Available online at www.sciencedirect.com

. . . stochastic
SciVerse ScienceDirect processes
and their
applications

ELSEVIER Stochastic Processes and their Applications 123 (2013) 1616-1637 =
www.elsevier.com/locate/spa

Semi-linear degenerate backward stochastic partial
differential equations and associated forward—backward
stochastic differential equations™

Kai Du, Qi Zhang*

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received 4 September 2011; received in revised form 16 June 2012; accepted 3 January 2013
Available online 11 January 2013

Abstract

In this paper, we consider the Cauchy problem of semi-linear degenerate backward stochastic partial
differential equations (BSPDEs) under general settings without technical assumptions on the coefficients.
For the solution of semi-linear degenerate BSPDE, we first give a proof for its existence and uniqueness,
as well as regularity. Then the connection between semi-linear degenerate BSPDEs and forward—backward
stochastic differential equations (FBSDEs) is established, which can be regarded as an extension of the
Feynman—Kac formula to the non-Markovian framework.
© 2013 Elsevier B.V. All rights reserved.

Keywords: Backward stochastic partial differential equations; Semi-linear degenerate equations; Forward—backward
stochastic differential equations; Feynman—Kac formula

1. Introduction

BSPDEs were introduced by Bensoussan [2,3] as the adjoint equation of SPDE control
systems. Since then BSPDEs appeared in a large amount of literature related to control theory as
well as many other research fields. For example, in the study of stochastic maximum principle for
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stochastic PDEs or stochastic differential equations (SDEs) with partial information, the adjoint
equations of Duncan—Mortensen—Zakai filtering equations are needed to solve first, which are
actually BSPDEs. For this kind of discussions and applications, one can refer to [9,11,18,22,26],
to name but a few. Moreover, by means of the classical duality argument, the controllability of
stochastic evolution equations can be reduced to the observability estimate for BSPDEs, and this
duality relation was utilized in e.g. [1,24]. Besides the applications in control theory, BSPDEs
are also used to the stochastic process theory and mathematical finance, and we recommend the
reader to see [5,8,14,15] for more details.

However, the solvability and the regularity of BSPDE, even for linear BSPDE, are tough
problems due to the differential operators in the equation and its non-Markovian character.
The recent work [7] by Du, Tang and Zhang made some progress and lifted the restrictions
on the technical conditions for the Cauchy problem of linear degenerate BSPDEs. This
work motivates us to consider the Cauchy problem of semi-linear degenerate BSPDEs under
general settings. Actually, non-linear stochastic equations bear more application backgrounds
without the exception of non-linear BSPDEs. For instance, Peng [21] discussed the Bellman
dynamic principle for non-Markovian processes, whose corresponding backward stochastic
Hamilton—Jacobi—Bellman equation is a fully non-linear BSPDE. Moreover, in many subjects
of mathematical finance, such as imperfect hedging, portfolio choice, etc., non-linear BSPDEs
appear as an important role and one can consult [16,17] for this aspect if interested.

Needless to say, more difficulties lay on the solvability of non-linear BSPDEs. In fact, the
solvability of the solution to the fully non-linear BSPDE put forward in [21] is still an open
problem, under general settings. Even for semi-linear BSPDE below we consider in this paper,
only few work studied on it:

{du = —[Lu+ Mg+ f(t.x,u.q +uc0)]dt + g*aw} (1.1)

u(T,x) = p(x), xeR?
where

Lu = aijux,-xj + bil/txi +cu and Mgq = aikqi‘i + vRgk.

In 2002, Hu, Ma and Yong considered the semi-linear BSPDE of the above form, under some
specific settings and technical conditions in [10]. For instance, they only considered one-
dimensional equation and the coefficients o, v were independent of x. One of our goal in this
paper is to lift these restrictions and derive the existence, uniqueness and regularity of semi-
linear degenerate BSPDE without technical assumptions. Also we would like to indicate that the
similar regularity of solutions are obtained in this paper, but much weaker regularity requirements
on the coefficients are needed in comparison with [10]. Besides, Tang [23] is also concerned with
semi-linear degenerate BSPDEs by the method of stochastic flows, but this method causes a cost
of assuming differentiability of higher orders in x on the coefficients.

Our another motivation is to establish the correspondence between semi-linear degenerate
BSPDE and FBSDE. It is well known that, in the Markovian framework, the Feynman—Kac
formula for semi-linear equations was established by Peng [20] and Pardoux—Peng [19]. This
Feynman—Kac formula demonstrates a correspondence between semi-linear PDE and FBSDE
whose coefficients are all Markov processes. But in the non-Markovian framework, FBSDE
does not correspond to a deterministic PDE any more, but a BSPDE instead, by stochastic
calculus. Certainly, as an extension of the Feynman—Kac formula, this kind of correspondence is
basically important, whether in Mathematical finance research field or in a potential application
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to numerical calculus of BSPDE. To get the correspondence, one necessary step is to derive
the continuity of a solution to FBSDE. Similar to [19], we utilize the Kolmogorov continuity
theorem to prove it. But in our settings, no uniform Lipschitz conditions for ¢ (x) and f (s, x, 0)
with respect to x are assumed. Instead we suppose that ¢(-) and f (s, -, 0) belong to W7 space
and use the Sobolev embedding theorem to get the desired continuity.

Although [10,14] discussed the correspondence between BSPDE and FBSDE, our conditions
are weaker but results are stronger in the solvable case, and thus can be applied to more equations.
We expect that this kind of correspondence under our settings has independent interest in the
areas of both SPDEs and backward stochastic differential equations (BSDEs).

The rest of this paper is organized as follows. In Section 2, we clarify all necessary notations
and state the existing results used in this paper. In Section 3, we prove the existence, uniqueness
and regularity of the solution to the semi-linear degenerate BSPDE. The correspondence between
semi-linear degenerate BSPDEs and FBSDE:s is established in Section 4.

2. Preliminaries

Let (12, F,{%:}i>0, P) be a complete filtered probability space, among which the filtration
{Z}i>0 is generated by a d’-dimensional Wiener process W = {W;;t > 0} and all P-null sets
in Z.

The following notations will be used in this paper.

e For any multi-index y = (y1, ..., Ya4), we denote

y 9 Vi 9 Y2 9 Yd
Y — — A R
b =D; = (3x1> <8x2) (axd>

and |y|=y1+-- + Va.
eForn € ZT,0 < a < 1, denote by Cgo = Cgo (Rd) the set of infinitely differentiable

real functions of compact support on R?, by C* = C™(R%) the set of n times continuously
differentiable functions on R such that

luller = ) sup [DYu(x)| < oo,

lyl<n xR

and by C"% = C™*(RY) the set of Holder continuity functions on R? such that
|DYu(x) — D u(y)|

lullona = llullcn + > sup ~
lyl=n x,yeRY xs#y |x - yl

where y is a multi-index.
e For p > 1 and integer m > 0, we denote by W™ = WP (R¢; R!) the Sobolev space of
real functions on R? with a finite norm

1
V4
]l p :=<Z /Rdmyuv’dx) .

lyl=m

In particular, W7 = LP_ Tt is well known that W2 is a Hilbert space and its inner product
is denoted by (-, ).
e For p > 1 and integer m > 0, we denote by [W’"’p]d = W’"’p(Rd; R4 ) the Sobolev space of

. . . . ' 1/p
d’ dimensional vector-valued functions on R? with the norm ||v|| mp = (Zzzl ||vk||,’,71, p> .
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o Denote by L7(0, T; W™P) (resp. L7, (0, T; [W™P1?)) the space of all jointly measurable

processes u : 2 x [0,T] — W™P (resp.u : 2 x [0,T] — [W”’*”]d/) such that u is
Z-adapted and

T
E/ lu (@), pdt < oco.
0

e Denote by C# ([0, T]; W™:P) (resp. C'% ([0, T]; W™:F)) the space of all jointly measurable
processes u : {2 x [0, T] — W7 strongly (resp. weakly) continuous with respect to # on
[0, T] for a.s. w, such that u is .%;-adapted and

E sup [u(®)|h,, < oo.
t€[0,T]

Here, when we talk about u € CE;([O, T1; W™P), it means that for any f in (W™ 7)*  the
dual space of WP f(u(t, ®)) is a.s. continuous with respect to ¢ on [0, T'].

Throughout this paper the summation convention is in force for repeated indices. For the
coefficients in the semi-linear BSPDE (1.1), we always assume that a = (@")gxq, b =
b, ..., b%), ¢, 0 = (6" yxg and v = (', ..., v?) are jointly measurable and .%;-adapted
with values on the set of real symmetric d x d matrices, R4, R!, R4*d" and Rd,, respectively;
the real function f (¢, x, v, r) defined on {2 x [0, T'] x RY x R! x RY is jointly measurable and
F-adapted for each (x, v, r) and continuous in (v, r) for each (w, ¢, x); the real function ¢ is
Fr x B(R?)-measurable. Moreover, the following hypotheses will appear in the arguments.

(A,;) For a given constant K,,, > 0 and a given integer m > 0, the functions b, ¢, vk and their
derivatives with respect to x up to the order m, as well as a'/, o'k and their derivatives up
to the order max{2, m}, are bounded by K,,.
(P) (parabolicity) For each (w, t,x) € {2 x [0, T] x R4,

[2a"(t,x) — o™ o 7%(t, x)]6'€7 > 0, for arbitrary & € RY.

(SP) (super-parabolicity) There is a constant € > 0 such that for each (w, t, x) € 2 x [0, T] x
R4,

[2a" (1, x) — oo /* (1, x)|&'67 > €8;;&'€7,  for arbitrary & € RY,
where 8;; = 1 wheni = j, otherwise §;; = 0.

Definition 2.1. We call a pair function (u,q) € L?Q;(O, T: Wh2) x L?@;(O, T; [Wo’z]d/) a
(generalized) solution of BSPDE (1.1) if for each n € C(‘)’o and a.e. t,

T
w(®), n)o = (e, 77>0+/ (Cu+ Mg + (5, x, u, g + 1x0), n)ods
t

T
—/ (q"(s), modWE P —as. 2.1
t

Remark 2.1. According to the definition of £, (a"/u,i ;, n)o appears in (2.1) as the principal
part of Lu, which is understood as

- N y
(@i, mo = —(@uyi, nyi)o = (@jui, mo.
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For convenience, we do a transform in Eq. (1.1) by setting
q=q+uyo.

Define &'/ = 1o7* 57k, Then Eq. (1.1) can be rewritten as the following form:

{du = —~[Lu+ MG+ £t x, . Ddi + @ — uso)d W, 22)

w(T.x) =px), xeR’
where
Lu = (@’ — 2oy ;+bui+cu and b =b — a;];ojk —vkalk,

It is clear that a function pair (u, ¢) satisfies (2.1) if and only if (u, ¢) satisfies the following

T
(w(®), mo = (@, Mo +/ (Lu(s) + Mq(s) + f(s,x,u(s),q(s)), nods
t

T
—/ (@(s) —uxo(s), n)od Wi . 2.3)
t

To investigate semi-linear BSPDEs, we need some results about linear equations. In the linear
case, f in Eq. (1.1) is taken to be independent of the last two variables, i.e.

f@t,x,v,r) = F(t, x),

and the corresponding linear BSPDE has a form as below:

{du = —[Lu + Mq + Fldt + g*dw} (2.4)

u(T) = ¢.

Then we have the following.

Theorem 2.1 (Theorem 2.1 in Du-Tang—Zhang [7]). Let conditions (A,,) and (P) be satisfied
for givenm > 1.If F € Lzy(O, T: W"2) and ¢ € L??T(Q; W™2), then BSPDE (2.4) has a
unique generalized solution (u, q) such that

we CL0, T W™?) and q+uyo € L0, T; [W™2]Y),

and for any integer m € [0, m], we have the estimates

T
E sup ||u(r>||3nl,2+JE/0 (g + ux o) (®)I5,, 2 dt

0<t<T

T
<CE (ugou%m,ﬁ /O ||F<r)||3,1,2dr>. (2.5)

Here C is a generic constant which depends only ond,d’, K,,,m and T.
In addition, if F € L;(O, T; WPy and ¢ € L;T(Q; W™-P) for p > 2, then u €
C;([O, T1; W™ P), and for any integer my € [0, m],

T
E sup [u(®)lh,., < CePE (IIwIIfél,p+/ IIF(I)Ilfle,pdt>-
0

0<t<T
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In the remaining part of this paper, we still use C > 0 as a generic constant only depending on
given parameters, and when needed, a bracket will follow immediately after C to indicate what
parameters C depends on.

However, (2.5) is not enough to obtain the estimates of the solution to the semi-linear equation,
and we need more preparations. First let us see a lemma below.

Lemma 2.2. Let conditions (A1) and (P) be satisfied, and (u, q) is the generalized solution of
linear BSPDE (2.4). Then there exists a positive constant C = C(d, d’, Ky, T) such that for any
positive number . > C + 1,

T
R / e (Il 5 + g + wno ) dr
0
2 )\,TE 2 2 E T At 2 d 2
< Ze lelly, + ———— e || F(t)|l7 ,dt. (2.6)
’ A—C—1 0 ’

Proof. Take a small number ¢ > 0. Consider the following BSPDE:
du® = —[(eA+ L)u® + Mq® + Fldt + q°dW,
u (T) = ¢.

Clearly, BSPDE (2.7) satisfies the super-parabolic condition (SP). In view of Theorem 2.3 in
Du-Meng [6], Eq. (2.7) has a unique solution (u*, ¢%) satisfying

2.7

u® € L% 0, T; W) NCx(0, T W), ¢° e L0, T; (W),

Doing a similar transformation as in (2.2) with g° = ¢° 4+ ufo and applying It6’s formula
(c.f. [12]) to eM <Z|0t|§1 |D“u8|2), we have

T
Eluf(0))I7 , — ¢ Ellgl{ , + AE / M |luf (017 Hdt
0

T
=2 Z E/O eM(Du*, D*[(e A+ Lyuf + MG® + F)odt

le] <1

T
~-E f NG — utoll] Hdt. (2.8)
0

From Lemma 3.1 in [7], we know that there exists a constant C depending only ond, d’, K, T,
but not &, such that

2 ) (DU, D*[(e A + Lyuf + MG® + Flyo — 1§° — uboll} ,

lee| <1
1
< =3 1@° O, + Clu* 0117  + 20", F)r.

This along with (2.8) yields that
1 g At e 2 o~ 2
2B e (le @1} 5 + 17 13 ) de

T T
<ME|plf, +(C — A+ 1)1E/0 M |luf ()17 Hdt + 2E/0 MW, Fy (t)dt. (2.9)



1622 K. Du, Q. Zhang / Stochastic Processes and their Applications 123 (2013) 1616-1637

Then taking A > C + 1 and noting that

: IF I
A—C—1 1,2>

2, F)i(1) < (A= C = DI OIIF 5 +
we obtain estimate (2.6) for (uf, ¢%).
In view of the proof of Theorem 2.1 in [7], we know that there exists a subsequence {¢,} | 0
such that (u®", g®) converges weakly to (u, ) in Li@(O, T: Wh2)x Li@(O, T: (Wi 9y asn —
00. Hence estimate (2.6) follows from the resonance theorem and the proof is complete. [

Remark 2.2. (i) Following the proof of Lemma 2.2, together with an application of It6’s
formula to e [u®|?, we can easily prove

T
n«:/o O (Il 5 + llg +ueor 13 ) dr

—QL—E/J&wﬂmﬂdt (2.10)
r—C—1 J 0.2 ’

with the identical constant C in Lemma 2.2.
(ii) If we further assume that (Ao) holds, F € L%(0, T; W>?) and ¢ € L% (2; W??), then we

< 2" Elollg, +

can similarly deduce, by applying Itd’s formula to e*! (Zlal < |D%u? |2), that there exists a
positive constant C = C(d, d’, K, T) such that for any positive number A > C + 1,

T
E / M (||u||§,2 + g+ uxon%,z) dt
0

2 T
5kﬂmwﬁfw————E/eMwmﬁam. (2.11)
r—C—-1 J

3. Existence, uniqueness and regularity of solutions to semi-linear BSPDEs

We make a further hypothesis on the function f in BSPDE (1.1):

(F) the function f (¢, x, v, r) satisfies
(1) for arbitrary (w, t, x, v, r), fy, fv and f, exist;
) f(.0,0) € L0, T; Wh?);
(3) there exists a constant L > 0 such that for each (w, t, x),
[f (@, x,v1,r1) — f(t, x,v2, )| + (| fx (@, x, 01, 71) — fo (2, x, 02, 72) ||
< L(Jvy — va| + |lr1 — r2ll), forarbitrary v, vy € R, r{, 1 € RY .

Obviously, f, and f; are bounded by the constant L.
First we give the proof for the existence and uniqueness of solutions to semi-linear BSPDEs.

Theorem 3.1. Let conditions (A1), (P) and (F) be satisfied. Suppose ¢ € L?Q}T (2; W2, then
BSPDE (1.1) has a unique solution (u, q) such that

ueCL(0,TI; W2, g +uo € L%, T; [WH29).
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Morveover, there exists a constant C = C(d,d’, Ky, T, L) such that

T
E sup [u()ll}, -HE/ lg + uxo |7, (0)dt
1€[0,T] 0

T
< CE (nwniz + /0 If, -0, 0)||%,2dt). 3.1

Proof. We mainly use the Picard iteration in the proof of this theorem.

Step 1. Define a successive sequence by setting

(0, g0) = (0, 0)

and {(#,, gn)}n>1 to be the unique solution of the following equations:

{dun = _[Lun + Mgy + f(t, %, up—1,gn-1 + unf],xa)]dt + qllithk (3.2)

un(T) = o.
The solvability of Eq. (3.2) is indicated by Theorem 2.1 since one can easily check that
FCorsttnat, Guot + un-1,50) € L0, T3 Wh?2)

by virtue of condition (F). Then we obtain a sequence {(uy, gn)}n>0 C C}([O’ Tl Wl,z) «
L%(0, T; [W'2?), where

2;11 =(gn + Upx0.

Step 2. For the sequence {(uy,, gu)}n>0 defined in Step 1, we prove that a subsequence converges
weakly in L;(O, T; Wh2y x L2§(0, T; [lez]d/). First noticing condition (F), we have that for
each integer n > 1, there exists a positive constant C depending only on L such that

T
E/ NS ttn1. Qa1 o1
0

T T
SCE[/ f (2, -.0,0)|2 pdt + / e“(nun_lniﬁ|@_1||%,2)dt] (3.3)
0 0

If we denote the constant C in (2.6) and (2.10) by C1, then taking Ag = 4C + C1 + 1, we can
prove a claim that for each n > 0,

T
E /0 " (llun 5 + 1l ) dt

T
<4E (eanou%,z + fo M fa, -0, 0)||%,2dz) : (B4

To prove it, the mathematical induction is used. Assume that (3.4) is true for n — 1. Applying
Lemma 2.2 to Eq. (3.2), by (3.3) we have

T
B[ (o +10135) ar

2 r -
<2 E|g| , + ————E f CNF - tn—t, GuD 1}, dt
rMm—Ci—1 Jo
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T 2 2C r Aot 2
=2 Elolis+ —F——E VN f (-, 0,007 pdt
’ M—C—1 0 ’
’ A 2 2
¢ -~
[ (Il + 13} ) dt]
0

T
<4E (ekoanuiz + fo M f(t, -0, 0>||%,2dr) :

By (3.4), we immediately know that {(u,, gn)}s>0 is uniformly bounded with the norm of
Lé;(O, T; Wl'z) X LLZQ;(O, T; [Wl'z]d/). Hence there exist a subsequence {n'} and a function pair
@, q) € L%, T; W) x L%0, T; [W'2)Y)
such that as n’ — oo,
(', @) = (@, q)  weakly in L%(0, T; W) x L%(0, T; [W'2]9).
Step 3. We then prove the strong convergence of {(uy, qn)}n>0 in L2§(O, T; W0'2) X Li@

0, T; [W%21?). In view of (2.10) and condition (F), taking A = A; = 8L2 + C; + 1 and
n > 1 we have

T
A 2 o~ -~ 2
B[ e (lwss =l + 1 — Gl )
0

2 T = -
< —E/ N F @, - ttn, Gn) — (- tn—1, G113 2dt
M=—Ci—1 Jp ’

(7 o
< 38 [ (it = a1 135+ 10— Gt ) .
0

which implies that {(u,,gn)}s>0 is a Cauchy sequence in the space Li@(O, T: W92) x
L}(O, T, [WO'Z]"/). Actually {(u,,q,) : n > 1} is also a Cauchy sequence with the norm

E f) |l - I3 ,dt due to the norm equivalence between \/IE Jo @Mt - 113 pdr and \JE [ |- (13 Hd
in Lzﬁ(O, T: W2y x Lzﬁ(O, T: [W2]?"). We denote the strong limit of {(t,, Gn)}n>0 by (i, §).
Recalling the subsequence {n'} in Step 2, we know that {(u,’, g,/)} converges strongly to (u, q)
in L{zgz(O, T: W92y x Li@(O, T; [WO'Q]d ). By the uniqueness of the limit, we have

.§) = [@.9) € L5 0. T: W"?) x L5 0. T: [W'*)).

Step 4. Next we prove that (u, g) is a solution of BSPDE (1.1) to complete the existence proof.
For this, we need verify that (u, ) satisfies (2.3). First we know that

T
(p (1), Mo = (@ Mo +/ (Lu () + M@ (s) + f(s, X, upr—1(5), @ur—1(5)), n)ods
t

T
- / (an’(s) - un/,xO'(S), nodWs. 3.5)
t

Since (u,/_1, gn—1) converges strongly to (u,q) in LL%/;(O, T: Wo2) x L_Z?(O, T; [WO21%) as
n’ — 00, by condition (F) it follows that, as n’ — o0,

T
E\/O ”f(t’ ) un’—la/q\n’—l) - f(t’ 'a M,®||62(t)dt — 0.
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Hence, for any n € Cg°, all terms of (3.5) converge weakly to the corresponding terms of
(2.3) in LLZO}(O, T;R!) since the operators of Lebesgue integration and stochastic integration
are continuous in ng(O, T; RI). Therefore, (4, q) is a generalized solution of (2.2). Setting
q = ¢ — uxo, we know that (u, g) is a generalized solution of BSPDE (1.1).

Moreover, since (u, q) is obtained, we regard f(t,x,u, g + u,o) as the known coefficient
and (u,q) as the solution of linear BSPDE with given f (¢, x,u,q + uyo). By condition
¥, f(t,x,u,q + uyo) € ng(O, T; W’”’z). Then we get from Theorem 2.1 that u €

([0, T1; W'2) and (3.1) follows.
Step 5. We finally deduce the uniqueness of solution to semi-linear BSPDE. Assume that (11, q1)
and (uy, q2) are two generalized solutions to BSPDE (1.1). Setg; = g;+u; xo,i = 1, 2. Noticing
(2.10) and taking A = XA again, by condition (F) we have

T
E fo 1 (Il = w2l + 131 — G213 ) de

1 (T o~
< EE[ M (ly —wally 5 + 11— 213 ) dr.
0

The uniqueness of solution immediately follows, which completes the proof of Theorem 3.1. [

In the remaining part of this section, the regularity of solution to semi-linear BSPDE is
explored. We consider a simpler form of BSPDE (1.1) with f(z, x, v, r) independent of r:

{du = —[Lu+ Mq + f(t, x,u)ldt + g*dWF 3.6)

u(T,x) =¢kx), x¢€ RY,
For BSPDE (3.6), condition (F) is simplified as follows:

(F’) the function f(z, x, v) satisfies
(1) for arbitrary (w, t, x, v), fy and f, exist;
() f(.0)e L0, T; Wh?);
(3) there exists a constant L > 0 such that for each (w, t, x),
[f(@, x,v1) = f(t,x,v) + | fx (@t x,01) — fu(t, x, v2)|| < Llvp — v,
for arbitrary vy, vy € R.

Obviously, f, is bounded by the constant L.
We know from Theorem 3.1 that under conditions (A;), (P) and (F'), if ¢ € L<2‘77 (02; wh2),

BSPDE (3.6) has a unique solution (u, g) € C{Z}([O, T]; wh2yx L%(O, T; [WO’Z]d/). Moreover,
some regularity results for BSPDE (3.6) can be obtained.

Theorem 3.2. We assume that conditions (A1), (P) and (F') are satisfied, and for p > 2,
fG0) € L0, T; WhP) and ¢ € LY (2, WhP), then u € C% ([0, T1; WhP) and there
exists a constant C = C(d,d’, K, T, L, p) such that

T
Esup [lu)[|} < CePE (ol + If@ ol dt). 3.7
t<T P P 0 P

Proof. By condition (F"), it is easy to see that for arbitrary v € W!?
IF @I, = 1F G-l + e 0l
< CUf@. Ol , +LPvl] ). (3.8)
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To avoid heavy notation, we set

My =E (Ilwllfp + /OT If, -,O)IIf,pdt) .
Similar to arguments in Theorem 3.1, we define a recursive sequence {(u4,, gn)}n>1 as follows:
{du,, = —[Lun + Mgy + ft, x, up—1)]dt + g, dW;
un(T) = ¢.
If usoy € L20.T;WhP), by 3.8) f(.~us—1) € L%, T;WhP), thus u, €

Cz(0,T]; WPy follows immediately from Theorem 2.1. By setting ug = 0, we know from

mathematical induction that {u,},>0 C CZ;Z([O, T1; WL-P). Furthermore, by the estimate in
Theorem 2.1 and (3.8), we have for arbitrary t € [0, T], n > 1,

A

T
E””n(t)“‘f,p < CE <”¢”f,p —|—/ ||f(S, . Mn—l)”f’p dS)

t

IA

T
C [ Bl ©If, ds +Chr,
t

where C is independent of n. A simple calculation leads to

n—1
1 _
EllunOIIY , = CMy ;) S CHT =0 = O, (3.9)
Hence there exist a subsequence {n’'} and a function u € ng(O, T: W'2) such that as
n’ — 00, u, converges weakly to u in Lzy(O, T; Wl’z). By the Banach—Saks Theorem, we can

construct a sequence u* from finite convex combinations of u,, such that u* and u* converge to u
and u, forae.t € [0, T]x € R? as., respectively. Due to the norm itself is convex, (3.9) implies

T
E/ lu* OIF , dr = CM1(e“" —1).
0 ,
By the Fatou Lemma, it turns out that
T
E/ lu@If , di = CMET = 1),
0 ,

Regarding u as the solution of linear BSPDE with given coefficient f(t, x, u), by (3.8) and The-
orem 2.1 we obtain (3.7). [

From the proof of Theorem 3.2 and Corollary 2.3 in [7], it is not hard to derive the following
corollary.

Corollary 3.3. Let conditions (A1), (P) and (F') be satisfied. If f(-,-,0) € L0, T; W),
(VS L?g%((); Wl,OO), then u € L;(O, T: Wl,oo)’ ie

||u||LO‘§_(O’T’Wloo) = C(da dOv K17 T» L’ f(" y 0)’ (p) é COO'
With the help of the Sobolev embedding theorem, it is not hard to deduce the corollary below.

Corollary 3.4. Under the conditions in Theorem 3.2 with p > 2 replaced by p > d, u(t, x) is
Jjointly continuous on (t, x) a.s.
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Proof. For R € N, take a nonnegative function p € Cg° (R?) such that p(x) = 1 on the
closed ball B £ {x € R? : |x| < R} and p(x) = 0 on {x € R? : [x| > R + 1}, then it is clear
that up € C'% ([0, T]; W'?(Bg41)). Since the embedding from W7 (Bg1) to C* (Bgy1) is
compact, up € C# ([O, Tl; C“(BR+1)) which implies that u (¢, x) p(x) is a.s. jointly continuous
with respect to (¢, x) on Bg1. Thus u is a.s. jointly continuous with respect to (¢, x) on Bg. By
the arbitrariness of R, the corollary follows. [J

Based on Theorem 3.2, we explore the regularity of solution to BSPDE (3.6).

Theorem 3.5. We assume that

(1) conditions (Az) and (P) hold, and ¢ € L%, (£2; W> 2)0L°° (2; Whoey:
(2) for arbitrary (a) t,x,0), fx, fos fxx> frvs ijw exist;

(3) f(,-0) € L0, T; W3 N LS(0, T; Whe);

@ fou, frvs fou are bounded by L;

(5) for arbitrary (w, t, x, v), | fxx (@, x, V)| < |fex(,x,0)| + L|v|.

Then (3.6) has a unique generalized solution (u, q) satisfying

ueC%(0,T); W) NLEO, T; W) and g +uso € L0, T; [W>2)9).

Proof. First of all, our assumptions satisfy the conditions in Theorem 3.2 and Corollary 3.3; thus
(3.6) has a unique solution (u, g) satisfying

ueCL(q0, T, W) NLEO, T; Wh™) and g 4 uo € L0, T; [WhHT).

To get a better regularity, for arbitrary § > 0, we consider the non-degenerate BSPDE below:

du’ = —[(SA + L)u’ + ./\/lq‘S + f(,x, u‘s)] dr + q5 dw;

u’(T) =
By Theorem 3.1 we know that above BSPDE has a unique solution (u°, ¢°) € L% (0, T; W'?) x
Li@(o, T; [W%2]), which together with condition (4) leads to a fact that ft, x,u’) €
Lzy(O, T; W'2). Regarding f(t, x,u®) as a given coefficient and using Theorem 2.3 in [6]
for non-degenerate linear BSPDE, we can get a better regularity of solution, i.e. (1%, ¢%) €
L%(0,T; W3%) x L%(0, T; [W>2]9). Then ¢° + ulo € L%(0, T; [W>2]), and by (2.11)

there exists a positive constant Co = Ca(d,d’, K2, T) such that for any positive number
A>Cr+1,

T
E /0 (160132 + la® + o 13, dr

T
20T Ellgl3 , + E /0 PN f Gt D)3 dr. (3.10)

A—Cr—1
Also, by Corollary 3.3 we have |u§| < Cwo, so it follows from conditions (2), (4) and (5) that
| £t x,u)] < £, x, 00+ Llu’),
HF @ x u)el < 1 fe(t,x,0)] + L(1u| + [ud]),

W x, %) xl < | fax (s x, ®)] 4 2] fao (8, x, ud)] - (1S 4 | fon (2, x, u®)] - [l
+ 1 folt, x, u®)] - |u |
< | fex(t, x,0) + L1u®| + (2 + Coo) LIuy| + Liu,|.
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Hence,

1/ a5 = L Coo) (11 0135 + 1613,

Putting this estimate into (3.10), we immediately get

T
E /0 (1613 5 + llg® +ulol3 ) dr

C(

AT 2 2 L, Co) r At 2 812
<2 Elpl3 + B [ (17 013, + 1615, dr.
rA—Cr—1 0

Then taking A = 4 C(L, Coo) + C2 + 1 in above and setting

T
My=E (nson%,2 +/0 Ifa. -, 0>||§,2dr) :

we obtain the uniformly bounded estimate for (u°,¢° + u®c) in L_Z{j(O,T;WM) x
L%0,T; [W*H7), ie.

T
E / (||u‘3||%,2 +lg° + uian%,z) dt < 4" My, 3.11)
0

where A is independent of §. So we can get a sequence {8,,} | 0 and (u,7) € L_zy(O, T: W22y x
Li@(O, T: [W22)9) such that ", r") 2 W, ¢% + ulro) converges weakly to (u,7) in
L}(O, T: W22) x Li@(O, T; [W22]4'). The weak convergence of u® to @ in L‘Z{}(O, T: W22)
also implies the weak convergence of uf{‘a to U0 in Li@(O, T: W2y Hence q‘s" =r" - ui"o
converges weakly to g 27 — 1,0 in Li@(O, T; [Wh2d),

Next we show that {u%)} is a Cauchy sequence in L25[(0, T; WO2). If so, the strong

convergence of u% to i in L?g (0, T; W92) follows and it is easy to see that (i, ¢) is the unique
solution to (3.6) referring to the arguments as in Theorem 3.1.
To prove that {u%"} is a Cauchy sequence in L{ZQ(O, T; W92), we set
W — u(Sm’ g"m = qén _ qu_
Obviously, (u™™, g™™) satisfies equations as follows:

du™™ = —{(8y A+ L)u™™ + Mg™™ + f(t,x,u") — f(t,x, u)
+(8n — &) Aulm} dt + g™ AW,
W™ (T) = 0.

By (2.5) in the case of m1 = 0 and (3.11), for ¢ € [0, T], we have
T
Elu™"(1))13, < CE{f 1f (s, o™y = f(s, - ™3 5 ds
t
T
+ (80 — 8m) / ||Au’"(s>||<%,2ds}
)

T
<CE f lu™" ()13 5 ds + (8 — ) C M,
t
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where the constant C is independent of §,, §,,. Therefore, we can apply the Gronwall inequality
and take n, m — oo to deduce that {¢#"} is a Cauchy sequence in LZJP(O, T; WO’Z). The proof of
Theorem 3.5 is complete. [

Remark 3.1. (i) Theorems 3.2 and 3.5 improve much in many aspects in comparison with
Theorems 3.2 and 5.1 in Hu-Ma-Yong [10]. For example, our result includes the multi-
dimensional equation and the coefficients o, v in BSPDE can depend on x (actually, all
the coefficients in our setting are a function of (w, #, x)). Also the regularity condition of
coefficients in Theorem 3.5 is weaker than that in Theorem 5.1 in [10]. Needless to say, all
these improvements are not trivial.

(i1) Denote by Di D} f, i, j € Z* the derivative of f which is i order with respect to x and j
order with respect to v. For m > 1, if we assume
(1) conditions (A,,) and (P) hold, and ¢ € L?%(Q; wm2)n L% (%2; wm=lo0y
(2) for arbitrary (w, t, x, v), all DD}, f exist, where 0 < i, j <mandi + j > 0,

(3) f(.0) € L0, T; W) N LR, T; Wn=120),

“4) allDj;DifareboundedbyL,WhereO <i<m-1,0<j<mandi+ j>0,

(5) for arbitrary (w, t, x, v), |ID f(t, x,v)| < |DP f(t,x,0)| + L|v],

then from the argument of Theorem 3.5, it is not hard to prove that (3.6) has a unique
generalized solution (u, ¢) satisfying

ue C%(0, T]; W™ N LEO, T; W™ 1) and
q+uo € L0, T; [W™?]%),

4. Connection between BSPDEs and FBSDEs

In this section, we study the connection between semi-linear BSPDEs and FBSDEs. This kind
of connection is established in a non-Markovian framework and can be regarded as an extension
of the Feynman—Kac formula for semi-linear PDEs and BSDE:s (c.f. [19,20]).

First give a SDE whose coefficients may be non-Markovian:

N N
Xﬁf" :x—i—/ b(r, X;’x)dr—i—/ o(r, Xﬁ’x)dWr, s>t
'

t

“.1)
X =x, 0<s<t,

where W = {W;; r > 0} is a d’-dimensional Wiener process. We always assume that b, o satisfy
(A1). Then we present a BSDE whose coefficients depend on the solution of the above SDE:

YO = o(X7F5) + / ' fr, X2* Y dr — / ' Zdw,. (4.2)
s s
Thus (4.1) and (4.2) constitute a FBSDE system.
Remark 4.1. (i) Given p > d, note that
]E/OT [f(s, X5, 0)|Pds < ]E/O

Hence, if f(-,-,0) € L7(0,T; W!'P), ¢ ¢ L% (1; WbP), and for any w € 2,5 €
[0, T], f(s,x,y) satisfies the uniformly Lipschitz condition with respect to y, we can first

T T
17 G, 0P acds < CE/O 1765, O, ds.
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prove that there exists a unique solution (YH, Z.ﬁ’x)se[,j] to BSDE (4.2) in a standard way.
Then, by the results of Proposition 3.2 in [4], we know that the solution of BSDE (4.2)
satisfies

)2
T T 2
E sup |Y§’"|”ds+E/ |Y;~X|f’—2|z§:X|2ds+(JE/ |z;»X|2ds) <oo. (43)
t t

t<s<T

(i1) For s € [0, t], (4.2) is equivalent to the following BSDE:
t t
Yr = Yt”x +/ f@r,x, Y)dr —/ Z:dW,.
N N

As stated in (i), in view of Yt”x € L;T (£2; L?), the above equation has a unique solution
(Y¥, Z¥)se10.11- To unify the notation, we define (Y;*, Zy™) = (Y, ZF) when s € [0, 7).

Our purpose is to investigate the connection between FBSDE (4.1), (4.2) and the following
BSPDE:

ij i ik k k k
{du = —[atfux,'xj —|—b’uxi + 0! q.i + f(t, x, u)]dt +4q th (4.4)

u(T,x) = p(x), xeR

where a'/ = joiko k.

As for the case that f in BSDE (4.2) involves nonlinear Z.™*, correspondingly f in the above
semi-linear degenerate BSPDE should involve nonlinear ¢ + u,o. However, for this kind of
BSPDE a high regularity of u is still an unsolved problem in our settings, which is necessary
to establish the correspondence between semi-linear BSPDE and FBSDE as our method below
shows. So here we assume that f in BSDE (4.2) only involves nonlinear Yo~

We begin with the linear case that f (¢, x, y, z) = c(t, x)y + vE(t, x)z¥ + F(z, x) and in this
case the involving BSDE has a form like below:

T
YO¥ = o(X3Y) + / [c(r, XPOYES +v(r, Xp9)ZE* + F(r, X029 ]dr
N

T
- [ zraw. 45
N

The corresponding linear BSPDE is as follows:

{du = —[Lu + Mq + Fldt + ¢*dw} “6)

u(T, x) = ¢(x), xeR,

where £, M are defined as in (1.1).
Referring to Lemma 4.5.6 in [13], we first give a useful lemma.

Lemma 4.1. Under condition (A1), for p > 1,t',t € [0, T], the stochastic flow defined
by (4.1) satisfies

t'x' t,x)2
E sup X" — X, [P
s€[0,T]

<C(p,T) (1 X+ |x’|21’) (|x’ — x| — r|1’) a.s.
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The following proposition borrows ideas from [19,25]. Although F'(s, x) is not Lipschitz

continuous on x, we still can derive the continuity of Y,t ** due to the Holder continuity of F (s, x)
on x.

Proposition 4.2. Let conditions (A1) be satisfied. For a given p > 2d + 2, suppose F €
L%0.T: W'P) and ¢ € L;T(Q; WLPY If (Y )sepr1) is the solution of BSDE (4.5), then

fort €0, T],x € RY, (t,x) — Y,t’x is a.s. continuous.

Proof. By Remark 4.1, we know that BSDE (4.5) has a unique solution (Y¢™*, Z5™*);c[0.71 and
it satisfies (4.3). For z,1" € [0, T],x,x € R? s > 0,0 < 8 < 1, assume without loss of any
generality that Sp > 2d 4+ 2 and |x — x’| < 1. Applying Itd’s formula to ePKs|y! -~ — yI*|Pp,
we have

T
ePPKs |yl — ylxipr +,3pK/ efrkr|yta — ylx|Pray
N
— 1 T o i
+ IBP(IB]; ) / eﬁpKr|Yrt X Yrt’x|ﬁp72|2;{ X Zﬁ’x|2dr
N
! ! ’ ’ T ’ ’
< PRI |o(XT") — p(XT)IPP + (Bp + 2K7Bp) / PRIy — I Prar
N

T
+%p/ ePPEr |yt y X B2 e, XU Y — o(r, XER) Y 2dr
N

T
ﬂp / PRIy — Y PP, XET)ZEE — v, X0 ZE Py

+_
8K Js

T
+Bp / PRI — YN PPRE (X)) — F(r X)) Pdr
S
pr T ﬂpKr Yt,,)c/ Yt,x ﬂ[)—z Yt’,x’ Yt,x Zt’,x’ Zt,x dW 47
e R e e A R T @7)
s

We need to deal with those terms involving the solutions of coupled SDEs on the right hand
side of (4.7), so as to follow the procedure in the proof of Proposition 3.2 in [4] to deduce the
continuity dependence of the solution of BSDE under expectation. First,

T
[ ! !/ ! ’
E/ PRIV — Y PP 2 e(s, XY — e(s, XpO)Y Pds
t

T
<28 [ RNy e, X ORI - v
t
+lels, XD = c(s, XPDPIYETP)ds

T T
< 2K12E/ ePPKr !yl Br g +8E/ ePPKryl ' _ylx Br g
t

t

T ﬂ T o Bp l_ﬂ
+c(u<: / |Y;”‘|1’ds> (E / le,"‘—Xﬁ”‘l‘ﬂdS) , @.38)
t t
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where ¢ > 0 is a generic constant which can be taken sufficiently small. Similarly, it follows that

T
! ’ !’ ’ ’ ’
E/ ePPEr Yl y X Br=2 (s, XU Z0Y — (s, X0 Z8Y 2 ds
t
2 TﬂKr t'x' t,x 1 Bp—2 7t x t,x2
<2K{E [ ePPRI|Y YO PP ZY — Z9T|7ds
t

T
+2KE f efPKr |yl ylx B2 x I x1x 2 70X 2 (4.9)
t

Noticing that the C% norm is controlled by the W!? norm in view of the Sobolev embedding
theorem witha =1 — % < 1, we have

T
E/ PP F (s, XUX) — F(s, X19)|PPds
t

T
<E [ RGN - X s
t

B T f
S(]E/ PPEINF (s, ), ,ds ) <E/ S —X;ﬂlﬁds)
t t

1-8

T ;o afp =5
<C (]E/ |X§ g Xg’xllﬂds> . (4.10)
t
Similar to above, we can also get
o afp l_ﬁ
EeﬁpKWp(xT ) —p(XHIPP < C (IE|X’T”‘ - X’T’x|1—ﬂ> ) (4.11)

Then following the proof of Proposition 3.2 in [4], by (4.8)—(4.11), Lemma 4.1 and the fact that
K can be taken sufficiently large K, we similarly deduce

E sup |Yst”x, — Y|P
s€l0,T]

1—
<c(1E|xf”"’—xf’x|7573> "y cE (/T|x”~x X1 )
— T T 0 K

P B

1-8 -
Bp 2
C (E sup | X5HE — Xé’x|1pﬁ> IE(/ |Z§‘x|2ds>
5€[0.T] 0
T /o afp l_ﬁ
—l—C(IE/ X! —Xj,ﬂlﬂds)
0

ap
= Cp.T) (14 1517+ 1¥'17) (1 = P 410 = 01F) s,

1-p

Since Bp > 2d + 2, by the Kolmogorov continuity theorem (see e.g. Theorem 1.4.1 in [13])
we know that Ys("') has a continuous modification for 7 € [0, T] and x € By with the norm
SUPse(0.7] |YS("') |, where Bp is defined as in Corollary 3.4. In particular,

lim [Y) — Y| =0,

t'—t
x'—x
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Thus we have

/ ’ ’ ’
lim Y, =Y/ < lm (1Y, =Y |+, =Y ) =0 as.
"=t t/—)l

X' —x x—x

The convergence of the second term follows from the continuity of ¥{"* in s. That is to say
Y,t’x is a.s. continuous; therefore Yf’x is continuous with respect to t € [0, T] and x € Bg on
a full-measure set 2% for any R € N. Taking 2 = Mren 2R, we have P(f2) = 1. Since
UReN Br = R4, for any t € [0,T] and x € R?, there exists an R such that x € Bg. On the
other hand, for any o € f), obviously w € NR R=1,2,---.S0 Yl”x is continuous with respect
tor € [0, T] and x € R? on 0. Proposition 4.2 is proved. [

Then we can get the correspondence between BSPDE and FBSDE in the linear case.

Theorem 4.3. Let conditions (A1) and (P) be satisfied. For a given p > 2d + 2, suppose
F e LfZ](O, T; W'P)and ¢ € Li@T(Q; WP, then the solution (u, q) to BSPDE (4.6) satisfies

u(s, X!y =Y foralls €1, T], x e R? as., (4.12)
where (X, Y, Z) is the solution of FBSDE (4.1), (4.5).

Proof. Step 1. First we smootherize all the coefficients in FBSDE (4.1), (4.5) and BSPDE (4.6).
For this, take a nonnegative function p € Cg® (R4; R!) such that fRd p(x)dx = 1. For arbitrary
& > 0 and a mapping & : RY — R!, we define 4° by

hEx)=¢"9p ()—C) «h(x) forx e RY.
&

Moreover, if h is a vector or matrix, we get the smootherized ¢ by smootherizing each element in
h. In this way, we can smootherize all the coefficients and get three equations with smootherized
coefficients:

N N
X =x 4+ [ b, X2Ndr + | ot (r, X0)dW,, s >1t,
t t (4.13)

Xt =x, 0<s<t,
T

Y;,x,e — (ps(Xt]:x,s)_'_/ [Ca(r’ Xi,x,a)Yrt,x,s_I_vs(r’ X;,x,s)zi,x,s+Fa(r’ Xi,x,a)]dr
K

T
_ / 7055 awW, (4.14)

S

and

{dug(t, x) = —[Lou(t,x) + M°q°(t, x) + F°(t, x)]dt + ¢°(t, x)d W, @.15)

ub (T, x) = ¢°(x), x eRY,

where X°¢, (Y®, Z%) and (u°, ¢°) are the unique solutions of (4.13), (4.14) and (4.15),
respectively. Due to the smooth coefficients, we know that all X»° ¥ and u®(z, x) have
a high regularity on variable x such that u®(s, Xy°%), ¥/ e C2([0, T] x R?). By the
Ito—Wentzell formula, it is not hard to deduce that u® (s, X5*%) is also a solution to BSDE (4.14).
Due to the uniqueness of solution, we have u® (s, X;°°) = Y2*° fora.e.t € [0, T],x € R? ass.,
then the continuity with respect to ¢, x ensures that this equality is true for all # € [0, T], x € RY
on a full measure set in 2.
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Step 2. We then prove that as for a.e. x € R4,

E sup [Y!5f —Y!*)2 — 0, ase— 0.
t<s<T

First noting condition (A;) and the construction of convolution we have

T
lim IE/ |b° (s, X15F) — b(s, X)) 2ds
e—0 ¢

T
< lim ZIE/ sup |b(s, y) — b(s, y)I* + K71 X5¢ — X% 12 ) ds
e—0 t yERd

T
= lim 2K {E f |X05F — XDYPPds.
e—0 t
A similar calculation leads to
T

T
lim IE/ lof(s, XI5F) — o (s, X10)|?ds < lim 2K12E/ |X1xe — XX 24,
e—0 ¢ e—>0 t

Hence applying Itd’s formula and the B-D-G inequality, we have
limE sup |[X1%¢ — X' 2ds = 0,

e—>0  r<g5<T
and there exists a subsequence of (X%}, still denoted by {X%*¢}), which satisfies

lim sup |X!%¢ — X'Y2=0 as.
SHOISSST

In the rest of arguments, we always consider this a.s. continuous subsequence.
In order to get (4.16), we need to deal with the following convergence:

T
lim E/ e (s, XEVEOYEDE — c(s, XYY Pds
e—0 t
T
< lim ZE/ <|c€(s, XU Py — vt
e—0 t
X, XN (2 ytx 2
1" (s, X550 = ols, XEMPYS ) ds

T
< lim 21(%1}3/ |YIxe — yIx|2ds
e—0 t

T
+4E/ lim <sup (s, y) — (s, I* + KF|IX00e — X;’X|2> |Y5¥ 2ds
t

E—> yER‘[
T
= lim 2K?E | |Y!5 — yI¥)2ds.
e—0 ' ' '
Similarly, we have

T
Eli_r)% E / [V (s, XLXE)ZI5E (s, X1 Z0% 2 ds
t

T
< lim 2K12]E/ 205 20 P,
e—0 ¢ . S

(4.16)

4.17)

(4.18)
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By the Sobolev embedding theorem again, it yields that

T
lim IE/ |Fe(s, X058) — F(s, X2Y)|2ds
e—0 t

T 3 T i
fling)2<E / ||F(s,w>||%vl,pds> (E / |X§’X’S—X§’x|2°‘ds>
£— P p

T 2
< lim C <Ef |XLxE x;ﬂzds) =0. (4.19)
t

e—>0

Similarly, we also obtain
81% Elg® (X5°%) — o(X5)1? < Elg%c (]E|xfT*"’5 - X;)‘|2)7 =0. (4.20)

In view of (4.17)—(4.20), a priori estimates of the solution of BSDE with sufficiently large K
(see [4]) yields that (4.16) is true.

Step 3. On the other hand, we can further prove

T
E/ lu (1) — u(@)|1§ ,dt —> 0.
0

Indeed, similar to inequality (2.9), it is not hard to prove
T
E/ M u)® —u@|; , dr
0 :
T
< CE|¢" — |5, + CE/ M| F(0)f — Fg,dt
. 0 .

T
+CE/ / CM(ME _ u)[(aa,z/ _ all)lzixixj + (O_E,lk _ O‘lk)qk,-
0 Rd !
+ (0% = by + (¢ = u + (v° = v)gldxdr,

where a®/ = %08’”‘0‘9’/”‘, al = %aiko-/k and A is a sufficiently large number. By condition
(A1) and constructions of smootherized coefficients, we can deduce for each (¢, x, w),

)D(as,ij _aij)‘ + ‘D(Oa,ik _Uik)‘ 4 |aii — gii| 4 ook — ik

+ |p5 — b +|C€—C|+|U€—V|SC8.

Thus, by integration by parts, it turns out that
T 5
lim E Hlut @) — u dt
i [ futo) —
<hmeCe”E/ [, 10 =) 14Dul + 1g)
+ |u® — u| (| Dul + |u] + q1)] dxdt

T
. 2
< lim 8Ce)‘TIE/ (Hus - “”1 st ||”||%,2 + ||q||(2),2> dt
0 ,

e—0
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T
< lim eC'E [Hwe I3+ lel 2+ /0 (IFF O, +1F0I,) dr} =0.

Therefore, there exists a subsequence of {u®}, still denoted by {u°}, such that u®(¢, x) —
u(t,x) ase — 0Oforae. t € [0,T],x € R4 a.s., which implies that Y,l’x = u(t, x) for
ae.t € [0,T],x € R4 as. in view of (4.16). Noticing Corollary 3.4, we know that u(z, x)
is continuous with respect to (¢, x), which together with Proposition 4.2 leads to

u(t,x) =Y forallr €[0,T], x € R? as.
In particular,
t,x s, X0 d
u(s, X)) =Y0r foralls € [¢t,T], x € R* a.s.
By the uniqueness of the solution of BSDE (4.14), (4.12) follows. [J

Utilizing the connection between FBSDE and BSPDE in the linear case, we further study the
same kind of connection in the semi-linear case.

Theorem 4.4. Suppose that the conditions in Theorem 3.2 are satisfied; then we have a same
kind of connection as (4.12) between the solution u to BSPDE (4.4) and the solution (X, Y) to
FBSDE (4.1), (4.2).

Izroof. Let u be the solution of BSPDE (4.4) and F (t,x) = f(t,x,u(t,x)). Obviously,
F(t,x) € L_’}(O, T: WP and we regard BSPDE (4.4) as a linear equation with generator

F. By Theorem 4.3, we know
u(s, Xt = I?S’x foralls € [t,T], x € R? ass.,

where (f’f -~ Zé’x )sefr,7] is the solution of the BSDE with generator F as follows:

T T
yix :(p(XtT’x)—}-/ F(r, Xﬁ”‘)dr—/ ZUrd W,
S S
By the definition of F, we know that (Y/**, Z!") is also the solution of BSDE (4.2). Since
Remark 4.1, the solution of BSDE (4.2) is unique. Then Theorem 4.4 follows immediately. []
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