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Abstract

This paper studies the asymptotic behavior of processes with switching. More precisely, the stability
under fast switching for diffusion processes and discrete state space Markovian processes is considered.
The proofs are based on semimartingale techniques, so that no Markovian assumption for the modulating
process is needed.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic processes with dynamics depending on a further source of randomness have been
of interest as well for theoretical reasons as from the point of view of application. Such pro-
cesses are called processes with switching and usually switching involves an additional Marko-
vian source of randomness with a finite number of states. For diffusion processes (X t )t∈[0,∞)

given by a stochastic differential equation, the dynamics then additionally depend on a modulat-
ing Markovian process (Yt )t∈[0,∞) with finite state space. Mao and Yuan [8] give an extensive
treatment of this subject. If (X t )t∈[0,∞) is itself a Markovian process with a discrete state space
then the intensity matrix will depend on the modulating process.
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In this paper we are interested in the stability under fast switching. This concerns the behavior
of the switching process when the modulating process depends on an additional parameter ϵ > 0
which lets it fluctuate more and more rapidly when ϵ tends to 0, so we have processes (X ϵ

t )t∈[0,∞)

and (Y ϵ
t )t∈[0,∞). The question of interest concerns the asymptotic stability, i.e. convergence in a

distributional sense, of (X ϵ
t )t∈[0,∞) as ϵ tends to 0 which is by no means obvious as the processes

(Y ϵ
t )t∈[0,∞) fluctuate more and more rapidly.
In fast Markovian switching we look at processes (Y ϵ

t )t∈[0,∞) with intensity matrix 1
ϵ

G for
a given intensity matrix G; in pathwise terms we would look at (Yt/ϵ)t∈[0,∞). In [11] and [9]
the asymptotic stability in the stochastic differential equation setting was shown, and in [4,3]
this stability was derived for conditionally Poisson processes. For the proofs the assumption of
Markovian switching was essential and the technical details can be seen as complicated and
technically involved. Note that the processes (X ϵ

t )t∈[0,∞) themselves are not Markovian so that
the usual machinery for showing distributional convergence of Markov processes cannot be
applied directly and has to be adapted.

This note stems from the observation that the processes (X ϵ
t )t∈[0,∞) are semimartingales, so

that we may show stability using the convergence theorem for families of semimartingales. As
demonstrated here, this can indeed be done. Section 2 is devoted to the case of diffusion processes
which is technically more involved relying on some uniform estimates for switching diffusions;
Section 3 treats discrete state space Markovian processes where the proofs are simpler. The
Appendix contains the proof of the analytical Lemma 2.4 which is essential for obtaining the
main results.

An advantage of the semimartingale approach is that the Markovian assumption for the
modulating process is no longer needed, only an assumption of ergodicity. Furthermore, the
proofs turn out to be less complicated than using an approach based Markov theory. As switching
processes have various applications in financial market modeling, see e.g. [5] or [2], where the
modulating process may correspond to macroeconomic influences, this generalization might
be of interest in this field. In particular, the findings discussed in [2] are based on the results
presented in this paper.

2. Diffusion processes

We consider càdlàg processes (X t )t∈[0,∞), (Yt )t∈[0,∞), where X t : Ω → I for some interval
I ⊆ R, Yt : Ω → Y for some suitable space Y . Assume that for

b : I × Y → R, σ : I × Y → R

the process (X t )t∈[0,∞) fulfils the stochastic differential equation

d X t = b(X t , Yt )dt + σ(X t , Yt )dWt ,

where (Wt )t∈[0,∞) is a Wiener process independent of (Yt )t∈[0,∞). Note that the dynamics of the
process X depend on the modulating process Y , so that we may also write X = XY .

Lemma 2.1. Assume that there exist C1, C2 such that

max{|b(x, y)|, |σ(x, y)|} ≤ C1 + C2|x | for all x ∈ I, y ∈ Y.

Let q ≥ 1, E |X0|
q < ∞. Then for all T > 0 there exists some constant C3, only depending on

q, C1, C2, T and E |X0|
q , such that

sup
t∈[0,T ]

E |X t |
q

≤ C3.
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Proof. This follows immediately from [7, Lemma 2 and Corollary 6 in Section 2.5]. �

It is important to note that this estimate holds uniformly in all processes (Yt )t∈[0,∞) taking
values in Y , and this will also be explicitly stated in the following result:

Lemma 2.2. Under the assumptions of Lemma 2.1 let E |X0| < ∞. Then for any δ > 0 there
exists some K > 0 such that

P


sup
t≤T

|X t | ≥ K


≤ δ

uniformly in all Y -valued modulating processes (Yt )t∈[0,∞) for X = XY .

Proof. Use 3K instead of K . Then we see that

P


sup
t≤T

X0 +

 t

0
b(Xs, Ys)ds +

 t

0
σ(Xs, Ys)dWs

 ≥ 3K



≤ P(|X0| ≥ K ) + P


sup
t≤T

 t

0
b(Xs, Ys)ds

 ≥ K



+ P


sup
t≤T

 t

0
σ(Xs, Ys)dWs

 ≥ K


.

The first term is trivial, so we start by looking at the second term. Clearly

sup
t≤T

 t

0
b(Xs, Ys)ds

 ≤

 T

0
|b(Xs, Ys)|ds ≤

 T

0
(C1 + Cs |Xs |) ds

= C1T +

 T

0
C2|Xs |ds.

Now, using Lemma 2.1,

E
 T

0
C2|Xs |ds =

 T

0
C2 E |Xs |ds ≤ C2C3T,

so that the expectation of the second term is bounded by (C1 + C2C3)T , and the second term is
bounded by Markov’s inequality by

P


sup
t≤T

 t

0
b(Xs, Ys)ds

 ≥ K


≤

(C1 + C2C3)T

K
.

Now we consider the third term: The stochastic process
 t

0 σ(Xs, Ys)dWs


t≥0

is, for another

Wiener process (W ′
t )t≥0, equal to (W ′

β(t))t≥0, where β(t) =
 t

0 σ 2(Xs, Ys)ds. Hence, for any
γ > 0

P


sup
t≤T

 t

0
σ(Xs, Ys)dWs

 ≥ K


= P


sup
t≤T

|W ′

β(t)| ≥ K


= P


sup

t≤β(T )

|W ′
t | ≥ K



≤ P (β(T ) ≥ γ ) + P


sup
t≤γ

|W ′
t | ≥ K


.
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Note that

Eβ(T ) ≤ E
 T

0
(C1 + C2|Xs |)

2ds =

 T

0
E(C1 + C2|Xs |)

2ds ≤ C4

by Lemma 2.1 for some C4 only depending on C1, C2 and T . So firstly choose γ with C4/γ =

δ/4, hence

P (β(T ) ≥ γ ) ≤
δ

4
.

Now choose K with

P


sup
t≤γ

|W ′
t | ≥ K


≤

δ

4
, P(|X0| ≥ K ) ≤

δ

4
,

(C1 + C2C3)T

K
≤

δ

4
.

Altogether, we obtain

P


sup
t≤T

|X t | ≥ 3K


≤ δ. �

For fixed ρ, T > 0 define τ0 = 0 and

τi = inf{s ≥ τi−1 : |Xs − Xτi−1 | = ρ} ∧ T, nT = sup{k : τk < T }.

It is rather obvious that for a fixed process Y it holds that P(τ1 = 0) = 0 and P(nT < ∞) = 1.
In the following lemma, we show a version of this observation, that holds uniformly in all mod-
ulating processes (Yt )t∈[0,∞) taking values in Y .

Lemma 2.3. In addition to the assumptions of Lemma 2.1, let us assume that

sup
|x |≤K ,y∈Y

(|b(x, y)| + σ 2(x, y)) < ∞ for all K > 0. (1)

Then for any ρ, T, δ > 0 there exist K ′, ρ′ > 0, such that

P(τ1 ≥ ρ′) ≥ 1 − δ, P(nT ≤ K ′) ≥ 1 − δ

for all processes (Yt )t∈[0,∞) taking values in Y .

Proof. (a) We start by looking at τ1. As in the proof of Lemma 2.2 and using the same notation
we have for ρ′ < T

P(τ1 ≤ ρ′) = P


sup
t≤ρ′

|X t − X0| ≥ ρ



≤
(C1 + C2C3)ρ

′

ρ/2
+ P(β(ρ′) ≥ γ ) + P


sup
t≤γ

|W ′
t | ≥

ρ

2



≤ C ′

1
ρ′

ρ
+

Eβ(ρ′)

γ
+ P


sup
t≤γ

|W ′
t | ≥

ρ

2



≤ C ′

1
ρ′

ρ
+ C ′

2
ρ′

γ
+ P


sup
t≤γ

|W ′
t | ≥

ρ

2


.
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Firstly we choose γ such that P

supt≤γ |W ′

t | ≥ ρ/2


≤ δ/3. Then we choose ρ′ such that

C ′

1
ρ′

ρ
≤ δ/3, C ′

2
ρ′

γ
≤ δ/3, which gives the first estimate of the assertion.

(b) Let δ > 0. Choose K according to Lemma 2.2 such that

P


sup
t≤T

|X t | ≥ K


≤

δ

2
.

We set

C = sup
|x |≤K ,y∈Y

|b(x, y)|, D = sup
|x |≤K ,y∈Y

σ 2(x, y).

The following estimates are always considered on A = {supt≤T |X t | ≤ K }. Note that for any
τ, s ≥ 0 τ+s

τ

b(Xs, Ys)ds +

 τ+s

τ

σ(Xs, Ys)dWs

 ≥ ρ

implies τ+s

τ

|b(Xs, Ys)|ds ≥
ρ

2
or

 τ+s

τ

σ(Xs, Ys)dWs

 ≥
ρ

2
.

Hence on A τ+s

τ

Cds ≥
ρ

2
or

 τ+s

τ

σ(Xs, Ys)dWs

 ≥
ρ

2

so that

τi − τi−1 ≥ min


ρ

2C
, inf


s :

 τi−1+s

τi−1

σ(Xs, Ys)dWs

 ≥
ρ

2


.

Now we may argue in the following way. If τk < T then there exist k disjoint stochastic intervals
[τi−1, τi ) = Ji ⊆ [0, T ) such that

the length of Ji is ≥
ρ

2C
or sup

s∈Ji

 s

τi−1

σ(Xs, Ys)dWs

 ≥ ρ/2.

The number m of intervals Ji with length ≥
ρ

2C must fulfil m ρ
2C < T so that there are at least

k −
T 2C

ρ
intervals Ji with sup

s∈Ji

 s

τi−1

σ(Xs, Ys)dWs

 ≥
ρ

2
.

To obtain a bound independent of the particular process (Yt )t we transfer this to the process
(W ′

t )t . Looking at the intervals [β(τi−1), β(τi )) = J ′

i these are disjoint intervals ⊆ [0, β(T ))

and for at least k −
T 2C
ρ

of them we have

sup
t∈J ′

i

|W ′
t − W ′

β(τi−1)
| ≥

ρ

2
.

Note that on A

β(T ) =

 T

0
σ 2(X t , Yt )dt ≤ DT .

So it follows that τk < T implies the existence of at least k −
T 2C
ρ

such disjoint intervals J ′

i ⊆

[0, DT ].
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For a formal statement define the random variable

Zρ′,T ′ = sup{k : There exist k disjoint intervals ⊆ [0, T ′)

with sup
ai ≤t≤bi

|W ′
t − W ′

ai
| ≥ ρ′

}.

By path continuity we see that

P(Zρ′,T ′ = ∞) = 0, hence P(Zρ′,T ′ ≥ k) → 0 as k → ∞.

The foregoing reasoning implies

P(nT ≥ k) = P(τk < T ) ≤ P(Ac) + P


Zρ/2,DT ≥ k −

T 2C

ρ


.

So we only have to choose K ′ such that P(Zρ/2,DT ≥ K ′
−

T 2C
ρ

) ≤ δ/2 to obtain the second
estimate. Note that K ′ is independent of the particular process (Yt )t∈[0,∞). �

Before coming to the main result of this section, we provide an analytical lemma which is
essential for the following.

Lemma 2.4. Let f : R → R be measurable such that

1
T

 T

0
f (x)dx → 0 as T → ∞, sup

T

1
T

 T

0
| f (x)|dx < ∞.

Then for any continuous h : [0, 1] → R

1
T

 T

0
h
 x

T


f (x)dx → 0 as T → ∞.

The proof can be found in the Appendix.
Let us now fix some process (Yt )t∈[0,∞) with state space Y . From now on we assume that Y

is a finite set, which implies that condition (1) holds true. We assume that (Yt )t∈[0,∞) is ergodic
in the sense that

1
t

 t

0
(1{Ys=y} − π(y))ds → 0 a.s., as t → ∞

for some probability distribution π(y), y ∈ Y . We increase the speed of the process by looking
at processes (Y ϵ

t )t∈[0,∞), ϵ > 0, having the same distribution as (Yt/ϵ)t∈[0,∞). The first pro-
cesses have to be adapted to a filtration for which (Wt )t∈[0,∞) is a Wiener process, and we let
(X ϵ

t )t∈[0,∞) be the solution of the corresponding stochastic differential equation

d X ϵ
t = b(X ϵ

t , Y ϵ
t )dt + σ(X ϵ

t , Y ϵ
t )dWt ,

with starting value independent of ϵ. In our proof we will work with Y ϵ
t = Yt/ϵ . For these pro-

cesses to live on a common filtration with the Wiener process (Wt )t∈[0,∞) we assume that

(Wt )t∈[0,∞) and (Yt )t∈[0,∞) are independent

and then we may use (Yt/ϵ)t∈[0,∞) for (Y ϵ
t )t∈[0,∞). This is no restriction in generality when com-

pared with Skorokhod [11], Sarafyan and Skorokhod [9]. When (Yt )t∈[0,∞) is a Markov process
with discrete state space living on the same filtration as (Wt )t∈[0,∞) then these two processes are
necessarily independent. This is shown in [10] for a Poisson process and can be generalized to
general Markov processes with discrete state space; see e.g. [1].
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Theorem 2.5. Let B : I × Y → R be such that B(·, y) is continuous for all y ∈ Y . Then for all
T > 0, y ∈ Y it holds that

sup
0≤r≤T

 r

0
B(X ϵ

t , y)

1{Y ϵ

t =y} − π(y)


dt

 → 0 in probability as ϵ → 0.

Proof. Fix T > 0, y ∈ Y . Let η > 0. We want to show that

P


sup
r≤T

 r

0
B(X ϵ

t , y)

1{Y ϵ

t =y} − π(y)


dt

 > η


→ 0 as ϵ → 0.

Let δ > 0. Choose K according to Lemma 2.2 such that

P


sup
t≤T

|X ϵ
t | ≥ K


≤ δ for all ϵ > 0.

Let

Aϵ =


sup
t≤T

|X ϵ
t | < K


.

The following estimates are always considered on Aϵ . Let

C = sup{|B(x, y)| : |x | ≤ K } < ∞;

thus for r0 = η/C

sup
r≤r0

 r

0

B(X ϵ
t , y)


1{Y ϵ

t =y} − π(y)
 dt ≤ η.

By a change of variable, we obtain r

0
B(X ϵ

t , y)(1{Y ϵ
t =y} − π(y))dt =

 r

0
B(X ϵ

t , y)(1{Yt/ϵ=y} − π(y))dt

= ϵ

 r/ϵ

0
B(X ϵ

ϵs, y)(1{Ys=y} − π(y))ds.

Note that the integral

ϵ

r

 r/ϵ

0
B(X ϵ

rsϵ/r , y)(1{Ys=y} − π(y))ds

has exactly the form considered in the proof of Lemma 2.4 (see Appendix) with t = r/ϵ,
g = B(·, y), h(s) = X ϵ

rs , and f (s) = 1{Ys=y} − π(y). On Aϵ one has

|X ϵ
rs | ≤ K for all s ≤ 1.

Let δ > 0. Since B(·, y) is uniformly continuous on [−K , K ] we may choose ρ > 0 such that

|B(x, y) − B(x ′, y)| ≤
η

2T
for |x − x ′

| ≤ ρ, x, x ′
∈ [−K , K ].

Next, let σ
ϵ,r
0 = 0,

σ
ϵ,r
i = inf{s ≥ σ

ϵ,r
i−1 : |X ϵ

rs − X ϵ
σ

ϵ,r
i−1

| = ρ} ∧ 1, nϵ,r
= sup{i : σ

ϵ,r
i < 1}.
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The estimate in the proof of Lemma 2.4 with C1 = 1, C2 = C yieldsϵ  r/ϵ

0
B(X ϵ

rsϵ/r , y)(1{Ys=y} − π(y))ds


≤ r

η

2
+ 2rC

nϵ,r
+1

i=1

ϵ
 σ

ϵ,r
i r/ϵ

0
(1{Ys=y} − π(y))dy

 .
Setting τ ϵ

0 = 0,

τ ϵ
i = inf{s ≥ τ ϵ

i−1 : |X ϵ
s − X ϵ

τ ϵ
i−1

| = ρ} ∧ T, nϵ
= sup{k : τ ϵ

k < T },

it follows that rσ
ϵ,r
i = τ ϵ

i ∧ r, nϵ,r
≤ nϵ andϵ  r/ϵ

0
B(X ϵ

ϵs, y)(1{Ys=y} − π(y))ds

 ≤
η

2
+ 2C

nϵ,r
+1

i=1

ϵ

 τ ϵ
i ∧r/ϵ

0
(1{Ys=y} − π(y))ds.

Next, according to Lemma 2.3, we may choose K ′, ρ′
≤ r0 such that

P(nϵ
≤ K ′) ≥ 1 − δ, P(τ ϵ

1 ≥ ρ′) ≥ 1 − δ for all ϵ > 0,

hence also

P(τ ϵ
1 ∧ r ≥ ρ′) ≥ 1 − δ for all ϵ > 0, r ≥ r0.

Due to the ergodicity assumption

1
t

 t

0
(1{Ys=y} − π(y))ds → 0 a.s., as t → ∞.

So we may choose ϵ0 > 0 such that for

Dϵ =


sup
t≥ρ′

ϵ  t/ϵ

0
(1{Ys=y} − π(y))ds

 ≤
η

2
1

2(K ′ + 1)C


we have P(Dϵ) ≥ 1 − δ for all ϵ ≤ ϵ0.

Altogether, we obtain on Aϵ∩{nϵ
≤ K ′

}∩{τ ϵ
1 ≥ ρ′

}∩Dϵ that for all r0 ≤ r ≤ T, 0 < ϵ ≤ ϵ0ϵ  r/ϵ

0
B(X ϵ

ϵs, y)(1{Y ϵ
s =y} − π(y))ds

 ≤
η

2
+ 2C(nϵ

+ 1)
η

2
1

2(K ′ + 1)C
≤ η,

hence

sup
0<r≤T

 r

0
B(X ϵ

s , y)(1{Y ϵ
s =y} − π(y))ds

 ≤ η,

the case r ≤ r0 being obvious as remarked in the beginning of the proof. It follows that

P


sup

0<r≤T

 r

0
B(X ϵ

s , y)(1{Y ϵ
s =y} − π(y))ds

 > η


≤ P(Ac

ϵ) + P(nϵ
≥ K ′) + P(τ ϵ

1 ≤ ρ′) + P(Dc
ϵ) ≤ 4δ,

for all 0 < ϵ ≤ ϵ0. �

Now, the previous result can be utilized to prove the convergence in distribution for fast
switching diffusions as follows.
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Define

b̂ : I → R, b̂(x) =


y∈Y

b(x, y)π(y),

σ̂ : I → R, σ̂ (x) =


y∈Y

σ(x, y)π(y),

and (X̂ t )t∈[0,∞) as the solution of the corresponding stochastic differential equation

d X̂ t = b̂(X̂ t )dt + σ̂ (X̂ t )dWt .

Theorem 2.6.

(X ϵt )t∈[0,∞) → (X̂ t )t∈[0,∞) in distribution as ϵ → 0.

Proof. The infinitesimal characteristics are

b(X ϵ
t , Y ϵ

t ), σ (X ϵ
t , Y ϵ

t ) for the semimartingale (X ϵt )t∈[0,∞),

and

b̂(X̂ t ), σ̂ (X̂ t ) for the semimartingale (X̂ t )t∈[0,∞).

Theorem 2.5 shows that for all T > 0

sup
0≤r≤T

 r

0


b(X ϵ

t , Y ϵ
t ) − b̂(X ϵ

t )


dt → 0 in probability as ϵ → 0,

and similarly for σ, σ̂ . This implies the assertion by the semimartingale convergence theorem;
see [6, Theorem 3.21, Chapter IX]. �

3. Discrete state processes

In the case of a discrete state space we start with a càdlàg process (Yt )t∈[0,∞) with a finite
state space Y , assumed a subset of R without loss of generality, and discrete jump times
γ0 = 0 < γ1 < γ2 < · · ·. Here, the term discrete jump times means that these times are
strictly increasing and the process Y is constant on [γi+1, γi ) for all i . Furthermore, let I ⊆ R be
countable, and for each y ∈ Y let q(·, ·|y) be an intensity matrix. Conditionally, we generate the
switching process in the following way: In zero, we start a continuous time Markov chain X̃0 with
starting state x0 and intensity matrix q(·, ·|Y0). In the first jump time γ1, we start a new chain X̃1

with starting point X̃0
γ1

and intensity matrix q(·, ·|Yγ1). In the same way we define X̃ i+1, starting

in X̃ i
γi

. We define the switching process X = XY by setting X t = X̃ i
t−γi

for γi ≤ t < γi+1.

Note that when using diffusion processes X̃ i with coefficients depending on y instead of
Markov chains in the previous construction, (ignoring some technical issues) the process X is a
switching diffusion as considered in Section 2. In this section we consider the jump counterpart
for the results obtained there.

We make the assumption that for some finite set J ⊆ R \ {0}

q(i, i + j |y) = 0 for all i ∈ I, y ∈ Y, j ∉ J,

so i + J is the set of states which can be reached from i . Thus q(i |y) :=


i ′≠i q(i, i ′|y) < ∞

for all y ∈ Y , and we furthermore assume that

q := sup
i,y

q(i |y) < ∞.
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If the state space I of the process X is finite, these assumptions are of course fulfilled, and they
imply that there is no explosion in finite time.

Define the jumps time of (X t )t≥0 by τ0 = 0 and

τi = inf{t ≥ τi−1 : X t ≠ Xτi−1}.

The following lemma is analog to Lemma 2.3 and gives again an estimate, which is uniform in
all modulating processes Y . The proof now turns out to be much easier due to the discrete nature
of situation.

Lemma 3.1. Let T > 0, nT = sup{k : τk < T }. Let δ > 0. Then there exist ρ′ > 0, K ′
∈ N

such that

P(τ1 ≥ ρ′) ≥ 1 − δ, P(nT < K ′) ≥ 1 − δ

for all processes (Yt )t∈[0,∞) taking values in Y .

Proof. Denote the counting process of (X t )t∈[0,∞) by (Nt )t∈[0,∞), and by (N i
t )t∈[0,∞) for

(X i
t )t∈[0,∞), i.e. Nt (resp. N i

t ) denotes the number of jumps of X (resp. X i ) before time t . Let
the random index jt be given by γ jt ≤ t < γ jt +1. Then we consider

{τ1 > t} = {Nt = 0} = {N 0
γ1

= 0} ∩ {N 1
γ2−γ1

= 0} ∩ · · · ∩ {N jt
t−γ jt

= 0}.

It follows by conditioning that

P(Nt = 0) = E


e−q(X0|Y0)γ1e−q(Xγ1 |Yγ1 )(γ2−γ1) . . . e−q(Xγ jt
|Yγ jt

)(t−γ jt )


≥ e−qt .

Now, let (N∗
t )t∈[0,∞) denote a Poisson process with intensity q and corresponding jump times

τ ∗

j , j ≥ 0. Then the previous arguments show that P(τ1 > t) ≥ P(τ ∗

1 > t). Together with
the Markov property, the same arguments can be used for τ j , τ

∗

j , j > 1, so that P(τ j > t) ≥

P(τ ∗

j > t). Hence

P(τ1 ≥ ρ) ≥ P(τ ∗

1 ≥ ρ) → 1 as ρ → 0,

P(nT ≤ K ) = P(τk+1 > T ) ≥ P(τ ∗

K+1 > T ) → 1 as K → ∞. �

Lemma 3.2. Assume the situation of Lemma 3.1. For any ϵ > 0 there exists K such that

P


sup
t≤T

|X t | ≥ K


≤ ϵ

uniformly in all Y -valued modulating processes (Yt )t∈[0,∞) for X = XY .

Proof. Using Markov’s inequality we have

P


sup
t≤T

|X t | ≥ K


≤ E(sup

t≤T
|X t |)/K ≤ (|x0| + E(nT + 1) sup

j∈J
| j |)/K .

Therefore, it is enough to show that E(nT ) is bounded uniformly in Y . But this holds by the
proof of the preceding Lemma since EnT is not larger than the expected number of jumps of the
Poisson process (N∗

t )t∈[0,∞) in [0, T ], which is well-known to be finite. �



S. Christensen, A. Irle / Stochastic Processes and their Applications 125 (2015) 3623–3635 3633

As in Section 2 we fix a process (Yt )t∈[0,∞) with the property

1
t

 t

0
(1{Ys=y} − π(y))ds → 0 a.s., as t → ∞.

Furthermore, we take (Y ϵ
t )t∈[0,∞) = (Yt/ϵ)t∈[0,∞) with corresponding (X ϵ

t )t∈[0,∞).

Theorem 3.3. Let Q : I × Y → R be such that sup|i |≤K |Q(i, y)| < ∞ for all y ∈ Y, K > 0.
For all y ∈ Y, T > 0 it holds that

sup
0≤r≤T

 r

0
Q(X ϵ

t , y)

1{Y ϵ

t =y} − π(y)


dt

 → 0 in probability as ϵ → 0.

Proof. Fix y, T . For δ > 0 choose K according to Lemma 3.2 such that

P


sup
t≤T

|X ϵ
t | ≥ K


≤ δ for all ϵ > 0.

Write

Aϵ = {sup
t≤T

|X ϵ
t | ≤ K }, C = sup{|Q(i, y)| : |i | ≤ K } < ∞.

Then for r0 = η/C on Aϵ

sup
r≤r0

 r

0
|Q(X ϵ

t , y)(1{Yt =y} − π(y))|dt ≤ η.

We may proceed with a simplified version of the proof of Theorem 2.5 without the use of
Lemma 2.4. It holds that r

0
Q(X ϵ

t , y)(1{Y ϵ
t =y} − π(y))dt = ϵ

 r/ϵ

0
Q(X ϵ

rsϵ/r , y)(1{Ys=y} − π(y))ds.

Define σ
ϵ,r
i as in the proof of Theorem 2.5 replacing = ρ by > 0 to obtain the jump times, with

corresponding nϵ,r . Then, on Aϵϵ  r/ϵ

0
Q(X ϵ

rsϵ/r , y)(1{Y ϵ
s =y} − π(y))ds


≤

ϵ nϵ,r
+1

i=1

Q(X ϵ
rσ

ϵ,r
i

, y)

 σ
ϵ,r
i r/ϵ

σ
ϵ,r
i−1r/ϵ

(1{Ys=y} − π(y))ds


≤ 2C(nϵ,r

+ 1)

ϵ
 σ

ϵ,r
nϵ,r +1r/ϵ

0
(1{Ys=y} − π(y))ds

 .
Using Lemma 3.1, the proof is concluded as in Theorem 2.5. �

Define the intensity matrix

q̂(·, ·) =


y∈Y

q(·, ·|y)π(y)

with corresponding Markov process (X̂ t )t∈[0,∞).
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Theorem 3.4.

(X ϵ
t )t∈[0,∞) → (X̂ t )t∈[0,∞) in distribution as ϵ → 0.

Proof. The infinitesimal jump characteristics are given by

q(X ϵ
t , X ϵ

t + j |Y ϵ
t ) for the semimartingale (X ϵt )t∈[0,∞),

and

q̂(X̂ t , X̂ t + j) for the semimartingale (X̂ t )t∈[0,∞).

Theorem 2.5 shows that for all T > 0, j ∈ J

sup
0≤r≤T

 r

0


q(X ϵ

t , X ϵ
t + j |Y ϵ

t ) − q̂(X ϵ
t , X ϵ

t + j)


dt → 0 in probability as ϵ → 0

using Q(i, y) = q(i, i+ j |y). Again this implies the assertion by the semimartingale convergence
theorem; see [6, Theorem 3.21, Chapter IX]. �
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Appendix. Proof of Lemma 2.4

Proof of Lemma 2.4. Note that in the proof we shall provide a more precise inequality which
will be used in proving Theorem 2.5. Due to this reason we shall use a further continuous
mapping g : R → R and write g(h(x/T )) instead of h(x/T ). For the assertion of this analytical
lemma, g is just the identity. Let [α, β] = h([0, 1]). Let δ > 0. Since g is uniformly continuous
on [α, β] there exists ρ > 0 such that

|g(y) − g(y′)| ≤
δ

C1
for |y − y′

| ≤ ρ, y, y′
∈ [α, β],

where C1 = supT
1
T

 T
0 | f (x)|dx ; also let C2 = supy∈[α,β] |g(y)|. Set

s0 = 0, si = inf{s ≥ si−1 : |h(s) − h(si−1)| = ρ} ∧ 1,

furthermore n = sup{i : si < 1}, where, due to the continuity of h, n is finite. Now1t
 t

0
g (h (x/t)) f (x)dx


≤

1t
n+1
i=1

 tsi

tsi−1

(g (h (x/t)) − g (h (si ))) f (x)dx

+
1t

n+1
i=1

 tsi

tsi−1

g (h (si )) f (x)dx


≤

1
t

δ

C1

n+1
i=1

 tsi

tsi−1

| f (x)|dx +
1
t

n+1
i=1

|g (h (si ))|

 tsi

tsi−1

f (x)dx


≤

δ

C1

1
t

 t

0
| f (x)|dx +

1
t

n+1
i=1

C2

 tsi

0
f (x)dx −

 tsi−1

0
f (x)dx


≤ δ + 2C2

n+1
i=1

1t
 tsi

0
f (x)dx

 .
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Now choose t0 such that

sup
s≥s1

1t
 ts

0
f (x)dx

 ≤
δ

2C2(n + 1)
for all t ≥ t0,

thus 1t
 t

0
g (h (x/t)) f (x)dx

 ≤ δ + 2C2(n + 1)
δ

2C2(n + 1)
= 2δ. �
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