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Abstract

We show that the value function in a stochastic differential game does not change if we keep the same
space (Ω ,F) but introduce probability measures by means of Girsanov’s transformation depending on the
policies of the players. We also show that the value function does not change if we allow the driving Wiener
processes to depend on the policies of the players. Finally, we show that the value function does not change
if we perform a random time change with the rate depending on the policies of the players.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Let Rd
= {x = (x1, . . . , xd)} be a d-dimensional Euclidean space and let d1 ≥ d be an inte-

ger. Assume that we are given separable metric spaces A and B, and let, for each α ∈ A, β ∈ B,
the following functions on Rd be given:

(i) d × d1 matrix-valued σαβ(x) = σ(α, β, x) = (σ
αβ
i j (x)),

(ii) Rd -valued bαβ(x) = b(α, β, x) = (bαβi (x)), and
(iii) real-valued functions cαβ(x) = c(α, β, x) ≥ 0, f αβ(x) = f (α, β, x), and g(x).
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Under natural assumptions which will be specified later, on a probability space (Ω ,F , P)
carrying a d1-dimensional Wiener process wt one associates with these objects and a bounded
domain G ⊂ Rd a stochastic differential game with the diffusion term σαβ(x), drift term bαβ(x),
discount rate cαβ(x), running cost f αβ(x), and the final cost g(x) payed when the underlying
process first exits from G.

After the order of players is specified in a certain way it turns out (see our Remark 2.2) that
the value function v(x) of this differential game is a unique continuous in Ḡ viscosity solution
of the Isaacs equation

H [v] = 0 (1.1)

in G with boundary condition v = g on ∂G, where for a sufficiently smooth function u = u(x)

H [u](x) = sup
α∈A

inf
β∈B

[Lαβu(x)+ f αβ(x)], (1.2)

Lαβu(x) := aαβi j (x)Di j u(x)+ bαβi (x)Di u(x)− cαβ(x)u(x),

aαβ(x) := (1/2)σαβ(x)(σαβ(x))∗, Di = ∂/∂x i , Di j = Di D j .

We will assume that σ and b are uniformly Lipschitz with respect to x, σσ ∗ is uniformly non-
degenerate, and c and f are uniformly bounded. In such a situation uniqueness of continuous
viscosity solutions or even continuous L p viscosity solutions of (1.2) is shown in [5] and there-
fore the fact of the independence of v of the probability space seems to be obvious.

Roughly speaking, the goal of this paper is to show that the value function does not change
even if we keep the same space (Ω ,F) but introduce probability measures by means of Gir-
sanov’s transformation depending on the policies of the players. We also show that the value
function does not change if we allow the driving Wiener processes to depend on the policies of
the players. Finally, we show that the value function does not change if we perform a random
time change with the rate depending on the policies of the players.

These facts are well known in the theory of controlled diffusion processes and play there a
very important role, in particular, while estimating the derivatives of the value function. A rather
awkward substitute of them for stochastic differential games was used for the same purposes
in [12]. Applying the results presented here one can make many constructions in [12] more
natural and avoid introducing auxiliary “shadow” processes.

However, not all proofs in [12] can be simplified using our present methods. We deliberately
avoided discussing the way to use the external parameters in contrast with [12] just to make the
presentation more transparent.

Our proofs do not use anything from the theory of viscosity solutions and are based on a
version of Świȩch’s [14] idea as presented in [10] and a general solvability theorem in class C1,1

of Isaacs equations from [9].
It is quite possible that Świȩch’s approach from [14] based on inf sup convolutions can be

further developed and used to prove our main results. We prefer using the above mentioned
result from [9] for two reasons.

First, in previous articles we used this result to establish a W 2
p-solvability theorem for fully

nonlinear equations with a “relaxed” convexity assumption, to showing that the L p-viscosity so-
lutions of Isaacs equations with VMO coefficients are in C1+κ , and to establishing an algebraic
rate of convergence of finite-difference approximations to solutions of Isaacs equations. Here we
provide one more application of this result of [9].
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The second reason is that we want to justify a claim made in Section 5 of [12] and in the
continuation of this paper to prove a sharper theorem about how fast the approximate solutions
from [9] converge to the value function.

The article is organized as follows. In Section 2 we present our main result, Theorem 2.1. We
prove it in Section 3 under the additional assumption that the corresponding Isaacs equation has
a smooth solution. Then in Section 4 we allow the solutions to belong to the Sobolev class W 2

d .
Section 5 contains a general approximation result, which allows us in Section 6 to use a result
from [9] (see Theorem 2.2) and conclude the proof of Theorem 2.1 in the general case.

2. Main result

We start with our assumptions.

Assumption 2.1. (i) The functions σαβ(x), bαβ(x), cαβ(x), and f αβ(x) are continuous with
respect to β ∈ B for each (α, x) and continuous with respect to α ∈ A uniformly with
respect to β ∈ B for each x . The function g(x) is bounded and continuous.

(ii) The functions cαβ(x) and f αβ(x) are uniformly continuous with respect to x uniformly with
respect to (α, β) ∈ A × B and for any x ∈ Rd and (α, β) ∈ A × B

∥σαβ(x)∥, |bαβ(x)|, |cαβ(x)|, | f αβ(x)| ≤ K0,

where K0 is a fixed constant and for a matrix σ we denote ∥σ∥
2

= tr σσ ∗,
(iii) For any (α, β) ∈ A × B and x, y ∈ Rd we have

∥σαβ(x)− σαβ(y)∥ + |bαβ(x)− bαβ(y)| ≤ K0|x − y|.

Let (Ω ,F , P) be a complete probability space, let {Ft , t ≥ 0} be an increasing filtration of
σ -fields Ft ⊂ F such that each Ft is complete with respect to F , P .

The set of progressively measurable A-valued processes αt = αt (ω) is denoted by A. Sim-
ilarly we define B as the set of B-valued progressively measurable functions. By B we denote
the set of B-valued functions β(α·) on A such that, for any T ∈ (0,∞) and any α1

· , α
2
· ∈ A

satisfying

P(α1
t = α2

t for almost all t ≤ T ) = 1, (2.1)

we have

P(β t (α
1
· ) = β t (α

2
· ) for almost all t ≤ T ) = 1.

Definition 2.1. A function pα·β·

t = pα·β·

t (ω) given on A × B × Ω × [0,∞) with values in some
measurable space is called a control adapted process if, for any (α·, β·) ∈ A × B, it is progres-
sively measurable in (ω, t) and, for any T ∈ (0,∞), we have

P(p
α1

· β
1
·

t = p
α2

· β
2
·

t for almost all t ≤ T ) = 1

as long as

P(α1
t = α2

t , β
1
t = β2

t for almost all t ≤ T ) = 1.

Assumption 2.2. For each α· ∈ A and β· ∈ B we are given control adapted processes

(i) wα·β·

t , t ≥ 0, which are standard d1-dimensional Wiener process relative to the filtration
{Ft , t ≥ 0},

(ii) rα·β·

t , t ≥ 0, and πα·β·

t , t ≥ 0, which are real-valued and Rd1 -valued, respectively,
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(iii) for all values of the arguments

δ−1
1 ≥ rα·β·

t ≥ δ1, |π
α·β·

t | ≤ K1,

where δ1 > 0 and K1 ∈ (0,∞) are fixed constants.

Finally we introduce

aαβ(x) := (1/2)σαβ(x)(σαβ(x))∗,

fix a domain G ⊂ Rd , and impose the following.

Assumption 2.3. G is a bounded domain of class C2 and there exists a constant δ ∈ (0, 1) such
that for any α ∈ A, β ∈ B, and x, λ ∈ Rd

δ|λ|2 ≤ aαβi j (x)λ
iλ j

≤ δ−1
|λ|2.

Remark 2.1. As is well known, if Assumption 2.3 is satisfied, then there exists a bounded from
above Ψ ∈ C2

loc(R
d) such that Ψ > 0 in G,Ψ = 0 on ∂G, and for all α ∈ A, β ∈ B, and x ∈ G

LαβΨ(x)+ cαβΨ(x) ≤ −1. (2.2)

For α· ∈ A, β· ∈ B, and x ∈ Rd consider the following Itô equation

xt = x +

 t

0
rα·β·

s σαsβs (xs) dwα·β·

s +

 t

0
[rα·β·

s ]
2bαsβs (xs)+ σαsβs (xs)π

α·β·

s


ds. (2.3)

Observe that Eq. (2.3) satisfies the usual hypothesis, that is for any α· ∈ A, β· ∈ B, x ∈ Rd ,
and T ∈ (0,∞) it has a unique solution on [0, T ] denoted by xα·β·x

t and xα·β·x
t is a control adapted

process for each x .
Set

φ
α·β·x
t =

 t

0
[rα·β·

s ]
2cαsβs (xα·β·x

s ) ds,

ψ
α·β·x
t = −(1/2)

 t

0
[rα·β·

s ]
2
|πα·β·

s |
2 ds −

 t

0
rα·β·

s πα·β·

s dwα·β·

s ,

define τα·β·x as the first exit time of xα·β·x
t from G, and introduce

v(x) = inf
β∈B

sup
α·∈A

Eα·β(α·)
x

 τ

0
r2

t f (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ

, (2.4)

where the indices α·,β, and x at the expectation sign are written to mean that they should be
placed inside the expectation sign wherever and as appropriate, that is

Eα·β·

x

 τ

0
r2

t f (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


:= E

g(xα·β·x

τα·β·x
)e

−φ
α·β·x

τα·β·x
−ψ

α·β·x

τα·β·x +

 τα·β·x

0
[rα·β·x

t ]
2 f αtβt (xα·β·x

t )e−φ
α·β·x
t −ψ

α·β·x
t dt


.

Observe that, formally, the value xτ may not be defined if τ = ∞. In that case we set the corre-
sponding terms to equal zero. The above definitions make perfect sense due to our Remark 2.3.

Here is our main result.
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Theorem 2.1. Under the above assumptions the function v(x) is independent of the choice of
the probability space, filtration and control adapted process (r, π,w)α·β·

t , it is bounded and con-
tinuous in Ḡ.

Remark 2.2. Once we know that v(x) is independent of the choice of the probability space, fil-
tration and control adapted process (r, π,w)α·β·

t , we can take any probability space carrying a d1-
dimensional Wiener process wt and construct v(x) by setting wα·β·

t = wt , r ≡ 1, π ≡ 0. In that
case we are in the position to apply the results of [1,6,11] according to which v is continuous in Ḡ
and satisfies the dynamic programming principle. Then it is a standard fact that v is a viscosity so-
lution of (1.1) (see, for instance, [1,6,14]). Indeed, if a smooth function ψ(x) is such that ψ(x) ≥

v(x) in a neighborhood of x0 ∈ G and ψ(x0) = v(x0), then by defining γ α·β·

ε , ε > 0 as the first
exit time of xα·β·x0

t from an ε-neighborhood of x0 for all small ε we have

ψ(x0) = v(x0) = inf
β∈B

sup
α·∈A

Eα·β(α·)
x0

 γε

0
f (xt )e

−φt dt + v(xγε )e
−φγε


≤ inf

β∈B
sup
α·∈A

Eα·β(α·)
x0

 γε

0
f (xt )e

−φt dt + ψ(xγε )e
−φγε


.

On the other hand set H [ψ] = −h and observe that by Theorem 4.1 of [10]

ψ(x0) = inf
β∈B

sup
α·∈A

Eα·β(α·)
x0

 γε

0
( f + h)(xt )e

−φt dt + ψ(xγε )e
−φγε


.

It follows that

inf
α·∈A

inf
β·∈B

Eα·β·

x0

 γε

0
h(xt )e

−φt dt ≤ 0, (2.5)

and if we assume that H [ψ](x0) < 0, then h > 0 in an ε-neighborhood of x0 and (2.5) is impos-
sible, since c is bounded and σ and b are bounded so that Eα·β·

x0 γε is bounded away from zero.
Hence H [ψ](x0) ≥ 0 and v is a viscosity subsolution by definition. Similarly one shows that it
is a viscosity supersolution.

Provided that we know that continuous viscosity solutions are unique the above argument
proves the fact that the value function is independent of the probability space (if we drop out
r and π and take w independent of the policies). Jensen [2] proved uniqueness for Lipschitz
continuous viscosity solutions to the fully nonlinear second order elliptic PDE not explicitly de-
pending on x in a bounded domain. Related results in the same year with H depending on x were
published in Jensen–Lions–Souganidis [4].

In what concerns uniformly nondegenerate Isaacs equations, Trudinger in [15] proves the ex-
istence and uniqueness of continuous viscosity solutions for Isaacs equations if the coefficients
are continuous and a is 1/2 Hölder continuous uniformly with respect to α, β (see Corollary 3.4
there). Uniqueness is also stated for Isaacs equations with Lipschitz continuous a as Corollary
5.11 in [3]. Jensen and Świȩch in [5] further relaxed the requirement on a and proved uniqueness
of continuous even L p-viscosity solutions.

We will use Theorem 2.1 to prove in a subsequent article a result to state which we need a
few new objects. In the end of Section 1 of [9] a function P(ui j , ui , u) is constructed defined for
all symmetric d × d matrices (ui j ),Rd -vectors (ui ), and u ∈ R such that it is convex, positive-
homogeneous of degree one, is Lipschitz continuous, and at all points of differentiability of P
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for all values of arguments we have Pu ≤ 0 and

δ̂|λ|2 ≤ Pui jλ
iλ j

≤ δ̂−1
|λ|2,

where δ̂ is a constant in (0, 1) depending only on d, K0, and δ. For smooth enough functions
u(x) introduce

P[u](x) = P(Di j u(x), Di u(x), u(x)).

We now state part of Theorem 1.1 of [9] which we need even in the present article.

Theorem 2.2. Let g ∈ C1,1(Rd). Then for any K ≥ 0 the equation

max(H [u], P[u] − K ) = 0 (2.6)

in G (a.e.) with boundary condition u = g on ∂G has a unique solution u ∈ C0,1(Ḡ)∩ C1,1
loc (G).

The result we are aiming at in a subsequent article consists of proving the conjecture stated
in [9]:

Theorem 2.3. Denote by uK the function from Theorem 2.2 and assume that G and g are of
class C3. Then there exists a constant N such that |v − uK | ≤ N/K on G for K ≥ 1.

A very week version of this theorem was already used in [13] for establishing a rate of con-
vergence of finite-difference approximations for solutions of Isaacs equations.

We finish this section with a useful technical result.

Lemma 2.4. For any α· ∈ A, β· ∈ B, and x ∈ Rd the process

exp(−ψα·β·x
t∧τα·β·x

)

is a uniformly integrable martingale on [0,∞). Furthermore, there exists a constant N indepen-
dent of α· ∈ A, β· ∈ B, and x ∈ Rd such that

Eα·β·

x

 τ

0
e−ψs ds ≤ N . (2.7)

Finally,

Eα·β·

x e−ψτ = 1. (2.8)

Proof. Owing to (2.2) by Itô’s formula

Eα·β·

x G(xt∧τ )e
−ψt∧τ = G(x)+ Eα·β·

x

 t∧τ

0
r2

s [LG + cG](xs)e
−ψs ds

≤ G(x)− δ2
1 Eα·β·

x

 t∧τ

0
e−ψs ds,

and (2.7) follows. To prove (2.8) use that

1 = Eα·β·

x e−ψt∧τ = Eα·β·

x e−ψτ Iτ≤t + Eα·β·

x e−ψt Iτ>t ,

where the last term decreases as t increases, which is seen from the formula, and tends to zero as
t → ∞ since its integral with respect to t over [0,∞) is finite being equal to the left-hand side
of (2.7).

Finally, the first assertion of the lemma follows from (2.8) due to the well-known properties
of martingales. The lemma is proved.
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Remark 2.3. In light of the proof of Lemma 2.4

0 = lim
t→∞

Eα·β·

x e−ψt Iτ>t = lim
t→∞

Eα·β·

x e−ψτ Iτ>t = Eα·β·

x e−ψτ Iτ=∞.

Hence defining the terms containing xτ as zero on the set where τ = ∞ is indeed natural.
Lemma 2.4 shows that the function v is well defined and one can rewrite its definition as

v(x) = inf
β∈B

sup
α·∈A

Eα·β(α·)
x

 τ

0
r2

t f (xt )e
−φt dt + g(xτ )


e−ψτ ,

which calls for changes of probability measure by using Girsanov’s theorem.

3. Proof of Theorem 2.1 in case that the Isaacs equation has a smooth solution

In this section we replace Assumption 2.1(iii) with a weaker one.

Assumption 3.1. The functions σαβ(x) and bαβ(x) are uniformly continuous with respect to x
uniformly with respect to (α, β) ∈ A × B.

However, this time there is no guarantee that Eq. (2.3) has a unique solution and we impose
the following.

Assumption 3.2. Eq. (2.3) satisfies the usual hypothesis, that is for any α· ∈ A, β· ∈ B, x ∈ Rd ,
and T ∈ (0,∞) it has a unique solution on [0, T ] denoted by xα·β·x

t and xα·β·x
t is a control adapted

process for each x .

We also assume that we are given two functions û, ǔ ∈ C2(Ḡ).

Theorem 3.1. (i) If H [û] ≤ 0 in G and û ≥ g on ∂G, then v ≤ û in Ḡ.
(ii) If H [ǔ] ≥ 0 in G and ǔ ≤ g on ∂G, then v ≥ ǔ in Ḡ.

(iii) If û and ǔ are as in (i) and (ii) and û = ǔ, then v is independent of the choice of the
probability space, filtration, r, π , and w.

We need three lemmas.

Lemma 3.2. Set κn(t) = [nt]/n. Then there exists a constant N such that for all n ≥ 1, x ∈ Rd ,

α· ∈ A, β· ∈ B we have

Eα·β·

x

 τ

0
e−φt −ψt |xt − xκn(t)|

2 dt ≤ N/n. (3.1)

Proof. For each fixed t while estimating

Eα·β·

x e−φt −ψt |xt − xκn(t)|
2 Iτ>t

Girsanov’s theorem allows us to assume that π ≡ 0. In that case for simplicity of notation we
will drop the indices x, α·, β· and observe that

|xt − xκn(t)|
2

≤ 2
 t

k/n
σ(xs) dws

2 + 2
 t

k/n
b(xs) ds

2
so that for t ∈ [k/n, (k + 1)/n]

Eα·β·

x {e−φt |xt − xk/n|
2

| Fk/n} ≤ Eα·β·

x {|xt − xk/n|
2

| Fk/n} ≤ N/n,
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where N depends only on d and K0. Hence, owing also to (2.7) the left-hand side of (3.1) is
dominated by

∞

0
Eα·β·

x e−φt |xt − xκn(t)|
2 Iτ>t dt ≤


∞

0
Eα·β·

x |xt − xκn(t)|
2 Iτ>κn(t) dt

≤ Nn−1


∞

0
Eα·β·

x Iτ>κn(t) dt = Nn−1 Eα·β·

x (τ + 1/n) ≤ Nn−1.

The lemma is proved.

For a stopping time γ we say that a process ξt is a submartingale on [0, γ ] if ξt∧γ is a sub-
martingale. Similar definition applies to supermartingales.

The proof of the following lemma and Lemma 3.4 follows a version of Świȩch’s [14] idea as
it is presented in [10].

Lemma 3.3. Let H [û] ≤ 0 in G. Then for any x ∈ Rd , α· ∈ A, and ε > 0, there exist a se-
quence βn

· (α·) = βn
· (α·, x, ε) ∈ B, n = 1, 2, . . . , and a sequence of increasing continuous

{Ft }-adapted processes ηnε
t (α·) = ηnε

t (α·, x) with ηnε
0 (α·) = 0 such that

sup
n

Eηnε
∞(α·) < ∞, (3.2)

the processes

κnε
t (α·) := û(xn

t )e
−φn

t −ψn
t − ηnε

t (α·)+

 t

0
[rn

t ]
2 f n

s (x
n
s )e

−φn
s −ψn

s ds,

where

(xn
t , φ

n
t , ψ

n
t ) = (xt , φt , ψt )

α·β
n
· (α·)x , f n

t (x) = f αtβ
n
t (α·)(x), rn

t = r
α·β

n
· (α·)

t , (3.3)

are supermartingales on [0, τα·β
n
· (α·)x ], and

lim
n→∞

sup
α·∈A

Eηnε
τ (α·) ≤ Nε, (3.4)

where N is independent of x and ε. Finally,

sup
α·∈A

sup
n

E sup
t≥0

|κnε
t∧τ (α·)| < ∞. (3.5)

Proof. Since B is separable and aαβ , bαβ , cαβ , and f αβ are continuous with respect to β one can
replace B in (1.2) with an appropriate countable subset B0 = {β1, β2, . . .}. Then for each α ∈ A
and x ∈ G define β(α, x) as βi ∈ B0 with the least i such that

0 ≥ Lαβi û(x)+ f αβi (x)− ε. (3.6)

For each i the right-hand side of (3.6) is Borel in x and continuous in α. Therefore, it is a Borel
function of (α, x), implying that β(α, x) also is a Borel function of (α, x). For x ∉ G set β(α, x)
= β∗, where β∗ is a fixed element of B. Then we have that in G

0 ≥ Lαβ(α,x)û(x)+ f αβ(α,x)(x)− ε. (3.7)

After that fix x , define βn0
t (α·) = β(αt , x), t ≥ 0, and for k ≥ 1 introduce βnk

t (α·) recursively
so that

βnk
t (α·) = β

n(k−1)
t (α·) for t < k/n, (3.8)

βnk
t (α·) = β(αt , xnk

k/n) for t ≥ k/n,
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where xnk
t , k = 1, 2, . . . , is a unique solution of

xt = x +

 t

0
rα·β

n(k−1)
· (α·)

s σ(αs, β
n(k−1)
s (α·), xs) dwα·β

n(k−1)
· (α·)

s

+

 t

0
[rα·β

n(k−1)
·

s ]
2b(αs, β

n(k−1)
s (α·), xs)+ σ(αs, β

n(k−1)
s (α·), xs)π

α·β
n(k−1)
·

s


ds. (3.9)

To show that the above definitions make sense, observe that, by Assumption 3.2, xn1
t is well

defined for all t . Therefore, βn1
t (α·) is also well defined, and by induction we conclude that xnk

t
and βnk

t (α·) are well defined for all k ≥ 1.
Furthermore, owing to (3.8) it makes sense to define

βn
t (α·) = βnk

t (α·) for t < k/n.

Notice that by definition xn
t := x

α·β
n
· (α·)x

t satisfies the equation

xt = x +

 t

0
r
α·β

n
· (α·)

s σ(αs, β
n
s (α·), xs) dw

α·β
n
· (α·)

s

+

 t

0
[r
α·β

n
·

s ]
2b(αs, β

n
s (α·), xs)+ σ(αs, β

n
s (α·), xs)π

α·β
n
· (α·)

s


ds. (3.10)

For t < k/n we have βn
t (α·) = β

n(k−1)
t (α·), so that for t ≤ k/n Eq. (3.10) coincides with (3.9)

owing to the fact that rα·β·

t , π
α·β·

t , and wα·β·

t are control adapted. It follows that (a.s.)

xn
t = xn

t (α·) = xnk
t for all t ≤ k/n,

so that (a.s.)

βnk
t (α·) = β(αt , xn

k/n)

for all t ≥ k/n. Therefore, if (k − 1)/n ≤ t < k/n, then

βn
t (α·) = β

n(k−1)
t (α·) = β(αt , xn

(k−1)/n),

βn
s := βn

s (α·) = β(αs, xn
κn(s)), (3.11)

and xn
t satisfies

xn
t = x +

 t

0
rn

s σ(αs, β(αs, xn
κn(s)), xn

s ) dwn
s

+

 t

0
[rn

s ]
2b(αs, β(αs, xn

κn(s)), xn
s )+ σ(αs, β(αs, xn

κn(s)), xn
s )π

n
s


ds (3.12)

with (r, π,w)ns = (r, π,w)
α·β

n
·

s .
Introduce τ n

= τ n(α·) as the first exit time of xn
t = xn

t (α·) from G and set

φn
t = φ

α·β
n
· x

t , ψn
t = ψ

α·β
n
· x

t .

Observe that by Itô’s formula

û(xn
t∧τ n )e−φn

t∧τn −ψn
t∧τn = û(x)+

 t∧τ n

0
[rn

s ]
2e−φn

s −ψn
s Lαsβ

n
s û(xn

s ) ds + mn
t , (3.13)
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where mn
s is a martingale. Here according to our assumptions on the uniform continuity in x of

the data and Di j û(x) we have that for s < τ n (notice the change of xn
s to xn

κn(s)
)

Lαsβ
n
s û(xn

s ) ≤ ai j (αs, β(αs, xn
κn(s)), xn

κn(s))Di j û(x
n
κn(s))

+ bi (αs, β(αs, xn
κn(s)), xn

κn(s))Di û(x
n
κn(s))

− c(αs, β(αs, xn
κn(s)), xn

κn(s))û(x
n
κn(s))+ χ(xn

s − xn
κn(s))

where χ(y) is a (nonrandom) bounded function on Rd such that χ(y) → 0 as y → 0. All such
functions will be denoted by χ even if they may change from one occurrence to another.

Then (3.7) shows that, for s < τ n ,

Lαsβ
n
s û(xn

s ) ≤ ε + χ(xn
s − xn

κn(s))− f (αs, β(αs, xn
κn(s)), xn

κn(s))

≤ ε + χ(xn
s − xn

κn(s))− f αsβ
n
s (xn

s ),

which along with (3.13) implies that, for

ηnε
t = ηnε

t (α·) = δ−2
1

 t∧τ n

0
e−φn

s −ψn
s [ε + χ(xn

s − xn
κn(s))] ds,

κnε
t∧τ n = ζ nε

t + mn
t , (3.14)

where ζ nε
t is a decreasing process.

Hence κnε
t∧τ n is at least a local supermartingale. Owing to Lemmas 2.4 and 3.2, (3.2) and (3.5)

hold. It follows that the local supermartingale κnε
t∧τ n is, actually, a supermartingale.

Furthermore, Lemmas 2.4 and 3.2, the boundedness of χ , its continuity, and the fact that
χ(0) = 0 easily yield that

sup
α·∈A

E
 τ n(α·)

0
e−φn

s −ψn
s χ(xn

s (α·)− xn
κn(s)(α·)) ds → 0 (3.15)

as n → ∞, which proves (3.4). The lemma is proved.

For treating ǔ we use the following result.

Lemma 3.4. Let H [ǔ] ≥ 0 in G. Then for any x ∈ Rd ,β ∈ B, and ε > 0, there exist a sequence
αn

· ∈ A, n = 1, 2, . . . , and a sequence of increasing continuous {Ft }-adapted processes ηnε
t (β)

with ηnε
0 (β) = 0 such that the processes

κnε
t := ǔ(xn

t )e
−φn

t −ψn
t + ηnε

t (β)+

 t

0
[rn

s ]
2 f n

s (x
n
s )e

−φn
s −ψn

s ds,

where

(xn
t , φ

n
t , ψ

n
t ) = (xt , φt , ψt )

αn
· β(αn

· )x , f n
t (x) = f α

n
t β t (α

n
· )(x),

rn
t = r

αn
· β(αn

· )
t , (3.16)

are submartingales on [0, τα
n
· β(αn

· )x ] and

sup
n

Eηnε
∞(β) < ∞, (3.17)

lim
n→∞

Eηnε
τ (β) ≤ Nε, (3.18)

where N is independent of x,β, and ε.
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Finally,

sup
n

E sup
t≥0

|κnε
t∧τ | < ∞.

Proof. Owing to Assumption 2.1 the function

h(α, x) := inf
β∈B


Lαβ ǔ(x)+ f αβ(x)


is a finite Borel function of x and is continuous with respect to α. Its sup over A can be replaced
with the sup over an appropriate countable subset of A and since

sup
α∈A

h(α, x) ≥ 0,

similarly to how β(α, x) was defined in the proof of Lemma 3.3, one can find a Borel function
ᾱ(x) in such a way that

inf
β∈B


L ᾱ(x)β ǔ(x)+ f ᾱ(x)β(x)


≥ −ε (3.19)

in G. If x ∉ G we set ᾱ(x) = α∗, where α∗ is a fixed element of A.
After that we need some processes which we introduce recursively. Fix x and set αn0

t ≡ ᾱ(x).
Then define xn0

t , t ≥ 0, as a unique solution of the equation

xt = x +

 t

0
r
αn0

· β(αn0
· )

s σ(αn0
s ,βs(α

n0
· ), xs) dw

αn0
· β(αn0

· )
s

+

 t

0
[r
αn0

· β(αn0
· )

s ]
2b(αn0

s ,βs(α
n0
· ), xs)+ σ(αn0

s ,βs(α
n0
· ), xs)π

αn0
· β(αn0

· )
s


ds.

For k ≥ 1 introduce αnk
t so that

αnk
t = α

n(k−1)
t for t < k/n,

αnk
t = ᾱ(xn(k−1)

k/n ) for t ≥ k/n,

where xn(k−1)
t is a unique solution of

xt = x +

 t

0
rα

n(k−1)
· β(α

n(k−1)
· )

s σ(αn(k−1)
s ,βs(α

n(k−1)
· ), xs) dwα

n(k−1)
· β(α

n(k−1)
· )

s

+

 t

0
[rα

n(k−1)
· β(α

n(k−1)
· )

s ]
2b(αn(k−1)

s ,βs(α
n(k−1)
· ), xs)

+ σ(αn(k−1)
s ,βs(α

n(k−1)
· ), xs)π

α
n(k−1)
· β(α

n(k−1)
· )

s


ds. (3.20)

As in the proof of Lemma 3.3 one can show that the above definitions make sense as well as
the definition

αn
t = α

n(k−1)
t for t < k/n. (3.21)

Next, by definition xn
t = x

αn
· β(αn

· )x
t satisfies

xt = x +

 t

0
r
αn

· β(αn
· )

s σ(αn
s ,βs(α

n
· ), xs) dw

αn
· β(αn

· )
s

+

 t

0
[r
αn

· β(αn
· )

s ]
2b(αn

s ,βs(α
n
· ), xs)+ σ(αn

s ,βs(α
n
· ), xs)π

αn
· β(αn

· )
s


ds.
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Eq. (3.21) and the definitions of B and of control adapted processes show that xn
t satisfies (3.20)

for t ≤ k/n. Hence, (a.s.) xn
t = xn(k−1)

t for all t ≤ k/n and (a.s.) for all t ≥ 0, αn
t = ᾱ(xn

κn(t)
)

and

xn
t = x +

 t

0
rn

s σ(ᾱ(x
n
κn(s)),βs(α

n
· ), xn

s ) dwn
s

+

 t

0
[rn

s ]
2b(ᾱ(xn

κn(s)),βs(α
n
· ), xn

s )+ σ(ᾱ(xn
κn(s)),βs(α

n
· ), xn

s )π
n
s


ds,

where (r, π,w)ns = (r, π,w)
αn

· β(αn
· )

s .
Now, introduce τ n as the first exit time of xn

t from G, set

βn
s = βs(α

n
· ), φn

t = φ
αn

· β
n
· x

t , ψn
t = ψ

αn
· β

n
· x

t , rn
s = rα

n
· β

n
· ,

and observe that by Itô’s formula

ǔ(xn
t∧τ n )e−φn

t∧τn −ψn
t∧τn = ǔ(x)+

 t∧τ

0
[rn

s ]
2e−φn

s −ψn
s Lα

n
s β

n
s ǔ(xn

s ) ds + mn
t ,

where mn
s is a martingale and, for s < τ n ,

Lα
n
s β

n
s ǔ(xn

s ) = ai j (ᾱ(x
n
κn(s)), β

n
s , xn

s )Di j ǔ(x
n
s )

+ bi (ᾱ(x
n
κn(s)), β

n
s , xn

s )Di ǔ(x
n
s )− c(ᾱ(xn

κn(s)), β
n
s , xn

s )ǔ(x
n
s ).

Similarly to the proof of Lemma 3.3 we derive from (3.19) that, for s < τ n ,

L̄α
n
s β

n
s ǔ(xn

s ) ≥ −ε − χ(xn
s − xn

κn(s))− f (ᾱ(xn
κn(s)), β

n
s , xn

κn(s))

= −ε − χ(xn
s − xn

κn(s))− f α
n
s β

n
s (xn

s ),

where χ(y) are (nonrandom) bounded functions on Rd such that χ(y) → 0 as y → 0. It follows
that

ǔ(xn
t∧τ n )e−φn

t∧τn −ψn
t∧τn +

 t∧τ n

0
[rn

s ]
2 f α

n
s β

n
s (xn

s )e
−φn

s −ψn
s ds + ηn

t = ζt + mn
t , (3.22)

where ζt is an increasing process and

ηn
t = ηn

t (β) = δ−2
1

 t∧τ n

0
e−φn

s −ψn
s [ε + χε(x

n
s − xn

κn(s))] ds.

Hence the left-hand side of (3.22) is a local submartingale and we finish the proof in the same
way as the proof of Lemma 3.3. The lemma is proved.

Proof of Theorem 3.1. (i) First we fix x ∈ Rd , α· ∈ A, and ε > 0, take βn
· (α·) form Lemma 3.3

and prove that the B-valued functions defined on A by βn(α·) = βn
· (α·) belong to B. To do that

observe that if (2.1) holds and T ≤ 1/n, then (a.s.) βn0
t (α

1
· ) = βn0

t (α
2
· ) for almost all t ≤ T . By

definition also (a.s.)

(r, π,w)
α1

· β
n0
· (α1

· )
s = (r, π,w)

α2
· β

n0
· (α2

· )
s for almost all s ≤ T .

By uniqueness of solutions of (2.3) (see Assumption 3.2), the processes xn1
t found from (3.9) for

α· = α1
· and for α· = α2

· coincide (a.s.) for all t ≤ T .
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If (2.1) holds and 1/n < T ≤ 2/n, then by the above solutions of (3.9) for α· = α1
· and for

α· = α2
· coincide (a.s.) for t = 1/n and then (a.s.) βn1

t (α
1
· ) = βn1

t (α
2
· ) not only for all t < 1/n

but also for all t ≥ 1/n, which implies that (a.s.)

(r, π,w)
α1

· β
n1
· (α1

· )
s = (r, π,w)

α2
· β

n1
· (α2

· )
s for almost all s ≤ T

and again the processes xn
t found from (3.9) for α· = α1

· and for α· = α2
· coincide (a.s.) for all

t ≤ T .
By induction we get that if (2.1) holds for a T ∈ (0,∞) and we define k as the integer such

that k/n < T ≤ (k + 1)/n, then (a.s.)

βn
t (α

1
· ) = βnk

t (α
1
· ) = βnk

t (α
2
· ) = βn

t (α
2
· ) for almost all t < (k + 1)/n, (3.23)

(r, π,w)
α1

· β
nk
· (α1

· )
s = (r, π,w)

α2
· β

nk
· (α2

· )
s for almost all s ≤ T

and the processes xn
t found from (3.9) for α· = α1

· and for α· = α2
· coincide (a.s.) for all t ≤ T .

This means that βn
∈ B indeed.

Furthermore, by the supermartingale property of κnε
t (α·), we have

û(x) ≥ Eα·β
n(α·)

x


g(xτ )e

−φτ−ψτ +

 τ

0
r2

t f (xt )e
−φt −ψt dt


− Eηnε

τ (α·),

which owing to (3.4) yields

û(x) ≥ lim
n→∞

sup
α·∈A

Eα·β
n(α·)

x

 τ

0
r2

t f (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


− Nε.

In light of the arbitrariness of ε we conclude û ≥ v and assertion (i) is proved.
(ii) Similarly to the above argument, for any β ∈ B,

ǔ(x) ≤ E
αn

· β(αn
· )

x

 τ

0
r2

t f (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


+ Eηnε
τ (β).

It follows that

ǔ(x) ≤ sup
α·∈A

Eα·β(α·)
x

 τ

0
r2

t f (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


+ lim
n→∞

Eηnε
τ (β)

≤ sup
α·∈A

Eα·β(α·)
x

 τ

0
r2

t f (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


+ Nε,

which in light of the arbitrariness of ε and β ∈ B finally yields that ǔ ≤ v.
This proves assertion (ii). Assertion (iii) is an obvious consequence of (i) and (ii). The theorem

is proved.

4. The case of uniformly nondegenerate processes

As in Section 3 we replace Assumption 2.1(iii) with Assumptions 3.1 and 3.2, and we assume
that we are given two functions û, ǔ ∈ W 2

d,loc(G) ∩ C(Ḡ).
In that case we have the following.

Theorem 4.1. (i) If H [û] ≤ 0 (a.e.) in G and û ≥ g on ∂G, then v ≤ û in Ḡ.
(ii) If H [ǔ] ≥ 0 (a.e.) in G and ǔ ≤ g on ∂G, then v ≥ ǔ in Ḡ.

(iii) If û and ǔ are as in (i) and (ii) and û = ǔ, then v = û and v is independent of the choice of
the probability space, filtration, r, π , and w.
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Proof. (i) We basically repeat the proof of Theorem 4.1 of [10] with considerable simplifications
made possible due to our assumptions. It is well known that there exists a sequence ûn ∈ C2(Ḡ)
such that ûn → û in C(D̄) and in W 2

d (G
′) for any subdomain G ′

⊂ Ḡ ′
⊂ G. Introduce ĥn =

H [ûn],

f αβn (x) = f αβ(x)− ĥn(x),

and observe that owing to our continuity assumptions on σ, b, c, f , the functions ĥn and f αβn (x)
are continuous in x uniformly with respect to α, β and

sup
α∈A

inf
β∈B


Lαβn ûn(x)+ f αβn (x)


= 0

in G. By Theorem 3.1, for any subdomain G1 ⊂ Ḡ1 ⊂ G we have in G1 that

ûn(x) ≥ inf
β∈B

sup
α·∈A

Eα·β(α·)
x


ûn(xτ1)e

−φτ1−ψτ1 +

 τ1

0
r2

t fn(xt )e
−φt −ψt dt


, (4.1)

where

τ
α·β·x
1 = inf{t ≥ 0 : xα·β·x

t ∉ G1}.

Notice that

Eα·β·

x |ûn(xτ1)− û(xτ1)|e
−φτ1−ψτ1 ≤ sup

G
|ûn − û|.

While estimating

In(x) := Eα·β·

x

 τ1

0
| fn − f |(xt )e

−φt −ψt dt = Eα·β·

x e−ψτ1

 τ1

0
| fn − f |(xt )e

−φt dt,

Girsanov’s theorem allows us to concentrate on π ≡ 0 and then the Alexandrov estimate guar-
antees that

In(x) ≤ N∥ĥn∥Ld (G1) = N∥H [ûn] − H [û]∥Ld (G1) ≤ N∥ûn − û∥W 2
d (G1)

,

where the constants N are independent of n (and x).
Hence by letting n → ∞ in (4.1) we obtain that for k = 1

û(x) ≥ inf
β∈B

sup
α·∈A

Eα·β(α·)
x


û(xτk )e

−φτk −ψτk +

 τk

0
f (xt )e

−φt −ψt dt

, (4.2)

where τα·β·x
k are defined as the first exit times of the processes xα·β·x

t from an expanding sequence
of subdomains Gk ⊂ Ḡk ⊂ G such that ∪k Gk = G.

By letting k → ∞ in (4.2) and repeating the proof of Theorem 2.2 of [10] given there in Sec-
tion 6 we get that û ≥ v in G as stated. Observe that in our situation in the proof of Theorem 2.2
of [10] we need not mollify f αβ(x) because by assumption it is uniformly continuous in x .

The proof of assertion (ii) is quite similar and as usual assertion (iii) is obtained by simply
combining assertions (i) and (ii). The theorem is proved.

5. A general approximation result from above

In this section we suppose that all assumptions in Section 2 are satisfied. Set

A1 = A

and let A2 be a separable metric space having no common points with A1.
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Assumption 5.1. The functions σαβ(x), bαβ(x), cαβ(x), and f αβ(x) are also defined on A2 ×

B × Rd in such a way that they are independent of β (on A2 × B × Rd ) and the assumptions in
Section 2 are satisfied, of course, with A2 in place of A.

Define

Â = A1 ∪ A2.

Then we introduce Â as the set of progressively measurable Â-valued processes and B̂ as
the set of B-valued functions β(α·) on Â such that, for any T ∈ [0,∞) and any α1

· , α
2
· ∈ Â

satisfying

P(α1
t = α2

t for almost all t ≤ T ) = 1,

we have

P(β t (α
1
· ) = β t (α

2
· ) for almost all t ≤ T ) = 1.

We fix an element α∗
∈ A1 and for α· ∈ Â define

(pα)t = αt if αt ∈ A1, (pα)t = α∗ if αt ∈ A2.

By using this projection operator we extend (w, r, π)α·β·

t originally defined for α· ∈ A and β· ∈

B as

(w, r, π)α·β·

t = (w, r, π)pα·β·

t (5.1)

thereby now defined for α· ∈ Â and β· ∈ B.
Next, take a constant K ≥ 0 and set

vK (x) = inf
β∈B̂

sup
α·∈Â

v
α·β(α·)
K (x),

where

v
α·β·

K (x) = Eα·β·

x

 τ

0
r2

t fK (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


=: vα·β·(x)− K Eα·β·

x

 τ

0
r2

t Iαt ∈A2e−φt −ψt dt,

f αβK (x) = f αβ(x)− K Iα∈A2 .

Notice that, obviously,

v(x) = inf
β∈B̂

sup
α·∈Â

v pα·β(pα·)(x).

These definitions make sense owing to Remark 2.3, which also implies that vα·β·

K and vα·β·

and bounded in Ḡ.

Theorem 5.1. We have vK → v uniformly on Ḡ as K → ∞.

Lemma 5.2. Assume that π ≡ 0. Then there exists a constant N such that for any α· ∈ Â, β· ∈

B, x ∈ Rd , T ∈ [0,∞), and stopping time γ

Eα·β·

x sup
t≤T ∧γ

|xt − yt | ≤ NeN T Eα·β·

x

 T ∧γ

0
Iαt ∈A2 dt

1/2
,
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where

yα·β·x
t = x pα·β·x

t .

Proof. For simplicity of notation we drop the superscripts α·, β·, x . Observe that xt and yt satisfy

xt = x +

 t

0
rsσ

αsβs (xs) dws +

 t

0
r2

s bαsβs (xs) ds,

yt = x +

 t

0
rsσ

αsβs (ys) dws +

 t

0
r2

s bαsβs (ys) ds + ηt ,

where ηt = It + Jt ,

It =

 t

0
rs[σ

pαsβs (ys)− σαsβs (ys)] dws,

Jt =

 t

0
r2

s [bpαsβs (ys)− bαsβs (ys)] ds.

By Theorem II.5.9 of [7] (where we replace the processes xt and x̃t with appropriately stopped
ones) for any T ∈ [0,∞) and any stopping time γ

E sup
t≤T ∧γ

|xt − yt |
2

≤ NeN T E sup
t≤T ∧γ

|ηt |
2, (5.2)

where N depends only on K1 and d, which by Theorem III.6.8 of [8] leads to

E sup
t≤T ∧γ

|xt − yt | ≤ NeN T E sup
t≤T ∧γ

|ηt | (5.3)

with the constant N being three times the one from (5.2).
By using Davis’s inequality we see that for any T ∈ [0,∞)

E sup
t≤T ∧γ

|It | ≤ N E
 T ∧γ

0
Iαs∈A2 ds

1/2
≤ N


E
 T ∧γ

0
Iαs∈A2 ds

1/2
.

Furthermore, almost obviously

E sup
t≤T ∧γ

|Jt | ≤ N E
 T ∧γ

0
Iαs∈A2 ds ≤ N T 1/2


E
 T ∧γ

0
Iαs∈A2 ds

1/2

and this in combination with (5.3) proves the lemma.

Proof of Theorem 5.1. Without losing generality we may assume that g ∈ C3(Rd) since the
functions of this class uniformly approximate in Ḡ any g which is continuous in Rd . Then notice
that by Itô’s formula for g ∈ C3(Rd) we have

Eα·β·

x

 τ

0
r2

t fK (xt )e
−φt −ψt dt + g(xτ )e

−φτ−ψτ


= g(x)+ Eα·β·

x

 τ

0
r2

t [ f̂ (xt )− K Iαt ∈A2 ]e
−φt −ψt dt,

where

f̂ αβ(x) := f αβ(x)+ Lαβg(x),
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which is bounded and, for (α, β) ∈ Â × B, is uniformly continuous in x uniformly with respect
to α, β. This argument shows that without losing generality we may (and will) also assume that
g = 0.

Next, since A ⊂ Â and for α· ∈ Â and β ∈ B̂ we have β(α·) ∈ B, it holds that

vK ≥ v.

To estimate vK from above, take β ∈ B and define β̂ ∈ B̂ by

β̂ t (α·) = β t (pα·). (5.4)

Also take any sequence xn
∈ Ḡ, n = 1, 2, . . . , recall that rα·β·

t ≥ δ1, and find a sequence αn
· ∈ Â

such that

vK (x
n) ≤ sup

α∈Â

Eα·β̂(α·)
xn

 τ

0
r2

t fK (xt )e
−φt −ψt dt

≤ 1/n + vα
n
· β̂(αn

· )(xn)− K δ2
1 E

 τ n

0
Iαn

t ∈A2e−φn
t −ψn

t dt, (5.5)

where

(τ n, φn
t , ψ

n
t ) = (τ, φt , ψt )

αn
· β̂(αn

· )x
n
.

It follows that there is a constant N independent of n and K such that

E
 τ n

0
Iαn

t ∈A2e−φn
t −ψn

t dt ≤ N/K . (5.6)

Below by N we denote generic constants independent of n and K (and T once it appears).
We want to estimate the difference

vα
n
· β̂(αn

· )(xn)− v pαn
· β(pαn

· )(xn). (5.7)

Observe that in the expression of this difference by the definition through the mathematical ex-
pectations of certain quantities the processes ψt involved are just the same, thanks to (5.1) and
(5.4). This allows us to rewrite the mathematical expectations similarly to how it is done in
Remark 2.3 and then by using Girsanov’s theorem allows us to assume that πt ≡ 0, at the ex-
pense that the underlying probability measures will now depend on n. However, for simplicity
of notation we keep the symbol E for expectations with respect to the new probability measures
depending on n. Thus, while estimating (5.7) we assume that πt ≡ 0.

Introduce

xn
t = x

αn
· β̂(αn

· )x
n

t , yn
t = x

pαn
· β̂(αn

· )x
n

t ,

cn
t = cα

n
t β̂t (α

n
· )(xn

t ), pcn
t = cpαn

t β̂t (α
n
· )(yn

t )

f n
t = f α

n
t β̂t (α

n
· )(xn

t ), p f n
t = f pαn

t β̂t (α
n
· )(yn

t )

rn
t = r

αn
· β̂(αn

· )
t , pφn

t =

 t

0
[rn

s ]
2 pcn

s ds,

and define γ n as the first exit time of yn
t from G. Notice that, for any T ∈ [0,∞), (5.7) equals

I1n(T )+ I2n(T )− I3n(T ),
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where

I1n(T ) = E
 τ n

∧γ n
∧T

0
[rn

t ]
2 f n

t exp(−φn
t )− p f n

t exp(−pφn
t )


dt,

I2n(T ) = E
 τ n

τ n∧γ n∧T
[rn

t ]
2 f n

t exp(−φn
t ) dt,

I3n(T ) = E
 γ n

τ n∧γ n∧T
[rn

t ]
2 p f n

t exp(−pφn
t ) dt,

By using the inequalities |e−a
− e−b

| ≤ |a − b| valid for a, b ≥ 0 and |ab − cd| ≤ |b| · |a −

c| + |c| · |b − d| and also using the boundedness of rα·β· , cαβ , and f αβ we easily conclude that

|I1n(T )| ≤ N (1 + T )E
 τ n

∧T

0


| f n

t − p f n
t | + |cn

t − pcn
t |


dt.

Observe that, if αn
t ∈ A1, then

| f n
t − p f n

t | ≤ W f (|x
n

− yn
t |),

where W f is the modulus of continuity of f αβ(x) with respect to x uniform with respect to α, β.
A similar estimate holds for |cn

t − pcn
t | in which Wc is the modulus of continuity of cαβ(x).

Furthermore,

E
 τ n

∧T

0
Iαn

t ∈A2 dt ≤ eT/δE
 τ n

0
Iαn

t ∈A2 e−φn
t dt ≤ NeT/δ/K ,

where the last inequality is due to (5.6). Hence,

|I1n(T )| ≤ N (1 + T )2 E[Wc + W f ]


sup

t≤τ n∧T
|xn

t − yn
t |


+ NeT/N/K .

We may and will assume that Wc(r) and W f (r) are concave functions on [0,∞), so that

|I1n(T )| ≤ N (1 + T )2[Wc + W f ]


E sup

t≤τ n∧T
|xn

t − yn
t |


+ NeT/N/K .

Next use the fact that as follows from Lemma 5.2

E sup
t≤τ n∧T

|xn
t − yn

t | ≤ NeN T /
√

K .

Then we conclude that

|I1n(T )| ≤ N (1 + T )2[Wc + W f ]


NeN T /

√
K


+ NeT/δ/K . (5.8)

While estimating I2n(T ) we again use the boundedness of the data and use Remark 2.1 and
by Itô’s formula obtain that

|I2n(T )| ≤ N E Iτ n≥γ n∧T

 τ n

γ n∧T
[rn

t ]
2 dt ≤ N E Iτ n≥γ n∧T G(xn

γ n∧T )

≤ N E Iτ n≥γ n∧T |G(xn
γ n∧T )− G(yn

γ n∧T )| + N E Iτ n≥γ n∧T |G(yn
γ n∧T )|

≤ N E sup
t≤τ n∧T

|xn
t − yn

t | + N E Iγ n>T G(yn
T ).
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By Lemma 5.1 of [10]

E Iγ n>T G(yn
T ) ≤ Ne−T/N .

Next,

|I3n(T )| ≤ N E Iγ n≥τ n∧T

 γ n

τ n∧T
[rn

t ]
2 dt ≤ N E Iγ n≥τ n∧T G(yn

τ n∧T )

≤ N E sup
t≤τ n∧T

|xn
t − yn

t | + N E Iγ n≥τ n∧T G(xn
τ n∧T )

≤ N E sup
t≤τ n∧T

|xn
t − yn

t | + N E Iτ n> T G(xn
T ).

We use again Lemma 5.1 of [10] and conclude that, for K ≥ 1, (5.7) is less than

w(T, K ) := N (1 + T )2[Wc + W f ]


NeN1T /

√
K


+ NeN1T /
√

K + Ne−T/N2 .

Thus, (5.5) yields

vK (x
n) ≤ 1/n + v pαn

· β(pαn
· )(xn)+ w(T, K ).

Hence

vK (x
n) ≤ sup

α·∈A

vα·β(α·)(xn)+ w(T, K )+ 1/n.

Owing to the arbitrariness of β ∈ B we have

vK (x
n) ≤ v(xn)+ w(T, K )+ 1/n,

and the arbitrariness of xn yields that for K ≥ 1

sup
D̄
(vK − v) ≤ w(T, K ), (5.9)

which leads to the desired result after first letting K → ∞ and then T → ∞. The theorem is
proved.

Remark 5.1. Assume that cαβ(x) and f αβ(x) are Hölder continuous with respect to x with ex-
ponent κ ∈ (0, 1] and constant independent of α and β. Then by taking T such that eN1T

= K 1/4

we see that, for K ≥ 1, the left-hand side of (5.9) is dominated by

N (1 + ln K )2 K −κ/4
+ N K −1/(4N1 N2).

Hence, there is a χ ∈ (0, 1] such that the left-hand side of (5.9) is dominated by N K −χ for
K ≥ 1. Thus, we have justified a claim made in Section 5 of [12].

6. Proof of Theorem 2.1

The properties of P listed before Theorem 2.2 or just the construction of P in [9] yield that
there is a set A2, having no common points with A, and bounded continuous functions σα = σαβ ,

bα = bαβ , cα = cαβ (independent of x and β), and f αβ ≡ 0 defined on A2 such that the assump-
tions in Section 2 are satisfied perhaps with different constants δ and K0 and for aα := aαβ =

(1/2)σα(σα)∗ we have

P[u](x) = sup
α∈A2


aαi j Di j u(x)+ bαi Di u(x)− cαu(x)


. (6.1)
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Use the notation from Section 5 and observe that

max(H [u](x), P[u](x)− K )

= max


sup
α∈A1

inf
β∈B

[Lαβu(x)+ f αβ(x)], sup
α∈A2

inf
β∈B

[Lαβu(x)+ f αβ(x)− K ]


= sup
α∈ Â

inf
β∈B


Lαβu(x)+ f αβK (x)] ( f αβK (x) = f αβ(x)Iα∈A1 − K Iα∈A2),

where the first equality follows from the definition of H [u], (6.1), and the fact that Lαβ is inde-
pendent of β for α ∈ A2. It follows by Theorems 2.2 and 4.1 that uK = vK and by Theorem 5.1
that in Ḡ

v = lim
K→∞

uK ,

where the right-hand side is indeed independent of the probability space, filtration, and the choice
of w, r, π . Since the above convergence is uniform, v is continuous in Ḡ. The theorem is proved.
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