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Abstract

We consider multidimensional discrete valued random walks with nonzero drift killed when leaving
general cones of the euclidean space. We find the asymptotics for the exit time from the cone and study
weak convergence of the process conditioned on not leaving the cone. We get quasistationarity of its limiting
distribution. Finally we construct a version of the random walk conditioned to never leave the cone.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction, results and discussion

1.1. Motivation

We want to study the multidimensional counterpart of the following one dimensional problem.
Let S(n) be a real valued random walk with negative drift started at some x ∈ (0, +∞).

Find the asymptotics of the exit time τx = inf{n ≥ 0 : S(n) ≤ 0}. This is by now a classical
result. For example, in [5] the asymptotics is found if the jump of the random walk fulfills the
following Cramér-type condition: R(h) = E[eh X

] is finite in some [0, B] for B ≤ ∞, and
0 < limh↑B

R′(h)
R(h)

≤ ∞. The asymptotics is then

P(τx > n) ∼ V (x)µ−nn−
3
2 as n → ∞. (1)
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Here, µ =
1

E[eh0 X
]

and h0 is the unique solution of R′(h) = 0 and the assumption on the jump
implies in particular that it has a finite second moment. For two real-valued sequences, by the
notation a(n) ∼ b(n), as n → ∞, we mean the property limn→∞

a(n)
b(n)

= 1.
Note that the positive open real halfline is a cone. Our main aim in this paper is to find an

analogue to (1) for random walks in dimensions greater than one, killed when leaving cones in
the respective euclidean space and to derive some weak convergence results for the conditioned
process.

Even though the idea of a Cramér condition and use of an exponential change of measure
will be helpful for the multidimensional case as well, methodologically the multidimensional
problem is different from the one dimensional case. Therefore we first briefly recall the main
idea of the study of the latter problem, as it is done in [5].

Its study is facilitated by the obvious relation P(τx > n) = P(Ln ≥ −x) with Ln =

mini=1..n S(i). This makes possible the use of the following classical relations (see also the
similar equations (2.5) and (2.6) in [5])


n≥0

snE[esLn ] = exp


n≥1

snan(s)


(2)

and


n≥0

snP(τ0 > n) = exp


n≥1

snan


, (3)

where an(t) =
1
n {E[et S(n), S(n) < 0] + P(Sn ≥ 0)} and an =

1
n P(Sn ≥ 0). Then getting the

asymptotics of an(t) and an yields the asymptotics of the exit time. To this aim one makes use of
a change of measure, for example for an we have

an =
1
n


∞

0
P(Sn ∈ dx)

=
1
n


∞

0
e−hx (E[ehx

])nP(Ŝn ∈ dx)

=
(E[ehx

])n

n
E[e−Ŝn , Ŝn ≥ 0].

Here Ŝn is the driftless random walk gained from an exponential change of measure of X through
the density ehx

E[ehx ]
. It is then easy to see, for example if the random walk is discrete by expanding

and using a local limit theorem, that the expectation in the last line is asymptotically const
√

n
.

As already mentioned, there is no hope of some similarly helpful relation as (2) and (3) for the
multidimensional case. A way of attacking the multidimensional case is supplied by the recent
work [4]. In it the authors study the asymptotics of the exit time from a general multidimensional
cone for the case of driftless random walks. They use then the asymptotics of the exit time and
several sharp probabilistic inequalities to establish local limit theorems for lattice valued driftless
random walks, killed when leaving the cone. One could use some of their results after reducing
the case of a nonzero drift to that of the zero drift. For this we impose a Cramér condition and
use an exponential change of measure to turn the nonzero drift random walk into a driftless one
already at the beginning. Nevertheless, it turns out that one has to refine and specialize some
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crucial estimate from the driftless case to accomplish the proof for the nonzero drift case. This
refinement is the hardest part of the proof.

The paper is organized as follows. In the next section we introduce the setting, discuss the
assumptions made and formally state the results. In the second part of the paper we provide the
proofs for our results.

1.2. Assumptions and statement of results

Let S(n) be a d-dimensional random walk, d ≥ 2. Its jumps are i.i.d. copies of some random
variable X = (X1, X2, . . . , Xd) which takes values in the euclidean lattice Zd .

We assume the following.

Assumption 1 (Cramér Condition). The set Ω = {h ∈ Rd
: R(h) = E[eh·X

] < ∞} has
a nonempty interior containing 0 and there exists some nonzero h in the interior such that
∇ R(h) = E[Xeh·X

] = 0.
We also assume that the random walk is truly d-dimensional, i.e. it does not live on a

hyperplane of the euclidean space. Thus we impose the following.

Assumption 2 (Non Collinearity). For every nonzero c ∈ Rd we have P(c · X = 0) < 1.
We also assume that the random walk is strongly aperiodic.

Assumption 3 (Strong Aperiodicity). X fulfills the following condition:
For every x ∈ Zd the smallest subgroup of Zd containing

{y : y = x + z with some z s.t. P(X = z) > 0}

is the whole group.

This is just a technical assumption and we will see that it is dispensable for the actual asymptotics
of the exit time.

Note that Assumption 1 implies that c := R(h) is smaller than 1 and that E[X ] = ∇ R(0)

is nonzero, since the function R(h) is strictly convex and C∞ in the interior of Ω . Thus we are
in the nonzero drift case. Also, due to convexity of Ω and Assumption 1, it follows by a Taylor
expansion of R(h) around 0 that E[X ] · h < 0.

Define c = E[eh·X
] and let X̃ be a random variable with density

P(X̃ ∈ dz) =
1
c

eh·zP(X ∈ dz), (4)

defined on the same probability space as S(n) is. As a consequence of the Cramér assumption
we know its associated random walk S̃(n) =

n
i=1 X̃(i) is driftless. Clearly, the non collinearity

assumption holds for X̃ again, since we are dealing with an equivalent change of measure. This

implies that E


X̃ · X̃ t


is a positive definite matrix. This ensures the existence of an invertible

d × d-matrix M such that X̂ = M X̃ has E


X̂ · X̂ t


= Id×d , where Id×d is the identity matrix of

dimension d . We denote by Ŝ(n) its corresponding random walk. It has uncorrelated components
with zero drift, since also E[X̂ ] = ME[X̃ ] = 0.
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Due to the Cramér condition, we know that X̃ and X̂ have all moments. The state space of
Ŝ(n) is MZd . It is again strongly aperiodic in its state space. We denote from now on by ŷ the
vector My for y ∈ Zd . For the original random walk we introduce the stopping time

τx = inf{n ≥ 0 : x + S(n) ∉ K } (5)

and by τ̂x̂ the corresponding stopping time for Ŝ(n),

τ̂x̂ = inf{n ≥ 0 : x̂ + Ŝ(n) ∉ K̂ = M K }. (6)

Here K is an open cone containing h of Assumption 1 and x ∈ Zd always.

Assumption 4 (Convexity). K is convex, that is

for every y, z ∈ K and λ1, λ2 > 0 the vector λ1 y1 + λ2 y2 is in K .

This assumption is slightly stronger than the respective assumptions for the driftless case from [4]
but it is needed in order to be able to prove our results.

Moreover, our method works only for cones where the series


y∈K∩Zd e−h·y is convergent,

so that letting Σ := K ∩ Sd−1 we have to impose the following.

Assumption 5. For every x ∈ ∂Σ we have |̸ (x, h
|h|

)| < π
2 .

This assumption is not fulfilled for two-dimensional cones of opening bigger than or equal to
π , which contain h in its interior. For such cones h · y ≤ 0 for some y ∈ K ∩ Zd can happen so
that


y∈K∩Zd e−h·y diverges.

For cones fulfilling Assumption 5, it follows that h·y can be bounded from below by a constant
times the norms of h and y for y ∈ K . Thus this assumption can be considered as minimal for our
method. This assumption and the fact E[X ]h < 0 imply that the random walks in consideration
have a drift which points outside of the cone.

We cannot use our method to get the exact asymptotic of the probabilities of two dimensional
random walks conditioned to stay in a half-plane. Nevertheless, under some conditions, we can
use (1) to get the tail asymptotics of the exit time. If the cone has the form K = {x ∈ Rd

|a·x > 0}

for some nonzero a ∈ Rd , the jump X has a · E[X ] < 0, there exist some B > 0 such that

E[eah·X
] < ∞ for h ∈ [0, B], and finally limh↑B

E[a·Xeha·X
]

E[eha·X ]
> 0, then we are precisely in the

conditions of [5] for the random walk with jump a · X and can use (1) to get the asymptotics of
the exit time.

As a last restriction, we have to impose some additional regularity on ∂K .

Assumption 6 (Regularity). ∂Σ is C2 and the solution of
∆u = 0, if x ∈ M K ,

u(x) = 0, if x ∈ ∂ M K

is extendable to the respective solution on a bigger cone, which strictly contains M K , i.e. there
exists some cone K̃ which strictly contains M K and for which u is extendable to a solution of the
Dirichlet problem for the cone K̃ . It is also clear, M being invertible i.e. a C∞-diffeomorphism,
that ∂(M K ∩ Sd−1) is C2 if ∂Σ is C2. We note here, that if the original random walk has
independent components, then M is a diagonal positive definite matrix so that M K = K and
Assumption 6 is then made on the original cone.
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This type of assumption is only slightly stronger than the assumptions needed to study the
driftless case (see [4]) or the continuous counterpart of the driftless case, i.e. Brownian motion
killed when leaving the cone (see [1]). u as above is harmonic for killed Brownian motion when
leaving the cone M K . It is a homogeneous function of some degree p ≥ 1: that is, there exists
m defined on Σ̂ = M K ∩ Sd−1 s.t. u(x) = |x |

pm( x
|x |

).
With an eye on applications, our assumptions are not as restrictive as they seem. For example,

Assumption 6 is always fulfilled for cones K with real-analytic ∂Σ (see references in [1]).
In particular, every two dimensional cone of opening less than or equal to π

2 fulfills all of
Assumptions 4–6, since ∂Σ contains just two points. Moreover, depending on the specific setting
of the original problem one wants to study, it may be possible to make a linear transformation of
the cone and the jump and reduce the setting to a random walk living in some cone of the form
K̃ × Rd−r (for some r ≤ d and K̃ suitable), whose projection on Rr fulfills our assumptions.

We also note, that for our proof to go through we could weaken Assumption 1 as our proof
only needs the existence of a nonzero h with R(h) < 1, E[Xeh·X

] = 0 and E[|X |
αeh·X

] < ∞,
where α is some suitable real number depending on the transformation M . Here, α has to be
greater than 2 and equal to p if p itself is greater than 2. We have stated Assumption 1 to show
the analogy with the one dimensional problem.

In this setting we are able to prove the following.

Theorem 1. There exist functions U and U ′ such that as n → ∞, for A ⊂ K ∩ Zd

P(x + S(n) ∈ A, τx > n) ∼ ρcnn−(p+
d
2 )U (x)


y∈A

U ′(y).

In particular,

P(τx > n) ∼ ϱcnn−(p+
d
2 )U (x). (7)

Relation (7) is the multidimensional counterpart of (1) and U , U ′ are suitable functions
defined in the next section. We note that one does not need Assumption 3 for (7). Indeed,
given the original random walk is not strongly aperiodic, we could redefine the probabilities
on a suitable subset grid of the euclidean grid and get again (7) through the same calculations.
Assumption 3 has been stated for expository reasons. The proof of Theorem 1 is based on the
similar results for the driftless random walk Ŝ(n), but is not a straightforward application, since
the estimates on the tail probability for the exit time in the driftless case are not sharp enough to
justify an interchange of limit and sum, which is crucial for the proof of the nonzero drift case.
Sharpening this estimate for our setting is essential in our method.

Having Theorem 1, we derive from it the asymptotic behavior of the conditioned process. As
a first simple corollary it is immediate to derive the following.

Corollary 2.

Px (τ = n)

Py(τ = n)
−→

U (x)

U (y)
, n → ∞.

The one dimensional version of this limit is found in [6].
In [3,9] the authors find the limit process for the one-dimensional conditioned random walks

to be quasistationary. In our setting, as a simple corollary from Theorem 1, one can check that
the respective Yaglom limit exists for the multidimensional case, i.e.
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Corollary 3 (Yaglom Limit). We have for x ∈ K ∩ Zd , A ⊂ K and n → ∞

P(x + S(n) ∈ A|τx > n) −→ µ(A) = κ


y∈A∩Zd

U ′(y).

Here, κ > 0 is the norming constant so that µ is a probability distribution on K . Furthermore,
µ is quasistationary for the conditioned process.

Existence of the Yaglom limit is not always given. For example, one sees directly that for
driftless random walks S(n) due to Theorems 1 and 6 in [4] we have

P(x + S(n) = y|τx > n) −→ 0, n → ∞.

I.e. the Yaglom Limit does not exist in this case (it needs to be a genuine probability distribution).
For some examples on the fact that even for extensively studied processes like birth–death
processes both existence and non-existence can happen, see [17]. For completeness, we also give
in the next section a simple proof of the quasistationarity of µ by using specific properties of our
setting as an alternative to resorting to the general theory of quasistationary distributions. We also
show with a simple example that one cannot expect uniqueness of quasistationary distributions
in our setting.

In the next section, we prove some simple weak convergence results for the conditioned
process. For the one dimensional case, the analysis of such limits in [9,10,3] is complete. They
use the methodology of the one-dimensional problem, which as previously noted, has no bite in
the multidimensional setting. Here we prove the following for the exit distribution of the random
walk, conditioned on exiting at a specific time:

Proposition 4. For x ∈ K ∩ Zd and y ∈ Zd
\ K and n → ∞

P(x + S(τx ) = y|τx = n) −→
χ

1 − c


z∈K

U ′(z)P(z + S(1) = y),

where χ is a positive constant.

For completeness we also prove a result which describes the behavior of bridges for random
walks in our setting:

Proposition 5. For A ⊂ K ∩ Zd finite, z ∈ K and t ∈ (0, 1)

n p+
d
2 P(x + S([tn]) ∈ A|τx > n, x + S(n) = z) ∼

ρ

(t (1 − t))p+
d
2


y∈A

U (y)U ′(y),

n → ∞.

Finally, Theorem 1 makes it possible to construct a Markov chain on K ∩ Zd conditioned to
never leave the cone. Namely, we get the Markov chain Z with transition matrix

p(x, y) =
1
c

P(x + S(1) = y)
U (x)

U (y)
, for x, y ∈ K ∩ Zd

by looking at the weak limit of

P(x + S(1) = y1, x + S(2) = y2, . . . , x + S(k) = yk, τx > n|τx > n)

as n → ∞. It is then easy to prove the following.
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Proposition 6. Z is a strictly stochastic and transient Markov chain on K ∩ Zd .

Z is probably “the physically right” process to take as a random walk conditioned to never
leave the cone and it is important to note that it is not constructed through a Doob-h-transform,
but involves instead a c-harmonic function, for some suitable c ∈ (0, 1). In some of the cases
considered in applications, like two-dimensional random walks in two-dimensional cones, there
are uncountably many positive harmonic functions (for a proof for the positive quadrant, see [11],
the extension to a proof for more general cones in two dimensions can be made available by
the author upon request). So there are uncountably many possible definitions through Doob-h-
transforms of a random walk conditioned to stay in a cone in this case. Proposition 6 tells us that
none of them is equal to the process gained through the weak limit procedure.

To conclude this section, we comment on a special case which is ubiquitous in applications.

Example 7 (Two Dimensional Random Walks with Negative Drift in the Positive Quad-
rant). There has been extensive research on random walks in the quarter plane. In the mono-
graph [7], the authors develop analytical and algebraic methods to study such random walks
under strong assumptions on the distribution of the jump. These methods have been success-
fully used, for example in [12,15] to study random walks of nonzero drift with small steps. In
comparison, our assumptions here are less stringent and we follow a pure probabilistic approach.

In our setting, assume that d = 2 and that the jump of the random walk has negative drift
m = E[X ] = (m1, m2) with m1, m2 < 0. Also assume that there exists some h0 > 0 such that
for h̃i ≤ h0, i = 1, 2 we have

E

e
2

i=1 h̃i X i


< ∞.

Assume also the existence of some h = (h1, h2) with h0 > hi > 0, i = 1, . . . , d such that

E


X j e
2

i=1 hi X i


= 0 j = 1, 2.

Finally, assume that the random walk is strongly aperiodic and that X has a strictly two-
dimensional distribution. Under these conditions, if we take for K the interior of the positive
quadrant, all of the Assumptions 1–6 are fulfilled. In particular, Theorem 1 holds and yields the
asymptotics for P(τx > n) for x ∈ N2 and all its immediate corollaries apply. In this setting we
can give an explicit form for M . Namely, using Example 2 from [4] one can calculate M this
way: define first

ci = E[(X̃ i )
2
].

Then

α = Cov


X̃1

√
c1

,
X̃2

√
c2


∈ (−1, +1)

due to non collinearity. With this, we have then

M =
1

√
1 − α2


cos ϕ
√

c1

− sin ϕ
√

c2

− sin ϕ
√

c1

cos ϕ
√

c2

 ,

where ϕ is such that sin(2ϕ) = α. The terms 1
√

ci
norm the variables X̃ i into having variance 1,

while the cos and sin-functions cause a rotation, which makes the components uncorrelated, as
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can be seen by straightforward computation. In the case of two-dimensional cones the value of
p is known and equal to π

arccos(−α)
.

2. Proofs

We first introduce some notation which we will use for the rest of the paper. We denote for
n ∈ N

q(n)(x, y) = P(x + S(n) = y, τx > n) and d(n)(x, y) = P(x̂ + Ŝ(n) = ŷ, τ̂x̂ > n)

and also

f (n)(x, y) = P(x̂ − Ŝ(n) = ŷ, τ̂x̂ > n).

We then have for x, y ∈ Zd , using the inverse change of measure,

q(n)(x, y) = cnE

e−h·S̃(n)1

{x+S̃(n)=y,τx >n}


= cneh·xE


e−h·(S̃(n)+x)1

{x+S̃(n)=y,τx >n}


= cneh·(x−y)P(x + S̃(n) = y, τx > n).

This can be expressed in terms of Ŝ(n) due to invertibility of M as

q(n)(x, y) = cneh·(x−y)d(n)(x, y). (8)

Here we have established a connection between the driftless and the nonzero drift case and can
hope to use results from [4] to analyse the nonzero drift case. There is one complication for that.

To get to the asymptotics of P(τx > n) we need to consider
y∈K∩Zd

cneh·(x−y)d(n)(x, y)

for n → ∞. Since we have the asymptotics of d(n)(x, y) from [4], we would need to interchange
the sum and the limit for n → ∞ to get the desired asymptotics. This cannot be done directly, but
can be justified if we sharpen an important auxiliary result from [4]. Namely, the authors prove
in the driftless case an estimate of the type

P(τy > n) ≤ C
|y|

p

n
p
2

(9)

uniformly in Kn,ϵ = {x ∈ K : dist (x, ∂K ) ≥ n
1
2 −ϵ

} for some p > 0 for cones satisfying the
requirements of their paper. Kn,ϵ contains “typical” vectors in the cone. Here u is the harmonic
function for the Brownian motion killed when leaving the cone and p is the characteristic of the
cone K , i.e. the degree of homogeneity of u as explained in the first section of the paper. We will
now extend this estimate to the whole cone K .

2.1. A refinement of (9) for the driftless case

For driftless random walks S(n), n ≥ 0, which fulfill the moment assumptions of [4] we want
to prove the following proposition.
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Proposition 8. Let K be a d-dimensional convex cone with vertex in 0, which also fulfills As-
sumption 6 with M the identity matrix. Then there exists some C > 0 such that uniformly for
every x ∈ K we have

P(τx > n) ≤ C
1 + |x |

p

n
p
2

.

To prove Proposition 8 we make use of two lemmas.

Lemma 9. Let K be a d-dimensional convex cone with vertex in 0, which is also C2. For ϵ > 0
sufficiently small there exists some C > 0 such that, uniformly for every y ∈ Kn,ϵ ,

P(τy > n) ≤ C
u(y)

n
p
2

.

Proof. The proof follows ideas from Lemma 20 of [4]. Take some x0 ∈ K fixed such that
|x0| = 1. Also take some arbitrary but fixed δ ∈ (0, 1). For any ϵ > 0 such that pϵ < 1

2 ,

choose γ ∈ (pϵ, 1
2 ). Define with this for every y ∈ Kn,ϵ the vector y+

= y + R0x0n
1
2 −γ , where

R0 > 0 is chosen such that dist (R0x0 + K , ∂K ) > 1. Note that this choice of R0 ensures that
R0x0n

1
2 −γ

+ K ⊂ Kn,γ . Define now the event

An =


sup
u≤n

|S([u]) − B(u)| < n
1
2 −γ


. (10)

Here, B is a Brownian motion defined on the same probability space as S(n). We know from the
coupling method used in Lemma 17 of [4] that

P(Ac
n) ≤ Cn−r (11)

with r = r(δ, γ ) =
δ
2 − 2γ − γ δ. It follows

P(τy > n) ≤ P({τy > n} ∩ An) + O(n−r ). (12)

The result would follow if we could prove the desired inequality for each of the two terms on the
right side of inequality (12). For this, we first note that the respective u of the cone K , as defined
in Section 1.2, fulfills

u(y) ≥ C(dist (y, ∂K )p), u(y) ≥ C |y|
p−1(dist (y, ∂K )), (13)

since the cone K is assumed to be convex and C2. To see that this holds, consult [4, Lemma 19],
and [18, Section 0], and especially Theorem 1 there and its immediate corollaries. Note that
p ≥ 1 for convex cones, according to [18].

For y ∈ Kn,ϵ the first inequality of (13) implies

u(y)n−
p
2 ≥ Cn−pϵ .

This in turn, implies that n−r
= o(u(y)n−

p
2 ) if, keeping δ fixed, ϵ and then γ are chosen small

enough. This establishes the desired inequality for the second term on the right hand side of (12).
For the first term, we first note that the choice of R0 implies {τy > n} ∩ An ⊂ {τ bm

y+ > n}.
Moreover, using a Taylor expansion of u, Lemma 7 in [4] and the second inequality in (13) we
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have for y ∈ Kn,ϵ

|u(y+) − u(y)| ≤ C |y|
p−1n

1
2 −γ

≤ Cu(y)n−(γ−ϵ).

This implies immediately

u(y+) = u(y)(1 + o(1)) uniformly for y ∈ Kn,ϵ .

This last implication and the well-known estimate (see again [1] or [18])

P

τ bm

y > n


≤ C
u(y)

n
p
2

, for y ∈ K

establish the inequality for the first term on the right side of (13).

The result follows. �

We also need to prove the following auxiliary result.

Lemma 10. There exists a constant C > 0 such that for v as in Subsection 1.3 of [4], uniformly
for every stopping time T adapted to the natural filtration of the random walk, and n ∈ N

E[v(x + S(T )), τx ≥ T, T ≤ n] ≤ C(1 + |x |
p), x ∈ K .

Proof. We will make use of the estimates in Section 2 of [4] throughout. We first prove the
simpler estimate

E[u(x + S(n)), τx > n] ≤ C(1 + |x |
p).

Indeed, for v as in Subsection 1.3 of [4] define the martingale sequence

Y0 = v(x),

Yn+1 = v(x + S(n + 1)) −

n
k=0

f (x + S(k)), x ∈ K , n ≥ 0.

Here f is the mean drift of v, i.e.

f (x) = E[v(x + X)] − v(x).

From the definition and properties of Yk , for k ≥ 1 we have

E[u(x + S(n)), τx > n] = E[Yn, τx > n] +

n−1
k=0

E[ f (x + S(k)), τx > n]

= Ex [Yn] − E[Yn, τx ≤ n] +

n−1
k=0

E[ f (x + S(k)), τx > n]

= u(x) − E[Yτx , τx ≤ n] +

n−1
k=0

E[ f (x + S(k)), τx > n]

× (using the martingale property of Yn)

= u(x) − E[v(x + S(τx )), τx ≤ n] +

n−1
k=0

E[ f (x + S(k)), τx > n]
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+ E


τx −1
k=0

f (x + S(k)), τx ≤ n



≤ u(x) + E[|v(x + S(τx ))|] + 2E


τx −1
k=0

| f (x + S(k))|


≤ C(1 + |x |

p)

uniformly in x . Here, in the last inequality we have used the properties of u (see Section 1) and
(22) and (24) from Lemma 12 in [4]. Now set σx = τx ∧ n. Then {τx ≥ T, T ≤ n} = {T ≤ σx }.
Since Yk is a martingale we get

Ex [Yσx ] = Ex [Yσx ∧T ] = Ex [YT , T ≤ σx ] + Ex [Yσx , T > σx ].

That is

Ex [YT , T ≤ σx ] = Ex [Yσx , T ≤ σx ].

Now the definition of Yk yields

E[v(x + S(T )), T ≤ σx ] = E


YT +

T −1
k=0

f (x + S(k)), T ≤ σx



= Ex [Yσx , T ≤ σx ] + E


T −1
k=0

f (x + S(k)), T ≤ σx



= E[v(x + S(σx )), T ≤ σx ] − E


σx −1
k=T

f (x + S(k)), T ≤ σx


≤ E[u(x + S(n)), τx > n] + E[|v(x + S(τx ))|]

+ E


τx −1
k=0

| f (x + S(k))|, T ≤ σx


.

By using again (22) and (24) from Lemma 12 in [4] and the first part of the proof we get the
result. �

Proof of Proposition 8. For any ϵ > 0 and γn,x = inf{n ≥ 0|x + S(n) ∈ Kn,ϵ}, the first entry
time in Kn,ϵ , we have

P(τx > n) = P(τx > n, γn,x ≤ n1−ϵ) + P(τx > n, γn,x > n1−ϵ).

Using Lemma 14 in [4] this can be written as

P(τx > n) = P(τx > n, γn,x ≤ n1−ϵ) + O(e−Cnϵ

).

Therefore, it suffices to find an upper bound as suggested, only for the first term. Using the
Markov property we get

P(τx > n, γn,x ≤ n1−ϵ) ≤


Kn,ϵ

P(x + S(γn,x ) ∈ dy, τx > γn,x , γn,x ≤ n1−ϵ)

× P(τy > n − n1−ϵ).
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With the help of Lemma 9 this yields for ϵ > 0 sufficiently small

P(τx > n, γn,x ≤ n1−ϵ) ≤ Cn−
p
2 E[u(x + S(γn,x )), τx > γn,x , γn,x ≤ n1−ϵ

].

Now the result follows immediately from Lemma 10. �

2.2. Proof of Theorem 1

Take some A ⊂ K ∩ Zd and a real number R > 0. Then we have

P(x + S(n) ∈ A, τx > n)

ρcnn−p−
d
2 eh·x V (x̂)


y∈A

e−h·y V ′(ŷ)

=


y∈N2,|y|≤R

n p+
d
2 eh·(x−y)d(n)(x, y)

ρeh·x V (x̂)

y∈A

e−h·y V ′(ŷ)
+


y∈A,|y|>R

n p+
d
2 eh·(x−y)d(n)(x, y)

ρeh·x V (x̂)

y∈A

e−h·y V ′(ŷ)
.

Taking limR→∞ limn→∞ in the first summand gives 1 due to

P(x̂ + Ŝ(n) = ŷ, τx̂ > n) ∼ ρ
V (x̂)V ′(ŷ)

n p+
d
2

, n → ∞.

This result is contained in Theorem 6 in [4]. Here V is the harmonic function constructed in [4]
for the driftless random walk Ŝ(n), killed when leaving the cone M K and V ′ the respective
harmonic function for −Ŝ(n). They both satisfy an estimate of the type |V (x)| ≤ C(1 + |x |

p)

(see Lemma 13 in [4]). We now prove that

lim
R→∞

lim
n→∞


y∈A,|y|>R

n p+
d
2 e−h·yd(n)(x, y) = 0. (14)

This would finish the proof of Theorem 1. Setting m = [
n
2 ] we have with Markov property

d(n)(x, y) =


z∈N2

d(m)(x, z)d(n−m)(z, y)

=


z∈N2

d(m)(x, z) f (n−m)(y, z),

where in the second step, we have used time reversion.1 Namely, we have

P(x̂ + Ŝ(n) = ŷ, τ̂x̂ > n)

=


z∈N2

P(x̂ + Ŝ(m) = ẑ, τ̂x̂ > n)P(ẑ + Ŝ(n − m) = ŷ, τ̂x̂ > n − m)

=


z∈N2

P(x̂ + Ŝ(m) = ẑ, τ̂x̂ > n)P(ŷ − Ŝ(n − m) = ẑ, τ̂x̂ > n − m).

Now use Lemma 27 of Section 6 in [4] on d(m)(x, z) to get

d(n)(x, y) ≤ n−(
p
2 +

d
2 )C(x)P(τ̂ ′

ŷ > n − m)

1 see also a similar calculation in Section 6 of [4].
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with τ̂ ′
y the respective exit time for −Ŝ(n). Using Proposition 8 and recalling that ŷ = My we

get for a suitable C ′ > 0

d(n)(x, y) ≤ C(x)
C ′(1 + |y|

p)

n p+
d
2

.

If we take U (x) = eh·x V (x̂) and U ′(x) = e−h·x V ′(x̂) this establishes (14) and the proof of
Theorem 1 is finished.

Remark 11. As one can see from the proof, the fact that both the probabilities of the killed
random walk and the tail probability of the exit time from the cone have the same algebraic order
in the asymptotics is due to the limit in (14) being zero. For cones not fulfilling Assumption 5,
we expect (14) to be nonzero, i.e. the algebraic orders of the asymptotics of the probabilities
and the exit time to be different. An example could be constructed taking random walks in
dimension d ≥ 2, which fulfill the conditions mentioned in the discussion after Assumption 5,
killed when leaving suitable subspaces of Rd . For finite A, Theorem 1 yields then the algebraic
order cnn−(p+

d
2 ) for the asymptotics of the probabilities, but the algebraic order for the tail

asymptotics of the exit time is cnn−
3
2 , as readily follows by the discussion after Assumption 5.

We can proceed now with corollaries from this result.

2.3. Weak convergence results from Theorem 1

Proof of Corollary 2. It follows easily from (7) that

Px (τx = n)

Px (τx > n)
−→

1 − c

c
, n → ∞. (15)

The result is now immediate. �

Another trivial remark following from (7) is as follows.

Remark 12. E[exp(δτx )] < ∞ for δ ≤ − ln c and +∞ otherwise.

This is also known from other results about quasistationarity, see for example [16] or [2].

Corollary 2 helps us establish the proof of Proposition 4.

Proof of Proposition 4. The proof follows closely the one of Theorem 1. We have with Markov
property

P(x + S(τx ) = y, τx = n) =


z∈K∩Zd

q(n−1)(x, z)P(z + S(1) = y).

It follows, that

P(x + S(τx ) = y, τx = n)

ρcn−1(n − 1)−p−
d
2 eh·x V (x̂)


z∈K∩Zd

e−h·z V ′(ẑ)P(z + S(1) = y)

=


z∈N2,|z|≤R

(n−1)
p+

d
2

cn−1 q(n−1)(x, z)P(z + S(1) = y)

V (x̂)eh·x


z∈K∩Zd
e−h·z V ′(ẑ)P(z + S(1) = y)
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+


z∈K∩Zd ,|z|>R

(n−1)
p+

d
2

cn−1 q(n−1)(x, z)P(z + S(1) = y)

V (x̂)eh·x


z∈K∩Zd
e−h·z V ′(ẑ)P(z + S(1) = y)

.

The first ratio goes to 1 under limR→∞ limn→∞ and the second goes to zero by similar reasoning
as in the proof of Theorem 1. We thus have

P(x + S(τx ) = y, τx = n) ∼ ρcn−1(n − 1)−p−
d
2 eh·x V (x̂)

×


z∈K∩Zd

e−h·z V ′(ẑ)P(z + S(1) = y).

Using (15) and (7) we get the result. �

Again Theorem 1 and its proof yield an easy proof of Proposition 5, which is similar to a
result contained in Theorem 6 of [4].

Proof of Proposition 5. The Markov property implies

n p+
d
2 P(x + S([tn]) ∈ A|τx > n, x + S(n) = z) = n p+

d
2

y∈A

q([tn])(x, y)q(n−[tn])(y, z)

q(n)(x, z)
.

Due to finiteness of A we can use Theorem 6 in [4] and get the result. �

2.4. Comments on quasistationarity

Quasistationarity can be understood as the long-term behavior of the process conditioned on
survival, when it is known that the process will be killed a.s. in the distant future. It has many
applications in more practical sciences in modeling phenomena, which will one day come to an
end, but so late in time that the behavior until extinction is important to study.

It is well-known that for the one-dimensional problem stated at the beginning of the paper,
the Yaglom limit exists. Also well-known from the quasistationarity literature (see [2] or [14]
for a proof) is the fact that its existence implies the existence of a quasistationary distribution
(QSD) for the killed process. I.e. in our case µ is quasistationary for the random walk killed
when leaving the cone. This trivially establishes the second statement in Corollary 3.

Here for completeness we give another proof of this fact by using the properties of our special
setting, namely the harmonici t y of V ′ for its respective driftless killed random walk. Indeed,
this property combined with a time inversion implies the following:

Pµ(S(1) = y, τ > 1) =


x∈K∩Zd

µ(x)Px (S(1) = y)

=


x∈K∩Zd

κe−h·x V ′(x̂)P(x + S(1) = y)

= cκe−h·y


x∈K∩Zd

V ′(x̂)P(ŷ − Ŝ(1) = x̂)

= cκe−h·y V ′(ŷ)

= cµ(y).
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Summation over y ∈ K yields

Pµ(τ > 1) = c,

and from this quasistationarity immediately follows.
An interesting question is whether there is a unique QSD and if not, how many there are. In the

one dimensional case, it is well-known that for some typical one dimensional random walks in N
with negative drift there are uncountably many QSD-s (see [8] for more details). This implies the
following: if we have a two dimensional random walk with independent components, such that
each component has a QSD, then we automatically have a QSD for the two dimensional walk.
Indeed, let for example S1(n) and S2(n) be two one dimensional random walks in Z with negative
drift, killed when leaving N. Let these have respectively µ1 and µ2 as QSD. Then µ = µ1 × µ2
is a QSD for the two dimensional random walk S̃(n) = (S̃1(n), S̃2(n)), which has independent
components and marginal distributions as those of S1, resp. S2, killed when it leaves N2. We
omit the easy calculation needed to show this. Moreover, a condition of fast return from infinity
as required in [13], which is sufficient in the one-dimensional case for establishing uniqueness
of the quasistationary distribution, is not fulfilled in our setting. Therefore we can conjecture that
typical random walks on Zd with nonzero drift, killed when leaving a cone K have uncountably
many QSD-s.

We finish by defining a variant of the process conditioned to never leave the cone. See
Section 1.2 for the idea of the construction.

2.5. A random walk conditioned to never leave the cone

Proof of Proposition 6. We can use the Markov property and (7) to get for n → ∞

P(x + S(1) = y1, x + S(2) = y2, . . . , x + S(k) = yk, τx > n|τx > n)

−→
1
ck q(y1, y2) . . . q(yk−1, yk)e

h·(yk−x) V (ŷk)

V (x̂)
.

From this, we see that the stochasticity of the Markov chain is equivalent to

ceh·x V (x̂) =


y∈K∩Zd

q(x, y)eh·y V (ŷ). (16)

This is just c-harmonicity of U . Inserting q(x, y) we get after some canceling

1 =


y∈K∩Zd

p(x, y) ⇐⇒


y∈K∩Zd

d(x, y)V (ŷ) = V (x̂).

This is the harmonicity of V w.r.t. Ŝ(n), killed when it leaves the positive quadrant. Therefore,
stochasticity follows. The nth power of the transition matrix of Z is

p(n)(x, y) =
1
cn q(n)(x, y)eh·(y−x) V (ŷ)

V (x̂)
. (17)

Therefore, using again Theorem 6 in [4], we see that

p(n)(x, y) ∼ ρ
V (ŷ)V ′(ŷ)

n p+1 . (18)

Since p ≥ 1, the Green function of the Markov chain is always finite. Transience follows. �
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