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Abstract

Tribe proved in a previous paper that a typical point of the support of super Brownian motion
considered at a fixed time is a.s. disconnected from the others when the space dimension is
greater than or equal to 3. We give here a simpler proof of this result based on Le Gall’s
Brownian snake. This proof can then be adapted in order to obtain an analogous result for the
support of the exit measure of the super Brownian motion from a smooth domain of RY when
d is greater than or equal to 4.
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0 Introduction

Let x be a fixed point in R? and (Z,, t >0) a super Brownian motion in R“ starting
at o, (see for instance Dawson (1991) for the definition and the main properties of this
process). We can heuristically describe this process by an infinite system of branching
particles (when the lifetime of each particle tends to 0), Z; being a measure (uniformly)
distributed over the set of the positions of the particles alive at time ¢ (see Dynkin
(1991a) for such a description). Then, the process (Z;) is a continuous measure-valued
Markov process. Now let Q be a domain in RY which contains x. We can define the
exit measure of the super Brownian motion from €, denoted by X* (this notion has
been introduced in Dynkin, 1991a, b). X is a random measure on the boundary Q.
Using the precedent description, we can say that X is supported by the set of the
positions of the previous particles when they leave Q for the first time.

The purpose of this work is to study the support of super Brownian motion and
of its exit measure. Some results on the Hausdorfl measure of the support of super
Brownian motion have been given in Perkins (1989) and Le Gall and Perkins (1995),
and on the Hausdorff dimension of the support of the exit measure in Abraham and Le
Gall (1994). Moreover, Tribe (1991) proved a result on the connected components of
the support of super Brownian motion. Here, we will first give a new (simpler) proof
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of Tribe’s result (the key ideas are nonetheless the same). The main tool will be the
“Brownian snake” defined by Le Gall (1993, 1994) which allows us to construct the
super Brownian motion and the exit measure X%, Using this new approach, we can
obtain an analogous result for the connected components of the support of the exit
measure.

The first part of this paper deals with the Brownian snake. Let us fix x € R?. The
Brownian snake is a Markov process W with values in the space #; of the stopped
paths in R? starting at x. {, is a reflected Brownian motion in R.. The law of the
process (Wi, s=20) knowing the lifetime process ({5, s >0) can be described in an
informal way: when { is decreasing, the path W, is erased on a small length; when
{s is increasing, the path W, is extended with a small independent Brownian path.
The Brownian snake is in fact a particular Markovian parametrization of the set of the
paths of the historical process of the super Brownian motion (see Dawson and Perkins
(1991), Dynkin (1991a, b), or Le Gall (1993, 1994) for the definition of the historical
process).

The second part studies the support of super Brownian motion at time 1. If we
denote by (Z, t>0) a super Brownian motion in R? starting at &, Tribe proved the
following result: for d >3, Z|(dy)-a.e., the connected component of the support of
Z; which contains the point y is the singleton {y}. The key tools here are a “Palm
formula” for the Brownian snake and some estimates of the hitting probabilities of small
balls by the super Brownian motion (see Dawson et al. (1989) for these estimates).

This proof can then be adapted for the exit measure from a domain £ (denoted by
X9). The result for this random measure is: if d >4, X“-a.c., the connected component
of the support of X which contains the point y is {y}. Here, some assumptions have
to be made on Q: we suppose it to be bounded and connected and its boundary
to be smooth enough (%?). Then, the Euclidean boundary coincides with the Martin
boundary, and, at every boundary point, there exists an outer tangent sphere with
constant radius »y > 0. The proof is again based on a Palm formula for X (Le Gall,
1994) and the estimates of the hitting probabilities of small balls of 0 (Abraham and
Le Gall, 1994).

Notation

The indicator function of a set A C R? will be 1,.

The set of finite measures on R? will be denoted by .Z(IR?).

For every finite measure m of .#(R?), Supp(m) will represent the closed support
of m.

If Q is a domain of R?, we will denote by 0% its boundary.

The ball of R? centered at x with radius » will be denoted by B(x,r) while we will
denote by Bso(x,r) the ball in 0Q2 centered at x with radius » :

Bag ={y€0Q,|x -yl <r}

Finally, the set of continuous functions from £ to F will be denoted by 4 (£, F).
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1. The Brownian snake

We consider the following state spaces:
W= {(f.O) € 6RLR) x R Ve, f(1) = f(0)}
and
W= {(f.O €W £(0) = x}.

For w = (f,{) € #°, we write w = f({). To simplify some notations, we will often
write, for w = (f,{) € #, w(t) instead of f(¢).

For every x € RY, we denote by II, the law of the Brownian motion in R starting
at x and, for @ >0, we denote by I1¢ the law of the Brownian motion in R“ starting
at x and stopped at time a.

For a path wy = ( f¢, o) of #;, and a € [0, {y], b >a, there exists a unique probability
measure Q)" on ¥, which verifies :

() Oy =0)=1.

(it) Vs<a, f(s) = fo(s), Q)%-as.

(iii) The law under Q. of (f(s+a).s=0) is H}}:(‘;)A

For every 1 > 0 and every (>0, we define a probability measure on R? by

0i(dadb) = e 5

C({+bY
2t

2C+b—2a) {,(_Cihz"_)z}l{o pncydadb
<a<hNg

+2(2nt) " exp { } 195} 80y(da)db.
()f(da db) is the law of (infpg  fu. fi) where f§ is a reflected Brownian motion in R.
starting at {. We then define, for every w = (f,J) € #", the kernels Q,(w,dw’) by

O(w.dw') = / 0:(dadb)Q’ ,(dw").

Theorem 1.1. (Le Gall, 1993, 1994). There exisis a homogeneous continuous #, -
valued strong Markov process Wy = (f,,{,) whose transition kernels are Q/(w.dn’).

The process ({) is a reflected Brownian motion in R,. Moreover, the conditional
law of the process (W) knowing ({,) is the one of an inhomogeneous Markov process
with transition kernel between times u and v:

i s Iy J
Rf,-_l.)(w,dw )= Ot usr<eps, (dw).

We may suppose that W is defined on the canonical space €(R . #y). For w & #.
we denote by Q,, the law of W starting at the path w. We also denote by Q7 the law
of this process stopped when the process ({;) reaches 0. Under Q}, the process ()
is distributed as a Brownian motion starting at {,. stopped when it reaches 0.

For every x € RY, we denote by x the trivial path of lifetime 0 reduced to the
point x. It is easy to see that x is regular for the Markov process (W, (Q, ). We may
consequently define the excursion measure away from x of the process W. We denote
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this measure by N,. This measure plays a very important role in the following. It is
characterized, up to a multiplicative constant, by:

Proposition 1.2. (Le Gall, 1994). (i) The law under N, of the process ({;) is the Ité
measure of positive excursions of the standard Brownian motion.

(i) Wy =X, Ny-a.e.

(iii) The conditional distribution under N, of (W;) knowing ({;) is as in Theorem
1.1.

We will suppose that N, is normalized such that

N, <supi,’s > 5) = i
520 2
In order to understand the meaning of the kernels (Q;), we can describe the condi-
tional joint distribution of the couple (W;,, Wy, ) under N, knowing ({;) for s, <s,: the
paths are two Brownian paths which coincide until time inf; <, <y, {; and then behave
independently; each one is respectively stopped at {5, and (;,.
We can construct the super Brownian motion thanks to the Brownian snake #. Let
us first denote by (/4, a=0, s=0) the local time at level a of the process ({;) and, for
a fixed p > 0, we set

o =inf{s>0, 12 > 4p}.

We can then define an .#(R?)-valued process (Z) by setting
1 /e P
w0, [z =y [ aten
0
for any nonnegative measurable function ¢ on RY.

Theorem 1.3. (Le Gall, 1993). Under Qy the process (Z;) is a super Brownian mo-
tion starting at pd,.

We also define the measures X; under N, by the formula

V20, (Xg) = / Al o(y),
0

where /! represents the local time at level ¢ at time s of {. If = represents the law
under 4N, of the process (1X;, 1>0) defined on ¢(R.,.#(R")), the measures Z and
X are linked by the following result (this result derives directly from the excursion
theory for the process (W;)): we denote by v = (v,, t>=0) the generic element of
F(R,, . #(R%)). Then,

Proposition 1.4. Let N be a Poisson point measure on €(R,, . #(R?)) with intensity
pZ(dv). The law under Qx of Z coincides with the law of the process

(/V,N(dv), t>0> .
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In other words, we can say that Z is the canonical measure of the super Brownian
motion starting at J, (see Dawson and Perkins (1991), Section. 2 for the definition of
the canonical measure).

We will now present a result that links the behavior of the process (#,) under Q,
to the excursion measures N,. Let us fix wg = (f,8p) € #:. We set

T = inf{s > 0, {, =0},

;,\: inf gu
O0<u<s

and we denote by Jo;, fi[, { € I, the interval excursions of ¢ ¢ away from 0 before
time 7. For every i €/ and s>0, we set

W;i([) - W(x,‘»x)/\/i,(CJ, +t)a t=0.

We then have the following characterization:

Proposition 1.5. (Le Gall, 1994). The measure
D 5, w(drdr)

iel
is under @Y, a Poisson point measure on [0,{o] x €(Ry, #;) with intensity

2di Ny y(dre).

One of the main tools that we will use in the following is a scale property for the
process (W,). Let A € R* and xo € RY. We define the mapping ¢% from G(R..#.,)
to 6(R.. #¢,) by ¢ ((Wy)uzo) = w' where

Yuz=0, W,/, — (fllt()’ Czll)

with

fu) =17 {fu,r;} ()—> - Xo} + xo,

The measure N, verifies the following scale property:
Proposition 1.6. (Le Gall, 1994).
¢ (Ny) = 22Ny i)
We now give a “Palm formula” for the measure X; which is a particular case of the
results of Dawson and Perkins (1991). Here, we use a formulation using the Brownian

snake (see Le Gall (1991) for such a formulation):

Theorem 1.7. Let F be a nonnegative measurable function on RY x . #(RY). Then,

N, { /'Xl(dy)F(,v,Xl )} = / n;(dy)w(F(y(n, /‘ '(drdx)xlﬁ,u\-))).
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where, for every y € Wi, N is under P a Poisson point measure on [0,1] x
E(R,, W) with intensity

4dt Ny, (drc).

Finally, we will use in Section 2 the estimates of the hitting probabilities of small
balls. These results have been obtained in Dawson et al. (1989, Theorem 3.1(a)).
Again, we give here a formulation in terms of the Brownian snake.

Proposition 1.8. There exists a constant Cy such that, for d >3, x,y € R and ¢ > 0,
N (Supp(Xi) N B(3.€) # ) < Ci(e72 A D).
Let us note that the constant C; does not depend on x, y.
We also need the “probability” under the excursion measure that the super Brownian
motion starting at J, leaves a ball centered at x. This result easily derives from the

scale property (Proposition 1.6).

Proposition 1.9. There exists a constant C; > 0 such that, for every R > 0,

NX((

:F&(Uﬂuxs>QtG[QCd}ﬂB&Jﬂc#@)

U Supp(x)) 1 B, R)* # @)

t=0

= Ne({#,, s>0} N B(x, R)* # 0)

= C,R*

Let Q be a domain of R? which contains x. We will now consider the exit measure
of the super Brownian motion from Q. The definition of this measure has been given
by Dynkin (1991a, b). We give here a presentation via the Brownian snake: let us fix
w E Wy, we set

(w) = inf{¢ € [0,{], w(r) & Q}

with the usual convention inf ) = 4oc.
For s >0, we define

Vs = (Cs - T(Wv))Jr-

Proposition 1.10. (Le Gall, 1994). For every s=0, we set

u u
A, = inf {u, / I{T(W!)<|;_}dv > S} = inf {u, / 1{7‘_>0}d1) > S} .
(] 0

Then A; < oo, Q,-a.s. and the process I's = v, is a reflected Brownian motion in
R, starting at (Lo — 1(W)))+.



R Abraham /! Stochastic Processes and their Applications 60 (1995) 227 245 233

Let us denote by L%(s) the local time at level ¢ at time s of the reflected Brownian
motion ;. We then set

B
Lf,) =10 </0 I{T(m)<§“}du> .

L¥ only increases when t(W,) = {,. It is easy to see that L can also be defined under
@, and under N,. We then define under N, the exit measure X¥ by

Wiy

<X'Q~<P>:/ dLE ()
J0

for every nonnegative measurable function ¢ on 2. Thanks to the support property of
dL¥, it is clear that X¥ is supported by 2Q.

R

A “Palm formula” for the random measure X% has been proved by Le Gall in
(1994). We denote by II¥ the law of the Brownian motion in R starting at v and
stopped when it leaves Q, seen as a probability on ¥#,.

Theorem 1.11. Let F be a nonnegative measurable function on RY x . #/(RY). Then.
N, [/Xg(dy)F(y,XQ)} — /Hf.l(dy)[Em<F(?, /.1"(dtd;<)XQ(1<))>,

where, for every y € Wy, A" is under P17 a Poisson point measure on Ry x G(R .. #")
with intensity

41{,<§ )d[ N-f(,)(dk‘).

The estimates of the hitting probabilities of small balls on the boundary ¢Q have
been obtained in Abraham and Le Gall (1994):

Theorem 1.12. For d>4,x € Q, y € ¢Q and £ €]0,1/2],
N (Supp(X ) 1 Bea(y,€) # 0) <C(x)e .

We will give a partial proof of this result in Section 3 because we need the exact
form of the function C(x).

2. The connected components of the support of super Brownian motion

As mentioned in the introduction, we will give in this section a new proof of Tribe’s
result (Tribe, 1991, Theorem 1):

Theorem 2.0. For d =3, if we denote by Comp(y) the connected component of
Supp(Z,) which contains y, we obtain a.s.

Comp(v) = {v}, Zi(dy)-ae.
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In fact, to prove this result, it suffices to prove an analogous result for the
measure X;:

Theorem 2.1. For d =3, if we denote by C(y) the connected component of Supp(X))
which contains y, we obtain, Ny-a.e.

C(»)={y}, Xi(dy)ae.

Indeed, using the relationship between the measures Z and X of Proposition 1.4, we
obtain

N
z =) X,
i=1
where N is distributed according to a Poisson law of parameter
Nx(X1 # 0) = Ny(sup{ > 1) = 1/2

and where the (X');<y are independent processes distributed according to the law
of the measure-valued process X under N,(- | X7 # 0). Let y € Supp(Z,). Then,
v € Supp(X]) for some i<N. Let us suppose, for instance, that it is for i = 1. Using
the estimates of Proposition 1.8, and making ¢ tend to 0, we obtain

vz € RY,  Ni(z € Supp(Xy)) = 0.

Thanks to the independence of the X and to the Fubini theorem, it follows that, a.s.,
X/ (dy)-ae.,

Vie{2,....,N}, y¢& Supp(X)).
So, X]'(dy)-a.e., there exists £ > 0 such that

Comp(y) N B(y,e) = Ci(¥) N B(y,¢),

where Ci(y) represents the connected component of Supp(X]') which contains y.
Therefore, Theorem 2.0 is a consequence of Theorem 2.1.

Proof of Theorem 2.1. Let ¢ €]0,1[. We will first estimate a quantity linked to the
event “the super Brownian motion considered at time 1 does not charge an annulus of
radii € and 2¢ centered at a typical point of the support of X;”. This quantity is

Nx {/X‘(dy)l{Supp(xI )rwAnn(y,s,ze):w}} ’
where
Ann(y,e,2e) ={z € RY | e < |y —z| < 2¢}.

The relationship between this quantity and the theorem is that we want to show that

N (/Xl(dy)l{c(y)#{y}}> =0.
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Let =, = 2%, Then,

. (/ X'(dy)l{C(.»-#{y}})

<N ('/X‘(dyv)liggfl{Ann (15028 )mSupp(/m#w})

(/Xl(dY)“m Supl{Annn . 2:0NSUPPL) = W}>

J |

I

k—oc

NSupp </L,,fftf"(dt dK)X]-,(K)) = (Z)})

using the equality N, ((X;,1)) = 1 and Theorem 1.7. To prove that this latter integral
is equal to 1, we will first prove, thanks to the following Lemmas 2.2 and 2.3, that it
i1s bounded below by a positive constant and then we will apply a zero—one law.

| — /H (dy)PC )(llmsup{Ann(y, gy 264)

Let us set E = (R, #").

Lemma 2.2. There exists a constant Cy > 0 independent of & and 7 such that

pt (Supp < / ' .,rirf"'(dtd;\')Xl,(K)> NB(p(1).2¢) = Q)) =Cs.
{01 —£2]xE

Proof. Using the exponential formula for the Poisson point measure,

P (Sup]) (/ »/f"'/‘(dld’\')> B(y(1).2¢) = @)
(0.0 =22 x £

1—=22
— exp {— /0 4ds N.y) (Supp(Xl_s) A B(3(1).25) # @)}

1
= exp {44 / ds Ny _gy (Supp(XS) NB(y(1).2:) # @) } .
Using Proposition 1.6, we obtain for s>0,

N:w,v)(Supp(Xg) NB(y(1),2¢) # @)
! =
= ;N:f'(l—-v)'\/i (Supp()(l)m B (—(\f— 7) * @)
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using Proposition 1.8. The evaluated quantity is consequently bounded below by

a2 [ ds
exp { —4C(2¢) s =G

for a constant C3 > 0. [

Lemma 2.3. There exists a constant Cq4 > 0 independent of ¢ such that, if y verifies

y([1 = £, 11) C B(y(1),/2), (2.1)

then,

P (Supp </ ,/V(dldK)Xlg(K)> ﬂB(y(l),g)“ — @) 2 Cy.
[1—e21]xE

Proof. We have

U:D(V) (Supp (/ JV(d[ dK)Xlt(K)) ﬂB('}'(l),E)C = ®)
[1—&2,1]xE

1
:exp{—/I 4dt Ny([)(SUPP(let)mB(V(l)ae)C #@)}

_52

g2

> exp {_ /]1 4dt N},(,)(Supp(Xlﬁt) N B(y(t)e/2) # w)}
thanks to condition (2.1). Then, using the scale property of Proposition 1.6, we get
Ny (Supp(i - N B((0),2/2)° # 0)
= No(Supp(Xi—) 1 B(O,e/2)° # 0)

1 =)
= 7—No (Supp(Xl)mB (0’2\/—1“3) 7 ®>

4C,
ez

~

according to the estimate of Proposition 1.9. We therefore find that the considered
probability is bounded below by

1
4C
exp{—/| 74dt€—22}:C4>0. t

We now use the zero—one law for the Brownian motion reversed at time 1 to easily
obtain that

! (lim sup{V([l — e, 1]) CB(y(l),ek/z)}) -1

k—o0
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Let us fix y in that limit event. Then there exists a subsequence (g) of (s4) such
that

([T =% 10) CB(x(1).€4/2),

for every k € N.
For every 0 > 0, let 4; be the g-algebra generated by the Poisson point measure

.17 considered on the subset [I — d,1] x £. Thanks to the independence property of
Poisson point measures, it is clear that the g-algebra

{g()w - ﬂ /'(/}(i

30

is PY)-trivial. Moreover, the event

As = lim sup {Supp </ , l»"(dtdK)Xl,(K)> N Ann(p(1).e;,2¢;) = V)}
—0.1]xE

k—

which is %;-measurable coincides PU-a.s. with

k—oc

A = lim sup {Supp (/ A(de dK)lez(’\‘)> O Ann(p(1),24,22;) = (A} :
[0.11XE ,

Indeed, we only have a finite number of atoms (z,x;) of .+ such that ; < 1 -0
and X,_, (x;) # 0, and we again use the property N,(z € Supp(X,)) = 0 for every
x,z € RY, a < 0. According to Lemmas 2.2, 2.3 and the choice of 7 and (1)

p(:‘)(A(i) — [p(‘,')(A)

> lim sup (IP(’) (Supp </ b '(dtdh‘)) NB(y(1),2:) = V))
k—oc S0 e < E
x P (Supp </ AT(de d/{)) AB(p(1), SZ)C = V’))
1=l )xE

=2C3Cy > 0.

If &, is a sequence which decreases toward 0, the event lim | A,;”(a‘:s' AY 1s in the

o-algebra %, and we conclude that
POA) = PYim 1 4;5,) = 1.

We have consequently proved that

. <limsup{supp (/ 1’ '(d[dK)Xl\/(K)> N Ann(p(1), 2, 284) = (ﬂ}> =1

k—o0

I1!(dy)-a.s.. which leads to

N,—ae., X|(dy)—ae, C(v)={y}. J
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3. On the connected components of the support of the exit measure of
super Brownian motion

Let Q be a domain in RY. We suppose that € is connected, bounded and regular
(%?). As before, we denote by E the set of continuous functions from Ry to %~ and
by X the exit measure of the super Brownian motion out of Q. We present here a
result on the connected components of the support of X,

Theorem 3.1. We suppose d =4. If we denote by C(y) the connected component of
the support of Xt which contains y, then, for every x € Q, Ny-a.e.,

C(y)={»} XQ(dy)-a.e.

Remark: In Abraham and Le Gall (1994), it is proved that, if d = 2, X is absolutely
continuous with respect to the surface measure on Q2 and consequently Theorem 3.1
is false for d = 2. On the contrary, for d = 3, the measure X is singular (although
the Hausdorff measure of its support is 2). Yet, the problem studied here 1s still open
in that case.

As mentioned in the introduction, we will use some estimates of the hitting proba-
bilities of small balls on the boundary ¢€Q for the process (W) given in Abraham and
Le Gall (1994). Nevertheless, we need a little more precise result here:

Lemma 3.2. There exists a constant Cs > 0 such that
Ny (X (Bea(yo.€)) > 0) <Csp)! ~e?=,

where p(x) represents the distance between x and 0.

Proof. Let us first suppose that p(x) > 2¢. The proof of Theorem 3.1 of Abraham
and Le Gall (1994) gives

C
Nx (X2 (Bra(0.2)) > 0) < 1L (B: € Bea(n.5¢)),
where
T=inf{t > 0, B, & Q}.

The upper bound

d—1
Hx (Br & B(’?Q(yO,SE)) < (ﬁ)

is then easy to prove.
In the case p(x) < 2e, we use Proposition 1.9:

N, (XQ(B(?Q()}(),E)) > 0) <N, ({ﬁ/s, 520} N B(x, p(x))C # @)

<
p(x)?

<C5p(x)l—d€d-3' 0
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Proof of Theorem 3.1. The ideas are the same as in the proof of Theorem 2.1. We
will consequently first estimate a quantity linked to the event: “the Brownian snake
does not visit an annulus of 0Q of radii € and 2¢ centered at a typical point of the
support of X*”. Let us set

Annpg(v,e.2e) = {z € 08, e K|y — z| <26},

Let (s4) = 27%. We want to estimate

v -
Ny {/ X (df‘})hl‘risipI{Supp(xf?)mAnn;Q(y.g‘zq )@}} :

Using the Palm formula of Theorem 1.11, we get that this quantity is equal to

/. H?(dy)ﬂj’(’) (lim sup (Supp (/ A7(dt dK)X“(K)) N Anngg (y(t), £4.28) = V’) ) .

k—oc

We can then use the measure I1¢, which is the law of Brownian motion starting at x
and conditioned to leave Q at y € 2Q. More precisely, 11, is the law of the A-process
of Brownian motion started at x associated with the harmonic function K (~.v) where
K is a Poisson kernel of Q (see Doob, (1984, Ch. X)). We have

drig, K(y(0),y)

KITEN - K(x,y)

and

/ o~

7= Hg‘,(y)-a.s.

If we denote by u2(dy) the harmonic measure on ¢Q, it is easy to see that
’ 2 Q
¢ = / we Ay,

and then the studied quantity is equal to

/‘ 1(dy) / Ilfi‘,(dy)[}?’("’(lim sup(Supp( /l '(dsz)XQ(K)>

k—-oc

NAnncg (v, 2, 2e;) = (A))
We then define, under Hf‘ v € #, by

!/ ry==vzw T— 1) R
VieR,. {1() V}(( )#)

Lo = Gy = T(?")-
Let us denote by ﬁyw\, the law under Hf), of the process 7' (this is the law of a
G""(x,-)-Brownian motion starting at y where G* denotes the Green function of the
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domain ). Then, our quantity is equal to

/ pe(dy) / ‘ﬁy,x(dy) P<>‘><1im sup <Supp ( / A”(dtdK)XQ(K)>
k—oc

ﬂAnnag (y, Eks 2Ek) = @))

Lemma 3.3. There exists a constant C; > 0 independent of ¢ such that, if y € W,
verifies the condition

Vi e[0,62], () €EB (y%) 3.1)

then

pe) (Supp </ A”(dtdx)) NBaa(y.e) = @) = (7.
[0,22]XE

L€

Proof. We get

f:
= ©Xp {‘ /o 4dt/ N"f’(’)(d’c)l{Supp(){“)mB,«Q()us)Csé@}}

> exp {— /0 4diN.g) (Supp(XQ) nB (y(t), %) £ m)}

using condition (3.1). Proposition 1.9 allows us to bound below this probability by

SZ 4
exp§ — 4dt—gz =C; > 0. O
0 &

Lemma 3.4. Let K > 0 and B €]0,1/2[, with (1 —d) < —1. There exists a constant
Cs > 0 independent of ¢ and & such that, if 6 > 0, €2 < ¢ and if y € W, verifies
the condition

(, A\ O 1
v,ellf’gz J —p(i(e’) ZK7, (3:2)

then

P& (Supp ( / ./V(dtd;c)XQ(K)> N Baa(y, 2¢) = ®> >Cg > 0.
[€20[xE

Proof. Using Lemma 3.2, we get

PO <Supl’ (/ A(dt dx)) N Bag(y.2¢) = ®>
[£2,0[xE

SAL.
— exp {— / | 4diNg (Supp(XQ) N Bag (7(0),2¢) # (ZJ) }
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oL 1—d
= exp ng/ ds ed*3p(y(t))

(L. Ad)E? L
= exp —Cgad’l/ dt/)(",'(azt))
1

c . 1—d
(LAY~ 3 (0 521
= exp 7C9/ dt (i( ))>
1 €

> exp{—Clo/ dztf‘“‘“} =Cs >0
J1

thanks to condition (3.2). O

Let us now fix § €]0,1/2[ such that (1 —d) < —1. We put together conditions

(3.1) and (3.2) by setting, for every £ > 0 and § > =2,

. e y A 1
A° = {y € #y; y([0,€’]) CB (y, E) DVt e {1, ‘ :25’} , ;p(y(gzl)) ZKz/‘}.

Let us note that the sets 4° are increasing when § is decreasing.

Lemma 3.5. We can choose K > 0 such that

., (U limsupA?A> =1

o K=o

Proof. Let us set

A= U lim supA?A.

3>0 k—oc

According to Doob (1984), the tail g-algebra generated by 7 is ﬁ‘ «-trivial because
the function K(-, y) is minimal harmonic. As 4 belongs to this algebra, we have

ﬁr\,x(A) =0 or 1.

Furthermore, we can say, thanks to the smoothness of ¢Q, that this probability does

not depend on y. Let us denote then by (ﬁx the law of the process reversed in time
under the probability 1. We still have the relation

R : Q —
I, = Hy (d}") I nx
and consequently, to prove that
—
I, (4)=1
for every v € 0Q, it suffices to prove that
T (A)2b

for some strictly positive constant b.
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We will first show that the probability of 4° can be bounded below for § < §; by
a positive constant independent of ¢ and §. Let ny = sup{n € N, 220+ <§/s?} and
let n<ny. We also set, for y € #, and D a domain of R?,

Tp(y) = inf{z 20, y(t) € D}.

Then,

T, (3t e [£22%,622 D], p(y(1)) < Ke' =)

(3 e [£222,8], p(3(r)) < Ke22Hn+h))

<
< sup [P > e%2™).
z€Q
p(z)=Ke22 0

Then, we use the fact that for every boundary point y € 0Q, there exists an outer
tangent sphere of radius 7y independent of y. As, in order to reach this sphere, the
process must exit £2 first, we can bound above II({ > £22%") by the probability that
a Brownian motion starting at a distance of K£22#("+1) of the ball B(0,ry) reaches that
ball after time £22%7, i.e.

242
<Hr0+K€22/!(r1+l)(TB(O,rU) > 727"

2~2n
g2
= P e— <
IIy K224 1) \TB o 10
K€22/1117+1l ’K€22/i(rz+| )
22n
< — <
<1 K224B(n+1) \TB(_"_O JL)
Ke4l' Keal
22n
= —_————— < =
I K224+ 1) \TB<_ 0 _n ) < oo | +1L TB(_ 0 ) &0
Ke4! Ked? Kea Ked?

To estimate both terms, we use some results of potential theory which can be found
in Port and Stone (1978) for instance. For the second term, we use the following result:
if d>3,r > 0, x € R? such that || x || >r, then

N
IL(Ts, -y < 00) = (m) .

So, we get

d-2
o | 7 oo | =1 —2
! B(——’-'O— —0) ro + Kedh

Ked! Ked?
<CpKe

for 4, small enough.
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For the first term, we use the following property: if D is bounded, then
Jim A(OIL( < Tp < 00) = Cap(DYL(Tp = oc),
where Cap(D) represents the capacity of D and
H(t) = Qr)Y*2(d/2 — 1

Then, we get

22;1
I K223p(nt 1) ng(_L.’_U) =
Kedf Kedl
and
__n ro .
Cap (B ( part K54/*)> M TB(_L ¢) -
Ked# K=ol
U, ~ CIZ(KA222)1(172/§))(1,/2~|
< CIBdezz—nﬁ(
with % > 0.
Finally,

T (3 (20N LL p(n) <k 1)

Hy

<D0 T(F0e (227,220, p(300) <k )
n=(0)

Hy

< (u, + CyiKe)

n=0

>
<(n0 + I)CHKE + Z“n
n=0

<CuK|Inele + C1sK942
<C K

for 0, small enough, with Ci4 independent of ¢ and &.
Using a scale property, it is easy to prove that

T, (3(10.2) < B(re/2) ) 2a > 0
We then obtain, for K > 0 smail enough,

)z 1 T (5([0.6%1) 1 B(y,2/2) 1)

— ONG ] ] 5
-0, <3t € [1, E;—’} C=p(vED) < Kt“)

&

za— CgK =b > 0.

243
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So,

— . 5 . — 5
IT, ( limsup A, | = limsup I1,(47)>b

k—oc k—oo

and of course
T ([ timswdl | 26>0 C

0<d<s koo

We have, as in Section 2,

Q
N (/X (dy)l{C(_v#{y}})
Q .
<E-=N, (/X (dy)h;isip (I{Ann;g(y,sk,zsk )ﬁSupp(XQ#(/J}))

b GNEE
—1- / 1(dy) / I, ()P (limsup(T g o)) )

k—o0

Remark: Here, we use N, ((X, 1)) = 1.

According to Lemma 3.5, o y,x-a.8., there exists dp > 0 and a subsequence (&}) of
(er) such that y € Ag? for every k € N. We then use the following zero—one law:
k

Lemma 3.6. Let 6 > 0. On limsup,_, {7y € 42}, we have
P (U lim suprA> =1,
>0 k—co

where

B = {Supp (/ A(dt dK)XQ(K)> N Annog(y,e,2¢) = @}-
[0,01x E

Proof. We have proved with Lemmas 3.3 and 3.4 that, if y € Ai,
PONB2 )= Ci7 > 0.
As we supposed that

v € lim supAgk

k—o0
for all 6 <dy, we also have
P <lim supBﬁA) =2Cp7p >0
k—oc

for every d<dy. But, Bf € 95 where

g, =0 (,/1/’[

QHXE)'
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Therefore, the increasing union

U lim sup th

g>p Ko

is in the o-field %y.. As in Section 2, this o-field is P'"-trivial. [J

With Lemmas 3.5 and 3.6, we obtain that <ﬁ‘n\,(dy)—a.s‘, Pt-a.s., there exists & > 0
such that the event

lim sup {Supp </ .;1"”(dtd1c)XQ(K)) M Annzo(7(0), 24, 264) = (/)}
JI0B] X E

k—nc

is realized. It is almost the desired result. It remains for us to prove that the mecasure
/ i dOX ()
JI0.L%E

does not charge a small ball of nonzero radius centered at »(0). As in Section 2. this is
a consequence of the fact that there exists only a finite number of atoms (z;, ;) of the
measure . ) for which X®(i;) # 0, and of the property N, (:(0) € Supp(X9)) =
0 forevery xe Q. 0O
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