2G
qx2
ðu;SuÞ

����
����
2

L2

duo1 (7)

for some Z 2 ð0; 1Þ implies (5) with y ¼ ðZþ 1Þ=2 2 ð1=2; 1Þ [1, Proof of Theorem 2.5 ].
Condition (7) is investigated in [1,5] in detail. For example, it is shown (under the
normalization T ¼ 1) in [5] that (7) is equivalent to

gðexpð� � 1=2ÞÞ 2 ðD1;2ðmÞ;L2ðmÞÞZ;1,

where m is the standard Gaussian measure on R, D1;2ðmÞ the Malliavin Sobolev space with
respect to m, and ðX 0;X 1ÞZ;1 the real interpolation space with parameters ðZ;1Þ formed by
the Banach spaces X 0 and X 1. This means, a minimal degree of smoothness of hðxÞ ¼

gðexpðx� 1=2ÞÞ implies (5) for some y 2 ½0; 1Þ. Basic examples for (5) are

g1ðxÞ:¼ðx� KÞþ with y ¼ 1
4
,

g2ðxÞ:¼ððx� KÞþÞa with y ¼
3

4
�

a
2
,

g3ðxÞ:¼w½K ;1ÞðxÞ with y ¼
3

4
,

g4ðxÞ:¼ha
T

2
þ log x

� �
with y ¼

3

4
þ

a
2

where K40, a 2 ð0; 1=2Þ, and haðyÞ:¼y�a if y40 with haðyÞ:¼0 otherwise (see [11,6,3,1]).
(iv) The results in [3] are formulated for non-negative g because of their interpretation as

pay-off function. The proofs are valid for general g, as used here, without modification.

The second upper bound, we want to recall, is taken from [4].

Theorem 1.4. Let gðyÞ:¼
R y

0
KðxÞdx, yX0, where K : ½0;1Þ ! R is a Borel function

integrable over compact intervals. Assume that 2ppoqo1 and

E

Z ST

0

jKðxÞjdx

����
����
2

þ jKðST Þj
q

" #
o1. (8)

Then there exists some c40 such that for n ¼ 1; 2; . . . and t
ðnÞ
i :¼iT=n one has that

½gðST Þ � EgðST Þ� �
Xn

i¼1

qG

qx
ðt
ðnÞ
i�1;St

ðnÞ

i�1

ÞðS
t
ðnÞ
i

� S
t
ðnÞ

i�1

Þ

�����
�����

Lp

p
cffiffiffi
n
p .

The assumption of Theorem 1.4 is strictly stronger than that of Theorem 1.2. For
example, g1 from Remark 1.3(iii) falls into the setting of Theorem 1.4, but not g2, g3, and
g4. At the moment we do not see any major obstacles to adapt the setting of [4] to prove an
analogue of Theorem 1.4 for the Brownian motion. However, this would exceed the scope
of this paper and is not rigorously done yet. Combining Theorems 1.1, 1.2, and 1.4 we
derive
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Corollary 1.5. (i) Let g : ð0;1Þ ! R be as in Theorem 1.2 such that condition (5) is satisfied

for some y 2 ½0; 1Þ. If there are no constants c0; c1 2 R such that gðST Þ ¼ c0 þ c1ST a.s., then

there is some cX1 such that

1

c
ffiffiffi
n
p paS

n ðgðST ÞjL2Þp
cffiffiffi
n
p

for all n ¼ 1; 2; . . . : The optimal rate is obtained by deterministic time-nets.
(ii) Let p 2 ½2;1Þ and gðyÞ ¼

R y

0 KðxÞdx be as in Theorem 1.4 such that condition (8) is

satisfied for some q 2 ðp;1Þ. If g is not linear, then there is some cX1 such that

1

c
ffiffiffi
n
p paS

n ðgðST ÞjLpÞp
cffiffiffi
n
p

for all n ¼ 1; 2; . . . : The optimal rate is obtained by equidistant time-nets.

Proof. Part (i) follows from Theorems 1.1 and 1.2. We turn to part (ii). Taking n ¼ 1 in
Theorem 1.4 gives gðST Þ 2 Lp. Since g is not linear, but continuous, there do not exist
constants c0; c1 2 R such that gðST Þ ¼ c0 þ c1ST a.s. Consequently, Theorem 1.1 implies
that

1

cð1:1Þ
ffiffiffi
n
p paS

n ðgðST ÞjL2ÞpaS
n ðgðST ÞjLpÞ

for all n ¼ 1; 2; . . . : Letting t
ðnÞ
i :¼iT=n and

An
t :¼
Xn

i¼1

qG

qx
ðt
ðnÞ
i�1;St

ðnÞ

i�1

ÞðS
t
ðnÞ
i
^t
� S

t
ðnÞ

i�1
^t
Þ

we get a martingale ðAn
t Þt2½0;T � where one may use (6). Theorem 1.4 and gðST Þ 2 Lp imply

An
T 2 Lp so that

E
qG

qx
ðt
ðnÞ
i�1;St

ðnÞ

i�1

ÞðS
t
ðnÞ
i
^t
� Stn

i�1
^tÞ

����
����
p

o1

for t 2 ½0;T � and

aS
n ðgðST ÞjLpÞpk½gðST Þ � EgðST Þ� � An

TkLp
p

cð1:4Þffiffiffi
n
p : &

2. Proof of Theorem 1.1

Before we turn to the Proof of Theorem 1.1 directly we start with some
Preparations: Sometimes we use Erð�Þ ¼ Eð�jFrÞ for r being a stopping time. To compute

aM
n ðZjL2Þ we recall that the optimal vi�1 are explicitly known once the time-net is chosen.

In fact, for a sequence s ¼ ðsiÞ
n
i¼0 of stopping times 0ps0p � � �psnpT and M 2 fB;Sg,

we exploit the Kunita–Watanabe type projection

PM
s : L2! L2 given by PM

s Z:¼
Xn

i¼1

vi�1ðs;MÞðMsi
�Msi�1

Þ

with

vi�1ðs;MÞ:¼
EðZðMsi

�Msi�1
ÞjFsi�1

Þ

EððMsi
�Msi�1

Þ
2
jFsi�1

Þ
wAi
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and Ai:¼fEððMsi
�Msi�1

Þ
2
jFsi�1

Þa0g to get

kZ � PM
s ZkL2

¼ inf Z �
Xn

i¼1

vi�1ðMsi
�Msi�1

Þ

�����
�����

L2

������
8<
:
Ev2i�1ðMsi

�Msi�1
Þ
2o1; vi�1 is Fsi�1

-measurable

9=
;.

In the Proof of Theorem 1.1, we want to restrict ourselves to sequences of stopping times
0 ¼ s0ps1p � � �psn ¼ T � d, d 2 ð0;TÞ, with

sup
o;i
jsiðoÞ � si�1ðoÞjp

2T

n
.

For this, we need the following two lemmas, where Lemma 2.2 confirms the intuition that
the approximation is getting better when the time-net is refined.

Lemma 2.1. Assume that t0; t1; . . . ; tN : O! ½0;T �, NX1, are stopping times. Then

Zl :¼maxfminftj0 ; . . . ; tjN�l
gj0pj0o � � �ojN�lpNg

defines a sequence of stopping times 0pZ0pZ1p � � �pZNpT such that for all o 2 O one has

ft0ðoÞ; . . . ; tN ðoÞg ¼ fZ0ðoÞ; . . . ; ZN ðoÞg.

The proof is obvious.

Lemma 2.2. Let 0pt0p � � �ptnpT and 0pZ0p � � �pZNpT be stopping times such that

ft0ðoÞ; . . . ; tnðoÞg � fZ0ðoÞ; . . . ; ZNðoÞg

for all o 2 O. Then, given Z 2 L2 and M 2 fB;Sg, one has that

inf E Z �
XN

k¼1

uk�1ðMZk
�MZk�1

Þ

 !2

p inf E Z �
Xn

i¼1

vi�1ðMti
�Mti�1

Þ

 !2

where the infima are taken over all FZk�1
-measurable uk�1 and Fti�1

-measurable vi�1 such

that

Eu2
k�1ðMZk

�MZk�1
Þ
2o1 and Ev2i�1ðMti

�Mti�1
Þ
2o1.

Proof. Assume we are given vi�1, i ¼ 1; . . . ; n, as above. If we choose

uk�1:¼
Xn

i¼1

vi�1wfti�1pZk�1otig

for k ¼ 1; . . . ;N, then it follows that uk�1 is FZk�1
-measurable. Since ðZkÞ is a refinement of

ðtiÞ, it holds

XN

k¼1

uk�1ðMZk
�MZk�1

Þ ¼
Xn

i¼1

vi�1ðMti
�Mti�1

Þ.
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Moreover, one quickly checks that

kuk�1ðMZk
�MZk�1

ÞkL2
p
Xn

i¼1

kvi�1ðMti
�Mti�1

ÞkL2
o1: &

Finally, the following lemma provides the necessary integrability properties (partially
implicitly) needed in the Proof of Theorem 1.1.

Lemma 2.3. Let M 2 fB;Sg. For a Borel function g : R! R such that gðMT Þ 2 L2,
k; l 2 f0; 1; 2; . . .g, j 2 f1; 2g, and b 2 ½0;TÞ one has that

E sup
0psptpb

jMtj
kjMsj

l qjG

qxj
ðs;MsÞ

� �2

o1,

where G is given by (3) and 00:¼1.

Proof. For a defined in (4) and 1op; qo1 with 1 ¼ ð1=pÞ þ ð1=qÞ we get

E sup
0psptpb

jMtj
kjMsj

l qjG

qxj
ðs;MsÞ

� �2

p E sup
0psptpb

jMtj
kjMsj

l

aðMsÞ
2j

����
����
p

 !1=p

E sup
0pspb

aðMsÞ
j q

jG

qxj
ðs;MsÞ

����
����
2q

 !1=q

p E sup
0pspb

jMsj
l

aðMsÞ
2j

����
����
2p

 !1=2p

E sup
0ptpb

jMtj
2kp

� �1=2p

� E sup
0pspb

aðMsÞ
j q

jG

qxj
ðs;MsÞ

����
����
2q

 !1=q

by Hölder’s inequality. It is known that the first two factors are finite for all 1opo1.
Hence, we have to find a 1oqo1 such that the third factor is finite as well. We
indicate the argument, but leave out some details because it should be standard. First we
write

aðxÞj
qjG

qxj
ðs;xÞ ¼ Egðx;MT�sÞp

j;M
s ðBT�sÞ

with gðx; yÞ:¼gðxþ yÞ for M ¼ B and gðx; yÞ:¼gðxyÞ for M ¼ S, where M and B are
independent copies of M and B, and

p1;B
s ðxÞ ¼ p1;S

s ðxÞ:¼
x

T � s
,

p2;B
s ðxÞ:¼

x2

ðT � sÞ2
�

1

T � s
,

p2;S
s ðxÞ:¼

x2

ðT � sÞ2
�

x
T � s

�
1

T � s
,
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see [9] and [3, Lemmas A.1 and A.2]. Letting 1ob0o2obo1 with 1 ¼ ð1=b0Þ þ ð1=bÞ,
we obtain

E sup
0pspb

aðMsÞ
j q

jG

qxj
ðs;MsÞ

����
����
2q

p sup
0pspb

ðEjpj;M
s ðBT�sÞj

bÞ
2q=b

�E sup
0pspb

ðEjgðMs;MT�sÞj
b0 Þ

2q=b0 .

Consequently, it suffices to verify that

E sup
0pspb

ðEjgðMs;MT�sÞj
b0 Þ

2q=b0
¼ E sup

0pspb

jEðjgðMT Þj
b0 jFsÞj

2q=b0

is finite for an appropriate 1oqo1. But this can be obtained by Doob’s maximal
inequality and the hyper-contraction property of the Ornstein–Uhlenbeck semi-group (the
latter yields for b 2 ½0;TÞ and a Borel function h : R! R such that hðBT Þ 2 Lr for some
1oro1 some r0 2 ðr;1Þ such that EðhðBT ÞjFbÞ 2 Lr0). &

Proof of Theorem 1.1. The strategy of our proof is as follows: after some preparations in
step (a) we expand, in step (b), the integrand of the stochastic integral to be approximated
into a zero and first order term (h1

0 þ h1
1 and h2

0 þ h2
1, respectively) and a corresponding

remainder (h1
2 and h2

2 þ h2
3, respectively). The Fact 2.4 shows that the dominating part in

the approximation is the first order term. This leads to a lower bound for the
approximation error under condition (9) for the time-nets. Condition (9) will be removed
in step (c). Step (d) concludes the proof by verifying that the constant involved in the lower
bound obtained in step (c) is positive when g is not almost surely linear.
(a) Let us first assume d 2 ð0;TÞ, n 2 f1; 2; . . .g with nX12T , and a sequence of stopping

times

0 ¼ s1p � � �psn ¼ T � d such that sup
o;i
jsiðoÞ � si�1ðoÞjp

2T

n
. (9)

Recall that G is given by (3). By the Kunita–Watanabe projection we know that the
optimal vi in

inf

Z T�d

0

qG

qx
ðu;MuÞdMu �

Xn

i¼1

vi�1ðMsi
�Msi�1

Þ

�����
�����

L2

������
8<
:
Ev2i�1ðMsi

�Msi�1
Þ
2o1; vi�1 is Fsi�1

-measurable

9=
;

are given by

v
g
i�1ðs;MÞ:¼

E
R T�d
0

qG
qx
ðu;MuÞdMuðMsi

�Msi�1
ÞjFsi�1

� �
EððMsi

�Msi�1
Þ
2
jFsi�1

Þ
wAi

with Ai:¼fEððMsi
�Msi�1

Þ
2
jFsi�1

Þa0g. It should be noted that we may replace in v
g
i�1ðs;MÞ

the term
R T�d
0 ðqG=qxÞðu;MuÞdMu byZ T

0

qG

qx
ðu;MuÞdMu or

Z si

si�1

qG

qx
ðu;MuÞdMu
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so that v
g
i�1ðs;MÞ only depends on si�1 and si but not on whole time net and not on T � d

(as long as sipT � d).
(b) Now we decompose ðqG=qxÞðt;MtÞ. This is done differently in the case of the

Brownian motion and the geometric Brownian motion. In order to distinguish between the
two cases we denote G in the case of the Brownian motion by G1 and in the case of the
geometric Brownian motion by G2. From (4) it follows that

q2G1

qxqt
þ

1

2

q3G1

qx3
¼ 0 and

q2G2

qxqt
þ

x2

2

q3G2

qx3
þ x

q2G2

qx2
¼ 0

on ½0;TÞ � R and ½0;TÞ � ð0;1Þ, respectively. For 0psptoT Itô’s formula yields, a.s.,

qG1

qx
ðt;BtÞ ¼

qG1

qx
ðs;BsÞ þ

Z t

s

q2G1

qx2
ðu;BuÞdBu

¼
qG1

qx
ðs;BsÞ þ

q2G1

qx2
ðs;BsÞðBt � BsÞ

þ

Z t

s

q2G1

qx2
ðu;BuÞdBu �

q2G1

qx2
ðs;BsÞðBt � BsÞ

	 

¼:ðh1

0 þ h1
1 þ h1

2Þðs; tÞ

and, a.s.,

qG2

qx
ðt;StÞ ¼

qG2

qx
ðs;SsÞ þ

Z t

s

q2G2

qx2
ðu;SuÞdSu �

Z t

s

Su

q2G2

qx2
ðu;SuÞdu

¼
qG2

qx
ðs;SsÞ þ

q2G2

qx2
ðs;SsÞðSt � SsÞ

þ

Z t

s

q2G2

qx2
ðu;SuÞdSu �

q2G2

qx2
ðs;SsÞðSt � SsÞ

	 


�

Z t

s

Su
q2G2

qx2
ðu;SuÞdu

¼:ðh2
0 þ h2

1 þ h2
2 þ h2

3Þðs; tÞ.

We obtain two-parameter processes ðhk
i ðs; tÞÞðs;tÞ2D with index-set

D:¼fðs; tÞj0psptoTg

such that hk
i ðs; tÞ is Ft-measurable and where we may suppose that all trajectories are

continuous on D. Assume stopping times 0psptoT and that h is one of the above hk
i .

Defining Z ¼ ðZuÞu2½0;T � by

Zu:¼hðs; uÞwfsouptg

we get that Z is adapted and that all trajectories are left side continuous and have right
limits. Now we estimate

Pðhðs; �Þ;M; s; tÞ:¼Es

Z t

s
Zu dMu �

Esð
R t
s Zv dMvðMt �MsÞÞ

EsðMt �MsÞ
2

wAðMt �MsÞ

� �2

with A:¼fEsðMt �MsÞ
2a0g.
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Fact 2.4. For d 2 ð0;TÞ, e 2 ð0; 1=3Þ, and stopping times 0psptpT � d with t� spe
one has

E

Z t

s
hðs; uÞ2aðMuÞ

2 duo1

if h ¼ h1
i , M ¼ B, aðxÞ ¼ 1 or h ¼ h2

i , M ¼ S, and aðxÞ ¼ x. Moreover, a.s. it holds
that
(i)
 Pðh1ðs; �Þ;M; s; tÞX 1
c
ðq

2G
qx2 ðs;MsÞÞ

2EsðhMit � hMisÞ
2,
(ii)
 Pðh1
2ðs; �Þ;B; s; tÞp4e2Es supspvpt ð

q2G1

qx2 ðv;BvÞ �
q2G1

qx2 ðs;BsÞÞ
2,
(iii)
 Pðh2
2ðs; �Þ;S; s; tÞp

3e2
1�3e Essupspvpt ð

q2G2

qx2 ðv;SvÞ �
q2G2

qx2 ðs;SsÞÞ
2S4

v ,
(iv)
 Pðh2
3ðs; �Þ;S; s; tÞpe3Essupspvpupt ðSuSv

q2G2

qx2 ðv;SvÞÞ
2,
where c40 is an absolute constant, h1:¼h1
1 if M ¼ B, h1:¼h2

1 if M ¼ S, and hMit ¼R t

0 aðMuÞ
2 du.

The basic reason for the lower estimate in Theorem 1.1 is the lower estimate from the
above item (i). We postpone the proof of the fact and see first how we can use it. From
supi jsi � si�1jp 2T

n
¼:eo1=3 (nX12T), Pðh2

0ðsi�1; �Þ;S; si�1; siÞ ¼ 0 a.s., ðaþ bþ cþ dÞ2X

ða2=2Þ � 4ðb2
þ c2 þ d2

Þ, and Fact 2.4 we derive that

n

Z T�d

0

qG2

qx
ðu;SuÞdSu �

Xn

i¼1

v
g
i�1ðs;SÞðSsi

� Ssi�1
Þ

�����
�����
2

L2

Xn
Xn

i¼1

E
1

2
Pðh2

1ðsi�1; �Þ;S; si�1;siÞ � 4Pðh2
2ðsi�1; �Þ;S;si�1; siÞ

	

�4Pðh2
3ðsi�1; �Þ;S; si�1;siÞ � 4Pðh2

0ðsi�1; �Þ;S; si�1;siÞ




X
n

2c
E
Xn

i¼1

q2G2

qx2
ðsi�1;Ssi�1

Þ

� �2

Esi�1
ðhSisi

� hSisi�1
Þ
2

" #

� n2 12ð2T=nÞ2

1� 3ð2T=nÞ
E sup

i
sup

si�1pvpsi

q2G2

qx2
ðv;SvÞ �

q2G2

qx2
ðsi�1;Ssi�1

Þ

� �2

S4
v

� 4n2 2T

n

� �3

E sup
i

sup
si�1pvpupsi

SuSv

q2G2

qx2
ðv;SvÞ

� �2

X
1

2c
E
Xn

i¼1

q2G2

qx2
ðsi�1;Ssi�1

Þ

����
����ðhSisi

� hSisi�1
Þ

" #2

� 96T2E sup
i

sup
si�1pvpsi

q2G2

qx2
ðv;SvÞ �

q2G2

qx2
ðsi�1;Ssi�1

Þ

� �2

S4
v

�
32T3

n
E sup

0pvpupT�d
SuSv

q2G2

qx2
ðv;SvÞ

� �2

,



ARTICLE IN PRESS
C. Geiss, S. Geiss / Stochastic Processes and their Applications 116 (2006) 407–422 417
where we have used that nX12T . Assuming a sequence of stopping times sðnÞ ¼ ðsðnÞi Þ
n
i¼0

satisfying condition (9), we get by Lemma 2.3 and Lebesgue’s dominated convergence that
the second and the third term are converging to zero as n!1, so that

lim inf
n!1

ffiffiffi
n
p

Z T�d

0

qG2

qx
ðu;SuÞdSu �

Xn

i¼1

v
ðnÞ
i�1ðSsðnÞ

i

� SsðnÞ
i�1

Þ

�����
�����

L2

X

ffiffiffiffiffi
1

2c

r Z T�d

0

q2G2

qx2
ðu;SuÞ

����
����dhSiu

����
����

L2

by Fatou’s lemma with v
ðnÞ
i�1:¼v

g
i�1ðs

ðnÞ;SÞ. In the same way one shows

lim inf
n!1

ffiffiffi
n
p

Z T�d

0

qG1

qx
ðu;BuÞdBu �

Xn

i¼1

v
ðnÞ
i�1ðBsðnÞ

i

� BsðnÞ
i�1

Þ

�����
�����

L2

X

ffiffiffiffiffi
1

2c

r Z T�d

0

q2G1

qx2
ðu;BuÞ

����
����du

����
����

L2

for v
ðnÞ
i�1:¼v

g
i�1ðs

ðnÞ;BÞ.
(c) Now take sequences of stopping times tðnÞ ¼ ðtðnÞi Þ

n
i¼0 with

0 ¼ tðnÞ0 p � � �ptðnÞn ¼ T .

Stopping additionally at kT
n
, k ¼ 1; . . . ; n� 1, we get a new sequence Zð2n�1Þ ¼ ðZð2n�1Þ

k Þ
2n�1
k¼0

according to Lemma 2.1. Taking d 2 ð0;TÞ and sð2n�1Þ
k :¼Zð2n�1Þ

k ^ ðT � dÞ we get sequences

of stopping times sð2n�1Þ ¼ ðsð2n�1Þ
k Þ

2n�1
k¼0 with

0 ¼ sð2n�1Þ
0 p � � �psð2n�1Þ

2n�1 ¼ T � d

and

sup
o;k
jsð2n�1Þ

k ðoÞ � sð2n�1Þ
k�1 ðoÞjp

T

n
p

2T

2n� 1

which is condition (9). By Lemma 2.2 and step (b) we derive

lim inf
n

ffiffiffi
n
p

Z T

0

qG

qx
ðu;MuÞdMu �

Xn

i¼1

v
g
i�1ðt

ðnÞ;MÞðMtðnÞ
i

�MtðnÞ
i�1

Þ

�����
�����

L2

X lim inf
n

ffiffiffi
n
p

Z T

0

qG

qx
ðu;MuÞdMu �

X2n�1

i¼1

v
g
i�1ðZ

ð2n�1Þ;MÞðMZð2n�1Þ
i

�MZð2n�1Þ
i�1

Þ

�����
�����

L2

X lim inf
n

ffiffiffi
n
p

Z T�d

0

qG

qx
ðu;MuÞdMu �

X2n�1

i¼1

v
g
i�1ðs

ð2n�1Þ;MÞðMsð2n�1Þ
i

�Msð2n�1Þ
i�1

Þ

�����
�����

L2

X

ffiffiffi
1

2

r ffiffiffiffiffi
1

2c

r Z T�d

0

q2G
qx2
ðu;MuÞ

����
����dhMiu

����
����

L2

.

(The last term is finite because of Lemma 2.3.)
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(d) Assuming

Z T�d

0

q2G
qx2
ðu;MuÞ

����
����dhMiu

����
����

L2

¼ 0

would imply ðq2G=qx2ÞðT0;MT0
Þ ¼ 0 a.s. for some T0 2 ð0;TÞ and, by the arguments of

[3, Lemma 4.8], the existence of constants c0; c1 2 R such that gðMT Þ ¼ c0 þ c1MT a.s.
But this is a contradiction to our assumption. Consequently,

Z T�d

0

q2G
qx2
ðu;MuÞ

����
����dhMiu

����
����

L2

40. (10)

To derive Theorem 1.1 it remains to observe that inequality (10) guarantees that
aM

n ðgðMT ÞjL2Þ40 for all n: in fact, in this case we find tðnÞ ¼ ðtðnÞi Þ
n
i¼0 which realize

aM
n ðgðMT ÞjL2Þ up to a factor 1þ e with e40 and apply step (c) to these nets to end up with

the conclusion of the theorem.
Assuming now aM

n0
ðgðMT ÞjL2Þ ¼ 0 for some n0 would give nets tðlÞ, 0 ¼ tðlÞ0 p � � �p

tðlÞn0
¼ T , with

Z T

0

qG

qx
ðu;MuÞdMu �

Xn0
i¼1

v
g
i�1ðt

ðlÞ;MÞðMtðlÞ
i

�MtðlÞ
i�1

Þ

�����
�����

L2

p
1

2l

for l ¼ 1; 2; . . . : Stopping again additionally at kT
l
, k ¼ 1; . . . ; l � 1, and finally at T � d as

in step (c), we get a new sequence sðlÞ with

0 ¼ sðlÞ0 p � � �psðlÞn0þl�1 ¼ T � d

and jsðlÞk ðoÞ � sðlÞk�1ðoÞjpT=l for all k and o. Repeating steps (b) and (c) gives

0 ¼ lim inf
l!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ l � 1
p

2l

X lim inf
l!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ l � 1

p Z T

0

qG

qx
ðu;MuÞdMu

����
�
Xn0
i¼1

v
g
i�1ðt

ðlÞ;MÞðMtðlÞ
i

�MtðlÞ
i�1

Þ

�����
L2

X lim inf
l!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ l � 1

p Z T�d

0

qG

qx
ðu;MuÞdMu

����
�
Xn0þl�1

i¼1

v
g
i�1ðs

ðlÞ;MÞðMsðlÞ
i

�MsðlÞ
i�1

Þ

�����
L2

X

ffiffiffiffiffi
1

2c

r Z T�d

0

q2G
qx2
ðu;MuÞ

����
����dhMiu

����
����

L2

which contradicts (10). &
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Proof of Fact 2.4. (i) First we remark that

E

Z t

s
h1ðs; uÞ

2aðMuÞ
2 du

¼ E

Z t

s

q2G
qx2
ðs;MsÞðMu �MsÞ

� �2

aðMuÞ
2 duo1,

where one can use Lemma 2.3. Moreover, it is easy to see that it is enough to prove
assertion (i) with ðq2G=qx2Þðs;MsÞ replaced by 1 on both sides. By Itô’s formula
we get

EsðMt �MsÞ
3
¼ 3Es

Z t

s
ðMu �MsÞdhMiu a:s.

and

EsðMt �MsÞ
4
¼ 6Es

Z t

s
ðMu �MsÞ

2 dhMiu a:s.

Consequently, by Hölder’s inequality,

Es

Z t

s
ðMu �MsÞdhMiu

� �2

¼
1

9
ðEsðMt �MsÞ

3
Þ
2

p
1

9
EsðMt �MsÞ

2EsðMt �MsÞ
4

¼
2

3
EsðMt �MsÞ

2Es

Z t

s
ðMu �MsÞ

2dhMiu a:s.

so that

1

3
Es

Z t

s
ðMu �MsÞ

2 dhMiupEs

Z t

s
ðMu �MsÞ

2 dhMiu

�
ðEs
R t
s ðMu �MsÞdhMiuÞ

2

EsðMt �MsÞ
2

wA a:s.

where A:¼fEsðMt �MsÞ
2a0g. On the other hand, the Burkholder–Davis–Gundy and

Doob’s maximal inequality give, a.s.,

1

c
EsðhMit � hMisÞ

2pEs sup
spupt

ðMu �MsÞ
4pd EsðMt �MsÞ

4

¼ 6d Es

Z t

s
ðMu �MsÞ

2dhMiu

for absolute c; d40 so that

1

18cd
EsðhMit � hMisÞ

2pEs

Z t

s
ðMu �MsÞ

2dhMiu

�
ðEs
R t
s ðMu �MsÞdhMiuÞ

2

EsðMt �MsÞ
2

wA a:s.

and the assertion follows.
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Item (ii) is left to the reader so that we turn to item
(iii) We let AðuÞ:¼ q2G2

qx2 ðu;SuÞ �
q2G2

qx2 ðs ^ u;Ss^uÞ for u 2 ½0;TÞ and obtain E
R T�d
0

AðuÞ2S2
u duo1 by Lemma 2.3. For N 2 f1; 2; . . .g we define

tN :¼ inf u 2 ½s; t�j
Z s_u

s
AðvÞdSv

����
����4N

� �
^ t,

where inf ;:¼1, and estimate Es
R tN

s

R s_u

s AðvÞdSv

� 
2
S2

u du from above. We have that

Es

Z tN

s

Z s_u

s
AðvÞdSv

	 
2
S2

u dupEs

Z e

0

Z ðsþuÞ^tN

s
AðvÞdSv

	 
2
S2
ðsþuÞ^tN

du a:s.

For u 2 ½0;T � Itô’s formula implies, a.s.,

Es

Z ðsþuÞ^tN

s
AðvÞdSv

	 
2
S2
ðsþuÞ^tN

¼ Es

Z ðsþuÞ^tN

s
AðtÞ2S4

t dtþ Es

Z ðsþuÞ^tN

s

Z s_t

s
AðvÞdSv

	 
2
S2

t dt

þ 4Es

Z ðsþuÞ^tN

s

Z s_t

s
AðvÞdSv

	 

AðtÞS3

t dt

p3Es

Z ðsþuÞ^tN

s
AðtÞ2S4

t dtþ 3Es

Z ðsþuÞ^tN

s

Z s_t

s
AðvÞdSv

	 
2
S2

t dt

p3Es

Z tN

s
AðtÞ2S4

t dtþ 3Es

Z tN

s

Z s_t

s
AðvÞdSv

	 
2
S2

t dt

where we used jabjpð1=2Þða2 þ b2
Þ. As a result, a.s.,

Es

Z tN

s

Z s_u

s
AðvÞdSv

	 
2
S2

u du

pEs

Z e

0

Z ðsþuÞ^tN

s
AðvÞdSv

	 
2
S2
ðsþuÞ^tN

du

p3eEs

Z tN

s
AðtÞ2S4

t dtþ 3eEs

Z tN

s

Z s_t

s
AðvÞdSv

	 
2
S2

t dt,

which implies, a.s.,

Es

Z tN

s

Z s_u

s
AðvÞdSv

	 
2
S2

u dup
3e

1� 3e
Es

Z tN

s
AðtÞ2S4

t dt

p
3e2

1� 3e
Es sup

sptpt
AðtÞ2S4

t

where we remark that Lemma 2.3 ensures that

E sup
sptpt

AðtÞ2S4
t o1.
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Letting N !1 implies E
R t
s ½
R s_u

s AðvÞdSv�
2S2

u duo1 and

Es

Z t

s

Z s_u

s
AðvÞdSv

	 
2
S2

u dup
3e2

1� 3e
Es sup

sptpt
AðtÞ2S4

t a:s.

Finally, from h2
2ðs; s _ uÞ ¼

R s_u

s AðvÞdSv, u2 ½0;T�d�, a.s. we derive that E
R t
s ½h

2
2�
2ðs; uÞ

S2
u duo1 and, a.s.,

Pðh2
2ðs; �Þ;S; s; tÞpEs

Z t

s
½h2

2�
2ðs; uÞS2

u du

¼ Es

Z t

s

Z s_u

s
AðvÞdSv

	 
2
S2

u du

p
3e2

1� 3e
Es sup

sptpt
AðtÞ2S4

t .

(iv) The last inequality follows from, a.s.,

Pðh2
3ðs; �Þ;S; s; tÞÞpEs

Z t

s
½h2

3�
2ðs; uÞS2

u du

¼ Es

Z t

s

Z u

s
Sv

q2G2

qx2
ðv;SvÞdv

	 
2
S2

u du

peEs

Z t

s

Z u

s

q2G2

qx2
ðv;SvÞ

� �2

S2
v dvS2

u du

pe3Es sup
spvpupt

SuSv

q2G2

qx2
ðv;SvÞ

� �2

: &

3. Concluding remarks
(i)
 For the sake of clarity we restricted ourselves to the Brownian motion and the
geometric Brownian motion as underlying diffusions. It might be possible to extend the
considerations to the setting considered in [1], where each of the cases, the Brownian
motion and the geometric Brownian motion, was considered more general.
(ii)
 Letting M be the Brownian motion or the geometric Brownian motion, for future work
the following problem could be of interest: what are the sequences b ¼ ðbÞ1n¼1 with
bn # 0 and supn

ffiffiffi
n
p

bn ¼ 1 such that there exists a function g ¼ gb;M with gðMT Þ 2 L2

and

aM
n ðgðMT ÞjL2ÞXbn for n ¼ 1; 2; . . . (11)

(recall that aM
n ð�jL2Þ was introduced in (2)). If we would restrict ourselves to

deterministic time-nets ðtiÞ
n
i¼0 in the definition of aM

n ð�jL2Þ, then the problem is
solved: as shown in [8] for all bn # 0 and M 2 fB;Sg there is a function gb;M such
that (11) is satisfied (for deterministic nets). Since the techniques from [8] completely
relay on the deterministic structure of the time-nets, the problem seems to be open for
random nets.
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