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A family of one-dimensional linear stochastic approximation procedures in continuous time where processes of 

errors are Gaussian martingales is considered. Under some general assumptions the asymptotic behaviour of these 

procedures is studied concerning strong consistency, rate of convergence and limiting law of involved estimates 

and costs. At first some asymptotic results for Gaussian martingales, associated quadratic functionals and functions 

with finite variation are discussed. 
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1. Introduction 

Starting from the paper of Robbins and Monro ( 195 I), many works have been devoted to 

the study of the asymptotic behaviour of stochastic approximation schemes similar to their 

procedure. The literature dealing with discrete time models is abundant; one can consult 

e.g. the articles by Lai and Robbins ( 1979,198 I), Kushner and Huang ( 198 I), Wei ( 1987), 

Kushner and Yin ( 1987a, 1987b), Polyak ( 1990), Yin ( 1991) and also the books of 

Nevelson and Hasminskii ( 1973), Kushner and Clark ( 1978)) Hall and Heyde ( 1980), 

Benveniste et al. ( 1987) and Duflo ( 1990). As far as we know the continuous time context 

has been less investigated; nevertheless Driml and Nedoma ( 1967), Melnikov ( 1989) and 

Melnikov and Rodkina ( 1992) provide some substantial material. In the present paper, we 

intend to develop a complete self-contained analysis of a family of scalar linear models in 

continuous time where the processes of errors are Gaussian martingales. 

A basic probability space (0, 9, P) endowed with some filtration ( Fr, t > 0) satisfying 

usual conditions is given on which all random variables and processes below are defined 

(for details on filtrations, semimartingales and stochastic integration we refer to Dellacherie 

and Meyer, 1980, or Jacod and Shiryaev, 1987). We consider the linear regression model 

dY,=P(8-X,) dV,+dm,, t>O, Yc, = 0 . (1) 
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Here the observed response process Y is real-valued, the process of errors m is a cadlag real 

Gaussian (oft) -martingale (m, = 0) and the scalar regressor process X is ( ~yr) -predictable. 

We assume that V is a given cBdlag positive increasing deterministic function ( V, = 0) such 

that (m),=Emf = a’V, with a> 0. 

A simple example is when m = (TW where W is a (y,)-standard Wiener process and 

V, = t. Notice also that one can embed into model ( 1) the usual discrete time model 

y,,=p(e-x,)+&,, n=l,2, . ..) 

where (E,) are i.i.d. Gaussian random variables with mean zero and variance a*. For that 

onesets Vr=[tl, Y,=CO<k~fvkrm,=C o~k~r~~,t~O,.~=~(~~,O<k~f].Theproblemis 

to choose the levels X,, s 6 t, and an estimate 8, of the unknown parameter 8 in view of the 

observation of Y up to time t in such a way that 0, converges almost surely (a.s.) to 0 as t 

tends to infinity while the cost j:,(X,s- 0)2 dV, of the design X up to stage t is as small as 

possible. Notice that the parameter p in ( 1) may be also unknown. Of course we assume 

that p # 0. We follow the ideas of Lai and Robbins ( 1979) where a good medical motivation 

and a quite complete investigation were given for a discrete time general model. 

Suppose that /3 is in fact known. To estimate 8 at stage t, provided V, is positive, it is 

natural to use the least squares estimator 

8, = v ; ’ 1 . 
Then, due to ( 1) , one gets 

f3,-e=(pV,)-‘m,. (3) 

That equation shows that irrespective of how the levels X, are fixed, whether preassigned 

or recursively chosen, the distribution of V:“( Bf - 0) is Gaussian with mean zero and 

variance of a’/@ and therefore, if V, = + 00, then 8, is consistent in the mean square sense. 

Notice that the estimate 0, can be produced recursively. From (2), by using the rules of 

stochastic integration, for to such that V,, > 0 and t> t,,, we get 

de,= -[dV,/(V,V,_)] 1 +V,-‘[X,dV,+P-’ dY,l , 
f- 

i.e. 

d&=V,‘[(X,-B,_) dV,+P-’ dY,] . (4) 

In order to have small cost, one is naturally led to choose the design X adaptively as X = 8_. 

Consequently, due to (4)) we get de, = (PV,) - I dY, and, taking ( 1) into account, 

d@=V;‘(f&0,_) dV,+(PV,)-‘dm,. (5) 

A statement describing the asymptotic behaviour of this particular scheme has been given 

without proof in Le Breton ( 1992). 

Now, when p is unknown, following Lai and Robbins ( 1979) approach, one can think 
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of substituting for j3 some guess b # 0 of its value in the recursion defined by X, = 0,- and 

(2). Notice that, setting a = b - ’ p, this corresponds to choose in ( 1) the designX adaptively 

as X,=X: = &_ with 

and therefore again d0p = (bV,) -’ dl’, or 

d&‘=aV;‘(B-0:_) dV,+(bV,)-‘dm,. (6) 

Of course (6) reduces to (5) when a = 1 i.e. b equals p. It appears as an analogue in 

continuous time of the linear version of the Robbins-Monro algorithm (see e.g. Hall and 

Heyde. 1980). 

Our aim is to provide a complete asymptotic study of the approximation procedure defined 

by (6), when a is positive (i.e. the sign of b is the same as that of p), concerning strong 

consistency, rate of convergence and limiting law of the involved estimate 0” and cost 

C,(a) = I:, ( &_ - 13)’ dV,. At first, in Section 2, we discuss some preliminaries and auxil- 

iary results about Gaussian martingales and functions with finite variation which we think 

are themselves of independent interest. Then the main theorems are stated and proved in 

Section 3. 

2. Preliminaries and auxiliary results 

In what follows N= (N,, t>O) is a Gaussian martingale means that N is a cadlag (IT)- 

adapted real-valued process such that N,, = 0 and for all 0 ,< s < t the difference N, - N, is a 

zero-mean Gaussian variable independent from .F5 (i.e. N is a process with independent 

Gaussian increments on (0, .P, (.K), P) in the sense of Jacod and Shiryaev, 1987). Then 

the distribution of N is entirely characterized by the cadlag positive increasing deterministic 

function of (N) defined as (N>, = EN:, t > 0. 

At first we state a law of iterated logarithm (LIL) (see Le Breton, 1992) which sharply 

defines the strong law of large numbers i.e. lim,, += (N>,- ‘N, = 0 a.s. if (N)= = + x. 

Lemma 1. Let N be a Gaussian martingale such that (N), = + m. Then the following 

assertion holds: 

(LIL) lim sup [2(N), log log (N),] -1’2 (N, 1 ,< 1 
r- +z 

If moreoller (N); ’ a(N), concierges to zero as t goes 

(LIL) i.e. 

(LIL”) lim sup [2(N), log log (N),] “2 (N, 1 = 1 
f++Z 

a.s. 

to infinity, then equality holds in 

as. 0 

Later on, for any cadlag process (possibly a deterministic function) U = ( U,, t > 0), 



(/o=O, for t>O we set U,_=lim,,,U, and AlJ,=lJ,-(I,_. The set J(u)=(t>O: 

P( AU, f 0) > O} is at most countable. Notice that for a Gaussian martingale N the equality 

J(N)=J((N)) holds.ForKclO, +m[ wewriteC,,,AU,insteadofC,,..,,.,AU,.The 

continuous part U’ of U is defined as U’ = U - C ,,,AU,. When U is a cadlag positive 

increasing deterministic function such that (I,,, > 0, (C,) denotes the following condition 

(Cl/) C [U,-’ AU,]*< +=. 
1,) < 7 < + = 

Now we investigate the as. asymptotic behaviour of some quadratic functional of a 

Gaussian martingale. 

Proposition 1. Let N be a Gaussian martingale. Assume that (N)z = +x ( (N),,, > 0) and 

that condition (C,,,) is fulfilled. Let p be a measurable deterministic real-l,aluedfunction 

defined on ] to, + 5 [ such that (N) 2’p tends to one as t goes to infinity. Then the following 

assertion holds: 

’ (Sl) lim [log(N),] PI 
I 

cp,NT_ d(N), = I a.s. 
r-) +z f0 

MoreoL>er in statement (S 1) one may substitute NT to Nf_ in the integral. 

Proof.Atfirstletcp=cp*=[(N)(N)_]-’.Th en statement ( S 1) is proved in Le Breton 

( 1992). Let us show that here one may substitute N f to N f_ in the integral. In fact we 

shall prove that the difference 

converges as. to a finite limit. Notice that, due to (C,,,) , we have (N), = (N), _ for s 

tending to infinity and then also cp: = (N);’ Therefore, the series C,, <, G (pT( A(N),)’ 
converges. Finally, in order to show that (S 1) holds, it suffices to prove that processes 

both converge as. to finite limits. But these processes are square integrable martingales 

with respective variances 



Hence, since (q,*)‘(N),_ [A(N),13= (N);‘[A(N),]’ and ((p.T)‘[A(N),,]“= 

(N),-4 [A(N),s]“, they converge a.s. to finite limits. 

Now let cp be any measurable deterministic function cp such that (N) *q tends to one as 1 

goes to infinity. Then (p’p* tends also to one. Therefore applying the Tceplitz Lemma we 

get that (S 1) holds with either N t or N f_ in the integral. 0 

Concerning convergence in distribution we state: 

Proposition 2. Let N be a real Gaussian martingale. Assume that (N),= +a ((N),,, > 

0) and that condition (C,,,,,) is fulfilled. Let 4 be a measurable deterministic real-valued 

function defined on ] to, + x[ and tending to one as t goes to infir+. Then the following 

assertion holds: 

(S2) (N>;’ j-1, &Nf d(N)., L j-i W: ds as t tends to infinity 

where W= ( W,; t E [ 0, 1 ] ) is a standard Wiener process. Moreover in statement (S2) one 

may substitute NT_ to N f in the integral. 

Proof. At first let 4~ 1. Then statement (S2) is proved in Le Breton ( 1992). Let us show 

that here one may substitute N T- to N f in the integral. It suffices to check that the quantity 

(N)Fe’[/X,Nz d(N),-J;,,Nz_ d(N),5] tends a.s. to zero as t tends to infinity. 

Due to the Kronecker Lemma, this holds provided that the difference 

/X,(N).,-*Nf d(N), -/k,(N),-‘N;?_ d(N), tends a.s. to a finite limit. But repeating the 

arguments of the proof of Proposition 1 with ‘p* replaced by (N) -’ we get the result. 

Now let $J be any measurable deterministic function tending to one as t goes to infinity. 

We shall show that the quantity 

tends to zero. Clearly we have 

J(t) < (N),-2 I ,; 14, - 1 I (Ws W’)s. 

Since d( (N)f) = ( (N>.s + (N),Y- ) d(N)., we get 

J(t) < ;(N);2 IA-11 WN):)+WY2 C IA--II(W 
m < s < f 

The first term in the right hand side above converges a.s. to zero due to the Toeplitz Lemma. 
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The second term tends also to zero due to the Kronecker Lemma since the series 

Zc,<.s,. V).~-2 IA- 1 I (W’)J2 converges a.s. Finally J(t) tends to zero so that the 

variable (N),-ZJ;O&Nf d(N)F has the same limiting distribution as (N);‘[;,,Nf d(N), 

and (S2) holds. It can be proved in a similar way that one may substitute N i_ to N 5 in the 

integral. 0 

Now we investigate asymptotic properties of some functions with finite variation. Here 

Vis a cadlag positive increasing deterministic function ( V,, = 0, V,,, > 0). For any real number 

(Y we define the function L, by 

’ -L&r = I V;” dV,, tat,, 
f” 

and we set for u > 0, 

F,(P) = { ‘,I’” c ifa=l, 

‘--ul(l-~) ifcx#l. 

(7) 

(8) 

Clearly if (Y = 0 then 

Lo,, = V, - V,,, = F0( V,) - F0( V,,,) 

We are going to study the asymptotic behaviour of the function L, when cr f 0. At first let 

us consider the function 6, defined as 

6,= (sgn o) [F,(V) -F,(V,“) -Ll . (9) 

We state: 

Lemma 2. Let V be a ckdlhg positice increasing deterministic function ( V, = 0, V,, > 0) 

and (Y be un arbitrary real number. Let L,, F, and 6, be defined respectively by (7)) (8) 

and (9). Then the following assertions hold: 

(i) The function 6, is purely discontinuous positice and increasing; more precisely one 

can write 6, = C,, < r,c Aa,, where the jumps satisfy 

0 < A6,, = ( sgn a) [ F,( V,) - F,( V, _ ) - V fP u AV, 1 

<(sgn LY)(V;_CI-V~-~)AV~. ( 10) 

(ii) If the condition (C,) is fulfilled, then the series C f<, c ., < + a VP- ’ A6,>,Y concerges. 

Proof. At first we prove assertion (i) Notice that F,(c) = L’ --a and L, = J&k,( V,) dV,Y. 

Then applying the change of variable formula (see e.g. Dellacherie and Meyer, 1980, p. 

171) we get 

F,(V) -F,(V,,) -L,= C [F,(K) -F,(V,-) -v;mAv.xl . 
fO < 5 < 

It is also easy to check that for every real number (Y the function (sgn a) F, is concave. 

Therefore it comes that 
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(sgna)F,(V,)AV,~(sgna)[F,(V,)-F,(V,)l~(sgna)F,(V,-)AV,, 

from which inequalities ( 10) can be obtained immediately. So, assertion (i) holds. 

Now we show assertion (ii). Due to ( 10) we get 

O,<V.~-‘As,,~~g(V,‘AV,), 

whereg(u)=(sgn~)u[(l-u)~~-l].But,when(C,)isfulfilled,thenV,~~’AV,tends 

to zero as s tends to infinity. Therefore the statement holds since, for u close to zero, g(u) 

is equivalent to 1 a 1~4’. 0 

Remark 1. Lemma 2(i) means also that the continuous parts I,“, and [ F,( V) - F,( V,,) 1’ 

of L, and F,( V) - F,( V,) respectively coincide. In particular, for (Y = 1, we get 

L;=L,- C V,;‘AV,=log(V/V,O)- C AlogV, 
rg i s < 10 < .T 6 

= uog(v~vtJlc. (11) 

Now we prove: 

Proposition 3. Let a be some real number and V, L, and F, be as in Lemma 2. Then the 

following assertions hold: 

(i) Zf (Y > 1 then the function L, concerges to a finite limit as t tends to infinity. 

(ii) If (Y < 1 and conditions V, = + ~0 and (C,) are fulfilled, then 

lim L,,/F,( V,) = 1 . (12) 
f-Pi_ 

Proof. If (Y > 1 then, due to (9) and Lemma 2(i) , we have 

O<L,<F,(V)-F,(V,J<V;,-“/(a-l). 

Therefore, since it is increasing, L, converges to a finite limit and assertion (i) holds. 

Now, let us assume that conditions V, = + m and (C,) are fulfilled. Then, due to Lemma 

2(ii), the series C,,,7, +mV,F-l A??,, converges. 

For cy= 1, taking Lemma 2(i) into account, this simply means that 6, converges to a 

finite limit and hence, due to (9)) ( 12) holds. 

For (Y < 1, applying the Kronecker Lemma, we get that VP- ’ 6,,r tends to zero as t tends 

to infinity and finally, due to (8) and (9)) again ( 12) holds. 0 

Now for any fixed positive real number a we denote by (C,,) the condition 

(C,,) V;‘AV,<a- foreverys>t,. 

Notice that if a < 1 then condition (C,,) is automatically fulfilled. Moreover when (C,) 

is satisfied then, since V,y- ’ AV, tends to zero, for any a > 1 one can choose to large enough 

in order that (C,,) is fulfilled. Provided (C,,) is satisfied we can define (cf. Liptser and 



Shiryaev, 1978, p. 256) the function I,!I(, as the unique positive locally bounded solution of 

equation 

k(r) =exp( -aLi.,) n (1 -aAL) . 
R, < .\ G f 

(13) 

Here L; is given by (11) and AL,,, =V,,-’ AV,. Notice that, due to (11) and (13) with 

a= 1, we have 

log I/J, = -L; + C log( 1 -V,’ AV,) 
PI,<,<. 

= - [log(V1V,,,)l’- C A log V,= -log(V/V,,,) 
n,< r< 

Therefore I,!J, = ( VI V,,,) - ’ . We are going to study the asymptotic behaviour of the function 

+!I‘, when a > 0, a + 1. At first let us consider the function y,, defined as 

‘y(, =sgn(l -a)[log $(, +a log(V/V,,)l . (14) 

We state: 

Lemma 3. Let V be a cadlag positire increasing deterministic ,function ( V,, = 0, V,,, > 0) 

and a be a posititle real number such that condition ( Cv,n j is fulfilled. Let y,, be defined by 

( 14) where $<, is git,en by ( 13). Then the function y,, is purely discontinuous positire and 

increasing; more precisely one can write y<, = C,(, <,, --i A yCI,,, where the jumps satisfy 

O~Ay,.,~a([V,-(avljAV,l-‘-V.,~‘)Av, 

withaVl=max(a, 1). 

(15) 

Proof. From ( 11) and ( 13) it is clear that 

(log $<,)‘= -aLq = -a[log(VIV,,)]‘. 

Therefore, due to ( 14), y<, is purely discontinuous. Moreover since 

(Alog$C,),=log(l-aVYPIAV,) ;Alog V,=log V,,-log V’-, 

it follows that 

or 

Ay,,.,,=sgn(l-a)[log(l-aV;‘AV,,)+aAlogV,,] ( 16) 

Ay,,,,=sgn(l-a)[log(aV,_ +(l-a)V,)-aAlogV,,_ -(l-a) logv,,]. 
(17) 



Now assume that a < 1. Since u + log u is concave, equation ( 17) shows that A y<,.,, > 0. 

Moreover, applying ( 10) with CY= 1 we get 

O,<AlogV,-V,~‘AV,,<(V,V,_)~‘(AV,)-. ( 18) 

Then, from ( 16) and ( 18) it follows that 

O,<Ay,,,,,<log(1-rrV,,~‘AV,)+aV,~’AV,+a(V,V,_)-‘(AV,)~ 

Hence, because log( I - u) + u < 0 for u E [ 0, I [, we obtain 

O,<Ay,,,,,<a(V,V,_)-‘(Av,)‘=a(V,~’ -V,P’)AV, 

So the assertion in the lemma is proved for a < 1 since here V, - (a V 1) AV, = V, _ . 

Now assume that a > 1. Then rewriting ( 17) as 

Ay,,,, = --a sgn( 1 -a){log V,_ -a-’ log[uV,- +( 1 -a)V,] 

-(l-u ’ 1 log v, I , (19) 

andlookingat~,_asV,_=a~‘[aV,_+(l-a)V,]+(l-a~’)~,,again,duetothecon- 

cavity of the logarithm and the fact that -a sgn( 1 -a) = a, we get that A Y~,,,~ 2 0. Now let 

us rewrite ( 19) as 

AY<,,, =a(log( 1 -V,;' At’,) +V;' AV,) 

+(log V,-log(V,-ant’,)-uV,:‘AV,]. 

Then, because log( 1 - U) + II G 0 for II E [ 0, 1 [, we obtain 

O<Ay (,,,, <log V,-~~~(V,-~AV,)-CZV,~‘AV,. (20) 

But, due to the concavity of the logarithm we have 

a v ,,- ’ AV, <log V, -log(V, -aAt’,) ,<a( V, -uAV,))‘AV, 

Therefore from (20) we get 

O-~hy,,,,ga{[V,-uAV,,]-‘-V,‘)AV,,. 

Finally the assertion in the lemma holds if u > 1. 0 

Now we prove: 

Proposition 4. Let a be an arbitran, positiile real number. Let V be a ccidl&g positire 

increasing deterministic function ( V,, = 0) such that V,, > 0 and condition (C,) is fulfilled 

(and then also, chunging to ifnecessuty, (C,,) is satisfied). Let +t~<~ and y‘, be defined by 

( 13) and ( 14) respectirlel?>. Then thefollowing assertions hold: 

(i) The function y<, converges to a positire finite limit Y~,,~ as t tends to infinity. 

(ii) If V,= +m then 

lim (VAV,,)“&,(t) =K,, =exp[sgn(1 -a)~,,.~1 . 
f” += 
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Proof. Due to ( 15 ) we get 

0 < Ax,.., < h ( V ,- ’ AV, 1 

where h(u)=au{[l-(aV l)u]-‘-1). But when (C,) is fulfilled then V,,P’AV, tends 

to zero as t tends to infinity. Therefore assertion (i) is true since, for u close to zero, h(u) 

is equivalent to a (a V 1) u ‘. 

Finally assertion (ii) follows immediately from ( 14). 0 

3. Main results 

Recall that we intend to study the asymptotic behaviour of 0” satisfying (6) and that of the 

corresponding cost. In what follows we suppose that some to is chosen such that V,(, > 0 and 

condition (C,,) holds for a = b - ’ p (which is assumed to be positive). Then, for any given 

real value B,,, equation (6) has a unique solution starting at time t,, from the initial condition 

0,,. More precisely, due to (6), we can write Z= f3”- 0 as the solution of the stochastic 

differential equation 

dZ,= -aV,-‘Z,_ dV,+(bV,)-’ dm,, t>/t’), Z,<, = 00 - ‘9 3 

i.e. Z is the Gaussian process given by 

(21) 

where sl/, is defined by ( 13). 

Our first statement gives the precise asymptotic behaviour of 8”. 

Theorem 1. Let a > 0 and O,, an arbitrary real number. Assume that V,,, > 0, V, = + ~1: and 

condition (C,) is fulfilled (and then also, changing to if necessary, ( CV,<,) is satisfied). Let 

8” be the solution process of equation (6) starting from 8, at time to. Then the following 

assertions hold: 

(i) rfa> & then 

limsup[V,/210glogV,]“2)0~-0(=(a/(~~)g”2(a) as., 
,- +z 

and 

V:‘2( 0; - 0) 2 N(0, (g2/j3’)g(a)) , 

where g(u) =a2/(2a- 1). 

(ii) Ifa=$ then 

limsup [V,l(210gV,)(logloglogV,)]“Z(0~-8)=a/(2(~~) a.s., 
,- +;c 



Ill 

and 

(V,/log V,)“‘( 0; - 0) : N(0. v2/(4p2)) 

(iii) If a < 4 then there exists afinite (Gaussian) random variable ,y such that 

lim Vp( 0: - 0) =x a.s. 
r+ += 

Proof. At first we consider the case a > 1. Due to Proposition 4( ii) we have 

@O(t) =K,V;,V;“. 

So, in view of (21), we can write 

(22) 

V~‘2(O~-8)=b-‘V~‘2~~,(t)N,+o(l) a.s. 

where N = (N,; t > t,,) is the Gaussian martingale defined by 

(23) 

Notice that 

(N),=EN;=u* $<T2(f) V,-’ dV, > t>t,, . (25) 

Now, in view of (22) we have V,sp’$C;2(s) =K~~~V~~~“V;~(‘-‘~ where 2( 1 -a) < 1. 

Then, from (25)) applying Proposition 3( ii) and the Tceplitz Lemma, we get that 

(N), ~~2(2a-1)-‘K,2Vrrr20V:O-‘, loglog(N),=loglogV,. 

Therefore we also have 

(26) 

Ibl-‘V:‘2~~,(t)=(allPI)g”2(a)(N),-”2. (27) 

Using (23), applying (LIL *) (cf. Lemma 1) to N and taking (26) and (27) into account 

we get that the first part of assertion (i) holds. 

Since the distribution of the random variable b -‘V1’2 &(t)N, is Gaussian with mean 

zero and variance b -‘if, $z( t) (N),, due to (23) and (27)) it follows that the second part 

of assertion (i) also holds. 

Now weassume thata= 1. Here Vj’2$,,2(t) = K,,~V:,,/’ and, by use of arguments similar 

to those above, one can see that (23) and (24) still hold with 

(N>, = dK ;; V, ’ log v, , log log (N>r = log log log v, , (26’) 

and then achieve the proof of assertion (ii). 

Finally let a < &. From (2 1) we can write 

V~(8~-8)=V~~~(t)(Z,,~+b-‘N,} 3 



where N is again the martingale defined in (24). Here V: e<,(t) = K,, Vz, and N converges 

a.s. to a finite (Gaussian) random variable. Indeed, since $,2(s)V,p2 = 

~2V-20V~2”~“) with 2( I -a) > 1, due to 

yGjr T m. iherefore assertion (iii) holds. 

(25), applying Proposition 3(i) we get that 

0 

Now let us describe the behaviour of the cost associated to algorithm (6) up to time t i.e. 

C,(a) = I ’ (&__ -8)2dV,= (28) 
10 

where Z is given by ( 2 1) 

Theorem 2. Let notations and assumptions be the same as in Theorem 1. Then the following 

assertions hold: 

(i) lfa> 1 then 

lim [log V,] -‘C,(a) = (a*/ P*)g(a) a..~. 
I--‘+?r 

(ii) Ifa=f then 

[log V,] -‘C,(a) 2 (a2/(4@2)) 
I 

’ Wf ds, 
0 

where W= ( W,; t E [0, I ] ) is a standard Wiener process. 

(iii) lfa < f then 

lim Vy-‘C,(a) =x2/( 1-2a) U.S., 
,- +x 

where ,y is defined in Theorem 1 (iii). 

Proof. Due to (21), (24), (25) and (28) we canwrite 

C,(a) =Zz,K,(t) +2b-‘Z,,,K,(t) +b-‘ap’K,(t) , 

where 

K,(t) = I ,;) +:(s- 1 dV, 3 Kz(f) = I ’ V&s- IN,,- dV, 1 

RI 

K.?(t) = I ’ $:(s-)&s>V:N:- d(N), 
f,, 

From ( 13) and (22) we observe that for s tending to infinity 

‘k(S-) = ‘k(S) = ‘LV::,V,-L’ . (29) 

In what follows we denote by A(t) the normalizing factor of C,(a) which is involved in the 

investigated statement. In the first two cases we shall show that when t goes to infinity, for 

i = 1, 2, h(t) K,( t) tends to zero a.s. and A(t) K3( t) tends to the right limit as. 
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At first we consider the case a > 1. Here, due to (29)) since 2a > 1, applying Proposition 

3 (i) we get that K, (a) < + CC and then h (t)K, (t) tends to zero. Concerning K2( t), due to 

(LIL*) (cf. Lemma 1), we can write as. 

Ik(t> I =cc $~(s-)W)f’2(log log W).r-) dV, > (30) 

for some positive (random) constant c. But from (25), (26) and (29), we can see that 

(N),’ A(N),Y = (2a- 1)V;’ AV, (31) 

and then in (26) one may replace (N), by (N),_. Therefore, using (29) again, the function 

appearing in the integral of inequality (30) is, up to a multiplicative constant, equivalent 

to V -(a+ “2) (log log V,) “2. Consequently, since a + f > 1, we have a.s. 5 

for some positive (random) constant C and some E > 1. Again, applying Proposition 3 (i) , 
we get that K2(m) is finite a.s. and then h(t)K,(t) tends to zero a.~. Now we consider 

K3 (t) . We notice that (3 1) means that condition (C,,,) is satisfied since (C,) is fulfilled 

and also (26) says that A- ’ (t) = log V, = (2~ - 1) - ’ log (N),. Choosing (pF = 

I+!J~( s - ) I+/J~( s) Vf we see that the product cp, (N): tends to a4/ (2~ - 1) *. Then, applying 

Proposition 1, it is easy to get that b -2a-2A( t)K,( t) tends a.s. to ( v2/ @)g(a). Finally 

assertion (i) holds. 

Now we assume that a = i. Here due to (29)) applying Proposition 3 (i) with (Y = 1, we 

getthatK,(t) =K~ , ,2 V, log V, and then n(t) KI (t) tends to zero. Concerning K2 (t) we can 

still write (30) a.s. But from (25), (26’) and (29)) we can see that 

(N).y- ’ W>s = ( V, log Vx) ~ ’ Avs (31’) 

and then in (26’) one may replace (N), by (N),_ . Therefore, using (29) again, the function 

appearing in the integral of inequality (30) is, up to a multiplicative constant, equivalent 

to v, ’ (log V,) i/2( log log V,) 1’2. Now in order to prove that A( t)K2( r) tends to zero a.s., 

due to the Kronecker Lemma, it suffices to show that 

J= +m V,‘(log V,) -3’2(1og log VT_)“2 dV,< +m. 

But, defining a(s) = inf{ t: V, > s] and using the Lebesgue Lemma on the transformation of 

Stieltjes integrals (see e.g. Dellacherie and Meyer, 1980), we get that 

J= 
I 

“L= V,.;, (1% V,,,,)-3’2(log log(V_),c,,)“’ ds< +m. 

Then, since VacSj 3 s and ( V_ ) nc rl <s, we have J < + 0~. Now we consider K3( t) . We notice 
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that (31’) means that condition (C,,,) is satisfied since (C,) is fulfilled and also (26’) 

saysthath-‘(t)=(logV,)*=~~~~~,~ V~,(N),~*.Choosing+~=$~(s-)&(s)V~wesee 

4 that the product $+ tends to K,,~ Vi. Then, applying Proposition 2, it is easy to get that 

K20p2A(t)K3(t) tends in distribution to (a*/(4/3*))(~W~ ds. Hence assertion (ii) 

holds. 

Finally let a < 4. Here we write 

V :“_‘C,(u) =,:,-’ J‘ ’ [V~Z;_]V;*“dV,, 
h, 

and we notice that since 2a < 1, due to Proposition 3 (ii), Ii,, V ;2a dV, = ( 1 - 2~) - ‘V f ~ 2u. 

Then using assertion (iii) of Theorem 1 and the Tceplitz Lemma we get that assertion (iii) 

holds. 0 

Remark 2. (a) The best rate of convergence in Theorem 1 above is clearly obtained for 

a > 1. Moreover the factor g(a) has its minimum value 1 for a = 1 i.e. b = /3. 

(b) Of course in the discrete time case where errors are i.i.d. Gaussian random variables 

(cf. Section 1) the assumptions of Theorems 1 and 2 are fulfilled. Then our assertions 

reduce to corresponding ones in Theorem 2 of Lai and Robbins ( 1979). Notice that our 

assertion (ii) in Theorem 1 is more precise than their result in case of a = f . 

(c) In fact in Theorem 2 one may replace C,(u) by ]:0( (3: - 13)’ dV,Y. 

Acknowledgement 

The author wishes to thank a referee for valuable suggestions on the first version of the 

paper. 

References 

A. Benveniste, M. Metivier and P. Priouret, Algorithmes adaptatifs et approximations stochastiques (Masson, 

Paris, 1987). 

C. Dellacherie and P.A. Meyer, Probabilitts et potentiel. ThCorie des martingales (Hermann, Paris, 1980) Chap. 

v a VIII. 

M. Driml and J. Nedoma, Stochastic approximation for continuous random processes, in: Trans. 2nd Prague Conf. 
Inform. Theory (Academia, Prague, 1967) pp. 145-158. 

M. DuRo, M&hades recursives aleatoires (Masson, Paris, 1990). 
P. Hall and CC. Heyde, Martingale Limit Theory and its Applications (Academic Press, New York, 1980). 

J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes (Springer, Berlin, 1987). 

H.J. Kushner and D.S. Clark, Stochastic Approximation for Constrained and Unconstrained Systems (Springer, 
Berlin, 1978). 

H.J. Kushner and G. Yin, Asymptotic properties of distributed and communicating stochastic approximation 

algorithms, SIAM J. Control Optim. 25 (1987a) 126&1290. 
H.J. Kushner and G. Yin, Stochastic approximation algorithms for parallel and distributed processing, Stochastics 

22(1987b)219-250. 

T.L. Lai and H. Robbins, Adaptive design and stochastic approximation, Ann. Statist. 7(6) (1979) 1196-1221. 



A. Le Breton /Gaussian approximation schemes 115 

T.L. Lai and H. Robbins, Consistency and asymptotic efficiency of slope estimates in stochastic approximation 

schemes, 2. Wahrsch. Verw. Gebiete 56 ( 1981) 329-360. 

A. Le Breton, PropriCtCs asymptotiques des martingales gaussiennes et application, CR. Acad. Sci. Paris Str. I 

315 (1992) 839-844. 
R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes II, Applications (Springer, Berlin, 1978). 

A.V. Melnikov, Stochastic approximation for semimartingales, in: A.N. Shiryaev, ed., Statistics and Control of 

Stochastic Processes (Nauka, Moscow, 1989) pp. 147-156. 

A.V. Melnikov and A.E. Rodkina, Consistent statistical estimation in semimartingale model of stochastic 

approximation, Ann. Acad. Sci. Fenn. Ser. A I Math. I7 ( 1992) 85-91. 

M.B. Nevelson and R.Z. Khasminskii, Stochastic Approximation and Recursive Estimation (Amer. Math. Sot., 

Providence, RI, 1973). 

B.T. Polyak, New method of stochastic approximation type, Automat. Remote Control 51 ( 1990) 937-946. 

H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951) 400-407. 

C.Z. Wei, Multivariate adaptive stochastic approximation, Ann. Statist. 15 (1987) 1115-l 130. 

G. Yin, On extensions of Polyak’s averaging approach to stochastic approximation, Stochastics 36 (1991) 245- 

264. 


