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Abstract

We prove the Local Asymptotic Mixed Normality property from high frequency observations,
of a continuous time process solution of a stochastic differential equation driven by a pure jump
Lévy process. The process is observed on the fixed time interval [0, 1] and the parameter appears
in the drift coefficient only. We compute the asymptotic Fisher information and find that the rate
in the LAMN property depends on the behavior of the Lévy measure near zero. The proof of this
result contains a sharp study of the asymptotic behavior, in small time, of the transition probability
density of the process and of its logarithm derivative.

MSC 2010. Primary: 60G51, 62F12, 60H07. Secondary: 60F05, 60G52, 60J75.

Key words: Local Asymptotic Mixed Normality Property, Lévy process, stable process, Malli-
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1 Introduction

An important concept in parametric estimation is the Local Asymptotic Mixed Normality property
introduced by Jeganathan in a series of papers ([11], [12]), which permits to extend the Le Cam and

Hajek’s results (see [8], [16]) to situations where the local Asymptotic Normality does not hold. Let
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{Epn, En, (PY)pcocra} be a statistical experiment, we say that the LAMN property holds at ¢ with

information matrix 7(6) and rate w, (u, tends to zero as n goes to infinity) if

O+unh
dpftu

1 __n
& qpo

1
=nT1,(0)"2N,, — 5thn(e)h +opo(1)

where (N, I,(6)) converges in law (under P?) to (N, 1(#)) with N a standard gaussian vector inde-
pendent of I(#), and I(f) > 0 a.e. The LAN property is obtained when the information matrix ()
is non random.

If the LAMN property is satisfied at 6, then from the Hajek’s convolution theorem, we know that

for any regular estimator 6,, such that

u ', — 0] = Zy (in law under P),

n

Zp admits the decomposition Zy = I(§)~Y/2N + R with N a standard gaussian vector and R inde-
pendent of N conditionally on I(f). As a consequence, the minimal asymptotic estimation error is a
mixed normal variable with variance ()71

In this paper, we consider the statistical experiment {R™, By, (P?)gcocr}, corresponding to the
observation of a Lévy driven stochastic equation at discrete times t; = %, for 1 <4 < n. More precisely,
we observe (X9)i<i<n, where (X7 )telo,1) is a continuous time process depending on an unknown real
parameter 6. '

Lévy models are widely used in mathematical finance (see [3]) and there is a large literature

concerning the estimation of the parameters and the LAN property, of a translated Lévy process
X =01t +02L,, 6= (61,6),

see for example Ait-Sahalia and Jacod [1] [2], Masuda [17], Kawai and Masuda [13], [14]. In this case,
the statistical study is based on the fact that the density of X! can be expressed as a function of

the density of L;. In particular, it is proved that when L, is a a-stable process, with « € (0,2), the

parameter 0; is estimated with rate n2~« and Fisher information Jr foi(&); du, where ¢q(u) is the
density of L;. The parameter 0, is estimated with the usual rate 1/y/n.
Here, we intend to consider the more general stochastic equation
t
Xf =x9+ /0 b(Xg,O)ds + Ly (1)

where (L¢);e(o,] is a pure jump Lévy process, and focus on the estimation of the drift parameter.

When (X?); is solution of (1), the transition density of X{ is unknown, and the link between the



density of L; and the density of X! is not clear. This complicates the statistical study considerably
and to our knowledge, there are no results about the asymptotic behavior of the log-likelihood of the
discretized process (Xf/n)lgign-

In this paper, we prove the LAMN property based on the observations (X¢); where (X7 )eelo,1] 8

1/2=1/a \when the Lévy measure of (L;) is an a-stable Lévy measure

solution of (1), with rate u, =n
near zero, with a € (1,2). The case o € (0, 1] requires a more technical study and is not considered
in this paper. The main result is obtained through a representation of the transition density of X7,
using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [4]. The
recourse to the Malliavin calculus to prove the LAMN property, in a high frequency data setting, has
been initiated by Gobet [7] for diffusion processes. However, the situation given by (1) is completely
different. Indeed, for diffusion processes, it is well known that one can not estimate the drift parameter
from the observation of the process on a fixed time interval.

Besides the statistical application, a main contribution of this paper is to precise the asymptotic
behavior of the transition density of X?, in small time, and of its logarithm derivative with respect to
the parameter.

The paper is organized as follows. The main results are stated in Section 2. Section 3 gives some
representations of the transition density and its logarithm derivative, using the Malliavin calculus
proposed in [4] and Section 4 studies their asymptotic behavior. The proof of the LAMN property is

given in Sections 5 and 6. We stress on the fact that contrarily to [7], this proof does not require some

lower bounds for the density of X/. Section 7 contains some more technical proof.

2 Main results

We consider the real process (X!) defined on the time interval [0, 1] by equation (1), where (L;) is a
centered Lévy process defined on a filtered space (€2, G, (G¢)¢, P). We assume that the Lévy measure of
(L;) is absolutely continuous with respect to the Lebesgue measure and admits a density F(z) given

on R* by
F(z) = Mimz), )

where a € (1,2) and 7 is a non negative smooth function equal to 1 on [—1, 1], vanishing on [—2, 2]¢

and such that 0 < 7 < 1. The introduction of the truncation function 7 in the density of the Lévy

measure is a technical tool to ensure the integrability of |L:|”, Vp > 1, and that our variables are in

the domain of the Malliavin operators.



We assume that the function b is bounded, with bounded derivatives up to order three with respect
to both variables = and §. Under these assumptions, we know that for t > 0, X? admits a density (see
Bichteler, Gravereaux and Jacod [4], Ishikawa and Kunita [9], Picard [18], Fournier and Printemps [5]
for weaker assumptions on b), moreover this density admits a derivative with respect to the parameter
0.

We are interested in the statistical properties of the process (Xf ), based on the discrete time
observations (X 91)1-:07.”,,1. Before stating our main results, we introduce some more notations. We
denote by pY (, ;) the transition density of the homogenous Markov chain (X% );— ., and by P? the
law of the VgCtOI‘ (X9,...,X9).

n

In all the paper, for a function f depending on both variables (x,6), we denote by f’ the derivative
of f with respect to the variable z and by f the derivative of f with respect to the parameter 6.

We first give an asymptotic expansion of the log-likelihood ratio.

Theorem 1 Let u, = ni~a. We have :
P@—i—unh 2
b@ilfﬁXﬂanﬁ:h%wﬁNﬁm—édﬁm+oMU, (3)
dpP? m 2
with :
n—1
Jn(0) =2 37 B ((€0,)21Gisn)
i=0

n—1
Nu(0) = Ju () 2w, > €0,
=0

n

SRR SE
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We can precise the asymptotic behavior of J,,(6) and N,,(6). Let ¢, be the density of L§, where (L§)
is a centered a-stable Lévy process whose Lévy measure is |z|dﬁ‘ We define the following quantity

which will be the asymptotic information of the statistical model :
1 4,0, (u)2
%—/b@iW@x/‘XM. (4)
0 R Pa(u)
It is worth to note that this information does not depend on the truncation function 7, but depends
on « through the Fisher information of the translated a-stable process. A numerical study of the

variations of [, %;((13)2 du with respect to « is available in the book [3] p.385.




Theorem 2 With the notations of Theorem 1, the following convergences hold :

In(6) 2, Ty, in probability, (5)
n—1 9
ve>0, Y WlE [(g"n) 1{u”|£fn|26}} n=o ). (6)
i=0 '

Theorem 3 We have the convergence in law

n—1
Ja(0)ENA(0) = un Y €0, "% N (0,T), (7)
=0

where the limit variable is conditionally Gaussian (recall the definition of Ty in (4)), and the conver-

gence is stable with respect to Gy.

The stable convergence in law (7) and the convergence in probability (5) yield the convergence of the
couple (Jn(0), Nn(8)):
(Jn(0), No(0)) =22 (Tg, N),  in law,

where N is a standard gaussian variable independent of Zy.
As a consequence of the asymptotic expansion given in Theorem 1 and the preceding limit theorems,

we deduce the LAMN property.

Corollary 1 The family (P?) satisfies the LAMN property with rate w, = n%*é, and information Zy
given by (4).

Let us stress that the rate of convergence depends on . When « tends to 2, the rate u,, degenerates.
This reflects the situation of a stochastic differential equation driven by a Brownian motion, where
the drift coefficient cannot be estimated from the observation of the process on a finite time interval.

The proofs of Theorem 1, Theorem 2 and Theorem 3 will be given in the next sections. They
rely on the pointwise convergence of the transition density p(’l (z0,y) and its derivative with respect
to 6 that will be studied in Section 4. These asymptotic be}:aviors are precised below, after a time
rescaling. Let ¢™%%0 be the density of the rescaled variable né(Xf In x0). One can verify that

ni(Xf Jn — ®0) equal in law to Y% the solution of the equation

t
V0 =i [ ey, s+ L 0

with (L") equal in law to (Y%L, ).



The connection between the two densities is given by :

1 1
P (o, y) = na g0 (na (y — o). 9)

The next result precises the asymptotic behavior of ¢™%%0 and ¢™%% as well as the limit of the

n,0,x0
)

2
n,0,xz0 Ynﬂ,xo
In,@,xo — B (q ( 1 )) ] (10)

g0 ()

Fisher information carried by the observation of Y}

Proposition 1 For all (xzg,u) € R?, we have

0 M (u) 2 g (u),
i) mAmegnta (u) 22 bag, 0)l, (u),
. 2
) 0 2, 025 (S = b 0,
ally

The proof of this convergence result is based on the representation of the density ¢™%® and its

derivative using the Malliavin calculus for jump processes. This is developed in the next sections.

Remark 1 We can observe that the rescaling né(Xf/n —x9) s convenient for o € (1,2) only. Indeed,
for a <1 it is clear by (8) that the rescaled increment is not close to a Lévy process. The case o < 1

is more complicated and requires some further expansions for the variable X f I

Remark 2 As we have already stressed, the introduction of the truncation function T in the compen-
sator of the Lévy measure ensures that our processes are in the domain of the Malliavin operators.
If we do not assume that F' has a compact support, we can decompose Ly as L} + L?, where L} is a
truncated a-stable process and L% has a finite Lévy measure, equal to zero in the neighbourhood of zero.
Then by adding the process (L?)iep) to the observations (Xf/n)i, we can prove the LAMN property
for this new statistical experiment, with the same information Iy, since conditionally on (L?); we are
exactly in the studied preceding framework between the jump times of (L?). This permits to deduce
that the minimal asymptotic variance in estimating 0 from the observations (X )i (the realistic case)

s greater that 1'9_1.

3 Representation of the transition density via Malliavin calculus

The aim of this section is to represent ¢™?%0 and L7-> as an expectation, using the Malliavin calculus

n9:c

for jump processes developed by Bichteler, Gravereaux and Jacod [4]. Due to the singularity of the



Lévy measure of (L;) at zero, we are not exactly in the same context, and we define in the next section

an integration by parts setting adapted to the study of equation (8).

3.1 Integration by parts setting

In this section, we consider a filtered probability space (£2,G, (gt)te[o,l}; P) endowed with a Poisson
random measure g on [0,1] x E, where F is an open subset of R, with compensator v given by
dv = dt x g(z)dz on [0,1] x E. We denote by fi the compensated measure and we are interested to

study the regularity of the density of Y, where the process (Y,?) is solution of :

Yte:/Ota(YSe,H)ds—|—/0t/Ezﬂ(ds,dz). (11)

This is the framework of Bichteler, Gravereaux and Jacod [4], except that g is not assumed to be equal
to one and consequently the Malliavin operators have to be defined accordingly.

We make the following assumptions.
H: a) We assume that a is bounded with bounded derivatives up to order three with respect to both
variables.

b) We assume that g > 0 on E, C! on E and that
Vp > 2, / |z|Pg(z)dz < oc.
E

We first precise the Malliavin operators L and I" and their basic properties (see Bichteler, Gravereaux,
Jacod, [4] Chapter IV, sections 8-9-10). For a test function f : [0,1] x E — R (f is measur-
able, C? with respect to the second variable, with bounded derivatives, and f € N,>1LP(v)), we
set p(f fo Ju f(t,z u(dt dz). We introduce an auxiliary function p : E + (0,00) such that p is
derivable and p, p’ and p belong to Np>1LP(g(z)dz). With these notations, we define the Malliavin

operator L, on simple functional p(f), in the following way :
o 1 ! el gl / "
L{u(f)) = gu{pf + pglel”), (12)

where f’ and f” are the derivatives with respect to the second variable. For ® = F(u(f1),...,u(fx)),

with F of class C2, we set

H(fi) L 228%8% A m(F e fif)- - (13)

,J=1

These definitions permit to construct a linear operator on a space D C MN,>1L” whose basic properties

are the following :



i) L is self-adjoint : V®,¥ € D, we have E®PLYV = ELPV.
ii) L®? > 20LS.
iii) EL® = 0.

We associate to L, the symmetric bilinear operator I :
I(®,0) =L(PY) — PLY — VL. (14)
If f and h are two test functions, we have :
L(u(f), mu(h)) = p (pf') | (15)
The operators L and I satisfy the chain rule property :
LE(®) = F'(®)L® + %F”((I))F((I), ®), (16)
['(F(®),¥) = F'(®)I'(®, V). (17)
Moreover we have the inequality
ID(®, ¥)| < (@, )20 (W, ¥)1/2, (18)

These operators permit to establish the following integration by parts formula (see [4] Proposition

8-10 p.103).
Proposition 2 For ® and V¥ in D, and [ bounded with bounded derivatives up to order two, we have
Ef/(®)UT (P, @) = Ef(®)(—20LD — (D, V)).
Moreover, if T(®, ®) is invertible and T=(®, ®) € Ny>1LP, we have
Ef (2)¥ = Ef(2)He(), (19)

with
He(¥) = 20T 1D, )L — T'(D, UT (D, ®)). (20)

Remark 3 The expression of the operator L given in (12) is derived from [4] in the following way.
We come back to g = 1 by a change of variable. Assuming that there exists G, one to one and such
that |G'(2)| = g(z), we define the Poisson random measure ji on [0,1] x G(E), for a test function f,

N A~

as o(f) = p(f(.,G()). It is easy to verify that the compensator U of i is given by dv = dtdu on



[0,1] x G(E). Now, the Malliavin operator L, associated to i, is defined on the simple functionals by
([4] p-112) :

Ao f +bf"), (21)
where p is an auziliary function. Since u(f) = p(f) with f = f(.,G71(.)), we obtain L(u(f)) = %/l(f)
where f = ' f' + pf". With the choice p(G(z)) = g*(2)p(z) and recalling that G'(2)? = g(2)?,
Hz

obtain after some calculation f(t,z) = p/(G~1(2))f'(t,G"1(2)) + p(G_l(z))%’( L) f(t, G

) +

p(G7H(2))f"(t,G71(2)). This permits to deduce the expression (12) using again the relation u(f) =
AL GTH))-

3.2 Representation of the density of Y/

The integration by parts setting of the preceding section permits to derive the existence of the density
of Yle given by (11), and gives a representation of this density as an expectation. Following Bichteler,
Gravereaux, Jacod [4] (section 10, p130), we can prove that V¢ > 0, the variable Y}, solution of (11),

belongs to the domain of the operator L, and we can compute LYY and T'\(Y)?, Y,?).

Lemma 1 There are versions of the processes (LYtG)tE[OJ] and (U)y = (T(Y?,Y?)): that are solutions

of the linear equations:

LYY = /Ot a (Y8, 0)LY ds + ;/Ot d"(Y2,0)Ulds + % /ot/E (p'(z) + p(2) “C;I((j))) u(ds,dz), (22)

Ul =2 / d'(Y?, 0)U%s + / / u(ds, dz). (23)

The proof of this result is based essentially on the linearity and chain rule property of the operators

L and T (see equations (16) and (17)). In particular, one has L( fo fg a(Y8,0) LY ds +
3 Jo " (V2,00 YY) ds.

Theorem 4 Let us denote by ¢° the density of Yle. We assume that the auxiliary function p satisfies:

.. 1
huH_I}OIéf m . 1{p(z)21/u}g(2)d2’ = +o00. (24)
Then we have :
¢*(u) = B(1 oz, Ho(1)), (25)

with
YT YY) LYY
INCE SOk INCENED

Ho(1) := 'Hyle(l) =



Remark 4 The assumption (24) is a non degeneracy assumption which ensures the existence and

integrability of T(Y,YP)™!

Proof We apply the integration by parts formula (19) with f a regularization of the Dirac mass,
® =YY and U = 1. So we just have to verify that, assuming (24), U = I'(Y/,Y/) is invertible and
that U%e € Np>1LP.

From Lemma 1, solving equation (23), we obtain

1
UlezefolQa/(Yfﬂ)ds/ /e—f052a’(Y1f,0)dup(Z)'u(dS’dz).
0o JE

Since @’ is bounded and p > 0, we deduce:

U1>C// )u(ds, dz),

where C' is a non negative constant. We set I;(p) = fo J5 p(2)du(s, z), and we just have to prove that
Vp > 1, EI o < 00
We remark that VA >0, p>1,

1 o
AP 0

where C), is a non negative constant depending on p. So we deduce from Fubini Theorem :

1 C/ WP E(e —ull(p))

Li(p)P

But from the classical exponential formula for Poisson measures, we have

E

Ee—uh(0) — o= [p(1-e7"))g(2)dz

We finally obtain:
C’/ up~lem Jp(=eT ")z gy,

From assumption (24), we conclude easily that F+—+— < 0.

L (P)”

To complete the result of Theorem 4, we give an expression for (Y, T'(Y?, Y}?)).

Lemma 2 There is a version of (W) = (T(Y?,Uf)) which is solution of the linear equation :

t
wl =3 / d (Y2, 0)Wods + 2 / v, 0)(U?)ds + / / (2)p(ds, dz). (27)
0

10



We turn now to the study of the derivative of ¢’ with respect to the parameter 6.
We first remark that (Y?); admits a derivative with respect to 6, denoted by (Y,?);, solution of
= fg{a’(YSe, 0)Y? + a(Y?,0)}ds. This can be easily establish, assuming H, observing that for all
p =1, Esupyepoq [Yo+h — v — hY?|P = o(|h|P) as h tends to zero. This result is straightforward here
since § only appears in the drift part of (YY) (see Theorem 5.24 p.51 in [4] for a more general result).
By iterating the integration by parts formula, since Yle admits a derivative with respect to 6, one
can prove the existence and the continuity in 6 of ¢?. Moreover, we can represent as a conditional

expectation.

Theorem 5 Under the assumptions of Theorem 4, we have :

-0
q .
qu(U) = E(Ho(Y)) Y = ), (28)
where '
: . LYY we o T, YY)
Ho(Y?) := Hyo (YY) = =2V =L 4 v/ —1 11 29
0( 1) Y10( 1) 1 Ug 1 (Ue) Uf ( )

LYY and U? are given in Lemma 1, W¢ is computed in Lemma 2 and the process (V) = (D(Y{,Y?))
is solution of

t t
V= [ oias s [ UL (Y 0) + () 0) s (30)
0 0

Proof Let f be a smooth function, by differentiating 6 — Ef(Y{), and using the integration by parts
formula (19), we obtain
[ fid@an = EF DY,
= Ef(Y])He(YY)
= Ef(Y{)E(Ho(Y{)|YY)

/ F () EHp(VE) Y = ) (u)du.

This gives the expression of £ (u) The expression of the weight Hy(Y{) follows from (20) and the
basic properties of the operator I'. The expression (30) follows from (11) and the fact that Y is
solution to Y}/ = fo {a' (Y2, 0)Y? + a(y?,0)}ds.

11



3.3 Application to the representation of the density of the rescaled process

‘1,0,z
We apply the preceding results to study the asymptotic behavior of ¢™?%  and ) goes to

qn,G,a:O 9

infinity, where g™ is the density of ¥;*"* defined by (8).

We can observe that the process (L;""), governing (8), and equal in law to (nl/aLt/n), is a centered

z

m) where 7 is a non negative function equal to 1

Lévy process with Lévy measure F,(z) = W%T(
on [—1, 1], vanishing on [—2,2]¢ and satisfying 0 < 7 < 1. This clearly suggests that when n growths,
the process (L;""); becomes close to an a-stable process. For the sequel, it will be convenient to
construct the family of Lévy processes (L;""), for n > 1, on a common probability space where the
limiting a-stable process exists as well, and where the convergence holds true in a pathwise sense.
Let us consider p¢(dt,dz,du) a Poisson measure on [0, 00) x R* x [0, 1] with compensating measure
ve(dt,dz,du) = dt‘zﬁ%du. This measure corresponds to the jump measure of an a-stable process,

where each jumps is marked with an uniform variable on [0, 1].

We define the Poisson measures (™), for all n > 1, and u by setting:

vAC0oo) x B u®) = [ [ ] dae ot ptdtdadn, @)
[0,00) JR J[0,1] n

VA C [0,00) x R, u(A) :/ / / 1a(t, 2)pf(dt,dz, du). (32)
[0,00) JR J[0,1]

By simple computations, one can check that the compensator of the measure u(”) (dt,dz) is v (dt,dz) =
dt x T(ﬁ)mdlii( = dt x F,(z)dz and the compensator of u(dt,dz) is v(dt,dz) = dt x lzl‘iﬁ. Re-
mark that, since 7(z) = 1 for |z| < 1, the measures p(™(ds,dz) and u(ds,dz) coincide on the set
{(s,2) | [z < n'/*}.

We now define the stochastic processes associated to these random measures,

t t
Ly z/ / 2{p(ds,dz) —v(ds,dz)} +/ / zp(ds, dz) (33)
0 J[-1,1] 0 J[-1,1]°
. t
e = / / A (ds, dz) — v™(ds, dz)} = / / 2{u™(ds, dz) — vM(ds,dz)}  (34)
0o JR 0 J|z|<2nl/«

By construction, the process L™ is a centered a-stable process, and the process L™ is equal in law
to the process (nl/ “L¢/y )i, since they are based on random measures with the same compensators.

1/e exactly coincide with the jumps of L%

Remark that the jumps of L;"* with size smaller than n
with size smaller than n'/®. On the other hand, the process L™ has no jump with a size greater than

onl/e,

12



Using that the measures p and u(™ coincide on the subsets of {(t,2);|z| < n'/®}, and that, on

|z| < n'/e, the function T(ﬁ)‘z‘l% = ‘2‘1% is symmetric, we can write:

t ¢
Ly® —/ / z{u(ds,dz) — v(ds,dz)} —|—/ / zp(ds, dz)
0 J[-1,1] 0 Ji<|z|<nt/e
t
—I—/ / z{p"(ds,dz) —v"(ds,dz)}. (35)
0 Jnl/a<|z|<2nl/
The following simple lemma gives a precise connection between L™ and the stable process L.

Lemma 3 There exists a sequence ky, with Kk, —— 0 such that forallt <1,
LYY = L§ — thy, (36)
on the event pu ({(t,2) | 0 <t < 1,|z| > n'/*}) = 0. Moreover

P (u ({(t,z) 10<t<1,]2] > nl/a}) < 0) —1+0(1/n). (37)

1/e lzﬁia which converges to zero since 7 is bounded

Proof Let us set k, = fnl/a§|z|§2n1/a 27(z/n
and o > 1. Now, by comparison of the representations (33) and (35), it is clear that the equation
(36) holds true on the event that the supports of the random measures p and 1™ do not intersect
{(t,z) | 0 <t <1,|z| > n'/*}. Since, by construction, the support of u(™ is included in the support
of y, we see that (36) holds true on the event p ({(t,2) |0 <t <1,|z[ >n!/®}) = 0. Finally, the
probability of the latter event is exp (— fol f‘Z‘an Ja bﬁ%dt) which converges to 1 at rate 1/n as
stated. (]

In the following, we will assume that the process Y"%%0 is solution of
t
V0o = it [ b+ ey g)ds + I (38)
0

where L;"" is given by (34). We are in the framework of section 3.2, with g(z) = ‘ZP%T(#) and

the auxiliary function p can be chosen as p(z) = z*7(22).
Proposition 3 Let ¢™%0 be the density of Yln’e’xo, we have :
qnﬂ,xo (u) = E(l{Yln’g’zOZu}Hg(l))’ (39)

with
Hi (1) == Hymow (1) = Hy (1) + Ry (1). (40)

13



The main term ﬁg(l) is given by

1 n\— 1+a)p(z
HE(1) = fo Je (& )p(2)p(ds, dz) fo Je(EHT [ () — M} p(ds, dz) )
0
et (fo fR (2)p(ds, dZ)) & fo Jz(EM)2p(2)p(ds, dz)
where
¢
&' = exp (”1/ W (o +n~ oy, 9)ds> , (42)
0
and the remainder term satisfies the upper bound,
n 1
|R0(1)| < Cani’ (43)

where C' is some deterministic constant.

Proof

n,0,x0

We apply the integration by parts formula given in Theorem 4 to Y; . The non degeneracy

assumption is verified by choosing p(z) = 2*7(22). We obtain :

¢ () = Bl gynon,, Hi (1),

with . . , ,
I (y b0 T Yn, ,T0 Yn, T Ly oo
Hg(l): ( ! 2 n((gmo n@xo )) -2 n,(),aclo n,0,x0\
L2770, ) LY, )

The random variables appearing in the weight 7} (1) can be computed explicitely. Let us denote

by Utn’e = I‘[Ytn’e’zo, Ytn’e’mo], and th,e = F[Ytn’e’mo, Utn’e]. Then applying the results of Lemma 1 and

Lemma 2 we have,

9 t t
Ut”’@ = / U™ (29 +n= 1/ oym020 9)ds +/ / p(z)ut™ (ds, dz),
0 0o JrR

n

1 t
L) = & [ eyt o)L (v 00 ds +
n

t
/ b”(l‘o _}_n—l/a}/;n,ﬁ,xO,e)Ugﬂds
0 0

Inl+l/a

L B2\
w3 | [0+ sz,

t D) t
Wit = 0 [ ooyt gwrtas B [ 4 ooy, ) as

O / / 1™ (ds, dz).

14



These linear equations can be resolved explicitly using &' given by (42). By simple computations, we

find
Ut = (&) / /5" 1(ds, dz), (44)

where we used that the measures p(™(ds,dz) and p(ds,dz) coincide on (s,z) € [0,1] x [~1,1] and

that the support of p is included in [—1, 1]. By analogous computations we get,

popte =5 [ e [ - 2 s

g?’L
T oniHa / V' (wo + n” VYOm0, o)UO(£7) s (45)
where we have used that ? EZ; = —1+7a on the support of p. Solving the equation for W}" 0 yields

Wl = (&) //5% =30 (2)p(2)(ds, dz)

(5?)3 ! 1 —1/ay n,0,z n,0\2 on\—3
+ b (zo +n Ym0\ (UMY)2(EF)ds.  (46)
0

Inl+l/a
Based on these expressions and recalling that

79 ’97
Wi L)
(U7)2 Uy’

H(1) = , (47)

we deduce, after some calculus, the decomposition (40), where the leading term is

H(1) = fo Jo(E)720 (2)p(2)p(ds, dz) Jo Ja(€n™ [ ( Z) - M u(ds, dz)
& (fo Jr( 5") 2p(2)p (d87d2)>2 & fo Jz(EM)2p(2)p(ds, dz)

n,0
and, using that b is bounded with bounded derivatives and Y ¢ is bounded for 0 < s < 1, the
1

remainder term satisfies the upper bound

C

R (1)] < Tiija

where C' is some deterministic constant.

n,0,z(
In a similar way, we give an expansion of 4 P (u).

Proposition 4 We have :

‘n,0,z0

q

oo (W) = BE(Hg (V) Y00 = ), (48)

15



with
Hy (V00 = Hymozo (Y00 = ymOmon (1) 4 R (Y0™), (49)

where ‘Rg(Yln’e’xO) <Cn~! and ﬁg(l) is given in (41).

Proof Using successively the Theorem 5 and the equation (47), we have

1—1(}/177,,9,%0 ’ )'/177,,9,%0 )

Y 767 n
= Yln xOHG (1)_ Um@
1

9

0 0, 0,z0 .0,
Hg<)-/1n797xo) _ }-/lnﬂ,gco ( Wlne’ B 2LY1” 9330 ) _F(Y{L a:o’Z/ln :BO)
(U77)? Uy Uy

where Ul is given by (44). For the computation of V;"? = T(¥{%*°, ¥7%*0) we use (30), this gives

1
1.
vt = et [ et (nb’@o o eypo g)
0

. 1
n,0,2 —1/ay n,0,x
YO g b (o ey, 079)> ds. (50)
The expression of Yln’e’ro is explicitly given by,
.0 1 1 .
V0 =ity [ () o+ ey 0, s, (51)
0
Using these expressions, we deduce the bounds
v | < opal (52)
1 >
“fln’a S Cnfl ‘U{l,e

Combining this with the Proposition 3, the result follows.

4 Asymptotic behaviour of the transition density

In this section we study the asymptotic behaviour of ¢™?®0, the density of Yln’e’xo, solution of (38).

We will establish some stronger versions of Proposition 1.

4.1 Pointwise convergence

The following two propositions will imply the results of Proposition 1 i) and ii).

16



Proposition 5 Let (0,,)n>1 be a sequence of parameters such that 6, 27 0. For all (wo,u) € R?,

we have g0 (u) “=22%5 ¢ (u). Moreover
sup sup ¢ (1) < oo. (53)
u€R n

Proposition 6 Let (0,)n>1 be a sequence of parameters such that 0, “—— 0. For all (x,u) € R,

we have \/mun ™% (u) 2= b(xq, 0)¢', (u). Moreover

sup sup [t~ Yegm0nmo (1) < oo, (54)

u n

4.1.1 Proof of Proposition 5

From the Proposition 3, the expression for the density of Y| 0:zo

at some point u and with 6, € © is
given by equation (39)
g0 (1) = Bljy00) (V7" HG, (1],

where Hy (1) = ﬁgﬂ(l) + Ry, (1), with ﬁgﬂ(l) given by (41) and Ry (1) bounded by (43).
Let us note

fo fR Ju(ds, dz) fo fR [ 1+a) (Z)} wu(ds,dz)

Hia(1) =
(fU fR wu(ds dz)) fo fR p(z)p(ds, dz)

; (55)

then from (42), and the boundedness of ¥/, it is clear that ﬁgﬂ(l) converges almost surely to Hro(1).
Using again the boundedness of b’ and the fact that p is a non negative function, we deduce the

upper bound

7] <c Jo Jo 19/ (2)] p(2)u(ds, dz) Jy Je 1921 %} u(ds, dz)
(fo fR p(ds dz)) fo fR p(ds, dz)

(56)

for some constant C' > 0. Using that p, |p/| and z — M belongs to (1,5 LP(|z| 71" dz) we get

[(fo Je P/ (= Yu(ds, dZ)>p} <oo, B [(fo Jr [ z)| + (1+‘o;)‘p } w(ds, dz))p} < oo for all p > 1.
Since p satisfies the non degeneracy assumption (24), fo fR p(ds,dz)]~! belongs to ﬂle LP) as

a consequence we deduce from (56) that sup,

~ P
Hgn(l)‘ is mtegrable for all p > 1. Applying the

dominated convergence Theorem, we deduce that

Hy, (1) "= (1), Wp > L. (57)

17



The Lemma 3 implies that L** converges to L{ in probability. From the boundedness of b and
equation (38) we deduce that Yln’en’xo converges in probability to L{. Then, an easy computation,

using that P(L{ = u) = 0, shows the convergence in probability
n,0n,,T —
Lu,o0) (Y1 757) % Lu,o0) (LT)- (58)

Moreover from the boundedness property of the variables, the latter convergence holds in L? sense,
Vp > 1.
Using (39), (40), (43), (57), (58) we get,

g (u) B2 B 1y 0 (L) Hia (1)] - (59)

To finish the proof of the convergence, it remains to show that the right-hand side of (59) is a
representation for ¢, (u), the density of an a-stable process. This is done in Lemma 4 below.

Remark that, we easily get from (39), (40), (43), and (57) that sup,,cg sup,, ¢%*% (u) < occ.

Lemma 4 We have

Ya(u) = E [1y,00) (LT Hra(1)] . (60)

Proof The relation (60) could be formally obtained by Malliavin computations for the stable measure.
However Malliavin computation in the setting of a stable process does not immediately enter the
framework developed by [4], since the amplitude of the (big) jumps are not LP random variables for
all p. Hence, we prefer to give another proof.

Let us denote by ¢"(u) the density of the variable L"*. We apply the results (53) and (59), in

the situation where the drift function b = 0, for which Yln’g’gc0 = L"". This yields,
@™ (u) =25 B Ly 00) (L) Hie(1)] = 9(u), (61)

sup sup " (u) < oo. (62)
u n

Assume by contradiction that, for some u, we have ¥ (u) # ¢qo(u). From the fact that P(L{ =
u) = 0, it can be seen that v is continuous at the point u. Hence, one can find a continuous, compactly

supported, function f such that [ f(z)y(z)dz # [ f(z)pa(z)dz.

18



On the one hand we have,

)= [ s@erean == [ e, (63)

where we have used the dominated convergence Theorem with (61)—(62). On the other hand, we write
BIF(LY™)] = ELF(LS — k)l gro o) + B ooy

where we have used the notations of Lemma 3. Moreover, by Lemma 3, we have P(L]"" = L —

n—oo

kn) — 1. We deduce that,

BLF(L7)] 222 Blf(L9) / F(@)palz (64)

This last convergence result clearly contradicts (63). O

4.1.2 Proof of Proposition 6

n9x0

First we write a representation as an expectation for ¢ Let f be a smooth, non negative and

compactly supported function. Differentiating the relation E[f(Y{" 9, N =[f (u) g0 du, we get,
BL (05070 = [ f()in
Using the integration by parts formula (19) , we obtain
[ Ha o ydu = B0 770, (65)
where HJJ (V)" 020y is given by (49) :
Hy (V070) = VIMOPHE (1) 4+ Ry (V0),

with )Rg(ylnﬂ,m) < COn~!and 7:23(1) given in (41).

Using (65), we get

< B | FO0) [Ro(4707)

[ st o~ Bl Ry ) | < Cn T ELF ()

Applying the integration by parts formula, we deduce

‘/f(u>qn,9,ro(u)du _ B F(Y1n’07x0)Hy1"!9vzo (Yln,e,xoﬁg(l))} < Cn—lE[f(YnGaco)]

19



where I denotes a primitive function of f and Hno.z (Yln’e’xoﬁg(l)) is defined by (20). If f
1

converges to a Dirac mass at some point u, we deduce,
qn,e,xo (’LL) _E |:1[u,oo)(1/1n79,x0)HY1ny0’z0 (lenﬁwoﬁg(l))} ’ < Cnflqnﬁ,aso ('LL) (66)

Thus we need to study lim, n!~Y/*E {l[um) (Yln’en’xO)HYn,en,zo (Yln’en’xoﬁg (1))} . Actually, the main
1 n

step is to show that
YO g (Y] 0H (1)) 222 b, 0)H®, vp > 1, (67)
1

where H?) is some random variable whose expression does not depend on 6 and b. This is done in

Lemma 10 (see the Section 7). Then, as in the proof of (59), we can deduce from (66)—(67), that
plmlegnbno () P2% o 0B [qm) (L‘f‘)H(2)] . (68)
Remark that from (53) and (66)—(67), we get
Sup sup nlfl/aqn’an’xo(u)‘ < 0.
The proof of the Proposition will be finished if we identify E [1[u,oo)(L?)H(2)] as being equal to ¢/ (u).
This is done in Lemma 5 below. ]

Lemma 5 We have for all u € R,

¢l (1) = E[1py 00y (LF)HP). (69)

Proof Let us consider the situation where b(z,0) = 0. In that case, we have Y7*%% = pa =10 4 L&"

and thus the density of ¥7""" is related to the density of L™ by the relation
qn,B,mo (u) — (pn(u - nl/a—le).

We can apply the results (54) and (68) in this specific setting. This yields

Vu, " (u—n'/710) =25 Bl 00 (LFYHP), (70)
sup [@™ (u —n/*710)| < co. (71)

Let us denote x(u) = E[l[u,oo)(L?)’H(Q)] and assume by contradiction that x # .. Using the conti-
nuity of u — x(u), there exists a smooth, compactly supported function, f such that [ x(u)f(u)du #

Jea(u)f(u)du.

20



Now, on the one hand we have

/ o — no19) fu)du 2 [ () f(w)du, (72)

where we have used the dominated convergence theorem, together with (70)—(71).

On the other hand, we can write

/ O(u—n ) flu)du = — / " (u — ') £ (w)du
=~ [ a0
— Bl 4 )
125 BIPE) = ~ [ gal)f (udu (73)
~ [ st (74)

where the convergence (73) is obtained in the same way as (64). Clearly (74) contradicts (72), and

the lemma is proved.

4.2 Fisher information

We study now the asymptotic properties of the Fisher information defined by (10) corresponding to

the observation of the random variable Yln’e"ro. We recall that it is given by

. 0, 2
In,97gl,'0 — E (qn797$0 (Y‘ln iEO) )

gno (v
We will show a stronger version of the Proposition 1 iii).

Proposition 7 Let (6,,) be a sequence such that 6,, ~——> 6, we have

i
()

and this convergence is uniform with respect to xg,

/ 2
n2—2/aIn,9n,xo n—o00 i)(.’Eo, 9)2E _ 6(1’0,9)2/ (Pa(’LL) du,
R

Pa(u)

qn,GyzO (Yln,9x10)2

= 2—2/an,0,xo _ 2—2/a
ZZ) Supn,l’o,@n / I - Supn,xo,en / E |:q77«,9,130(yn’9’z0)2
1

| <.

The proof of this proposition is based on the following lemma, which is related to a continuity

property with respect to the conditioning variable, in a conditional expectation.

21



Lemma 6 Let (0,,)n>1 be a sequence such that 6, 2%, 0. Then, the following convergence holds

uniformly with respect to x,
n? =20 B | BIHG (V) | YR 222 b, 0)2B [B[MLe (1) | L§7]

where Hra (1) is given by (55) and LY by (33).

Proof Let us recall the crucial decomposition given in (49), H2 (Y;"7"0) = Y070 11 (1) + R (v-0")

where ‘R" (y;0:0)

n—oo

< Cn~'. From the fact that sup,, Supsefo,1 [€5 — 1| + (€M™t =1 == 0 and

n,0,xo

the explicit expression of Y given in (51), we easily get

sup [n! ey 0T _pz 9)] 2222 0

Z0

a.s.

From the expressions (41) and (55) it can be seen that sup,, ﬁg (1) = Hra(1)] =22 0. We deduce
n a.s.
that almost surely, one has the convergence
sup [ ~HOHG (V1000) — (o, 0)H e (1)) =2 0. (75)
o

Moreover using the upper bound (56) with (49) again, we can apply the dominated convergence
Theorem and see that the convergence (75) holds in LP-norm for all p > 1. Now, we can write

|

E {‘E[nl—l/aHgn(lenﬁn,ro) | Yln,e,nm)] . E[i)(l‘o,@)HLa(l) | Yln,an,xg]

< B[t e (77 = b, 0 1) |3
- U e, () l‘)(woﬂ)mau)\z]
converges to zero uniformly with respect to xg. In turns, it gives the uniform convergence
n2-2/ep [E[Hgn (Yln,en,xo) | }/171,9,,,,1‘0}2] —i(z0,0)2E [E[HLa(l) | }/171,9,,,,1‘0}2] n—oo
Hence, the proposition will be proved as soon as we show the uniform convergence with respect to z,
E [E[Ha(1) | Y]] - B [BlH(1) | L§12] == 0. (76)

This is a delicate part of the proof, since it amounts to compare the conditional expectation of a
variable with respect to the two different variables Y, "9""700 and L{. First, we reduce the situation

to the case where the random variable in the expectation is bounded. Let K > 0 and denote by
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x — xk(z) a smooth truncation function with xx(z) = 0 for |z| > K, xx(z) = 1 for |z| < K/2
and 0 < yx < 1. Using that E[H«(1)?] < oo, one can see that (76) is implied by the following

convergence for all K > 0,

sup 0. (77)

o

B | E[Hye ()xx (Hea (1) | Y] = B [E[Mee (Dxx (Hen (1) | L§)]

Let us denote by 7, and 1 the measurable functions such that,

2 (Mo (i (Hzo (1)) | Y700 = (1700,
E[Hpa(1)xx(Hra (1)) | L] = n(L$).

With these notations, the condition (77) writes

n—oo

sup | Eln, (V") = E[n(L$)?)| == 0 (78)

Zo

Using Proposition 10 in Section 7.2, we know that

97L7 70717
sup B Hn(Yf“ F0) — p (Y0)
zo

}nﬂooo

0

‘ n—oo

Since |n,| and |n| are bounded by the constant K, we deduce Hn(Ylnﬂ"’xO) — 1 (Y700) ,

uniformly with respect to zg. This yields

n—oo 0

sup E[nn(ylnﬁn,IO)Z] 1 E[n(ylnﬁmm)Z}
zo

Now, applying (105) in Corollary 2 with the bounded function 1? yields (78), and the lemma is proved.

O
We can now prove the main result of the Section.
Proof of Proposition 7. i) First we remark that we have the representation
/
P (1) o
=FE[Hpa(1) | L = u] . (79)

Indeed, by considering the specific model b(x,8) = 6, we obtain, Yln’e’x0 = L 4 nl/o—1g, Yln’e’mo =
nt/o=t Hp (Ym0 ) = nl/e=11 0 (1), g0 (u) = ™ (u—n'/*"10). Using (65), we get for any smooth

function f,
/ F) (uw—nt/*"toynt/ " du = E[f(LY* + n'/*"10)nt/* " Hpa (1))

From the convergence results (74) and the smoothness of f, we get [ f(u)plo(u)du = E[f(LY)Hre(1)],
and we deduce (79).
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Next, we have from Proposition 4

n2—2/o<In,6n,a:0 _ n2—2/aE l:E |:Hg,n (Yln,en,ZO)

2
0ns
o] ] 7

222, b(xo, 0)*E [E[Hre(1) | L§)?] , from Lemma 6,

oh (LY)?

= o 075 [ 2473

] , from (79),

which proves the first part of the proposition.

ii) Using successively the Proposition 4 and Jensen inequality, we get
1m0 = BIE[MG (V) | YO0 < B (7))

But it is clear from (49), (52) and (56) that n'~/*H7(V;"?™) is bounded in L? norm independently

of n, 8, xg, for any p > 1. O

5 Proof of the asymptotic expansion of the likelihood (Theorems

1-2)

This section is devoted to the proof of the asymptotic expansion for the log-likelihood function,
established in the Theorem 1. The proof is based essentially on the L2-regularity property of the
transition density pf /n(x,y) and on the result of Theorem 2. Indeed, from Jeganathan [11], the

following four conditions A1-A4 are sufficient to get the expansion (3) of Theorem 1.

: 0 pi 0 0
We recall the notation ¢, = pT"(Xi Ly XY
' 1 Ny n

A1l. L’-regularity

2
- O+unh (10 12 8 (y0 12 1 71X ) n—oo
Un 4 — 4 — "~ vy -
n v

A2.

n—1

Jn(0) = u2 Z E [(gf,n)Q\gi/n] 272, Ty (> 0 a.e.), in probability,

i=0

A3.

n—1 9
9 —
ve>0, S ulE [(gm) 1{u”|£3n|2€}] n—oo ()
=0
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A4.

sup u2 Z E( f 2 < 0, for a strictly positive constant C'
=0

The condition Al is proved in Section 5.1 below. The conditions A2 and A3 coincide with the
Theorem 2, which is proved in Section 5.2 below. The condition A4 is immediate from the Proposition
7 ii), since E(ﬁfn) = EI"*X0n and nu? = n?-%,

Note that these conditions does not imply the stable convergence in law (7) since in our framework
the filtration (G i ); does not satisfy the nested condition. The proof of the stable convergence in law

will be given in Section 6.

5.1 Proof of the L? regularity condition

1/2—1/a

Proposition 8 Set u, =n , we have

2

n p

1 -

Y E / P X, )2 = (X, 9) 2 = Shun gt b dy | S50, (80)
; R n n 1

1/a

Proof Recall that ¢™?7 is the density of the rescaled process (Xf n~ xo)n/*. One has the simple

1/o¢qn,9,x[n1/a(y

relation pf (z,y) = n — )], and proving (80) amounts to show the convergence to zero

of the following quantity,
n,G,X? 1

(o (y — X9

n

n0+unhX
ZE l/a/{q (nl/a(y X@ ))1/2
J=1

_n,0,X€71
.4 lrmW@—XL»

By a simple change of variable, it is equivalent to show

JZE /{nl/Q

O+unh, X0 ,0,X0_ 1 ; e -
o i= 1( )1/2 _qn %(U)I/Q] _ ihnl/Qun q (’LL) }Zdu} n—ooo
Let us denote
fn(x,u) 1/2[ n0+unhx( )1/2_ n@,x(u)1/2]’

B 1 1/ n,G,I(u)
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Let us admit temporarily that the three following properties hold true :

1) There exists a function f such that,
vV, u, fn(xau) == f(xau)’
gn(z,u) === f(z,u).
2) We have for all z,
lim sup/ ful,u)?du < / f(z,u)*du
n R R
lim sup/ gn(z,u)?du < / f(z,w)?du.
n R R
3) We have

sup/fnxu) du < oo,

sup/ gn(,u)*du < oco.
R

z,n

(82)

(83)

Admitting these three points, we can prove (81). Let & > 0, we first show a uniform polynomial

decay for y + p{(xo,y), when t > ¢. Using Theorem 4, we have pf(xo,y) = E[l{szy}HXf(l)], where

fo(l) is given by (20). But, it can be seen that sup,<,<; E[['(X{, X/)~?] is bounded for any p > 1.

Then, one can easily deduce that sup.<;<; £ HHXf(l))p} < 0. From (1) and the fact that the Lévy

measure of L has a compact support we deduce sup;¢g E| |Xt9 |p] < 00. Using the Markov inequality,

we deduce that sup,<,<; p} (o, y) < for some C > 0.

= 1+ T2
Then, we split the right-hand side of (81) on the following way

12/ {f" XJ 1, U ) gn(X] 1,U )}Q]du

[ne]

1ZEU{fn Jl, gn(le, )}Qdu]—l— [/{fn Jl,

Lne]

125up/ [frlz, 1) + gn(x, u)]du +n~? {/{fn jl, — gn(X9_
—_1 zn j= LnsJ—f—l
S B[ [0 0 - (X ] by (5259
[ne| +1
dy
< €C/+n IC Z //{fn ya gn(yvu)}2du1 29 USIHg pt(xoay) = 1 29
|_nEJ+1 Ty Ty
— |ne| 9 dy
=040 //{fn,% — gn(y, )} duy T
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n—:o0

From Lemma 7, the conditions 1) and 2) imply that [o{fn(y,u) — gn(y,u)}*du — 0. The con-
dition 3) is sufficient to apply the dominated convergence Theorem and find that [p [o{fn(y,u) —

gn(y, u)}2dulii/!2 converges to zero as n — oo. Hence, we have proved the proposition, up to the fact

that we need to check the validity of the conditions 1), 2) and 3).

n—oo

We start with the proof of the property 1). From Propositions 5-6, we see that g,(x,u) ——

flz,u) = %hb(:ﬁ, 0)@5%;;)/2. Using the mean value theorem, we can write f,(z,u) = $n'/%u h%,
n—oo

for some 0,, € [6,0 + u,h]. Using again the Propositions 5-6, we get f,(x,u) —— f(x,u).

We now prove the property 2). Recalling that u, = n'/2~%/® and (10), we have Jg 9n (2, u)?du =

h2 n?~2/a[m92 From the Proposition 7, we get [p gn(z,u)?du “—= [¢ f(z,u)?du, for all z.
Using fu(z,u) = $n'/? 99+“"h %ds We write
O0+unh  sn,s,x(. 2 O+unh SM,8,T (| 2
/ﬁwwﬂm:n/’ 00l < / 40 | g
R 41| /o qn,s,x(,)1/2 ) 4 0 qn,s,x(,)1/2 5

2
B h2 N /1 </ qn,9+sunh,x(u)2d >1/2d
= Uy n,0+sunh,x u §
4 o \Jr gntsunhT(u)

h2 1 2
_ Z (/0 (n2—2/aln,0+sunh,z)1/2d8) (84)

== iy [ 20— [ P

where, in the last line, we have used the Proposition 7 for the convergence of n2-2/amf+sunh.z gn(

the application of the dominated convergence Theorem.
We end the proof of the Proposition by showing the property 3). From (84) and Proposition 7 we
get (82). The bound (83) is deduced by Proposition 7 as well. O

Lemma 7 Assume that (fn)n, (gn)n are two sequences of real functions such that:

1) There exists f € L2(R) such that fn(u) 2= f(u) and gn(u) “—=> f(u) for almost every u.
2) We have limsup,, [ fn(u)?du < [; f(u)?du and limsup,, [ gn(v)?du < [ f(u)?du.

Then,

[t = g ==
R

Proof We write (fn(u)—gn(u))? < 2f5(u)?+2g,(u)* and thus 2, (u)* 4295 (u)? = (fn(u) —gn(u))* > 0.
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Applying Fatou’s lemma to this non negative function, we get

/ 4f(u)?du < lim inf/[2fn(u)2 + 290 (u)? = (fu(u) — gn(u))?]du
R " R
< timsup | (270 + 29,(0))du ~ ansup [ (£u(u) = g () *du
n R n R
This yields the inequality lim sup,, [ (fn(u)—gn(u))?du < limsup,, [; 2f, (u)2dutlimsup,, [ 29, (u)*du—
Jg4f(u)?*du < 0, and thus the lemma follows. O

5.2 Proof of Theorem 2

Piyn(@9) _ gm0 ml/o (y—a))
1/71(3: y) qn,9,z(n1/a(y_z)) ’

process XY and (10), we have

Proof First, we use that

and as a result of the Markov property for the

E[(&f,n)Q | Gi/nl = vOXi

From the Proposition 7, we know that the quantity

sup
0<i<n—1

sup
0<i<n—1

n,0,Xx° SOI(U)Z
nuZ 1™ im — b(XY, 0 / du| =
(X O | o)

2

2-2/a n,0,X%, 2/ ¢’ (u) ‘

n I / ,0 du
( i/n ) R QO(U)

converges to zero as n — oo. Then the convergence (5) is a consequence of the convergence of a

Riemann sum.

. . pl/n(m y) "’g’z(nl/a(y—z))
To prove (6), we use again the relation o ) = 0 (nla (y—a))

and the Markov property to get,

k
:n,0,x n,0,x
Elléin" | X Z/n x]=F % , for any k& > 1. It then follows from Proposition 4 that,
g
°-n,0,x n,0,x k 'n,0,x k
Bllenl* | X4, =2 = £ |5 [ 17707 ['] < B [Jrgeree]].

where we used the Jensen inequality in the last step. As seen in the proof of Proposition 7, the random

variables n!~1/ aHg(Yln’g’x) are bounded in L¥-norm independently of n and x. From this, we deduce

sup  nFROR[€ " < C(k), VE > 1,
0<i<n—1

where the C(k) are some finite constants. It can be classically checked that the previous control, for

instance with k = 4, is sufficient to imply the Lindeberg’s condition (6). g
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6 Stable central limit theorem

This section is devoted to the proof of the stable convergence in law stated in Theorem 3.

1/2-1/a

Proof Since u, =n , we have

X9 x¢
UnZ€ —n 1/2Zn1 1/a TIL( " ”1)‘
o (X X?+1)

The Theorem 3 is an immediate consequence of the Lemmas 8-9 below. (I

Lemma 8 Set

pi(Xi‘,vXZq . (pla(nl/a(Lz+1 —Ll)—%-lin)
’rh”n — nl*l/a 57, g Gn b(Xi,@) o n n ,
P (X5, X%) npaln /a([“tl L%)‘*"“L)
then we have n~1/2 S 01 Nin 7.,
Proof Using Lemma 9 in [6], it is sufficient to show :
n—1
n~!/? Z |E i | Gifnl | = (85)
=0
n—1
n S Bl | Gl M0 (56)
i=0

We start by the proof of (85). Since a score function has an expectation equal to zero, and Lit1 — L

is independent of G;/,,, we deduce that

Elnin | Gipn) = —0(X%,0)E

But, since (L;); has stationary increments, the law of nl/o‘(L@ — L. ) is the same as the law of L"®

n

We know from Lemma 3, that P(L}"* + k, # L{) = O(1/n), thus

. / La) S0/
Ein in——bX?,@E[%(l}+Ha

where we used that i—/z is bounded (see e.g. Theorem 7.3.2 in [15]). Using E [%géa)} Jz @ (u)du =

0, we deduce |[1in | Gi/n]| < Cn~! for some constant C' and (85) follows.
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We now prove (86). Recalling the definition (10), we have

. P (! (Liza — L) + kn)?
E in 2 2 2/aI b X 9 2 n
[(77 ) |g } + ( ) @a( 1/04([” 1 _Li)‘f'l‘fn)
1-1/ XD X)) Po(nM*(Liza = Li) + k)
_9F O (X0 i (87
" (Xe X?+1) g " )Wa(nl/a( L% + Fn) ‘g )

. SDL(”Uu(L(i+1>/n*Li/n)+ﬂn)2 _
With a method analogous to the proof of (85), we can show that E [sﬂa(nl/‘*(L(iH)/nLi/n)+nn)2 =

FE [?ELO‘)Q] + o(1). From Proposition 7, it appears that the first two terms in the right-hand side of
(87) are asymptotically close to the same quantities, and that (85) is proved as soon as we show the
following control, uniformly with respect to 4,

pl(X X?Jrl)_ (pla(nl/a(LiJrl —L

E [n'~ 1/0‘”"—sz,0
p1(X X?+1)( )

. / a2
= b(x%,0)°E [m} +o(1) (88)

n,0,x n,a
i i i n.0.x0 — 1-1/a @m0 (¥, 70) P (L1 +n)
Using the notations of Section 4, we define d E [ T zO)b(xo,H) T |2 50

n,0,X°

that the left-hand side of (88) reduces, from the Markov property, to d " "#/». From (38) and ,, — 0,

9
we have HY1n O LU+ Ky

2%, 0. Using the fact that i—i* has a bounded derivative (see e.g.
Theorem 7.3.2 in [15]) together with Cauchy- Schwarz inequality and Proposition 7 ii), we can deduce
that,

dmoro —

n,0,x0 Y”ﬁ@"o . Yn@zo
1 1/(1 ( 1 ; )b(l‘ 79)(1001( 7 ) +O(1),
gm0 (Y170) Pa(Y7"77)

where the o(1) term is uniform with respect to zo. Using the Proposition 4, we have

. A (r/0)
a0 — I | (10, 0) P | o)
Pa(Y777)
From the convergence result (75), we deduce that
) / (Yn 0, xo) oo
sup |dV%0 — b(xg, 0)2E HLa(l) i 0
73 Pa(Y7)

From Lemma 3 and (38), we can deduce that,

oo / La)
0o 12, (g, 0)2F [Hma)%( ! ] ,
° Pa(LT)
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uniformly with respect to xg. Then, the relation (79) enables to rewrite this convergence as,

drdwo 20, b(xo, 0)’E {%] , uniformly with respect to .

This result implies (88) and hence (86). O

Lemma 9 On has the convergence in law,

n—1 1/(1 .

(10& (Lz+1 LL) K:TL).

1/25 L b(Xi,0) == 0, Z, 89
I/O‘L+1*LL’)+I€n) ( n ) N(7 9)’ ( )

where the convergence is stable with respect to Gy.

Proof Let us define the processes,

[nt]
Z8 = (Lur — L),
=0
[nt) ‘
) Lo (018 Lugy — L) + )XY, ),
Lnt] ,

- ¥
Iy = 1/2Z¢Z (n!/*(Liss = L) + in).
=0

We will apply Lemma 2.8 in [10] to prove (89). Indeed, we will show that there exists a Gaussian

random variable 7, independent of Lj, such that one has the convergence

Then, by application of Lemma 2.8 in [10], there exists a Brownian motion (I'}); independent of

n—oo

(L¢)¢ such that one has the convergence in law for processes (Z",I" 1) —— (L,T',T') where

= fg b(X?,0)dT. This exactly implies the lemma, if we show furthermore var(I'})) = var(y) =
B[ (rg?].

Let us focus on the derivation of the convergence (90). For (u,v) € R?, let us set

Xn(u,v) =E [exp <z?/2( 1/(XL1 + Kn) +wL1>} :

31



Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression

about the characteristic function of (I'f*, Z7")
log E [exp (iul'* + ivZ7])] = nlog xn(u,v). (91)
Let us study the asymptotic behaviour of x,,(u,v). Using that ¢/, /¢, is bounded we get

vl « wl 1
al0) = B 4 WELOJ oLy e

_ v p[e T2 (ML 4 ko) P+ o(m3?) (92)
2n Pa "
= D) + D) — D) + Ol ), (93)
First, we have
YD (u,v) = e?@/" =1 4 @) /n+ O(n?), (94)

where 1 (v) is the Lévy Kintchine exponent of L.
We now focus on the term X( )(u, v). Using (36)—(37) of Lemma 3, and the fact that nl/aLl/n has
the same law as L"“, we get
W(LE —rn)

) = B| 22 ()| o)

v(s—kn)
=/wu@1 T ds + O(n )
R

o) ;v(s—kn)
= / val(s)e a7 ds + O(n™1) using integration by parts formula
n R

= O(n~1®) (95)

For the term, Xq({g’)(u, v) using Lemma 3 again, it is easy to see that

v(Ll Kn)

X (u, ) = [S% (L§)% W} +0(n™")
nox, g [zz(mﬁ] (96)

Collecting together (91)-(96), we have
oo u2 S0/
log E [exp (iul'(* + i Z}")| — 9 (v) — ?E [O‘(L‘f‘)2] ,

[0}

and thus the convergence (90) with v ~ N <0 E [ a(L$) D O
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7 Appendix

7.1 Proof of Lemma 10

We prove in this section the following result.

Lemma 10 We have for all p > 1,
— y 797“ - n—oo 3
YO, g (Yl” ”H@n(l)) 2% (o, O)H),

where H?) is a random variable that can be expressed as a functional of the random measure pu and

the function p.

Proof We first show two intermediate results that are useful for the proof of the lemma.

Lemma 11 Let £ : R — R be a bounded function with support included in [—1,1], with bounded

derivative and such that £ € Ll(lzﬁia) and let
t
Lt = €& [ [ reemuds. )
0o JR
t
16 = [ [ &Cntas, a2,

0 JR

where p > 1 is some real constant. Then, the following convergences hold in Li-norm for all ¢ > 1,

(1) = 1(1),

sup['(Zn(1) = I(1), In(1) — I(1) = 0.

Proof The convergence of I,,(1) to I(1) is clear since s — &£’ converges uniformly to the constant 1,
and is bounded by above and below (recall (42)).
We now focus on bracket I'(Z,,(1) — I(1), I,,(1) — I(1)). Let us remark that (I,,(¢)); is solution to

the linear equation,
¢
L) = p / Ln(s)n™ ' (w0 + n= /Y00 _0)ds + I(1).
0

We set W, (t) = I,(t)—1(t) and Ry, (t) = I'(Wy(t), Wy (t)). The process W), satisfies the linear equation
Wy (t) = pfg n=HI(s) + Wa(s)V (zo + n= /Y% ™ §)ds. In turns, it can be seen that the process
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R, (t) is solution to
Ry(t) = pn~ '/t /O t 2(I(s) + Wi () (o + n /oy O)T (Y00, W, (s))ds+
n"tp /O t oW (x4 n~ Y070 0)[D(I(s), Wa(s)) + Rn(s)]ds.
Using that
T(y-0m, Wn<s>>) < (Y00, Y00 2T (W (5), Wa(s)) /2 < T(YS070, YR070) 4T (Wi (s), Wa(s))
and a similar control for |T'(1(s), Wy(s))| we get,
R(t) < Cn~ et /0 (LW (s) D00, Y050) 4 R (5))ds4 ! /0 IP(E(), 1)+ Ra(s))ds,

where C' is some constant depending on [|¥']| ., [|b”]|, Now, we recall the control LYoo ymoaoy <

C’F(Yln’e’mo, Yln’g’xo), for s < 1, and use the controls
()| + [Wa(s)] < 0/01 /R €2)| p(ds, dz) 1= I*
v 160 < [ [ €@Pnutas, ) =
We deduce,
R,(t) < C /0 t[n’l/a’ll* + 0 YRy (s)ds + Ct[n~ Vot (v 0%0 y om0y L=l
We deduce that
R.(1) <n'Cexp (Cn_l/o‘l* + C) (n_l/aI*F(Yln’e’mo, Yln’e’mo) + J).

Now, J* and supy F(Yln’e’zo, Yln’e’ro) have finite moments of any order, bounded independently on 7 and
using the exponential formula for Poisson measure, we have E [exp (C’n_l fol Sz €(2)] (ds, dz))} =
exp [fol fR(ec‘%ZH — l)dtl—zldl%], which is finite and bounded independently of n. This shows that the
exponential moments of I* are bounded. We deduce that R,(1) — 0 in LP norm, uniformly with

respect to the parameter 6, and the lemma follows. O

Lemma 12 We have
T (nlfl/aylnﬁ,l‘%nlfl/a}}'lnyeyff/’o)

; ; < Cnl_Q/o‘,
T (Y{% 71‘07}/1", 7950>

where C is some constant independent of n, 8, xg.
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Proof The process Y20 is solution of
. t . t
Y;n,&xo — n—l / bl<$0 + n—l/ay;n,@,azove)}/sn,@,x()ds + nl/a—l/ b(x() + n_l/aYS"’e"’”O,G)ds.
0 0
From this, we can deduce that Q; = I‘(Y;n’e’ro, Yt"’g’xo) is solution of the equation,

t t
Q; = / 2n—1stl(mo+n—1/04}/;%(9,%’07 9)ds+2n_1_1/0‘/ F(}/snﬂ,xo7 Y;n,@,aco)b//(onrn—l/aY’sn,@,xo,9)d8+
0 0

t
2n—1 / F(}/Sn,@,zo’ }/871,9,170)b/<YSn,(9,x07 9)d8
0

Using I‘(st’e’mo, ).{9"’9’170) < I‘(st’e’zo, st’e’mo) + F(Kn’e’mo, YS"’Q’IO) and the boundedness of the deriva-
tives of b, we get,

t t
Q< Cn7! /0 Qsds +Cn~! /0 L(yrbzo ynbdaoyqs,

Now using that (Vw7 y0m0) < CF(Yln’g’xO,Yln’e’xO) for s < 1, we deduce by application of

Gronwall lemma that,
n,0,x0 vrn,0,T0N -1 n,0,z0 vy, n,0,20
Iy Y] )=0Q1 <Cn 'T(Y] Y] ).

The lemma is proved. (Il

We are now able to prove the Lemma 10.

From the definition (20) and the basic properties of (-,-) — I'(+,), one can check that

F(Yln’en’m ’ Ylnﬁmm)

I=ljagy Ynﬁn,zoﬁn 1)) = 1—1/&Yn79n,ZOH P ﬁn M —nl—Verr (1 _
P g (G (1) = SOy (R () MG, 1) o
Using F(Y1n797107nlfl/aY{%eJO) < F(Yln;97$07Ylnve,IO)%F(nlfl/aylnﬁ,zojnlfl/an’Lﬁ@O)% with Lemma
12 gives,

F(Ynﬁmﬂﬁo nlfl/aynﬁnw’m)
1 ) 1
1—\(}/{%971,9607 Ylnﬁn,z())
We deduce that, for any p > 1,

< Opl/2ife g,

nl—l/aHyln,en,zo (VO (1)) = nl—l/aylnﬁvwonnn,gn,zo (H3 (1)) + ors (1).

Now, the explicit expression for ¥, (see (51)) shows that n'~1/y"* converges in LP-norm

to i)(l‘o, 0).

35



Thus, we need to prove the convergence of Hynom.2g (ﬁg (1)) to some H®?), depending only on p
1 n

and p. Recalling (20) and using basic properties of the operator I', we have

_QL(Yln,Gn,aco)'}i\(gn(l) B ﬁn ()" 7m0 1
T (Yn70n7$07Y1n70n7$0) On 1 ’ Iw(Ylnﬁn,mo?Yln,@nJO)

Hyptnen (R, (1) =
1
1
T <Yln’9”’mo, Hen (1))
- . (97)
1" (Ylnﬂmwo , Ylnyen@O)

The convergence of the first two terms of the right-hand side of this equation follows from com-
putations analogous to the proof of Proposition 5. Indeed, in the proof of Proposition 5, it is
shown that ﬁg‘n(l) converges to Hza(1) defined by (55). The convergence of I'(Y; %m0 y 00y
L(ys0m®o p(ymomro yfn®oyy and L(Y*"**) to quantities independent of b can be obtained by
studying their respective explicit expressions (44)—(46).

It remains to study the convergence of I(Y;"%"0 ﬁgﬂ (1)). After cumbersome computations relying

-1
n (41), (55), the fact that (fol Jr p(z)dp(ds, dz)) belongs to N,L” and Lemma 11 one can show,
P (5, (1) = Hpe (1), g, (1) = Hia (1)) "2 0, p > 1.

As a consequence, we have F(Yln’()"’m,ﬁgn(l)) = DY Hpa (1)) + opp(1). Using (38), we deduce
1
DY "0 Hy (1)) = D(L), Hia (1)) + /0 D (b(xo +n~ /Y020 0) Hpa(1))ds + ope()
1
=T(L7, Hea (1) + / n O (2 + 0Oy OO (V00 Hpa (1))ds + one ()
0

=T(LY", Hra (1)) 4 oLe (1),

where at the last line we have used that the quantity T'(Y"%" v is bounded in L? norm and
that T'(Hre (1), Hre(1)) has finite moments of any order.

Recalling the expressions (34), (55) and using the basic properties of the operator I', one can see
that the computation I'(L}"*, Hra (1)) can be reduced to the computation of the I'-bracket between
simple stochastic integrals. Moreover, since p is supported on [—1,1], such computations show that
D(LYY, Hpa (1)) = D(L§, Hre(1)) and we have F(Yln’e"’xg,ﬁgn(l)) 2, T(LY, Ha(1)). This ends

the proof of the lemma.
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7.2 Regularity of the conditional expectation

Let us recall that we have defined the functions 7, and n by the relations
B [Hye (s (Hra (1) | V] = g (077), B [Hpe (s (Hea (1) | L] = 0(L5).

The aim of the section is to show that the function 7, and 7 are close in some sense.

We recall that x,, is defined in Lemma 3. Our first result is the following.

Proposition 9 There exists a sequence (ep)n, independent of xo and 0, with €, — 0, such that the

following holds true. For all h bounded smooth function,
E[R(Y]""*)] = E[M(LY® + kn)]| < enlbll (98)

E[Hpa(1)xr (Hra (1)) = EHpe (Dxue(Hea (D)R(LTY + k)] < enllbll (99)

Proof Remark that (98) is a result about the total variation distance between the laws of Yln’e’g”O
and L"" + kp, and (99) will be useful to control difference between the conditional expectations of
Hro(1)xx(Hra(1)). We shall only prove (99) since (98) can be obtained in a similar way. Remark
that we will not fully use the explicit expression of Hya (1) in the proof. For the sake of shortness, let
us denote HX = Hra(1)xx(Hra(1)). The crucial facts about H¥ is that HHKHOO < K and that it is
a smooth Malliavin functional, with

D(HE, HE) < AT (Hpa(1), Hia (1)) is element of ﬂ L?,
p=>1

where cg is any upper bound of the derivative of z — xxx (z).
We now prove (99). Let us denote by H any primitive function of h. We compute the following

expectation using the integration by parts formula (19) in Proposition 2,
E[R(LY + kn)H ] = E |H(LY® + i) Hpno (HX) (100)

where Hpn.a (HX) is given by (20). Using the definition of I' in (14), we get the following expression
for the Malliavin weight

HE o L(LPYHE

7) L yHE HKL?’Q
NS L VN

( n,o n,x )'
D(Ly", L)

Hypo(H) = L
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By (38) we have ‘L?’a — ko — YO <) 0t/ 4k, 2250, hence using that the function H

is globally Lipschitz with a constant | k||, we deduce from (100) that
BB + k)] = B [HOT ) 0 ()] | < enllbll o B [Hgg e 5)|] (101

where (e,,),, is some sequence converging to zero. We now compute E [H ()/1"’0@0)’}-[ e (HE )} using
successively the self-adjoint property of the operator L and the chain rule, to obtain an I.P.P. formula

in a reverse direction :

r HK L(Ln’a)HK HKL%&
E|H Y”ﬂ@o no Ky| — E|H Y”ﬂyxo L e 1 _ 1
( 1 )HLI (H )] ] ( 1 ) (F(L?’a, LTll,a) ) 1 F(L?’a, L?,a) (P(LTIL’&, L71’L,01) )

{L(H (Y50 L) — H(Y ") L) — L(H(Y]70) L yHE
D(L, LYY

[ DL H (Y] 00))
DL, L)

i 0,x
9.0, D(L]S, Y00
=E [HSh(Y" ’IO)%@—)) : (102)
1

Putting together (101) and (102) we deduce

)E [HKh(L’f’a ¥ k)] — E[HKh(Yln’e’xO)]} ‘

e I Ln,avynﬂ,xo
HKh(le .0, 0){ ( 1n,a 1n,a ) _1}:H

E
(LY, Ly)

< enllbllo [ Hope (RS +

F(Ln,a Yn,e,xo)
<e, o (HE H K A LS BN |
< callblloc [ Mg a4 I ool | iy — 1 1
Hence the proposition will be proved if we show
sup ‘HL?,a(HK)Hl < o0, (103)
n
F(L?’a, Yln,e,xo) oo
— e ymay — 1 0 (104)
(L™, L) 1
To prove (103), we write from (20)
—2L(LY*)HE HE o (L7, HE)

Hyo (HE) = D(LP DL, L)) —

NG L) TP N L)

From the fact that H* is bounded and I'(H*, H/) admits finite moments, together with the fact that
DLy, LY)), (LY, T(LY, L)) and L(LT™) do not depend on n (this is due to the choice of the

support of p), we easily see that H e (HX) admits moments bounded independently of n.
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To prove (104), we write by (38),

n,x n,0,x
F(Ll ) Yl ° )

S d Nl W A |
LT L)

ds

nl/a—l /1 F(L?O" b($0 + n—l/ayvsnﬁ,a:o))
n,a rn,x
B F(Ll 7L1 )

n” Y| / !
S n,x ’;:Oa ’F(LHVQ’ Y5n797$0>
F(Ll’ 7L1’ ) 0 !

Now using that ‘F(ana Y'snv@»’?O))‘ < F(L?’a, L?@)l/QF(Y'Sn,@va’ Y;nﬁ,xO)l/Z < CF(L?’Q, L?’a)l/zF(Yl”’e’“o, }/'1",97350)1/2,

ds.

1 9

F(L;L,u ’Yl’fb’e,zo )

1l = om-t
T ) 1 O(n~") and thus (104). O

1

we easily derive

Corollary 2 There exists a sequence (&p)n, independent of xo and 0, with €, — 0, such that the

following holds true. For all h bounded smooth function,
[BIL(Y)) = BI(E)]| < eallbll, (105)

E[Hpe(V)xx (Hra (1)h(Y""7)] = E[Hpe ()xx (Hze (D)(LD)]| < eallh]l- (106)

n—oo

Proof From Lemma 3, we know that P(L}"”* + k,, = L) —— 1. Hence we deduce (105) from (98).
Using that Hre (1)xx(Hr(1)) is bounded we deduce (106) from (99). O

Proposition 10 We have

M (V00 — ()| 22, (107)

and this convergence is uniform with respect to x, 0.

Proof We estimate the L' norm appearing in (107) by duality. Let 3 : R — [~1,1] be a measurable

function, we evaluate :
B [ (7770) = (=) 80 |
< Bl ()80 )] — Eln(L$)B(LY)

< | Bl (V0 70) 50 — Bln(L$)B(LD)]

+ ‘E[H(L‘f‘)ﬂ(L‘l")] B[y om0y gy o]

+en K,

where we have used (105) with the choice h = 1, and recalling that ||5||, < K. From the definition

of n(L%) and 7, (Y;""*°) as conditional expectations, we have
n,0,x n,0,x
| Bl (07 B(r7 7)) = Bln(L$)B(LY)

= | Bl (1) (e ()5 70)] = ElMze (i (Hye (1) 3L

< én,
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where we used (106) in the last line.

and thus ‘

Collecting the previous computations, we get

sup[B [ (Y]*"*0) = n(y7 )BT | < (14 K)en,
18l <1

M (Y7070) — (¥ 00)

’1 < (14 K)ey. The proposition is proved. O
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