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A family of one-dimensional linear stochastic approximation procedures in continuous time where processes of
errors are Gaussian martingales is considered. Under some general assumptions the asymptotic behaviour of these
procedures is studied concerning strong consistency, rate of convergence and limiting law of involved estimates
and costs. At first some asymptotic results for Gaussian martingales, associated quadratic functionals and functions
with finite variation are discussed.
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1. Introduction

Starting from the paper of Robbins and Monro (1951), many works have been devoted to
the study of the asymptotic behaviour of stochastic approximation schemes similar to their
procedure. The literature dealing with discrete time models is abundant; one can consult
e.g. the articles by Lai and Robbins (1979, 1981), Kushner and Huang (1981), Wei (1987),
Kushner and Yin (1987a, 1987b), Polyak (1990), Yin (1991) and also the books of
Nevelson and Hasminskii (1973), Kushner and Clark (1978), Hall and Heyde (1980),
Benveniste et al. (1987) and Duflo (1990). As far as we know the continuous time context
has been less investigated; nevertheless Driml and Nedoma (1967), Melnikov (1989) and
Melnikov and Rodkina (1992) provide some substantial material. In the present paper, we
intend to develop a complete self-contained analysis of a family of scalar linear models in
continuous time where the processes of errors are Gaussian martingales.

A basic probability space ({2, .7, P) endowed with some filtration (%, ¢ > ) satisfying
usual conditions is given on which all random variables and processes below are defined
(for details on filtrations, semimartingales and stochastic integration we refer to Dellacherie
and Meyer, 1980, or Jacod and Shiryaev, 1987). We consider the linear regression model

dYI::B(e_Xr) dvr+dm;’ =0, Y()=O. (l)
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Here the observed response process Y is real-valued, the process of errors m is a cadlag real
Gaussian (.#,)-martingale (m,=0) and the scalar regressor process X is (.#,)-predictable.
We assume that V is a given cadlag positive increasing deterministic function ( V,=0) such
that (m),= Em; = o>V, with ¢> 0.

A simple example is when m= oW where W is a (.%,)-standard Wiener process and
V,=t. Notice also that one can embed into model (1) the usual discrete time model

yw=B0-X,)+e,, n=12, ..,

where (&,) are i.i.d. Gaussian random variables with mean zero and variance ¢>. For that
onesets V,=(r], ¥, =g ciaVio M= Lo cr i t 20, F,= 0l &, 0 <k <t}. The problem is
to choose the levels X, s < ¢, and an estimate 6, of the unknown parameter € in view of the
observation of Y up to time 7 in such a way that §, converges almost surely (a.s.) to fas ¢
tends to infinity while the cost [{(X,— 6)> dV, of the design X up to stage  is as small as
possible. Notice that the parameter 8 in (1) may be also unknown. Of course we assume
that B # 0. We follow the ideas of Lai and Robbins ( 1979) where a good medical motivation
and a quite complete investigation were given for a discrete time general model.

Suppose that B is in fact known. To estimate 6 at stage ¢, provided V, is positive, it is
natural to use the least squares estimator

9,=v:‘[£xsdv‘.+;3"n]. (2)

Then, due to (1), one gets
0,—0=(BV,)\'m,. (3)

That equation shows that irrespective of how the levels X, are fixed, whether preassigned
or recursively chosen, the distribution of V!/2(6, — @) is Gaussian with mean zero and
variance of o2/ 8% and therefore, if V.= + o, then 6, is consistent in the mean square sense.

Notice that the estimate §, can be produced recursively. From (2), by using the rules of

stochastic integration, for ¢, such that V,, >0 and > 1,,, we get

d0,=—[dv,/<v,v,_)1[ fxxdvxw‘Y] +V,X AV, + BT Y],
0 ,
i.e.
do, =V, '[(X,~6,)dV,+ 7' dY,] . 4)

In order to have small cost, one is naturally led to choose the design X adaptively as X=6_.
Consequently, due to (4), we get df,= (BV,) ~! dY, and, taking (1) into account,

d6,=Vf'(0—6,_)dV,+(BV,)'ldm,. (5)

A statement describing the asymptotic behaviour of this particular scheme has been given
without proof in Le Breton (1992).
Now, when B is unknown, following Lai and Robbins ( 1979) approach, one can think
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of substituting for 8 some guess b+ 0 of its value in the recursion defined by X,= 6, and
(2). Notice that, settinga=»b ~' B, this corresponds to choose in ( 1) the design X adaptively
as X, =X{ = 6¢_ with

0;'=v,-'[f X dV_;i—b’Y,],
0

and therefore again d8¢ = (bV,) ~' d¥, or
d0f‘=aV,_l(9—0,“4) dv, +(#V,) "' dm, . (6)

Of course (6) reduces to (5) when a=1 ie. b equals B. It appears as an analogue in
continuous time of the linear version of the Robbins—Monro algorithm (see e.g. Hall and
Heyde, 1980).

Our aim is to provide a complete asymptotic study of the approximation procedure defined
by (6), when a is positive (i.e. the sign of b is the same as that of 8), concerning strong
consistency, rate of convergence and limiting law of the involved estimate 6 and cost
Ca)=[H (85 —6)>dV,. Atfirst, in Section 2, we discuss some preliminaries and auxil-
iary results about Gaussian martingales and functions with finite variation which we think
are themselves of independent interest. Then the main theorems are stated and proved in
Section 3.

2. Preliminaries and auxiliary results

In what follows N= (N,, t>>0) is a Gaussian martingale means that N is a cadlag (.7,)-
adapted real-valued process such that N, =0 and for all 0< s <t the difference N,— N, is a
zero-mean Gaussian variable independent from .%; (i.e. N is a process with independent
Gaussian increments on (£, .%, (.#,), P) in the sense of Jacod and Shiryaev, 1987). Then
the distribution of NV is entirely characterized by the cadlag positive increasing deterministic
function of (N) defined as (N),=EN?Z, t>0.

At first we state a law of iterated logarithm (LIL) (see Le Breton, 1992) which sharply
defines the strong law of large numbers i.e. lim,_, ;.. (N), 'N, =0 as. if (N).,.= + .

Lemma 1. Let N be a Gaussian martingale such that {(N).. = +%. Then the following
assertion holds:
(LIL) lim sup [2(N), log log (N),] "'?|N,| <1 a.s.

1+
If moreover {(NY, ' A(N), converges to zero as t goes to infinity, then equality holds in
(LIL) i.e.
(LIL*)  lim sup [2{N), log log (N),] '?|N,| =1 a.s. d

t— + >

Later on, for any cadlag process (possibly a deterministic function) U= (U, t>0),
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Uy=0, for t>0 we set U,_=lim,, U, and AU,=U,—~U,_. The set J(u)={r>0:
P(AU,#0) >0} is at most countable. Notice that for a Gaussian martingale N the equality
J(N) =J({N)) holds. For K [0, + o[ we write L, (AU, instead of ¥, « 4 s, AU,. The
continuous part US of U is defined as U°=U—Y,_,AU,. When U is a cadlag positive
increasing deterministic function such that U,, >0, (C,,) denotes the following condition
(Cu) Y WUITTAUL < e
Mn<s< +x

Now we investigate the a.s. asymptotic behaviour of some quadratic functional of a

Gaussian martingale.

Proposition 1. Let N be a Gaussian martingale. Assume that (N),.= +x ({N), >0) and
that condition (C ) is fulfilled. Let ¢ be a measurable deterministic real-valued function
defined on )t,, + [ such that {N)?¢ tends to one as t goes to infinity. Then the following
assertion holds:

(S1) lim [log(N),]17" J N7 d{NY, =1 aus.

o+

Moreouver in statement (S1) one may substitute N2 to N2_ in the integral.

Proof. At first let ¢=¢@*=[(NY(N)_]"". Then statement (S1) is proved in Le Breton
(1992). Let us show that here one may substitute NZ to N_ in the integral. In fact we
shall prove that the difference

f " GEN2 d(NY, ~ f eFNZ AN,

10

- f " 20N, AN, d(NY, + f " oF(AN)? d(NY,

(Y

=2 Y @¥N, A(NYAN,

+ Y P AN = AN+ Y oF(AN))?,

converges a.s. to a finite limit. Notice that, due to (C,,), we have (N);=(N) _ for s
tending to infinity and then also ¢ = (N}, 2. Therefore, the series Ly, .. @F (A(NY,)’
converges. Finally, in order to show that (S1) holds, it suffices to prove that processes

Y eIN AN AN, and Y @F AN) (AN, — A(N),T,

r<s< - n<s< -

both converge a.s. to finite limits. But these processes are square integrable martingales
with respective variances

Y (eHXN AW and 2 Y (F)TAMN Y.

<s< - <y -
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Hence, since (@) (N),_[A(N) P =(N)7 [AN) Y and (@)’ [AN),]*=
(NY7*[A(N),]?, they converge a.s. to finite limits.

Now let @ be any measurable deterministic function ¢ such that (N) *¢ tends to one as
goes to infinity. Then @™ tends also to one. Therefore applying the Teeplitz Lemma we
get that (S1) holds with either N2 or N7 _ in the integral. [J

Concerning convergence in distribution we state:

Proposition 2. Let N be a real Gaussian martingale. Assume that {(N),.= +x ({(N), >
0) and that condition (C,yy) is fulfilled. Let ¢ be a measurable deterministic real-valued
function defined on 1t,, +[ and tending to one as t goes to infinity. Then the following
assertion holds:

t - 1
(S2) (N2 J' & NZAd(NY, —> f W2ds ast tends to infinity
5 0

where W= (W,; 1€ [0, 1]) is a standard Wiener process. Moreover in statement (S2) one
may substitute N>_ to N? in the integral.

Proof. At first let ¢= 1. Then statement (S2) is proved in Le Breton (1992). Let us show
that here one may substitute N7 to N ? in the integral. It suffices to check that the quantity
(NN Z ANy, — [t N2_ d(N),] tends as. to zero as ¢ tends to infinity.
Due to the Kronecker Lemma, this holds provided that the difference
[, ANYENE d(NY, — [1, (N> N 7_ d{N), tends as. to a finite limit. But repeating the
arguments of the proof of Proposition | with ¢™* replaced by (N) ~7 we get the result.

Now let ¢ be any measurable deterministic function tending to one as ¢ goes to infinity.
We shall show that the quantity

[ oz~ | w2 d<N>s[},

!

J(t) =E{<N>:2

tends to zero. Clearly we have

H0) < (N2 f = 1N V),

Since d((N)Y2) = ((N),+ (N),_) d(N}, we get

(1) <3(Ny2 f [ =1 AN + (N2 Y [y — 1] (AN

n<s<t

The first term in the right hand side above converges a.s. to zero due to the Teeplitz Lemma.
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The second term tends also to zero due to the Kronecker Lemma since the series
Lese (NYT? |, — 1] (A(N),)? converges a.s. Finally J(r) tends to zero so that the
variable (N), *[{ d,N? d(N), has the same limiting distribution as (N, *[* N2 d(N),
and (S2) holds. It can be proved in a similar way that one may substitute N2_ to N 2 in the

integral. O

Now we investigate asymptotic properties of some functions with finite variation. Here
Vis acadlag positive increasing deterministic function ( V,,= 0, V,, > 0). For any real number
« we define the function L, by

t
L..= J Vordv,, i1, (7)
0

and we set for v >0,
_Jloge ifa=1,
F"(L')_{Lvl"“/(l-a) ifa#l. (8)
Clearly if @ =0 then
Ly, =V, =V, =Fy(V) —Fo(V,) .

t0

We are going to study the asymptotic behaviour of the function L, when a#0. At first let
us consider the function &, defined as

8, =(sgn a) [F (V) —F,(V,)) ~L.] . €

We state:

Lemma 2. Let V be a cadlag positive increasing deterministic function (V,=0, V,,>0)
and « be an arbitrary real number. Let L,,, F, and 8, be defined respectively by (1), (8)
and (9). Then the following assertions hold:

(1) The function 8, is purely discontinuous positive and increasing; more precisely one
can write 8, =L, ., .. A8, where the jumps satisfy

0< A8, =(sgn ) [Fu(V,)) —F,(V,.) =V "AV]
<(sgna)(VI2=V 9AV,. (10)

(ii) If the condition (Cy) is fulfilled, then the series ¥, ., < ...V = ' A8, converges.

Proof. At first we prove assertion (i). Notice that F(v)=v “and L, = { ,‘(,F LV)dV,.
Then applying the change of variable formula (see e.g. Dellacherie and Meyer, 1980, p.
171) we get
Fa(V)=F (V) —Lo= ), [Fa(V)—F(V,) =V "AV].
<s< -
It is also easy to check that for every real number « the function (sgn «)F, is concave.
Therefore it comes that
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(sgn @) F,(V,) AV, < (sgn @) [Fo(V,) = F(V,)] < (sgn @)Fo(V, ) AV,

from which inequalities ( 10) can be obtained immediately. So, assertion (i) holds.
Now we show assertion (ii). Due to (10) we get

0<VI'AS, , <g(V,'AV),

where g(u#) = (sgn a)u[ (1 —u) ~“—1]. But, when (C,) is fulfilled, then V1AV, tends
to zero as s tends to infinity. Therefore the statement holds since, for u close to zero, g(u)
is equivalent to |aju?®. [

Remark 1. Lemma 2(i) means also that the continuous parts LS, and [F,(V) —F,(V,)1°
of L, and F (V) — F,(V,,) respectively coincide. In particular, for «=1, we get
LY=L, — Z Vo AV, =log(V/V,) — Z Alog V,

nn<s< - n<s< -

=[log(V/V,)]°. (1

Now we prove:

Proposition 3. Let a be some real number and V, L, and F,, be as in Lemma 2. Then the
Jollowing assertions hold:
(i) If a> 1 then the function L, converges to a finite limit as t tends to infinity.
(1) If a< 1 and conditions V., = 4 and (Cy) are fulfilled, then
lim L,,/F,(V)=1. (12)

t— + o

Proof. If a> 1 then, due to (9) and Lemma 2(i), we have

0<L,<F,(V)=F,V,

(4]

y<VLI*(a—1).

Therefore, since it is increasing, L, converges to a finite limit and assertion (i) holds.

Now, let us assume that conditions V,.= + o and (C,,) are fulfilled. Then, due to Lemma
2(ii), the series L,y <, < 4. V&' A8, converges.

For a=1, taking Lemma 2(i) into account, this simply means that §, converges to a
finite limit and hence, due to (9), (12) holds.

For a < 1, applying the Kronecker Lemma, we get that V>~ '§,,, tends to zero as  tends
to infinity and finally, due to (8) and (9), again (12) holds. [J

Now for any fixed positive real number @ we denote by (C,,,) the condition

(Cv) VYAV, <a™' forevery s>1,.

Notice that if @< 1 then condition (C,,) is antomatically fulfilled. Moreover when (C,)
is satisfied then, since V ;! AV, tends to zero, for any a > 1 one can choose f, large enough
in order that (C,,,) is fulfilled. Provided (C,,) is satisfied we can define (cf. Liptser and
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Shiryaev, 1978, p. 256) the function s, as the unique positive locally bounded solution of
equation

wa(t)zl—aJ’ ll‘la(s—)vx_ld‘/xv [2[()a

ie.

(1) =exp(—ali,) J] (1—aAL,)). (13)

n<s<t

Here L{ is given by (11) and AL, , =V ' AV,. Notice that, due to (11) and (13) with
a=1, we have

logh=—L5+ Y log(1-V, AV,

n<s<-

=—[log(V/IV)I*— Y AlogV,=—log(V/V,).

H<s< -

Therefore ¢, = (V/V,) ~'. We are going to study the asymptotic behaviour of the function
i, when a >0, a# 1. At first let us consider the function vy, defined as

Yo =sgn(1—a)llog ¢, +alog(V/V,)]. (14)
We state:
Lemma 3. Let V be a cadlag positive increasing deterministic function (V,=0, V, >0)
and a be a positive real number such that condition (Cy, ) is fulfilled. Let vy, be defined by

(14) where s, is given by (13). Then the function vy, is purely discontinuous positive and
increasing; more precisely one can write y, =Y, -, . Ay, , where the jumps satisfy

0< Ay, <a{[V,—~(aVDAV,) "' =V 1AV, (15)

withaV 1 =max(a, 1).

Proof. From (11) and (13) itis clear that
(log ¥,)*= —aL{ = —allog(V/V,)]*.
Therefore, due to (14), vy, is purely discontinuous. Moreover since
(Alog ), =log(1l—aV 'AV,) ; Alog V,=log V,—log V,_,
it follows that
Ay, ,=sgn(l—a)[log(1 —aV ['AV,)+aA log V] (16)
or

Ay =sgn(1=a)llog(aVe +(1=a)V) —ablog Vo —(1=a) log ViJ.
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Now assume that @ < 1. Since u — log u is concave, equation (17) shows that Ay, .= 0.
Moreover, applying (10) with a=1 we get
0<Alog V.=V, AV, <(V,V,_) " '(AV)". (18)
Then, from (16) and (18) it follows that
0<Ay,, <log(l—aV; 'AV) +aV AV, +a(V,V, ) '(AV)?.
Hence, because log(! —u) +u <0 forue [0, I [, we obtain
0< Ay, <a(V,V,_) '(AV) =a(V ' =V HAV,.

So the assertion in the lemma is proved for a < 1 since here V,— (aV 1)AV, =V, _.
Now assume that a > 1. Then rewriting (17) as

Ay, ,=—asgn(l—a){log V,_ —a~"log[aV,_ +(1—a)V]
—(l—a""logV,}, (19)

and looking at V, _ as V,_=a '[aV,_+ (1 —~a)V,] + (1 —a ") V,, again, due to the con-
cavity of the logarithm and the fact that —a sgn( 1 —a) =a, we get that Ay, > 0. Now let
us rewrite (19) as

Ay, =allog(1-V TAV)+V 1AV}
+ {log V, —log(V, —aAV,) —aV [ AV, }.

Then, because log(1 —u) +u <0 forue [0, 1[, we obtain

0<Ay,, <log V,~log(V,—alAV,)) —aV ' AV,. (20)
But, due to the concavity of the logarithm we have

aV;"AV, <log V, —log(V, —aAV,) <a(V,—aAV)) " 'AV,.
Therefore from (20) we get

0<Ay, <allV,—aldV,] 7' =V 'JAV,.

Finally the assertion in the lemma holds ifa>1. 0O
Now we prove:

Proposition 4. Let a be an arbitrary positive real number. Let V be a cadlag positive
increasing deterministic function (Vy=0) such that V,, > 0 and condition (C) is fulfilled
(and then also, changing 1, if necessary, (Cy,) is satisfied). Let ¥, and v, be defined by
(13) and (14) respectively. Then the following assertions hold.:
(1) The function vy, converges to a positive finite limit v, .. as t tends to infinity.
(it) If V.= + oo then
lim (V/V,)U.(t) =k, =exp[sgn(l—a)y,.] -

t— +x
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Proof. Due to (15) we get
0<Ay,, <h(V,'AV)

where n(u) =au{[1—(aV 1)u] '—1}. But when (C,) is fulfilled then V ' AV, tends
to zero as f tends to infinity. Therefore assertion (i) is true since, for u close to zero, A{u)
is equivalent to a(aV 1)u’.

Finally assertion (ii) follows immediately from (14). O

3. Main results

Recall that we intend to study the asymptotic behaviour of 8¢ satisfying (6) and that of the
corresponding cost. In what follows we suppose that some #, is chosen such that V,, > 0 and
condition (Cy,) holds fora=b ~' 8 (which is assumed to be positive ). Then, for any given
real value 6, equation (6) has a unique solution starting at time ¢, from the initial condition
0y. More precisely, due to (6), we can write Z= 6~ 6 as the solution of the stochastic
differential equation

dZ,= —aV;'Z,_ dV,+(bV) " "dm,, t>ty, Z,=6,—0,

1.e. Z is the Gaussian process given by

ZI=¢a(t)[Zt()+ f’ ll’;l(s)(b‘/x)7] dm\] L t>t()’ (21)

where ¢, is defined by (13).
Our first statement gives the precise asymptotic behaviour of 6.

Theorem 1. Let a > 0 and 6, an arbitrary real number. Assume that V,, >0, V.= +x and
condition (Cy) is fulfilled (and then also, changing t, if necessary, (Cy,,) is satisfied). Let
07 be the solution process of equation (6) starting from 6, at time t,. Then the following
assertions hold:
(i) Ifa> 1 then
lim sup [V,/2 log log V,1'216¢ — 8] =(a/| B])g"'*(a) a.s.,

I ]

and

P
V3284 —8) —> N(O, (6% BHg(a)),

where g(a) =a*/(2a—1).
(ii) If a=1 then

lim sup [V,/(2 log V,)(log log log V,)1'/?| 84 — 0| =0/(2| B|) a.s.,

t— 4%



A. Le Breton/Gaussian approximation schemes 111
and

v
(V,/log V,)!"?(8? — 8) —> N(0, o2/ (48%)) .
(iii) If a <} then there exists a finite (Gaussian) random variable y such that

lim V(6{—60)=x a.s.

e

Proof. At first we consider the case @ > . Due to Proposition 4(ii) we have

() =, Vi Ve (22)
So, in view of (21), we can write
Ve —0)=b" 'V ()N, +0o(1) as. (23)

where N= (N,; t 2 1,) is the Gaussian martingale defined by

!
N, = j Yo (VI dm, 121, (24)

Notice that

(NY,=EN? =g f bIAHVITAV,. 131y, (25)

Now, in view of (22) we have V%4, 2(s) =k 2V 2V 721" where 2{1 ~a) < 1.

a t

Then, from (25), applying Proposition 3(ii) and the Taeplitz Lemma, we get that

Ny, =a*(Qa—1) "'V 2VE" D log logdN), =log log V,. (26)
Therefore we also have

[6] 71V (1) = (ol | B])g' 2 (@) (V)72 27

Using (23), applying (LIL*) (cf. Lemma 1) to N and taking (26) and (27) into account
we get that the first part of assertion (i) holds.

Since the distribution of the random variable » ~'V "2 4,(£)N, is Gaussian with mean
zero and variance b =2V, 2(1)(N),, due to (23) and (27), it follows that the second part
of assertion (i) also holds.

Now we assume thata = 1. Here V, 241, ,»(f) = k,,, V }/? and, by use of arguments similar
to those above, one can see that (23) and (24) still hold with

(NY,=a’k 3V, 'logV,, log log (NY, =log log log V,, (26")

and then achieve the proof of assertion (ii).
Finally let @ < 4. From (21) we can write

Vi — o) =Vig({zZ,+b"'N,},
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where N is again the martingale defined in (24). Here V{ (1) =k, V7, and N converges

o

as. to a finite (Gaussian) random variable. Indeed, since ;] 2(s)V =
K, 2V V72079 with 2(1 —a) > 1, due to (25), applying Proposition 3(i) we get that

0

{N),.<o0. Therefore assertion (iii) holds. [1
Now let us describe the behaviour of the cost associated to algorithm (6) up to time ¢ i.e.

t t
= [ o —orav= [z av,, (28)
where Z is given by (21).

Theorem 2. Let notations and assumptions be the same as in Theorem 1. Then the following

assertions hold:
(1) Ifa> % then

lim [log V,]7'C(a)=(0%/B*)g(a) aus.

t— + >
(i1) If a= 5 then
g 1
llog V) *C(a) — (0 (4p™) [ Wias,
0
where W= (W, t€ [0, 11) is a standard Wiener process.
(iil) Ifa <} then

lim V> 'C(a)=x*/(1-2a) a.s.,

f— +x

where x is defined in Theorem 1(iii).

Proof. Due to (21), (24), (25) and (28) we can write
Cla)=Z2K\(1)+2b"'Z Ky(t) +b 20 *Ks(t) ,

10

where
K1) = f Y2(s—) dV, . K2<r)=f W2(s—)N,_ dV,,

K1) = j 25— WA VN d(NY, .

From (13) and (22) we observe that for s tending to infinity
Y (s =) = () =K ViV 4. (29)

In what follows we denote by A(f) the normalizing factor of C,(a) which is involved in the
investigated statement. In the first two cases we shall show that when ¢ goes to infinity, for
i=1,2, A()K;(1) tends to zero a.s. and A(#) K;(r) tends to the right limit a.s.
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At first we consider the case a > 4. Here, due to (29), since 2a > 1, applying Proposition
3(i) we get that K, (o) < + o and then A(#)K,(¢) tends to zero. Concerning K,(¢), due to
(LIL*) (cf. Lemma 1), we can write a.s.

1Ka(r) | <c f " g2s=)(NYV2 (log log (Ny,_) dV. (30)

for some positive (random) constant ¢. But from (25), (26) and (29), we can see that
(NY VAN, = (2a— 1)V [ TAV, (31)

and then in (26) one may replace (N}, by (NV),_. Therefore, using (29) again, the function
appearing in the integral of inequality (30) is, up to a multiplicative constant, equivalent
to Ve VD (Jog log V,) /% Consequently, since a+ > 1, we have a.s.

Kol<c [ voeay,,
o

for some positive (random) constant C and some £> 1. Again, applying Proposition 3(i),
we get that K,() is finite a.s. and then A(#)K,(¢) tends to zero a.s. Now we consider
K5(t). We notice that (31) means that condition (C,, ) is satisfied since (Cy) is fulfilled
and also (26) says that A~7'(s)=log V,=(2a— 1) 'log (N),. Choosing ¢, =
(s —)2(s) V2 we see that the product ¢,(N)? tends to o*/(2a—1)?. Then, applying
Proposition 1, it is easy to get that b ~?c~*A(#)K5(¢) tends a.s. to (0?/ 8*)g(a). Finally
assertion (i) holds.

Now we assume that a = 1. Here due to (29), applying Proposition 3(i) with a=1, we
get that X, (#) = k3, V,, log V, and then A(t)K,(t) tends to zero. Concerning K,(¢) we can
still write (30) a.s. But from (25), (26") and (29), we can see that

(N ANy = (V, log V,) AV, (317)

and then in (26") one may replace (N), by (N),_. Therefore, using (29) again, the function
appearing in the integral of inequality (30) is, up to a multiplicative constant, equivalent
to V' (log V,)"?(log log V,)'/?. Now in order to prove that A(¢)K,(1) tends to zero a.s.,
due to the Kronecker Lemma, it suffices to show that

+
J= f V7 '(log V,) " **(log log V,_ )2 dV, < + oo .

0

But, defining a(s) =inf{#: V,> s} and using the Lebesgue Lemma on the transformation of
Stieltjes integrals (see e.g. Dellacherie and Meyer, 1980), we get that

+oo
J= f Ve, (log V) ?2(log 1og(V_) y5) 2 ds < + 0.
V/{)

Then, since V,,(, =sand (V_),,, <5, we have J < + 0. Now we consider K5(r). We notice
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that (31") means that condition (Cy,) is satisfied since (Cy) is fulfilled and also (26")
saysthat A~'(#) = (log V)= o~ *k?},, VL (N), %.Choosing ¢, = 2(s — ) 2(s) V? we see
that the product ¢, tends to k},, V2. Then, applying Proposition 2, it is easy to get that
b 720 2A(1)K5(1) tends in distribution to (a?/(4B%))[ W2 ds. Hence assertion (ii)
holds.

Finally let a < §. Here we write

V?"“Ct(a)=V,2“'1j [Vizi 1V dv,,
10

and we notice that since 2a < 1, due to Proposition 3(ii), [,V > dV, = (1—2a) "'V} 2.

Then using assertion (iii) of Theorem 1 and the Teeplitz Lemma we get that assertion (iii)
holds. Ol

Remark 2. (a) The best rate of convergence in Theorem 1 above is clearly obtained for
a> 5. Moreover the factor g(a) has its minimum value 1 fora=11ie. b= B.

(b) Of course in the discrete time case where errors are 1.i.d. Gaussian random variables
(cf. Section 1) the assumptions of Theorems 1 and 2 are fulfilled. Then our assertions
reduce to corresponding ones in Theorem 2 of Lai and Robbins (1979). Notice that our
assertion (ii) in Theorem 1 is more precise than their result in case of a=1.

(¢) In fact in Theorem 2 one may replace C,(a) by [, (6% — 6)* dV,.
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