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Abstract

We show that the value function in a stochastic differential game does not change if we keep the same
space ({2, ) but introduce probability measures by means of Girsanov’s transformation depending on the
policies of the players. We also show that the value function does not change if we allow the driving Wiener
processes to depend on the policies of the players. Finally, we show that the value function does not change
if we perform a random time change with the rate depending on the policies of the players.
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1. Introduction

Let RY = x=0l, ..., xd)} be a d-dimensional Euclidean space and let d; > d be an inte-
ger. Assume that we are given separable metric spaces A and B, and let, foreacha € A, 8 € B,
the following functions on R¥ be given:

(i) d x di matrix-valued 0 (x) = o (o, B. x) = (o7 (1)),
(i) RY-valued 58 (x) = b(a, B, x) = (0™ (x)), and
(iii) real-valued functions ¢®# (x) = c(a, B, x) = 0, f*P(x) = f(a, B, x), and g(x).
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Under natural assumptions which will be specified later, on a probability space ({2, F, P)
carrying a dj-dimensional Wiener process w; one associates with these objects and a bounded
domain G C R a stochastic differential game with the diffusion term o®? (x), drift term b* (x),
discount rate c¢®? (x), running cost f*#(x), and the final cost g(x) payed when the underlying
process first exits from G.

After the order of players is specified in a certain way it turns out (see our Remark 2.2) that
the value function v(x) of this differential game is a unique continuous in G viscosity solution
of the Isaacs equation

H[v]=0 1.1
in G with boundary condition v = g on dG, where for a sufficiently smooth function u = u(x)

H{u)(x) = sup inf [LPu(x) + £ ()], (1.2)

acAPE
L%Pu(x) = a;f‘f(x)D,-,»u(x) + 6% () Diu(x) — P ()u(x),
a®® (x) = (1/2)0%f (x)(*? (x))*, D; = 98/0x", D;; = DiD;.

We will assume that o and b are uniformly Lipschitz with respect to x, oo™ is uniformly non-
degenerate, and ¢ and f are uniformly bounded. In such a situation uniqueness of continuous
viscosity solutions or even continuous L viscosity solutions of (1.2) is shown in [5] and there-
fore the fact of the independence of v of the probability space seems to be obvious.

Roughly speaking, the goal of this paper is to show that the value function does not change
even if we keep the same space ({2, F) but introduce probability measures by means of Gir-
sanov’s transformation depending on the policies of the players. We also show that the value
function does not change if we allow the driving Wiener processes to depend on the policies of
the players. Finally, we show that the value function does not change if we perform a random
time change with the rate depending on the policies of the players.

These facts are well known in the theory of controlled diffusion processes and play there a
very important role, in particular, while estimating the derivatives of the value function. A rather
awkward substitute of them for stochastic differential games was used for the same purposes
in [12]. Applying the results presented here one can make many constructions in [12] more
natural and avoid introducing auxiliary “shadow” processes.

However, not all proofs in [12] can be simplified using our present methods. We deliberately
avoided discussing the way to use the external parameters in contrast with [12] just to make the
presentation more transparent.

Our proofs do not use anything from the theory of viscosity solutions and are based on a
version of Swiech’s [14] idea as presented in [10] and a general solvability theorem in class C'-!
of Isaacs equations from [9].

It is quite possible that Swigch’s approach from [14] based on inf sup convolutions can be
further developed and used to prove our main results. We prefer using the above mentioned
result from [9] for two reasons.

First, in previous articles we used this result to establish a W%-solvability theorem for fully
nonlinear equations with a “relaxed” convexity assumption, to showing that the L ,-viscosity so-
lutions of Isaacs equations with VMO coefficients are in C!*, and to establishing an algebraic
rate of convergence of finite-difference approximations to solutions of Isaacs equations. Here we
provide one more application of this result of [9].
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The second reason is that we want to justify a claim made in Section 5 of [12] and in the
continuation of this paper to prove a sharper theorem about how fast the approximate solutions
from [9] converge to the value function.

The article is organized as follows. In Section 2 we present our main result, Theorem 2.1. We
prove it in Section 3 under the additional assumption that the corresponding Isaacs equation has
a smooth solution. Then in Section 4 we allow the solutions to belong to the Sobolev class Wj.
Section 5 contains a general approximation result, which allows us in Section 6 to use a result
from [9] (see Theorem 2.2) and conclude the proof of Theorem 2.1 in the general case.

2. Main result
We start with our assumptions.

Assumption 2.1. (i) The functions 0®# (x), b (x), ¢®# (x), and f*P(x) are continuous with
respect to B € B for each (¢, x) and continuous with respect to ¢« € A uniformly with
respect to B € B for each x. The function g(x) is bounded and continuous.

(ii) The functions ¢*?(x) and f%f(x) are uniformly continuous with respect to x uniformly with
respect to (o, f) € A x B and for any x € R? and (o, B) € A x B

lo®® o), 1672 ()1, 1 (o)1, 1 £ (x)] < Ko,

where K is a fixed constant and for a matrix o we denote |0 ||2 = troo*,
(iii) For any (o, ) € Ax Bandx,y € R4 we have

o (x) — B ()| + 167 (x) — b (y)| < Kolx — yl.

Let ({2, F, P) be a complete probability space, let {F;,t > 0} be an increasing filtration of
o-fields F; C F such that each F; is complete with respect to F, P.

The set of progressively measurable A-valued processes a; = o;(w) is denoted by 2. Sim-
ilarly we define ‘B as the set of B-valued progressively measurable functions. By B we denote
the set of B-valued functions f(c.) on 2 such that, for any 7 € (0, co) and any al,a?2 e
satisfying

P(a} = o foralmostall 1 < T) = 1, 2.1)
we have

P(ﬂ;((x.l) = ﬂl(a,z) foralmostallr < T) = 1.

Definition 2.1. A function p?'ﬁ T = pfl'ﬂ "(w) given on A x B x {2 x [0, co) with values in some
measurable space is called a control adapted process if, for any («., B.) € A x ‘B, it is progres-
sively measurable in (w, t) and, for any 7 € (0, 00), we have

101 202
P(p; - - P” for almost all ¢ =T)=1
as long as

P(a} = a?, B! = B? foralmostall t < T) = 1.

Assumption 2.2. For each «. € 2 and 8. € ‘B we are given control adapted processes

i waﬂ .t > 0, which are standard d;-dimensional Wiener process relative to the filtration
t p
{Fi,t =0},

(i) r®P, ¢ >0, and 77

", t > 0, which are real-valued and R4 -valued, respectively,
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(iii) for all values of the arguments
st =P s, P < Ky,
where §; > 0 and K| € (0, 00) are fixed constants.

Finally we introduce
a®? (x) = (1/2)0 (1) (0 (1)),
fix a domain G C R¢, and impose the following.

Assumption 2.3. G is a bounded domain of class C2 and there exists a constant § € (0, 1) such
that foranyo € A, f € B,and x, X € R4

SIA2 < aff (oafad < 57 AR
Remark 2.1. As is well known, if Assumption 2.3 is satisfied, then there exists a bounded from
above ¥ € C,zoc(Rd) suchthat ¥ > 0in G, ¥ =0ondG,andforalla € A, 8 € B,andx € G
L)+ P w(x) < —1. (2.2)

For . € 2, B. € B, and x € R? consider the following Itd equation
t t
X =x+ f r&bB o hs (x) dw® P + f &P [b%Ps (xy) + 0P (x)m@P]ds.  (2.3)
0 0

Observe that Eq. (2.3) satisfies the usual hypothesis, that is for any a. € 2, 8. € B, x € R?,

and T € (0, 00) it has a unique solution on [0, T denoted by x*** and x*# is a control adapted
process for each x.

Set

t
;X.B.)C — / [rg.ﬁ]ansﬁs (x;x.ﬁX)dS’
0

t t
apx = _(1/2)/ &P PP 12 ds — / re PP duwe P
0 0
define T%P* as the first exit time of x,a Box from G, and introduce
T
v(x) = inf sup E;i‘-ﬂ(“')[ / r2f (e~ Vi dr 4 g(xr)e_‘b’_w’], (2.4)
0

€D g e

where the indices «., 8, and x at the expectation sign are written to mean that they should be
placed inside the expectation sign wherever and as appropriate, that is

T
e | fo P ()e ™V i+ glxp)e P V]

Ta-Bx

_ o.f.x _ . B.x . f.x a.f.x

=E [g(xfj’;;)e Oapr Vewpx 4 /O [ P2 poubs (P 5y e dt].

Observe that, formally, the value x; may not be defined if T = oco. In that case we set the corre-

sponding terms to equal zero. The above definitions make perfect sense due to our Remark 2.3.
Here is our main result.
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Theorem 2.1. Under the above assumptions the function v(x) is independent of the choice of
B.

the probability space, filtration and control adapted process (r, 7, w); ¥, it is bounded and con-

tinuous in G.

Remark 2.2. Once we know that v(x) is independent of the choice of the probability space, fil-

tration and control adapted process (r, 7, w)?‘ﬁ ", we can take any probability space carrying a d;-
dimensional Wiener process w; and construct v(x) by setting wf“ﬂ "=wy,r=1,7 =0.In that
case we are in the position to apply the results of [1,6,11] according to which v is continuous in G
and satisfies the dynamic programming principle. Then it is a standard fact that v is a viscosity so-
Iution of (1.1) (see, for instance, [1,6,14]). Indeed, if a smooth function v (x) is such that ¥ (x) >
v(x) in a neighborhood of xo € G and ¥ (xo) = v(xo), then by defining ;" P ", & > 0 as the first

exit time of x*#* from an &-neighborhood of xq for all small & we have

¥ (xg) = v(xg) = énf sup Ey; 'g(a) f Fxne ™ dt +v(xy,)e” ‘7%]

€B o e

< inf sup ESF@) / e di + e |
BeB . e 0

On the other hand set H[{/] = —h and observe that by Theorem 4.1 of [10]

Y (o) = inf sup E% ﬂ““ f yg( 4 Ge P dr + w(xyg)e—%].
0

€B gy e

It follows that

inf 1nf EZP / " h(x))e ® dt <0, (2.5)
a.€Up.eB 0

and if we assume that H[{¥](xg) < 0, then 4 > 0 in an e-neighborhood of x( and (2.5) is impos-

sible, since ¢ is bounded and o and b are bounded so that Egdﬁ "ye is bounded away from zero.

Hence H[v](xo) > 0 and v is a viscosity subsolution by definition. Similarly one shows that it

is a viscosity supersolution.

Provided that we know that continuous viscosity solutions are unique the above argument
proves the fact that the value function is independent of the probability space (if we drop out
r and 7 and take w independent of the policies). Jensen [2] proved uniqueness for Lipschitz
continuous viscosity solutions to the fully nonlinear second order elliptic PDE not explicitly de-
pending on x in a bounded domain. Related results in the same year with H depending on x were
published in Jensen—Lions—Souganidis [4].

In what concerns uniformly nondegenerate Isaacs equations, Trudinger in [15] proves the ex-
istence and uniqueness of continuous viscosity solutions for Isaacs equations if the coefficients
are continuous and a is 1/2 Holder continuous uniformly with respect to «, 8 (see Corollary 3.4
there). Uniqueness is also stated for Isaacs equations with Lipschitz continuous a as Corollary
5.11in [3]. Jensen and Swi@ch in [5] further relaxed the requirement on a and proved uniqueness
of continuous even L ,-viscosity solutions.

We will use Theorem 2.1 to prove in a subsequent article a result to state which we need a
few new objects. In the end of Section 1 of [9] a function P (u;;, u;, u) is constructed defined for
all symmetric d x d matrices (u;;), R9-vectors (u;), and u € R such that it is convex, positive-
homogeneous of degree one, is Lipschitz continuous, and at all points of differentiability of P
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for all values of arguments we have P, < 0 and

BIA? < Pyyalad <571
where 8 is a constant in (0, 1) depending only on d, Ky, and §. For smooth enough functions
u(x) introduce

Plul](x) = P(Djju(x), Diu(x), u(x)).

We now state part of Theorem 1.1 of [9] which we need even in the present article.

Theorem 2.2. Let g € CL1(RY). Then for any K > 0 the equation
max(H[u], Plu] — K) =0 (2.6)
L1G),

loc
The result we are aiming at in a subsequent article consists of proving the conjecture stated
in [9]:

in G (a.e.) with boundary condition u = g on 3G has a unique solution u € C%'(G)NC

Theorem 2.3. Denote by uk the function from Theorem 2.2 and assume that G and g are of
class C3. Then there exists a constant N such that l[v—ug| <N/K onG for K > 1.

A very week version of this theorem was already used in [13] for establishing a rate of con-
vergence of finite-difference approximations for solutions of Isaacs equations.
We finish this section with a useful technical result.

Lemma 2.4. Forany a. € A, B. € B, and x € R? the process
exp(—y P, )

is a uniformly integrable martingale on [0, 00). Furthermore, there exists a constant N indepen-
dentof a. € U, B. € B, and x € R? such that

T
E%P / e Vs ds < N. Q2.7
0
Finally,
E%Pe ¥ =1, (2.8)

Proof. Owing to (2.2) by 1t6’s formula

INT
E;"ﬂ'G(xmr)e_'/f’“ =Gkx)+ E;‘-ﬁ- / rSQ[LG + cG](xs)e_% ds
0

INT
< G(x)—afEf;ﬂf e Vs ds,
0

and (2.7) follows. To prove (2.8) use that
1 = E?ﬂ-e—llfmr — E?ﬂ-e—lﬁz I< + Eg'ﬂ'e_]//’ITN,

where the last term decreases as ¢ increases, which is seen from the formula, and tends to zero as
t — oo since its integral with respect to ¢ over [0, co) is finite being equal to the left-hand side
of (2.7).

Finally, the first assertion of the lemma follows from (2.8) due to the well-known properties
of martingales. The lemma is proved.
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Remark 2.3. In light of the proof of Lemma 2.4
0= lim E*Pe Vo, = lim E*Pe Vi, = E®Pe VI _w.
1—00

t—>0o0

Hence defining the terms containing x; as zero on the set where T = oo is indeed natural.
Lemma 2.4 shows that the function v is well defined and one can rewrite its definition as

T
v(x) = inf sup E?'ﬂ(a')[/ rtzf(x,)e_¢’ dt + g(xf)]e_%,
BeB g enl 0

which calls for changes of probability measure by using Girsanov’s theorem.
3. Proof of Theorem 2.1 in case that the Isaacs equation has a smooth solution
In this section we replace Assumption 2.1(iii) with a weaker one.

Assumption 3.1. The functions % (x) and b* (x) are uniformly continuous with respect to x
uniformly with respect to (o, 8) € A X B.

However, this time there is no guarantee that Eq. (2.3) has a unique solution and we impose
the following.

Assumption 3.2. Eq. (2.3) satisfies the usual hypothesis, that is for any a. € 2, B. € B, x € R?,
and T € (0, oo) it has a unique solution on [0, T'] denoted by xf"ﬁ * and xf‘ P is a control adapted
process for each x.

We also assume that we are given two functions i, 1 € C 2(G).

Theorem 3.1. (i) If H[ii] <0in G and it > g on 3G, thenv < i1 in G.

(i) If H[i] > 0in G and it < g on 3G, then v > it in G.

(iii) If &t and u are as in (i) and (ii) and 4 = U, then v is independent of the choice of the
probability space, filtration, r, m, and w.

We need three lemmas.

Lemma 3.2. Seft «, (t) = [nt]/n. Then there exists a constant N such that foralln > 1,x € R4,
a. €2, B. € B we have

T
E;f-ﬂ-/ e PV x, — x> dt < N/n. (3.1)
0

Proof. For each fixed ¢ while estimating

E?"B‘e_d)r_]//t lx; — Xicy (1) |21r>t
Girsanov’s theorem allows us to assume that 7 = 0. In that case for simplicity of notation we
will drop the indices x, «., 8. and observe that
2 ! 2
+2| [ b ds|
k/n

1
e =2 [ ate)du,
k/n

so that forz € [k/n, (k + 1)/n]
E%PAe™ x; — xiul® | Fipn} < ESPA{lxe — xijnl? | Fiyn} < N/,
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where N depends only on d and K. Hence, owing also to (2.7) the left-hand side of (3.1) is
dominated by

o0 o0
f E%F e 9x, — xy ) Plomy di < / EXP 1%, — x, 0 Plome, o di
0 0

o
< Nn~! / E*P I ydt = Nn "E®P(x +1/n) < Nn™\.
0

The lemma is proved.

For a stopping time y we say that a process &; is a submartingale on [0, y] if &, is a sub-
martingale. Similar definition applies to supermartingales.

The proof of the following lemma and Lemma 3.4 follows a version of Swiech’s [14] idea as
it is presented in [10].

Lemma 3.3. Let H[ii] < 0 in G. Then for any x € R%, . € U, and ¢ > 0, there exist a se-
quence B () = M., x,e) € B,n = 1,2,..., and a sequence of increasing continuous
{Fi}-adapted processes n}* (a.) = 0 (a., x) with ng® (a.) = O such that

sup Enfié(a.) < oo, (3.2)
n
the processes

t
K (o) = e TV — e (@) + f [P £ (e ds,
0

where
GG U = @ G )P @O o = @), =33
are supermartingales on [0, TP @)X and
lim sup En"(a.) < Ne, (3.4)
n—oo a.GQl
where N is independent of x and ¢. Finally,
sup sup E sup |«/'5 ()| < o0. (3.5)

a.eA n t>0

Proof. Since B is separable and a®f p*B B and f @B are continuous with respect to S one can
replace B in (1.2) with an appropriate countable subset Bo = {1, B2, ...}. Then foreach o € A
and x € G define f(«, x) as B; € By with the least i such that

0> L% h(x) + % (x) —e. (3.6)
For each i the right-hand side of (3.6) is Borel in x and continuous in «. Therefore, it is a Borel
function of («, x), implying that 8(«, x) also is a Borel function of (¢, x). For x &€ G set f(«, x)
= B*, where 8* is a fixed element of B. Then we have that in G
0> L@ j(x) + feP@) (x) —¢. (3.7)
After that fix x, define ,3,"0(01.) = B(a, x),t > 0, and for k > 1 introduce ,3;”‘ (o.) recursively
so that
() = B D) fort < k/n, (3.8)
k() = ﬁ(a,,x,?fn) fort > k/n,
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where x,”k, k=1,2,...,1is aunique solution of

DD =1y a. ' Va)
Xt = X + rS O’(aSa ﬂs (a-)v -xS) de
0

! nk—1) n(k—1)
+ /0 B P b(ay, BrED (), xp) + o (o, BrE V(@) x)m®F ]ds. (3.9)

To show that the above definitions make sense, observe that, by Assumption 3.2, x{“ is well

defined for all ¢. Therefore, 87! (a.) is also well defined, and by induction we conclude that x/*
and ,3,”]‘ (a.) are well defined for all k > 1.
Furthermore, owing to (3.8) it makes sense to define

(o) = ,"k(a.) fort < k/n.

Notice that by definition x;' := xfl PO atisfies the equation

t n n
xo=ax+t f o s, B ), ) dwd
0

t n n
+f[r;’"’5‘ P[b(as, B (@), x5) + o (@, B (@), xp)me ™ @] ds. (3.10)
0

Fort < k/n we have B/'(a.) = ﬂln(k_l)(a.), so that for t < k/n Eq. (3.10) coincides with (3.9)

owing to the fact that r;’ A ) 7 and wfl'ﬁ " are control adapted. It follows that (a.s.)

X =x"(a) =x forallt <k/n,
so that (a.s.)
@) = Bla, x7),)
for all + > k/n. Therefore, if (k — 1)/n <t < k/n, then
i) = g4 V@) = Blan 2y ).
Bl = Bl(ar) = Blot. X)) (3.11)

and x;' satisfies

t
Xl =x +/ rio(as, ,B(as,x,'(’n(s)),x;')dwf
0

t
+ / [r:]z[b(QSa By, x,’(ln(s))a x?) + o (o, Blaty, -x,’:n(_y))v x?)n?] ds (3.12)
0

with (r, 7, w)" = (r, 7, w)> .
Introduce 7" = 7" («.) as the first exit time of x;' = x}'(«.) from G and set

a.Bx

ol =" =
Observe that by Itd’s formula
tAt"

AP e P Vi = Gi(x) + f [ Pe= % V5 LB G (x) ds 4+ m?, (3.13)
0
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where m! is a martingale. Here according to our assumptions on the uniform continuity in x of
the data and D;;ii(x) we have that for s < " (notice the change of x] to xffn ( S))

LY a(x]) < agjlas, Plag, xp (). X0 ()DL )
+bilas, Bas, 5 (), X, () Ditt (6, ()
—c(oy, Bloy, x,’(ln (s))’ x,’(ln (S))’/A‘(x?n(s)) + x (x? - x,’(ln (s))

where x (y) is a (nonrandom) bounded function on R such that x(y) — 0 as y — 0. All such
functions will be denoted by x even if they may change from one occurrence to another.
Then (3.7) shows that, for s < ",

LYPaG) < e+ x(f = x () = Fog, Blats, X (), X0 ()
< et x(f —xl )= fOR G,
which along with (3.13) implies that, for

tAT"
e =t (e) = 31_2/ e P e 4 (] = )1 s,
0

Kipen = &° +my, (3.14)

where £/'* is a decreasing process.

Hence «;'7_, is at least a local supermartingale. Owing to Lemmas 2.4 and 3.2, (3.2) and (3.5)
hold. It follows that the local supermartingale «;?_, is, actually, a supermartingale.
Furthermore, Lemmas 2.4 and 3.2, the boundedness of x, its continuity, and the fact that

x (0) = 0 easily yield that

(e) n n
sup E/O e % x (e (@) = X)L () (@) ds — 0 (3.15)

a.e
as n — 00, which proves (3.4). The lemma is proved.
For treating i we use the following result.
Lemma 3.4. Let H[uit] > 0in G. Then for any x € R, B € B, and ¢ > 0, there exist a sequence

a’ €A n=1,2,..., and a sequence of increasing continuous {F;}-adapted processes n}°(B)
with ny® (B) = 0 such that the processes

t
Ktns — ii(xtn)e_d)’n_l//’n + 77?8(,3) +/ [VA?]ZfSn(x;l)e—W—‘/fg ds,
0

where
@ By = (o G Y P ) = pe D ),
= rlaf’ﬂ(a.")’ (3.16)
are submartingales on [0, 7% B@)X] gqnd
sup Enye(B) < oo, (3.17)
n
Jim Enf*(B) < Ne, (3.18)

where N is independent of x, 8, and .
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Finally,

sup E sup |« | < oo.
n >0

Proof. Owing to Assumption 2.1 the function

hex) = inf [L7ii(0) + ()]

is a finite Borel function of x and is continuous with respect to «. Its sup over A can be replaced
with the sup over an appropriate countable subset of A and since
sup h(a, x) > 0,
acA
similarly to how S(«, x) was defined in the proof of Lemma 3.3, one can find a Borel function
(x) in such a way that
ﬂing [L¥Pi(x) + f* P (x)] > —e (3.19)
€
inG.If x € G we set @(x) = o™, where o™ is a fixed element of A.
After that we need some processes which we introduce recursively. Fix x and set a”o = a(x).
Then define xt”o, t > 0, as a unique solution of the equation

n() n() n0
X _x+/ % ) ﬂ (anO) xb)d B(@™)
0
4 n0 n0 nO n0
+ fo s PP b, By (@), x5) + 0 (@, By (@), x)my” P s,
For k > 1 introduce oz"k so that
ok _af(k D fort < k/n,
C=a(qn ) fort = k/n,
where x;'(k_l) is a unique solution of
t oD g n k=D &&= g n k=D
x[ _x+/ ﬂ( )O.(aﬂ(k 1) ﬂ (an(k 1)) xs)dw ﬂ( )
0
t n(k—1) o, n(k—1)
+ / e BT Rart g (@n D) )
0
oD g =D
Bl )
+ o@D B (@ * D) x)m ]ds. (3.20)

As in the proof of Lemma 3.3 one can show that the above definitions make sense as well as
the definition

of =a* Y fort <k/n. (3.21)

Next, by definition x = x; @B Gatisfies

X=X —i—/ Bl )o(as,ﬂs(a”) x5) dws "B
0

4 n n
+ /0 [rfl.ﬂ(a»)] [b(c{v,ﬂs(a") xs)+(7(06wﬁ (o), xy)j-[a ACH )]d
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Eq. (3.21) and the definitions of B and of control adapted processes show that x;' satisfies (3.20)
for t < k/n. Hence, (as.) x' = xtn(k_l) forall t < k/n and (a.s.) forallr > 0, o) = &(x’,fn(t))
and

t
xl = x +/ reo@(xy ), By, x) dwg
0

t
+ / FIP[b@GE ). By (@), x) + 0 @ ). By(a), x!)a] ds,
0
where (r, T, w)} = (r, , w)(sx'nﬁ(a‘n).
Now, introduce t” as the first exit time of x;' from G, set

By = Bs(a), =

and observe that by It6’s formula

o' Bl'x o al'plx
t t

) wtn_

n a gt
rg =r B

3

INT

,;(xl’lArn)e—f/ern—‘P,Mn =a(x) + /0 [r;t]Ze—fﬁg—%" Ldfﬁé’ﬁ(x?) ds +m!,
where m is a martingale and, for s < ",

LB () = aij@(x) ). Br. X Dijii (x})

+bi (@ (xg, ()5 By s x5 Diti(xg) — c(@(xg (), By s X ii(xg).

Similarly to the proof of Lemma 3.3 we derive from (3.19) that, for s < 1",

LEP ) = —e = x (& = x0 () = F@L () B XL ()

= —&—- X(xsn - x,:ln(s)) - faﬁﬁs" (XS),

where x (y) are (nonrandom) bounded functions on R? such that x (y) — 0as y — 0. It follows
that

tAT"
(P g )ePinen ~Vinen 4 / [F12 fO5 B (xMe ™95 V5 ds + = ¢ 4+ m", (3.22)
0
where ¢; is an increasing process and

tAT"
n =nB) = 5f2f e TV e + xe (xf — XL ())]ds.
0

Hence the left-hand side of (3.22) is a local submartingale and we finish the proof in the same
way as the proof of Lemma 3.3. The lemma is proved.

Proof of Theorem 3.1. (i) First we fix x € RY, . € U, and ¢ > 0, take B"(a.) form Lemma 3.3
and prove that the 2B-valued functions defined on 2 by 8" (a.) = " (c.) belong to B. To do that
observe that if (2.1) holds and T < 1/n, then (a.s.) ﬂt’lo(a,l) = /3,”0(05.2) for almost all ¥ < T'. By
definition also (a.s.)
1101 20102
(r,m, w)y AR (r,m, w)y AR for almost all s <T.

By uniqueness of solutions of (2.3) (see Assumption 3.2), the processes xt”1 found from (3.9) for
o. = a! and for a. = o2 coincide (a.s.) forall 7 < T.
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If (2.1) holds and 1/n < T < 2/n, then by the above solutions of (3.9) for «. = a! and for

«. = a? coincide (a.s.) for 1 = 1/n and then (a.s.) ,3;“ () = }“ (@?) not only forall r < 1/n
but also for all + > 1/n, which implies that (a.s.)
1 gnl 1 2pnl,,2
(r, m, w)?' AU (r, m, w)?' A ) foralmostalls < T

2

and again the processes x;' found from (3.9) for . = ol and fora. = «
t<T.

By induction we get that if (2.1) holds for a T € (0, co) and we define k as the integer such
thatk/n < T < (k4 1)/n, then (a.s.)

coincide (a.s.) for all

Blal) = gk (al) = p*(a@?) = B (@?) foralmostallt < (k + 1)/n, (3.23)
1 gnk (1 2 gnk (2
(r,m, w)?' AR _ (r, m, w)?‘ AT ) for almost all s < T

2

and the processes x;' found from (3.9) for a. = ol and for a. = «
This means that 8” € B indeed.
Furthermore, by the supermartingale property of ;' (.), we have

coincide (a.s.) forallt < T.

n T
i) = BP0 glpem? Ve 4 / 2 f eV di] = Eni @),
0
which owing to (3.4) yields

n T
a(x) > lim sup E*P (a‘)[/ rif(x)e " Vidr + g(x,)efqbff‘p’] — Ne.
0

n—00 q.€U

In light of the arbitrariness of ¢ we conclude # > v and assertion (i) is proved.
(ii) Similarly to the above argument, for any 8 € B,

n n T
ﬁ(x) < Eg B(a! )[/ rzf(xt)efqbﬁ% dt _{_g(_xr)e*(ﬁr*‘ﬁr:l + E’?;w(ﬂ)
0
It follows that

T
sup E?ﬁ(a») [/ r?f(xt)e—@—lﬁr dr + g(xr)e—lﬁr—‘ﬂr:l +n1"20E’7}r18(.3)
0 —

a.e

u(x)

IA

IA

T
sup E)Oct.ﬂ(ol-)l:/ r}f(x,)e"”"‘”’ dt + g(xf)eftﬁr*%] + Ne,
a.e 0
which in light of the arbitrariness of ¢ and B € B finally yields that i < v.

This proves assertion (ii). Assertion (iii) is an obvious consequence of (i) and (ii). The theorem
is proved.

4. The case of uniformly nondegenerate processes

As in Section 3 we replace Assumption 2.1(iii) with Assumptions 3.1 and 3.2, and we assume
that we are given two functions i, i € Wi (G)NC(G).
In that case we have the following.

loc

Theorem 4.1. (i) If H[i] <0 (a.e.)in G and it > g on 3G, thenv < i in G.

(i) If H[it] > 0 (a.e.)in G and it < g on 3G, thenv > it in G.

(iii) If u and it are as in (i) and (ii) and &t = u, then v = i and v is independent of the choice of
the probability space, filtration, r, w, and w.
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Proof. (i) We basically repeat the proof of Theorem 4.1 of [10] with considerable simplifications
made possible due to our gssumptions. It is well known that there exists_a sequence i, € CAZ(G)
such that u, — # in C(D) and in Wf(G’) for any subdomain G’ € G’ C G. Introduce h, =
H[ﬁn]9

L) = P (x) — ha(x),

and observe that owing to our continuity assumptions on o, b, ¢, f, the functions h, and fr b (x)
are continuous in x uniformly with respect to «, 8 and

sup ﬂing [L%0,(x) + f2P(x)] =0

acAPE
in G. By Theorem 3.1, for any subdomain G| C G| C G we have in G that

7
f,(x) > inf sup E)‘;“'g“""[ﬁ,,(x,l)e—% AT / r2 fu(xp)e oV dt], .1
0

BEB o A

where
o.B.x . a.f.x
T =inf{r > 0:x, ZGr}).
Notice that

E*P ity (xg)) — @i(xz)) e 7V7 < sup |, — .
G
While estimating

7] o
)= Egﬂl ~/O fn = fot)ei@i% dt = Egﬂeiwrl /0 [ fn — f|(xt)€7¢[ dr,

Girsanov’s theorem allows us to concentrate on 7 = 0 and then the Alexandrov estimate guar-
antees that

1) = Nllhall oGy = NI Hlinl = iz, < Nllin — illyag,),

where the constants N are independent of n (and x).
Hence by letting n — oo in (4.1) we obtain that for k = 1

T
A(x) > inf sup E?'ﬂ(a‘)[ﬁ(x,k)eﬂmki%k +/ f(xt)e—@—l//r dt], 4.2)

BeB o eat 0
where r,f’ #X are defined as the first exit times of the processes x;x"g * from an expanding sequence

of subdomains G C Gy C G such that Uy G, = G.

By letting k — oo in (4.2) and repeating the proof of Theorem 2.2 of [10] given there in Sec-
tion 6 we get that i1 > v in G as stated. Observe that in our situation in the proof of Theorem 2.2
of [10] we need not mollify f%#(x) because by assumption it is uniformly continuous in x.

The proof of assertion (ii) is quite similar and as usual assertion (iii) is obtained by simply
combining assertions (i) and (ii). The theorem is proved.

5. A general approximation result from above

In this section we suppose that all assumptions in Section 2 are satisfied. Set
A=A

and let A; be a separable metric space having no common points with Aj.



4238 N.V. Krylov / Stochastic Processes and their Applications 124 (2014) 4224-4243

Assumption 5.1. The functions 6% (x), b*f (x), ¢*P(x), and f*P(x) are also defined on A, x
B x R% in such a way that they are independent of B (on Ay x B x R?) and the assumptions in
Section 2 are satisfied, of course, with A, in place of A.

Define
A= A1 U As.

Then we introduce 9 as the set of progressively measurable A-valued processes and B as
the set of B-valued functions f(«.) on 2 such that, for any T € [0, c0) and any !, o € A
satisfying

P(oz,1 = oe,z foralmostallt < T) =1,
we have
P(B,(a}) = B,(a?) for almost all r < T) = 1.
We fix an element «* € Ay and for «. € 9l define
(pa)y =o; ifas € Ay, (pa); = a* ifa; € Aj.

By using this projection operator we extend (w, r, n)?‘ﬁ " originally defined for «. € 2 and 8. €
B as

w, r, M) = W, r, ;)" (5.1)

thereby now defined for «. € 2 and B. € ‘B.
Next, take a constant K > 0 and set

vk (x) = inf sup vaﬂ(a)(x)

ﬂEBa e

where
WP ) = EoP [for"ffx(xf)e_@_w’ dt+g(xr)e—¢f—vfr]
= v*P(x) - KEjf‘ﬁ‘ /OT rflateAze_d”_‘”’ dt,
FE@ = fP@) ~ Klacay.

Notice that, obviously,

v(x) = inf sup U["x-ﬂ(pot.)(x)‘
BeB o 9

These definitions make sense owing to Remark 2.3, which also implies that v‘;‘("s " and v* P
and bounded in G.

Theorem 5.1. We have vg — v uniformly on G as K — oc.

Lemma 5.2. Assume that w1 = 0. Then there exists a constant N such that for any o. € A, B. €
B, x e RY, T € [0, 00), and stopping time y

TAy
1/2
EXP sup |x — y,| < NeNT(EP / Tyen, di)'”.
0

t<T Ay
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where

y;y.ﬁ.x _ xtpaﬂ,x.

Proof. For simplicity of notation we drop the superscripts «., 8., x. Observe that x; and y; satisfy

t t
X =x+ / rea®Ps (xg) dwg + f rfb“”sx (x5) ds,
0 0

t t
yomt ot [P0 ds 4
0 0

where Ny = I[ + J[,

t
= [ e () = g ) du,
0

t
= [ rr o) = b 1 ds,
0

By Theorem I1.5.9 of [ 7] (where we replace the processes x; and x; with appropriately stopped
ones) for any T € [0, oo) and any stopping time y

E sup |x —y /> <NeNTE sup |, (5.2)
t<T Ay t<T Ay

where N depends only on K and d, which by Theorem III1.6.8 of [8] leads to

E sup |x;—y/| < Ne"TE sup || (5.3)
t<TAy t<TAy

with the constant N being three times the one from (5.2).
By using Davis’s inequality we see that for any 7 € [0, c0)

Try 1/2 Tny 1/2
E sup |L| <NE(/ IaA,eAzds> SN(E/ IaSGAzds) .
t<T Ay 0
Furthermore, almost obviously
TAy 5 TAy 1/2
E sup || < NE/ Iysea,ds < NTV/ (E/ Lue, ds)
t<T Ay 0

and this in combination with (5.3) proves the lemma.

Proof of Theorem 5.1. Without losing generality we may assume that g € C3(R?) since the
functions of this class uniformly approximate in G any g which is continuous in R¢. Then notice
that by Ito’s formula for g € C3(R?) we have

T
E?-ﬁ I:/(‘) rt2fK (x,)e_d”_w’ dt + g(xr)e—(ﬁr—‘ﬁr:l

T
= g(x) + E&F / r2Lf () — K Iy,enyle™ Ve dt,
0
where

f(x) = f(x) + L g (x),
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which is bounded and, for («, f) € A x B, is uniformly continuous in x uniformly with respect
to «, B. This argument shows that without losing generality we may (and will) also assume that
g=0. ) ) .

Next, since 2 C 2 and for «. € 2 and f € B we have B(«.) € B, it holds that

VK > V.

To estimate vk from above, take B € B and define ,B eB by

~

Bi(a) = B,(pa.). 5.4)

B.

Also take any sequence x" € G,n=1,2,...,recall that r,a' > §1, and find a sequence o € A

such that

~ T
vg (x™) < sup E?,;ﬂ(a')/ rtsz (xt)e_¢’_'/” dt
el 0

n

N T
1/n 4 v*BED xny — stE/ Iyea,e™® V1 dt, (5.5)
0

IA

where

@ o ) = (T, 1, ) B

It follows that there is a constant N independent of » and K such that

n

T
E/O Iyea,e™® V1 dt < N/K. (5.6)

Below by N we denote generic constants independent of » and K (and T once it appears).
We want to estimate the difference

V2 B@ (my o pal Bpal) (ny (5.7)

Observe that in the expression of this difference by the definition through the mathematical ex-
pectations of certain quantities the processes y; involved are just the same, thanks to (5.1) and
(5.4). This allows us to rewrite the mathematical expectations similarly to how it is done in
Remark 2.3 and then by using Girsanov’s theorem allows us to assume that 7; = 0, at the ex-
pense that the underlying probability measures will now depend on n. However, for simplicity
of notation we keep the symbol E for expectations with respect to the new probability measures
depending on n. Thus, while estimating (5.7) we assume that 7; = 0.

Introduce
o Bo™)x" pa’ Bla™)x"
xf =% ) =X )
c;’ = % A% )(xtn)’ pC? — P B (o] )(yt")
ft” — f“;lﬁt(ot.")(xtn)’ szn — fpa;‘/ét(a.")(ytn)
~ t
"B
=P pgy =/ [ pet ds,
0

and define y" as the first exit time of y;' from G. Notice that, for any T € [0, 00), (5.7) equals
I (T) + Dy(T) — I3,(T),
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where

T AY"AT
I(T) = E /0 IR exp(—al) — pf™ exp(—pgi)] dt.

.[n

Io(T) = E / [P £ exp(—@?) dt.
T"AYPAT
14
Isn(T) = E / [P p T exp(—pal d.

TAYMAT

n

By using the inequalities e — e™?| < |a — b| valid fora, b > 0 and |ab — cd| < |b| - |a —
c| + |c| - |b — d| and also using the boundedness of r*# | ¢®# and f*# we easily conclude that

n

"AT
Hn () < N(1 + T)E/ [Lf = pfl+1c] — pefl] dt.
0
Observe that, if o) € Ay, then
L7 = pf < We(x" = yi')),

where Wy is the modulus of continuity of f B (x) with respect to x uniform with respect to «, j.
A similar estimate holds for |c} — pc}'| in which W, is the modulus of continuity of @ (x).
Furthermore,

n n

" AT T
E/O lyrea, dt < eT/aE/O IafeAze_(p’n dt < NeT/é/K’

where the last inequality is due to (5.6). Hence,

[1a(T)] < N(L+ T E[W, + Wy] ( sup [x]' — y{’|) + NN K.

t<t"AT

We may and will assume that W,.(r) and W (r) are concave functions on [0, 00), so that

12 (T)| < N(1+ T)*[We + W] (E sup  |x; — y;’I) + Nel/N /K.

t<t"AT
Next use the fact that as follows from Lemma 5.2
E sup |x"—y"'| < NeNT VK.
t<t"'AT

Then we conclude that
(D] < N1+ TYWe + Wl (NeVT /VE) + NeTP /K. (5.8)

While estimating I, (7T) we again use the boundedness of the data and use Remark 2.1 and
by It6’s formula obtain that

P

[ (T)] < NEIrnz;/"AT/ T[r,"]2 dt < NEIn>yna7G(Xpn 1)
PN

NEIT"Z]/”/\T|G(X)n,nAT) - G(y;"ATN + NEIT"E)’"/\T|G(y$"/\T)|

NE sup |x!' —y'|+ NELn-7G(y}).

t<t"AT

IA

A
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By Lemma 5.1 of [10]
ElLn.7G(yf) < Ne "V,
Next,

n

En(T)| < NELnsonn / PR dt < NELnsonr GG )

™ AT
< NE sup |x/ —y/|+ NELnsoarG(X0n 1)
t<t"AT
< NE sup |x; —y/'|+ NEILn. 7G(x7}).
t<t"AT

We use again Lemma 5.1 of [10] and conclude that, for K > 1, (5.7) is less than
w(T, K) = N+ TWe + Wil (NeMT VK ) + NeMT VK + Ne T/,
Thus, (5.5) yields
vk (") < 1/n + P B (M) (T, K).
Hence

v (x™) < sup v¥B@ (™) 4 w(T, K) + 1/n.
a.e

Owing to the arbitrariness of § € B we have
vg (x") < v(x") + w(T, K) + 1/n,
and the arbitrariness of x” yields that for K > 1
sup(vg —v) < w(T, K), (5.9)
D

which leads to the desired result after first letting K — oo and then T — oo. The theorem is
proved.

Remark 5.1. Assume that ¢®? (x) and f @B (x) are Holder continuous with respect to x with ex-
ponent x € (0, 1] and constant independent of o and . Then by taking T such that eM7 = K1/4
we see that, for K > 1, the left-hand side of (5.9) is dominated by

N(1 4+ 1In K)2K /4 4 NK~1/(@N1N2)

Hence, there is a x € (0, 1] such that the left-hand side of (5.9) is dominated by N K ~X for
K > 1. Thus, we have justified a claim made in Section 5 of [12].

6. Proof of Theorem 2.1

The properties of P listed before Theorem 2.2 or just the construction of P in [9] yield that
there is a set A, having no common points with A, and bounded continuous functions % = o%B,
b* = b*, ¢* = ¢*P (independent of x and B), and f*# = 0 defined on A, such that the assump-
tions in Section 2 are satisfied perhaps with different constants § and K¢ and for a® = a*f =
(1/2)0%(c%)* we have

Plu](x) = sup [af‘j D;ju(x) + bf Dju(x) — c“u(x)]. 6.1)

a€A
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Use the notation from Section 5 and observe that
max(H [u](x), Plu](x) — K)
= max] sup inf [L%ux) + ()], sup inELPu(e) + ) k1)

acA PEB aeA, PE

= sup nf[L%u(@) + £F @1 (@ = £ @ laen = Kluens),

ach

where the first equality follows from the definition of H[u], (6.1), and the fact that L is inde-
pendent of B for @ € Aj. It follows by Theorems 2.2 and 4.1 that ux = vk and by Theorem 5.1
thatin G

v= lim ug,
K—o0

where the right-hand side is indeed independent of the probability space, filtration, and the choice
of w, r, w. Since the above convergence is uniform, v is continuous in G. The theorem is proved.
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