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Abstract

We review a finite-sampling exponential bound due to Serfling and discuss
related exponential bounds for the hypergeometric distribution. We then dis-
cuss how such bounds motivate some new results for two-sample empirical
processes. Our development complements recent results by Wei and Dudley
(2012) concerning exponential bounds for two-sided Kolmogorov - Smirnov
statistics by giving corresponding results for one-sided statistics with empha-
sis on “adjusted” inequalities of the type proved originally by Dvoretzky et al.
(1956) and by Massart (1990) for one-sample versions of these statistics.
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1. Introduction: Serfling’s finite sampling exponential bound

Suppose that {c1, . . . , cN} is a finite population with each ci ∈ R. For n ≤
N , let Y1, . . . , Yn be a sample drawn from {c1, . . . , cN} without replacement;
we can regard the finite population {c1, . . . , cN} as an urn containing N balls
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labeled with the numbers c1, . . . , cN . Some notation: we let

µN = N−1

N∑

i=1

ci ≡ cN , σ2
N = N−1

N∑

i=1

(ci − cN)2,

aN ≡ min
1≤i≤N

ci, bN ≡ max
1≤i≤N

ci,

fn ≡
n− 1

N − 1
, and f ∗n ≡

n− 1

N
.

It is well-known (see e.g. Rice (2007), Theorem B, page 208) that Y n =
n−1

∑n
i=1 Yi satisfies E(Y n) = µN and

V ar(Y n) =
σ2

N

n

(
1− n− 1

N − 1

)
=
σ2

N

n
(1− fn). (1)

Serfling (1974), Corollary 1.1, shows that for all λ > 0

P (
√
n(Y n − µN) ≥ λ) ≤ exp

(
− 2λ2

(1− f ∗n)(bN − aN)2

)
. (2)

This inequality is an inequality of the type proved by Hoeffding (1963)
for sampling with replacement and more generally for sums of independent
bounded random variables. Comparing (1) and (2), it seems reasonable to
ask whether the factor f ∗n in (2) can be improved to fn ≡ (n− 1)/(N − 1)?
Indeed Serfling ends his paper (on page 47) with the remark: “(it is) also of
interest to obtain (2) with the usual sampling fraction instead of f ∗n”. Note
that when n = N , Y n = µN , and hence the probability in (2) is 0 for all
λ > 0, and the conjectured improvement of Serfling’s bound agrees with this
while Serfling’s bound itself is positive when n = N .

Despite related results due to Kemperman (1973a,b,c), it seems that a
definitive answer to this question is not yet known.

A special case of considerable importance is the case when the numbers
on the balls in the urn are all 1’s and 0’s: suppose that c1 = · · · = cD = 1,
while cD+1, . . . , cN = 0. Then X ≡ nY n =

∑n
i=1 Yi is well-known to have a

Hypergeometric(n,D,N) distribution given by

P

(
n∑

i=1

Yi = k

)
=

(
D
k

)(
N−D
n−k

)
(

N
n

) , max{0, D + n−N} ≤ k ≤ min{n,D}.

2



In this special case µN = D/N , σ2
N = µN(1−µN), while bN = 1 and aN = 0.

Thus Serfling’s inequality (2) becomes

P (
√
n(Y n − µN) ≥ λ) ≤ exp

(
− 2λ2

1− f ∗n

)
for all λ > 0,

and the conjectured improvement is

P (
√
n(Y n − µN) ≥ λ) ≤ exp

(
− 2λ2

1− fn

)
for all λ > 0.

Despite related results due to Chvátal (1979) and Hush and Scovel (2005) it
seems that a bound of the form in the last display remains unknown.

We should note that an exponential bound of the Bennett type for the
tails of the hypergeometric distribution does follow from results of Vatutin
and Mikhăılov (1982) and Ehm (1991); see also Pitman (1997).

Theorem 1. (Ehm, 1991) If 1 ≤ n ≤ D∧ (N−D), then
∑n

i=1 Yi
d
=
∑n

i=1Xi

where Xi ∼ Bernoulli(πi), with πi ∈ (0, 1), are independent.

It follows from Theorem 1 that

n(D/N) = E

(
n∑

1

Yi

)
= E

(
n∑

1

Xi

)
=

n∑

i=1

πi,

n
D

N

(
1− D

N

)
(1− fn) = V ar

(
n∑

1

Yi

)
= V ar

(
n∑

1

Xi

)
=

n∑

i=1

πi(1− πi).

Furthermore, by applying Theorem 1 together with Bennett’s inequality
(Bennett (1962); see also Shorack and Wellner (1986), page 851), we obtain
the following exponential bound for the tail of the hypergeometric distribu-
tion:

Corollary 1. If 1 ≤ n ≤ D ∧ (N −D), then for all λ > 0

P (
√
n(Y n − µN) ≥ λ) ≤ exp

(
− λ2

2σ2
N(1− fn)

ψ

(
λ√

nσ2
N(1− fn)

))

where µN ≡ D/N , σ2
N ≡ µN(1 − µN), 1 − fn ≡ 1 − (n − 1)/(N − 1) is

the finite-sampling correction factor, and ψ(y) ≡ 2y−2h(1 + y) where h(y) ≡
y(log y − 1) + 1.
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Since σ2
N = µN(1 − µN) ≤ 1/4, the inequality of the corollary yields

a further bound which is quite close to the conjectured Hoeffding type im-
provement of Serfling’s bound, and which now has the desired finite-sampling
correction factor 1− fn:

Corollary 2.

P (
√
n(Y n − µN) ≥ λ) ≤ exp

(
− 2λ2

(1− fn)
ψ

(
λ√

nσ2
N(1− fn)

))

≤ exp

(
− 2λ2

(1− fn)
ψ

(
1

σ2
N(1− fn)

))
.

By considerations related to the work of Talagrand (1994) and León and
Perron (2003), the authors of the present paper have succeeded in proving
the following exponential bound.

Theorem 2. (Greene and Wellner (2015); Greene (2016)) Suppose that∑n
i=1 Yi ∼ Hypergeometric(n,D,N). Define µN = D/N and suppose N > 4

and 2 ≤ n < D ≤ N/2. Then for all 0 < λ <
√
n/2 we have

P
(√

n(Y n − µN) ≥ λ
)

≤
√

1

2πλ2

(
1

2

)√(
N − n
N

)(√
n+ 2λ√
n− 2λ

)(
N − n+ 2

√
nλ

N − n− 2
√
nλ

)

· exp

(
− 2

1− n
N

λ2

)
exp

(
−1

3

(
1 +

n3

(N − n)3

)
λ4

n

)
.

The proof of this bound, along with a complete analogue for the hy-
pergeometric distribution of a bound of Talagrand (1994) for the binomial
distribution, appears in Greene and Wellner (2015) and in the forthcoming
Ph.D. thesis of the first author, Greene (2016).

The bound given in Theorem 2 involves a still better finite-sampling cor-
rection factor, namely 1 − fn = 1 − n/N , which has also appeared in Lo
(1986) in the context of a Bayesian analysis of finite sampling. Note that as
N →∞, the above bound yields

lim sup
N→∞

P
(√

n(Y n − µN) ≥ λ
)

≤
√

1

2πλ2

(
1

2

)√(√
n+ 2λ√
n− 2λ

)
· exp

(
−2λ2 − λ4

3n

)
,
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a bound which improves slightly on the bound given by León and Perron
(2003) in the case of sums of i.i.d. Bernoulli random variables.

Before leaving this section we begin to make a connection to finite-
sampling empirical distributions: Now let Fn(t) = n−1

∑n
i=1 1(−∞,t](Yi) and

FN(t) = N−1
∑N

i=1 1(−∞,t](ci). Then it is easily seen that Serfling’s bound
yields

P (
√
n(Fn(t)− FN(t)) ≥ λ) ≤ exp

(
− 2λ2

(1− (n− 1)/N)

)

for each fixed λ > 0 and t ∈ R. Note that since Fn(t) is equal in distribution
to the sample mean of n draws without replacement from an urn containing
NFN(t) 1’s and N(1 − FN(t)) 0’s, the bound in the last display only in-
volves the hypergeometric special case of Serfling’s inequality. This leads to
the following conjecture concerning bounds for the finite sampling empirical
process {√n(Fn(t)− FN(t)) : t ∈ R}:
Conjecture: There exist constants C,D > 0 (possibly C = 1 and D = 2?)
such that

P

(√
n sup

t
(Fn(t)− FN(t)) ≥ λ

)
≤ C exp

(
− 2λ2

(1− fn)

)
, (3)

P

(√
n sup

t
|Fn(t)− FN(t)| ≥ λ

)
≤ D exp

(
− 2λ2

(1− fn)

)
(4)

for all λ > 0. The possibility that D = 2 is suggested by the correspond-
ing inequality established by Massart (1990) in the case of sampling with
replacement.

With these strong indications of the plausibility of an improvement of
Serfling’s bound and corresponding improvements in exponential bounds for
the uniform-norm deviations of the finite-sampling empirical process, we can
now turn to an application of the basic idea in the context of two-sample
Kolmogorov-Smirnov statistics.

2. Two-sample tests and finite-sampling connections

To connect this with the two-sample Kolmogorov-Smirnov statistics, suppose
that X1, . . . , Xm are i.i.d. F and Y1, . . . , Yn are i.i.d. G. Let N = m+n. Then
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for testing Hc : F = G with F continuous versus K+ : F ≥ G (F ≺s G),
K− : G ≥ F , (G ≺s F ), or K : F 6= G, the classical K-S test statistics are

D+
m,n ≡

√
mn

N
sup

x
(Fm(x)−Gn(x)),

D−m,n ≡
√
mn

N
sup

x
(Gn(x)− Fm(x)), and

Dm,n ≡
√
mn

N
sup

x
|Fm(x)−Gn(x)|,

respectively. It is well-known that under Hc we have

D±m,n →d sup
0≤t≤1

U(t), Dm,n →d sup
0≤t≤1

|U(t)|

if m ∧ n → ∞ where U is a standard Brownian bridge process on [0, 1]; see
e.g. Hájek and Šidák (1967), pages 189-190, Hodges (1958), and van der
Vaart and Wellner (1996), pages 360-366.

Note that with λN ≡ m/N and

HN ≡ λNFm + (1− λN)Gn = N−1

N∑

i=1

1(−∞,·](Z(i))

where Z(1) ≤ · · · ≤ Z(N) are the order statistics of the pooled sample, we
have

Fm −HN = Fm − λNFm − (1− λN)Gn = (1− λN)(Fm −Gn), and

Gn −HN = Gn − λNFm − (1− λN)Gn = λN(Gn − Fm),

and hence, with λN = 1− λN ,
√
mn

N
(Fm −Gn) =

√
N

√
λNλN

1

λN

(Fm −HN) =
1√
λN

√
m(Fm −HN),

√
mn

N
(Gn − Fm) =

√
N

√
λNλN

1

λN

(Gn −HN) =
1√
λN

√
n(Gn −HN).

Thus, using the independence of the ranks R and the order statistics Z (both
based on the pooled sample),

P (D+
m,n ≥ t) = EZPR

(√
m‖(Fm −HN)+‖∞ > t

√
1− λN

)
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and it would follow from (3) that

P (D+
m,n ≥ t) ≤ C exp

(
−2λN t

2/(1− fm)
)

≤ C exp
(
−2(n/N)t2/(n/(N − 1))

)

= C exp

(
−2

N − 1

N
t2
)

(5)

for all t > 0. Similarly it would also follow from (3) that

P (D−m,n ≥ t) ≤ C exp
(
−2λN t

2/(1− fn)
)

≤ C exp
(
−2(m/N)t2/(m/(N − 1))

)
= C exp

(
−2

N − 1

N
t2
)

for all t > 0. Combining the two one-sided inequalities yields a (conjectured)
two-sided inequality:

P (Dm,n ≥ t) ≡ P (
√
mn/N‖Fm −Gn‖∞ > t)

≤ P (D+
m,n > t) + P (D−m,n > t)

≤ 2C exp

(
−2

N − 1

N
t2
)
.

In the next section we will prove that bounds of this type with C = 1 and
D = 2 hold in the special case m = n. For some results for the two-side two-
sample Kolmogorov-Smirnov statistic in the case m = n and computational
results for m 6= n, see Wei and Dudley (2012). These authors were aiming
for a bound of the form C exp(−2t2) both for m = n and m 6= n. The above
heuristics seem to suggest that a bound of the form C exp(−2((N −1)/N)t2)
might be a natural goal.

3. An exponential bound for D+
m,n when m = n

Throughout this section we suppose that the null hypothesisHc holds: G = F
is a continuous distribution function.

From Hodges (1958), (2.3) on page 473 (together with t =
√
mn/Nd and
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d = a/n from page 473, line 4), when m = n (so N = 2n),

P (D+
n,n ≥ t) = P

(√
mn

N
sup

x
(Fm(x)−Gn(x)) ≥

√
mn

N

a

n

)

= P

(√
n2

2n
sup

x
(Fn(x)−Gn(x)) ≥

√
n2

2n

a

n

)

=

(
2n

n−a

)
(
2n
n

) for a = 1, 2, . . . , n.

We first compare the exact probability from the last display with the possible
upper bounds

PB2(n) = exp

(
−2

2n− 1

2n

a2

2n

)
;

PB3(n) = exp

(
−2

a2

2n

)
.

For n = 3 we find that

a 0 1 2 3
E(xact) 1 .75 0.3 0.05

PB2 1 0.7574 0.3291 0.0821
PB2− E 0 0.0074 0.0291 0.0321

PB3 1 0.7165 0.2636 0.0498
PB3− E 0 −0.0335 −0.0364 −0.0002

Further comparisons for m = n = 10, 12, 13, 14, 15, 25 support the validity
of the bound involving the finite sampling fraction fn. These comparisons
agree with the following theorem:

Theorem 3. A. When m = n (so that N = 2n) the second bound in (5)
holds for all n ≥ 1 with C = 1:

P (D+
n,n ≥ t) = P

(√
mn

N
sup

x
(Fm(x)−Gn(x)) ≥ t

)
(6)

≤ exp

(
−2

N − 1

N
t2
)

for all t > 0. (7)
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Equivalently, when m = n,

P

(√
mn

N

√
N − 1

N
sup

x
(Fm(x)−Gn(x)) ≥ t

)
≤ exp

(
−2t2

)
(8)

for all t > 0.
B. On the other hand, when m = n (so that N = 2n), for all n ≥ 1 we have

P (D+
n,n ≥ t) > exp(−2t2) for all 0 < t < 1.

Proof. A. Since the inequality holds trivially for a = 0, and can be shown
easily by numerical computation for a ∈ {1, 2, 3} (see the Table above), it
suffices to show that (

2n
n−a

)
(
2n
n

) ≤ exp

(
−2

2n− 1

2n

a2

2n

)

for a ∈ {1, . . . , n} and n ≥ 4. Furthermore, we will show that it holds for
a = n in a separate argument, and thus it suffices to show that it holds for
a ∈ {1, . . . , n− 1} and n ≥ 4. By rewriting the numerator and denominator
on the left side of the last display, the desired inequality can be rewritten as

n!n!

(n− a)!(n+ a)!
≤ exp

(
−2n− 1

2n
· a

2

n

)
.

By taking logarithms we can rewrite this as

log

(
n!n!

(n− a)!(n+ a)!

)
+

2n− 1

2n

a2

n
≤ 0. (9)

Now by Stirling’s formula with bounds (see e.g. Nanjundiah (1959)) we have

√
2πk

(
k

e

)k

exp

(
1

12k
− 1

360k3

)
≤ k! ≤

√
2πk

(
k

e

)k

exp

(
1

12k

)
. (10)

Using these bounds in (9) we find that the left side is bounded above by

−n
{

(1− a

n
) log(1− a

n
) + (1 +

a

n
) log(1 +

a

n
)
}

− 1

2

(
log
(

1− a

n

)
+ log

(
1 +

a

n

))

+

{
1

6n
− 1

12(n− a)
− 1

12(n+ a)
+

1

360

(
1

(n− a)3
+

1

(n+ a)3

)}

+
a2

n
− a2

2n2

≡ I1 + I2 + I3 + I4.
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Note that I1 and I2 are as defined in Wei and Dudley (2012) page 640, while
I3 and I4 differ. From Wei and Dudley (2012) page 640,

I1 ≤ −
a2

n
− a4

6n3
− a6

15n5
− a8

28n7
, (11)

(which is proved by Taylor expansion of (1 +x) log(1 +x) + (1−x) log(1−x)
about x = 0), and

I2 ≤
a2

2n2
+

a4

4n4
+

a6

6n6(1− a2/n2)
. (12)

Note that the lead term in the bound (11) for I1 and lead term of I4 cancel
each other, while the first term of the bound (12) for I2 cancels the second
term of I4. Adding the bounds yields

I1 + I2 + I3 + I4

≤ − a4

12n3
− a4

12n3
− a6

15n5
− a8

28n7

+
a4

4n4
+

a6

6n6(1− a2/n2)
+ I3

= −a
4

n3

(
1

12
− 1

4n

)
− a4

12n3
− a6

n5

(
1

15
− 1

6n(1− a2/n2)

)
− a8

28n7
+ I3

≤ −a
4

n3

(
1

12
− 1

4n

)
− a4

12n3
− a6

n5

(
1

15
− 1

6(2− 1/n)

)
− a8

28n7
+ I3

≤ −a
4

n3

(
1

12
− 1

4n

)
− a4

12n3
+

3a6

105n5
− a8

28n7
+ I3

= −a
4

n3

(
1

12
− 1

4n

)
− a4

12n3

(
1− 36a2

105n2

)
− a8

28n7
+ I3

≤ −a
4

n3

(
1

12
− 1

4n

)
− a4

21n3
− a8

28n7
+ I3

≡ R12 + I3.

Now R12 ≤ 0 for n ≥ 4 and I3 ≤ 0 for all n ≥ 2 and a ∈ {1, . . . , n − 1} by
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the following argument:

I3 =
1

6n
− 1

12(n− a)
− 1

12(n+ a)
+

1

360

(
1

(n+ a)3
+

1

(n− a)3

)

= −1

6

a2

n(n2 − a2)
+

2

360

n(n2 + 3a2)

(n2 − a2)3

= − 1

6n(n2 − a2)

{
a2 − 2

60

n2(n2 + 3a2)

(n2 − a2)2

}

= − 1

6n(n2 − a2)

{
a2 − 1

30

n2(n2 − a2 + 4a2)

(n2 − a2)2

}

= − 1

6n(n2 − a2)

{
a2

(
1− 2

15

n2

(n2 − a2)2

)
− n2(n2 − a2)

30(n2 − a2)2

}

≤ − 1

6n(n2 − a2)

{
a2

(
1− 2

15

1

3

)
− n2

30(n2 − a2)

}

by using a ≤ n− 1, so n2 − a2 ≥ n2 − (n− 1)2 = (2n− 1),

and n2/(2n− 1)2 ≤ 1/3 for n ≥ 4,

= − 1

6n(n2 − a2)

{
a2

(
1− 2

3 · 15

)
− n2 − a2 + a2

30(n2 − a2)

}

= − 1

6n(n2 − a2)

{
a2

(
1− 2

3 · 15
− 1

30(n2 − a2)

)
− 1

30

}

≤ − 1

6n(n2 − a2)

{
a2

(
1− 2

3 · 15
− 1

30(2n− 1)

)
− 1

30

}

≤ − 1

6n(n2 − a2)

{
a2

(
1− 31

630

)
− 1

30

}

for n ≥ 4. This is a decreasing function of a for fixed n, and hence to show
that it is < 0 it suffices to check it for a = 1. But when a = 1 the right side
above equals

− 1

6n(n2 − 12)

{
1− 31

630
− 1

30

}

= − 1

n(n2 − 1)

{
289

6 · 315

}
< − 1

n(n2 − 1)

{
280

6 · 315

}
= − 4

27n(n2 − 1)
< 0,

so we conclude that I3 < 0 for a ∈ {1, . . . , n− 1} and n ≥ 4. It remains only
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to show that the desired bound holds for a = n; that is we have

1(
2n
n

) ≤ exp(−(n− 1/2)).

But this can easily be shown via the Stirling formula bounds (10).
Thus

exp(I1 + I2 + I3) ≤ exp(−I4) = exp

(
−2n− 1

2n

a2

n

)
,

and the claimed inequality holds for all n ≥ 4. Since the bounds hold for
n = 1, 2, 3 by direct numerical computation, the claim follows.

B. We first define

rn(a) ≡ log

{ (
2n

n−a

)
/
(
2n
n

)

exp(−2a2/(2n))

}

= log

(
2n

n− a

)
− log

(
2n

n

)
+
a2

n
.

Since we can take t = a/
√

2n, it suffices to show that rn(a) > 0 for 1 ≤
a ≤ b

√
2nc. We will first show this for n ≥ 31. Then the proof will be

completed by checking the inequality numerically for 1 ≤ a ≤ b
√

2nc and
n ∈ {1, . . . , 30}.

By using the Stirling formula bounds of (10) as in the proof of A, but
now with upper bounds replaced by lower bounds, we find that

rn(a) = 2 log(n!)− log(n− a)!− log(n+ a)! +
a2

n

≥ −n
{(

1− a

n

)
log
(

1− a

n

)
+
(

1 +
a

n

)
log
(

1 +
a

n

)}

− 1

2

{
log
(

1− a

n

)
+ log

(
1 +

a

n

)}

+
1

6n
− 1

180n3
− 1

12(n− a)
− 1

12(n+ a)

+
a2

n
≡ L1 + L2 + L3 + L4.
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As in (11) and (12) and the displays following them, we find that

L1 ≥ −n
{
a2

n2
+

a4

6n4
+

a6

15n6
+

a8

28n8

(
n2

n2 − a2

)}
,

L2 ≥
a2

2n2
+

a4

4n4
+

a6

6n6
,

L3 = − a2

6n(n2 − a2)
− 1

180n3
,

L4 =
a2

n
.

Putting these pieces together and rearranging we find that

rn(a) ≥
[

31a2

64n2
+

a4

4n4
+

a6

6n6
− a4

6n3
− a6

15n5
− a8

28n5

(
1

n2 − a2

)]

+

[
a2

64n2
+

1

6n
− 1

180n3
− 1

12(n+ a)
− 1

12(n− a)

]
(13)

=: K1 +K2 > 0 (14)

will prove the claim. Note in (13) that the a2/n term cancelled by virtue of
the lower bound estimate based on the Taylor expansion of (1 + x) log(1 +
x) + (1− x) log(1− x). First note that

K2 =
a2

64n2
+

1

6n
− 1

180n3
− 1

12(n+ a)
− 1

12(n− a)

=
a2[28n3 − 45a2n] + a2[16n3 − 480n2] + [a2n3 + 16a2 − 16n2]

2880n3(n− a)(n+ a)

The denominator of the right-hand-side is clearly positive for a ∈
{

1, 2, . . . , b
√

2nc
}

.
By inspection, we can see the term a2n3 + 16a2 − 16n2 in the numerator is
increasing in a. Picking a = 1, we then see n3 + 16 − 16n2 > 0 for n ≥ 31,
and thus a2n3 + 16a2 − 16n2 > 0 for all admissible a. Next, the polynomial
28n3−45a2n is decreasing in the admissible a. For any fixed n, the minimum
value it can attain is then larger than 28n3− 90n2. For n ≥ 31, this quantity
is positive. Therefore, 28n3 − 45a2n > 0 for all admissible a when n ≥ 31.
Finally, note that 16n3 − 480n2 = 16n2(n − 30) > 0 for n ≥ 31. Hence we
have shown K2 > 0.

13



We next have

K1 =

[
31a2

64n2
− a4

6n3

]
+

[
a4

4n4
− a6

15n5

]
+

[
a6

6n6
− a8

28n5

(
1

n2 − a2

)]

=

[(
a2

192n3

)
(93n− 32a2)

]
+

[(
a4

60n5

)
(15n− 4a2)

]

+

[(
a6

84n6 (n2 − a2)

)
(14n2 − 3a2n− 14a2)

]

≡
[
(α) (93n− 32a2)

]
+
[
(β) (15n− 4a2)

]

+
[
(γ) (14n2 − 3a2n− 14a2)

]
. (15)

Again since a ∈
{

1, . . . , b
√

2nc
}

, it is clear that α, β, and γ in (15) are positive
for all admissible choices of a. Hence, the sign of each bracketed term will
be dictated by the remaining polynomial in a. It is also clear from their
form that each polynomial is decreasing in a; hence we need only evaluate
at the endpoints to determine positivity. But 93n − 32(

√
2n)2 = 29n > 0,

15n − 4(
√

2n)2 = 15n − 8n = 7n > 0, and 14n2 − 3(
√

2n)2n − 14(
√

2n)2 =
14n2 − 6n2 − 28n = 4n(2n − 7) > 0 with the final inequality following as
n ≥ 31. Hence all terms in (15) are positive and so K1 > 0. Together with
K2 > 0 as proved above, the claim is proved for n ≥ 31.

Since the bound holds for a ∈ {1, . . . , b
√

2nc} and n ∈ {1, . . . , 30} by
direct numerical computation, the claim follows.

4. Some comparisons and connections

4.1. Comparisons: two-sided tail bounds

Here we compare and contrast our results with those of Wei and Dudley
(2012). As in Wei and Dudley (2012) (see also Wei and Dudley (2011)), we
say that the DKW inequality holds for given m,n and C if

P (Dm,n ≥ t) ≤ C exp(−2t2) for all t > 0,

and we say that the DKWM inequality holds for given m,n if the inequality
in the last display holds with C = 2. Wei and Dudley (2012) prove the
following theorem:

Theorem 4. (Wei and Dudley, 2012) For m = n in the two sample case:
(a) The DKW inequality always holds with C = e=̇2.71828.

14



(b) For m = n ≥ 4, the smallest n such that Hc can be rejected at level 0.05,
the DKW inequality holds with C = 2.16863.
(c) The DKWM inequality holds for all m = n ≥ 458.
(d) For each m = n < 458, the DKWM inequality fails for some t of the
form t = k/

√
2n.

(e) For each m = n < 458, the DKW inequality holds for C = 2(1 + δn) for
some δn > 0 where, for 12 ≤ n ≤ 457,

δn < −
0.07

n
+

40

n2
− 400

n3
.

For comparison, the following theorem follows from Theorem 3. We say
that the modified DKWM inequality holds for given m,n if

P (Dm,n ≥ t) ≤ 2 exp

(
−2

(
N − 1

N

)
t2
)

for all t > 0,

Theorem 5. For m = n in the two sample case:
(a) For all n ≥ 1 the modified DKWM inequality holds.
(b) Alternatively, for the modified Kolmogorov statistic given by

Dmod
m,n ≡

√
N − 1

N

√
mn

N
‖Fm −Gn‖∞,

the DKWM inequality holds for all n ≥ 1.

We are not claiming that our “modified” version of the DKWM inequality
improves on the results of Wei and Dudley (2012): it is clearly worse for
m = n > 458. On the other hand, it may provide a useful clue to the
formulation of DKWM type exponential bounds for two-sample Kolmogorov
statistics when m 6= n. In this direction we have the following conjecture:

Conjecture: For any m 6= n,

P
(
D+

m,n > t
)
≤ exp

(
−2

(
N − 1

N

)
t2
)

for all t > 0 (16)

P (Dm,n > t) ≤ 2 exp

(
−2

(
N − 1

N

)
t2
)

for all t > 0. (17)

That is, we conjecture that the modified DKWM inequality holds for
all m,n ≥ 1. This is supported by all the numerical experiments we have
conducted so far.
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4.2. Comparisons: one-sided tail bounds

Wei and Dudley (2012) do not treat bounds for the one-sided statistics.
Here we summarize our results with a theorem which parallels their Theo-
rem 4 above. In analogy with their terminology, we say that the one-sided
DKW inequality holds for given m,n and C if

P (D+
m,n ≥ t) ≤ C exp(−2t2) for all t > 0,

and we say that the one-sided DKWM inequality holds for given m,n if the
inequality in the last display holds with C = 1. Moreover, we say that the
modified one-sided DKWM inequality holds for given m,n if

P (D+
m,n ≥ t) ≤ exp

(
−2

(
N − 1

N

)
t2
)

for all t > 0.

Theorem 6. For m = n in the two sample case:
(a) The one-sided DKW inequality holds for all n ≥ 1 with C = e/2=̇2.71828/2

= 1.35914. For this range of n, C = e/2 is sharp since equality occurs
for n = 1 and t = 1/

√
2 (or a = t

√
2n = 1).

(b) For m = n ≥ 5, the one-sided DKW inequality holds with C = 2.16863/2 =
1.084315.

(c) The one-sided DKWM inequality fails for all m = n ≥ 1.
(d) The modified one-sided DKWM inequality holds for all m = n ≥ 1.

Proof. (c) follows from Theorem 3-B. (d) follows from Theorem 3-A. It
remains only to prove (a) and (b).

To prove (a), we first note that Wei and Dudley (2012) showed that for
n ≥ 108 we have

(
2n

n+a

)
(
2n
n

) < exp(−a2/n) for
√

3n ≤ a ≤ n

< (e/2) exp(−a2/n).

Thus to prove that the claimed inequality holds for n ≥ 108, it suffices to
show that it holds for t0

√
n ≤ a ≤

√
3
√
n where t0 ≡

√
(1/2) log(e/2) is the

smallest value of t for which the bound is less than or equal to 1.
Proceeding as in the proof of Theorem 3-A, we find that we want to show

that

log
n!n!

(n+ a)!(n− a)!
+
a2

n
− log(e/2) < 0 for t0

√
n ≤ a ≤

√
3
√
n.
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By the same arguments used in the proof of Theorem 3-A, we find that the
left side in the last display is bounded above by

− a4

6n3
− a6

15n5
− a8

28n7
+

a4

4n4
+

a6

6n6(1− a2/n2)
+ I3

+
a2

2n2
− log(e/2)

≡ K1 +K2.

Now K1 ≤ 0 for n ≥ 4 and a ∈ {1, . . . , n− 1} by the previous proof, and

K2 ≡
a2

2n2
− log(e/2) < 0 for all a ≤

√
3
√
n

if
3

2n
< log(e/2), or n >

3

2 log(e/2)
=̇4.888 . . . .

This completes the proof for n ≥ 108. Numerical computation easily shows
that the claim holds for all n ∈ {1, . . . , 107}.

The proof of (b) is similar upon replacing e/2 by 1.084315, and again
computing numerically for n ∈ {1, . . . , 107}.

Corollary 3. For n ≥ 5 and C = 1.084315,

P (D+
n,n ≥ t) ≤ min

{
exp

(
−2 (1− 1/N) t2

)
, C exp(−2t2)

}

=

{
C exp(−2t2), t ≥ t0 ≡

√
n logC=̇.285

√
n,

exp(−2(1− 1/N)t2), t ≤ t0 ≡
√
n logC.

Figures 1 and 2 illustrate Theorem 6.
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Chvátal, V., 1979. The tail of the hypergeometric distribution. Discrete
Math. 25 (3), 285–287.

Dvoretzky, A., Kiefer, J., Wolfowitz, J., 1956. Asymptotic minimax char-
acter of the sample distribution function and of the classical multinomial
estimator. Ann. Math. Statist. 27, 642–669.

Ehm, W., 1991. Binomial approximation to the Poisson binomial distribu-
tion. Statist. Probab. Lett. 11 (1), 7–16.

Greene, E., 2016. Finite sampling exponential bounds with applications to
empirical processes. Ph.D. thesis, University of Washington.

Greene, E., Wellner, J. A., 2015. Exponential bounds for the hypergeometric
distribution. Tech. Rep. arXiv:1507.08298.
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Figure 1: Difference between approximations and exact one-sided probabilities
P
(
D+

n,n > t
)

for n = 128 and a ∈ {1, 2, . . . , 128}. Negative values indicate the exact
probability exceeds the approximation. Serfling DKWM is the bound obtained via the
heuristic of section 2, using the sampling fraction 1 − f∗

n = (N − n + 1)/N . Modified
DKWM uses the sampling fraction 1− fn = (N − n)/(N − 1). DKWM uses the fraction
from Wei and Dudley.
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Figure 2: Difference between approximations and exact one-sided probabilities
P
(
D+

n,n > t
)

for n = 23 and a ∈ {1, 2, . . . , 23}. Negative values indicate the exact proba-
bility exceeds the approximation. DKWM6a corresponds to the DKWM bound with the
constant e/2, discussed in Theorem 6(a). DKWM6b corresponds to the DKWM bound
with the constant 2.16863/2, discussed in Theorem 6(b).
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