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Abstract

We analyze the lifetime consumption-portfolio problem in a competitive securities market
with continuous price dynamics, possibly nontradeable income, and convex trading
constraints. We define a class of “translation-invariant” recursive preferences, which includes
additive exponential utility, but also nonadditive recursive and multiple-prior formulations,
and allows for first and second-order source-dependent risk aversion. For this class, we show
that the solution reduces to a single constrained backward stochastic differential equation,
which for an interesting class of incomplete-market problems simplifies to a system of ordinary
differential equations of the Riccati type.
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1. Introduction

In this paper, we analyze the lifetime consumption-portfolio problem for
an agent with a possibly nontradeable income stream who can trade in a
competitive securities market with essentially arbitrary continuous price dy-
namics, under the constraint that the vector of risky-asset position values must
lie in a given convex set at all times. Starting with the general first-order conditions
of optimality, we consider increasingly restrictive and increasingly tractable
formulations.

It is well known in economics that an easily solvable class of problems with
nontradeable income arises with additive exponential utility and Gaussian dynamics
(see, for example, [38]). Additivity of utility, however, is known to impose an ad hoc
relationship between intertemporal substitution and risk aversion (see, for example,
[12]). In particular, the risk aversion coefficient with expected discounted exponential
utility is entirely determined by an agent’s preferences over deterministic consump-
tion plans.

A main contribution of this paper is to define translation-invariant recursive
utility, a generalization of additive exponential utility that retains the tractability
advantages of the latter, but frees the specification of absolute risk aversion from
preferences over deterministic plans. Moreover, risk aversion can be different for
every source of risk, for example, reflecting the source’s ambiguity in the sense of
Ellsberg [11], and also risk aversion can be either first or second order, in a dynamic
version of the distinction made by Segal and Spivak [34]. For a special class of
translation-invariant recursive utilities and dynamic investment opportunity sets, the
Gaussian case included, the incomplete market problem reduces to a system of
Riccati-type ordinary differential equations. The result is a modeling framework
that, relative to the exponential-Gaussian benchmark, is significantly more flexible,
yet still highly tractable.

This paper’s analysis is a natural continuation of that in Schroder and Skiadas
[32], hereafter abbreviated to SS. In the latter there is no endowed income stream (or
if there is one, it is traded), portfolio constraints are imposed in terms of proportions
of wealth, and the focus is on simplifications achieved through the assumption of
scale invariance (or homotheticity), which is inconsistent with a nontradeable income
stream. In contrast, in this paper constraints are imposed on dollar amounts, a
nontradeable income is allowed, and the focus is on simplifications achieved by
translation invariance (or quasilinearity) relative to a fixed plan. In SS we defined
source-dependent relative risk aversion, while here we define source-dependent
absolute risk aversion.

The first-order conditions of optimality with recursive utility take the form of a
system of forward-backward stochastic differential equations (FBSDE), corre-
sponding to a PDE system in a Markovian setting. The forward and backward
components of the FBSDE system are shown to uncouple under a scale-invariance
assumption in SS, and under a translation-invariance assumption in this paper.
Methodologically, both papers follow the approach originating in Cox and Huang
[3] and Karatzas et al. [17] for the case of additive utility and complete markets, and
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extended in Skiadas [36], Duffie and Skiadas [9], Schroder and Skiadas [30], and El
Karoui et al. [10] to recursive utility settings. For a broader context of FBSDE
systems in control theory we refer to the books by Ma and Yong [26] and Yong and
Zhou [39].

A related literature on constrained portfolio selection with additive utilities
[14,18,35,5,22,16] focuses on dual formulations that involve the minimization of the
value function over all possible completions of the market. Cuoco [4] showed
existence of an optimum under nontradeable income and additive utility with primal
methods. We do not discuss duality or existence in this paper. Extensions of the
analysis in SS and this paper to nonBrownian settings are developed in Schroder and
Skiadas [33].

An alternative to the utility gradient approach, since Merton [27], is
dynamic programming. The working paper version of this paper (available at
www.kellogg.nwu.edu/faculty/skiadas/research.htm) gives a nonMarkovian dy-
namic programming optimality verification argument for translation-
invariant recursive utility, analogous to the one given in SS for the scale-invariant
case. Related Markovian dynamic programming treatments with non-
tradeable income, additive discounted power utility, and i.i.d. instantaneous returns
include Duffie et al. [8] and Koo [21]. The recent additive-exponential-utility solution
of Musiela and Zariphopoulou [28] is nested in the setting of this paper, and is
extended (in Example 25) by allowing recursive utility and a more general asset
structure.

The remainder of the paper is organized in seven sections and two appendices. In
Section 2, the market and optimality are defined. In Section 3, optimality is
characterized in terms of the relationship between a utility (super)gradient density
and a constrained notion of a state-price density. In Section 4, we apply the
characterization of optimality to generalized recursive utility, followed by the
translation-invariant case in Section 5. In Section 6, the important “‘quasi-quadratic”
specification is introduced, used in applications in the final two sections. Appendix A
characterizes aggregators of translation-invariant generalized recursive utilities, and
Appendix B contains proofs.

2. Market and optimality

Given is an underlying probability space (L2, %, P) supporting a d-dimensional
standard Brownian motion B over the finite time horizon [0, T]. All processes
appearing in this paper are assumed to be progressively measurable with respect to
the augmented filtration {#, : t € [0, T]} generated by B. We also assume that % p =
Z . The conditional expectation operator E[-|Z%,] will be abbreviated to E,
throughout. The qualification ‘“‘almost surely” (or a.s.) will be often omitted where
it is implied by the context.

Given any subset S of a Euclidean space, #(S) denotes the set of all S-valued
(progressively measurable) processes, and .Z,(S) denotes the set of all x € Z(S) such
that fOT lIx:I” dt< oo a.s. (where || - || is Euclidean norm). We will make frequent use
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of the spaces:

Sy ={x € Z(R) : E[(sup,cpo, 1| x/I")] < o0},
T
H = {xe Z(R) : E[/ xfdt—i—sz} <oo}.
0

We consider # as a Hilbert space under the inner product

T
(x1y) =E[/ xzy,dt+xTyT}
0

As usual, we identify any elements x and X in J# such that (x — X|x — X) = 0.

There is a securities market that allows instantaneous default-free borrowing and
lending at a rate given by the stochastic process r € Z(R). We refer to trading at
this rate as the “money market.”” The rest of the securities market consists of trading
in m<d risky assets, whose instantaneous excess returns (relative to r) are
represented by the m-dimensional 1t6 process R, with dynamics

dR[ - ﬂfz d[ + 05/ dB[,

where pR € Z1(R") and of € Z>(R™™). We assume throughout that of is
everywhere full-rank (and therefore everywhere invertible if m = d).
A trading plan is any process ¢ € L (R™) such that

t
/ (¢ uR| + ¢plaRaRp)ds<oo as. forall t<T.
0

(All vectors are assumed to be column vectors, with a prime denoting transposition.)
We interpret the ith component of ¢, as the time-r market value of the agent’s
investment in security i € {1,...,m}, the remaining wealth being invested in the
money market. A (financial) wealth process is any process W such that W~ € 9,
where W, = max{0, —W,}. (This restriction is imposed to rule out doubling-type
strategies.) A plan (c, ¢, W) is a triple of a consumption plan ¢, a trading plan ¢, and
a wealth process W.

We consider an agent characterized by the primitives (%, Uy, wo, e, ). The set
% C ', whose elements are the consumption plans, is a convex set such that ¢+ b €
% for any ¢ € ¥ and bounded b € Z(R). Given any ¢ € €, we think of ¢;, 1< T, as the
time-7 consumption rate and ¢y as a terminal lump-sum consumption or bequest.
The function Uy : ¥ — R is a (strictly) increasing utility function over consumption
plans. The positive scalar wy>0 is an initial financial wealth, while e € 2 is an
endowed income stream, with e, representing a time-f income rate, and er
representing a terminal lump-sum payment. The set @, a nonempty convex closed
subset of R™, is the agent’s constraint set, in which the vector of risky-asset
investment values is restricted to lie at all times. (The general analysis would also go
through if @ were made state and time dependent, subject to some technical
measurability conditions.)
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Example 1. Missing market i is modeled by requiring that ¢’ = 0 for all ¢ € ¢. A
minimum investment constraint in asset i is modeled by requiring that ¢'>1 for all
¢ € @, for some lower limit /. If / = 0, this becomes a short-sale constraint.

The plan (c, p, W) is feasible if'

¢, e®, <T,
and it satisfies the budget equation:
Wo=w, dW,=Wur+e —c)di+ ¢,dR,, cr=Wr+er. (1)

A consumption plan c is feasible if (c, ¢, W) is feasible for some trading plan ¢ and
wealth process W. A consumption plan ¢ is optimal if it is feasible and U(c) = U(¢)
for any other feasible consumption plan ¢, while the plan (c, ¢, W) is optimal if it is
feasible and c¢ is optimal. A trading plan ¢ is feasible (resp. optimal) if (¢, ¢, W) is
feasible (resp. optimal) for some (¢, W).

3. Utility gradient and state pricing

Fixing a reference plan (c, ¢, W), we formulate conditions for its optimality in
terms of a utility (super)gradient density and a constrained notion of state pricing.
These conditions are applied in subsequent sections in increasingly restrictive
settings.

A process x € A is a feasible incremental cash flow at c¢ if ¢+ x is a feasible
consumption plan. A process @ € J# is a state-price density at c if (n| x) <0 for every
feasible incremental cash flow x at ¢. A process © € # is a utility supergradient
density of Uy at c if for all x €

c+xe® implies Up(c+ x)<Up(c)+ (n]x). (2)
A process © € A is a utility gradient density of Uy at c if for all x €

Uo(c + ax) — Up(c)
» .

¢+ ax € € for some «>0 implies (7w|x)= h?ol

If = is a supergradient density of Uy at ¢ and the utility gradient of U, at ¢ exists,
then the utility gradient density equals 7.

The supergradient and state-price properties combine to characterize optimality
in the following proposition, whose proof is essentially the same as that of
Proposition 3 in SS (short for Schroder and Skiadas [32]).

Proposition 2. Suppose (c,p, W) is a feasible plan. If © € H# is both a supergradient
density of Uy at ¢ and a state-price density at c, then the plan (c,p, W) is optimal.
Conversely, if the plan (c, ¢, W) is optimal and & € A is a utility gradient density of U
at c, then © is a state-price density at c.

"More precisely, this means that the process x defined by x, = 1{¢,¢ @}, t<T, and x7 = 0, is the zero
process as an element of #. The analogous interpretation will always be implied for statements of the
form “x, € $” or “x, = y,”.
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To apply the last proposition at the reference plan (c, ¢, W), we need to compute
the dynamics of the utility gradient (or supergradient) density at ¢, and to develop a
criterion for recognizing these dynamics as the dynamics of a state-price density at c.
Examples of utility (super)gradient calculations appear in Duffie and Skiadas [9],
Schroder and Skiadas [30], Chen and Epstein [2], El Karoui et al. [10], as well as in
SS. The characterization of state-price dynamics in the current setting is provided in
the following result, stated in terms of the support function dg : R" — (—00, 00]
defined by

do(e) = sup{¢’s : ¢ € D). (©)

Theorem 3. Suppose that (c,p, W) is a feasible plan.
(a) (Sufficiency) Suppose that m € S, tW € 1, and for some n§ € L(R?),

dn—Tf[ = —I; d[ — 17; dB[ for t< T; a”ld QS;C[ = 5@(81) for < T’ (4)
R

where ¢ = uR — g®y.

Then © is a state-price density at c.

(b) (Necessity) Suppose (for simplicity) that r is bounded, and n € &\ is a strictly
positive It process. If © is a state-price density at c, then (4) holds for some n €
ZH(RY).

By Proposition 2, if 7 is a utility (super)gradient, (4) states the first-order
conditions of optimality. In this case we can think of 7 as being the agent’s subjective
marginal pricing kernel at the optimum, which may not be consistent with the way
the market prices assets, due to the agent’s constraints. For example, in equilibrium,
an agent can regard a stock overvalued if the agent is constrained from short-selling
the stock. If 7 follows the dynamics of condition (4), the agent assesses a subjective
market-price-of-risk process . Given risky asset positions ¢ € @, ¢'¢ can be thought
of as the instantaneous expected mispricing benefit to the agent, which condition (4)
states must be maximized along the optimal path.

The market is complete if m = d and ® = R?, in which case there exists a unique,
up to positive scaling, state-price density, #, whose dynamics are given in (4) with
n = (6®)~'uR, provided the process 7 so defined is in .. In the constrained case, the
utility gradient density, 7, at the optimum, assuming it exists and is a strictly positive
Itd6 process, defines a market-price-of-risk process #, which can be interpreted in
terms of a fictitious complete market as follows. (Note that the assumption m = d is
without loss in generality, since nontradeability of an asset can be modeled
through @.)

Corollary 4. Suppose that (c, p, W) is an optimal plan, m = d, r is bounded, the strictly
positive Itd process n1 € S5 is the gradient density of Uy at ¢, and nW € &1. Then
there exists n € L(RY) such that condition (4) holds. Moreover, the plan (¢, $, W) is
optimal for the same agent, but with endowed income e + 0¢(¢) instead of e, and no
constraints, in a fictitious complete market obtained from the original market by
assuming instantaneous expected excess returns fif = ¥y instead of u®.
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Proof. The necessity part of Theorem 3 gives the first-order conditions of optimality
in the original market. Feasibility of (¢, ¢, W) in the fictitious market is confirmed by
direct computation of the budget equation. Finally, optimality in the fictitious
market follows by the sufficiency part of Theorem 3. [

4. Recursive utility

In this section, we elaborate on the first-order conditions of optimality for the case
of generalized recursive utility, by which we mean a utility process that is defined as a
solution to a backward stochastic differential equation (BSDE), a continuous-time
version of a general backward recursion on an information tree. The specification
nests the continuous-time recursive utility of Duffie and Epstein [6], time-additive
utility being a special case, the multiple-prior formulation of Chen and Epstein [2], as
well as robust-control type criteria through the type of argument in Skiadas [37].
Further properties of generalized recursive utility are discussed in Lazrak and
Quenez [23], El Karoui et al. [10], as well as SS. In some cases,” the equivalence in
Schroder and Skiadas [31] can be used to mechanically extend the analysis that
follows to include linear habit formation.

We define the utility in terms of an aggregator function F:Q x[0,T] x R x
R'* - R, and a set % € % of utility processes. The random variable F(T, ¢, U, X)
does not depend on the arguments (U,2X), which are therefore notationally
suppressed. We henceforth assume that, given any consumption plan ¢, there is a
unique (U, 2Y) € % x #>(R?) that solves the BSDE

dUt = _F(l> Cr, UT: Z[U)dt+ Z[U/dBty UT = F(Ty CT)’ (5)

and we define the utility process of ¢ by letting U(c) = U. We also assume that
F(w,t,-) is a concave function for all (w, ), and the derivative, F.(w,t,-, U,X), of
F(w,t,-,U,2X) exists and maps R onto (0, 00).

Example 5 (Duffie—Epstein utility). Duffie and Epstein [6] analyze the aggregator
form

F(t,e,U,2)=f(t,c,U) —

ALY yy (©)
2

for some functions f: Q2 x[0,7] x (0,00) x R— R and 4: Q2 x[0,7T] xR — R.

The coefficient A can always (under some technical regularity assumptions) be set to

zero after a suitable choice of an ordinally equivalent utility. Additive utility is

obtained if f(z,¢, U) = u(t,c) — f,U and A = 0.

The aggregator F need not be smooth in (U, ), a generality that is useful, for
example, in incorporating the Chen and Epstein [2] formulation. The super-
differential of F with respect to the variables (U, ) at (o, t, ¢, U, X) is defined as the

For example, this is the case under conical trading constraints if the short rate process and the habit
parameters are all deterministic. The equivalence applies generally in the complete-markets case.
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set Oy xF)w,t,c, U,2) of all pairs (a,b) € R x R? such that
Flo,t,c+x,U+y,2+2)<F(w,t,c, U,2)+ F(w,t,c, U, 2)x +ay + b'z.
We now fix a reference plan (c, ¢, W) and characterize its optimality. Letting
(U, 2Y) be the solution to BSDE (5), we define the process
Jy=Ft,c,, U, ZY). (7)

In a time-7 formulation of the agent’s problem, A, is the Lagrange multiplier for the
time-¢ wealth constraint, since it provides the first-order utility increment (per unit of
wealth) as a result of slightly changing time-¢ wealth. Consumption can be expressed
in terms of 4 by inverting the above equation: ¢, = .#(t, 4,, U;, 2,), where the function
I Q x[0,T] x (0,00) x R'*? — & is defined implicitly by

Fot,9(t,2,U,2),U,2) =1, e (0,00).

The utility (super)gradient density can be expressed as a stochastically discounted
version of / as follows. Given any processes (a,b) € Z1(R) x Z»(R?), the stochastic
exponential process &(a, b) is defined by the SDE

dgt(aa b) /

——— 2 =qa,dt+b,dB;, &p(a,b) = 1. 8

é@l(a, b) a; + 13 1] O(Cl, ) ( )
Suppose that the process = € # is given by

Ty = gl(FUaFZ)lta le [07 T]) (9)

for some (Fy, Fx) € Z1(R) x #»(RY) such that &(Fy, Fy) € > and?
(FU(Z), FZ(I)) € (aU,ZF)(t, Ct, Ula Z[U)a re [0’ T]

Then, by Proposition 13 of SS, = is a utility supergradient density of U, at c.
Applying 1t6’s lemma to Eq. (9), condition (4), along with the wealth dynamics
and the utility specification results in the following first-order conditions of
optimality, to be solved jointly in (U, XY, 1, %, W):
dU[ = _F(taf(t:)“la Uh Z[U), Uf: Z[(])dt+ Z[U/dBta UT = F(T, WT):
dz,
}u[
dWw, =W+ (15;:“5 +e — (L, Ay, Ut,ZIU)) dr + (15;05/ dB;,, Wy =wy,
a=uf + o (Fs(+0), ¢, €@ e =dale),
(FU(Z)a FZ(Z)) € (aU,ZF)(ta f(lz j'I) UI) Zf/)a UI) Z[U)
The above is a constrained FBSDE. Using last section’s results the system is
sufficient and necessary for optimality, under suitable regularity assumptions (as
given in Proposition 2 and Theorem 3). In a Markovian setting, the above system

can be formulated as a PDE system, following the Ma et al. [25] approach. The basic
idea is illustrated in SS, and can be easily adapted to this paper’s setting.

= —(r,+ Fu(t)+ o/ Fx(t))dt + ¢/ dB,, Ar = F(T,Wr),

*More precisely, we are assuming that the indicator function of (Fy(z), Fx(t)) ¢ (QusF)(t, ¢, Uy, ZY) is
equal to zero as an element of 7.
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5. Translation-invariant formulation

Having characterized optimality for general recursive utility, in this section
we introduce translation invariance relative to a fixed cash flow y, a condition
that is this paper’s main focus. As noted in the Introduction, translation-
invariant utility retains the tractability of additive exponential utility without
imposing the ad hoc risk-aversion restrictions of additivity. Provided that
the cash flow y is traded without constraints, we will see that translation
invariance relative to y uncouples the forward and backward components
of the first-order conditions, thus reducing last section’s FBSDE system to a single
BSDE.

For each consumption plan ¢, let U(c) denote the corresponding utility process
solving BSDE (5). We fix throughout a bounded process y € £(R;,), and we
assume that the dynamic utility ¢+ U(c) is translation-invariant relative to y, meaning
that for any ¢',c?> € ¥ and ¢ € [0, T},

U)=U(?) = Ufc'+ky)= U +ky) forall k eR.

Appendix A shows that if we further assume that U is in certainty-equivalent form
using y as the numeraire, then U is quasilinear with respect to y:

Ulc+ky)=Ulc)+k forallkeR, ce¥, te]0,T]. (10)

Appendix A also shows that quasilinearity with respect to y is essentially
characterized by the aggregator form in the following condition, which is assumed
for the remainder of this paper.

Condition 6 (Standing assumption). The following restrictions hold for a bounded
process y € Z(R,;) and a function G:Q x[0,T] x R"*? — R that we call an
absolute aggregator.
(a) For every ¢ € €, Uy(c) = Uy, where (U, ZY) solves, uniquely in % x Z»(R%),
the BSDE
C{ cT

dUtz—G(z,——U,,Z,U> dt+2VdB, Ur=—. )
Ve ’r

(b) There exists ¢ € R and a strictly positive process I" such that
dry = (I, —y)dt+ o' dR,, TI'r=yr
and v € @ implies v+ kg € @ for all k € R.

The notion of an absolute aggregator in a translation-invariant setting is
analogous to that of a proportional aggregator in a scale-invariant setting (as
explained in Appendix A and SS). Part (b) of the above condition states that the
agent can trade with no restrictions in a portfolio ¢ that generates the dividend
stream 7y and has corresponding time-¢ value I';. Since trading in ¢ is unconstrained,
0p(e) <oo implies ¢’¢ = 0. The first-order conditions therefore imply that the agent
correctly prices the portfolio g.
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Example 7. If Fis a Duffie and Epstein [6] aggregator, then the absolute aggregator
G must take the functional form

A(w, t
Glw,t,x,2) = g(w,1,x) — %2/2.

In the special case in which
A(w,t)=1 and g¢g(w,t,x) = f(w,t) — exp(—x),

under suitable integrability restrictions, the ordinally equivalent utility
V,=—exp(—U,)

is time-additive discounted exponential utility:

T s ¢ T cr
V,:E,[/ —exp(—/ ﬁudu——>ds—exp(—/ ﬁ”du——)].
t t Vs t ’r

The key to simplifying the solution in the translation-invariant case is the
following informal argument. Given an optimal plan, suppose that, on some time-¢
event, k units of account are added to the agent’s financial wealth. Because of
translation invariance with respect to 7y, the agent will find it optimal to invest all
additional k units of wealth in k/I", shares of the portfolio ¢, and to consume all of
the ensuing dividend stream {ky,/I';; s>t}. Given the quasi-linearity of the utility
function with respect to y, this suggests the following key relationships at the
optimum:

1 1 0
)L,:F, U,:F(Yt+ W), and ¢, =¢,+ U, (12)
t !
where (Y, 2", ¢") solves a constrained BSDE, given below, that is independent of
financial wealth. The second equation states that, taking the market value of the
fund ¢ as the unit of account, the value function is the sum of financial wealth and
the value of the endowed income stream.

To state the relevant constrained BSDE, we introduce some notation. The (partial)
derivative of G(w, ¢, -, 2) at x is denoted Gy(w, t, x, 2), and the superdifferential of the
function G with respect to X (defined analogously to 0, xF) is denoted 0sG. The
functions 2, G* : Q x [0, T] x (0, 00) x RY — R are defined by

G, t, Z(0,t,y,%),X) =1y,
G¥(0,1,y,%) = sup{G(w, 1,x,%) — yx}
xeR

=G(w,t, (0, 1,,2),2) — y¥(w,1,,2).

Given the conjectured conditions (12), the first-order conditions reduce to a
constrained BSDE:
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Condition 8. (Y,27) € Z(R) x Z(R?) and ¢° € Z(R™) solve

, SV 4 oRp)
dY,=<Y,r,— ?uf—e,—r,G*<z,;—’t,7f Ft’d)’)
X +0fd)

+(o*,"@)/( T )) dt+2YdB, Yr=er,
t

1
& = Mf + 05/ (GZ(Z) - F“;QQ)’ ¢? €D, dole) = (p?’g,,

t

Y R 1.0 Y R 40
v 2 to g\ 2+,
Gs(t) e 0sG| t, % 1, .
Z()EZ (? <’I—v[’ 1—1[ b Ft

Given (Y,27Y, ¢% and Egs. (12), the optimal consumption plan is

A Z‘Y R .0
Cz:Vt(Uz+Xt), where x;, = 4 [,ﬁ’M ) (13)
r, T,
The wealth process dynamics are obtained by substituting the optimal consumption

and trading plan expressions in the budget equation:

Y +W
th = (Wtrt + ! T [(Q/:uf - Vl) + ¢?/Hf + e — 'Vtxt) dr
t
Y.+ W, \
+ (¢? 4L T tQ) O'f/dBt, Wo = wy. (14)
t

The optimality characterization for the translation-invariant formulation is
completed in the following result, proved in Appendix B.

Theorem 9. Suppose Condition 6 holds:

(a) (Sufficiency) Suppose Condition 8 is satisfied, the consumption plan c is defined
by Eq. (13), the wealth process W solves SDE (14), and the utility process U € U and
trading plan ¢ are given by Egs. (12). Finally, suppose & = &(—y/T’, Gx) € 2, as well
as /T € &> and EW [T € Fy. Then the plan (c, ¢, W) is optimal and U = U(c).

(b) (Necessity) Suppose the plan (c, ¢, W) is optimal, G(w, t, x, X) is differentiable in
(x,2), and r is bounded. Let U= U(c), x=c/y— U, G(t) = G.(t,x,, Z,U), and
Gs(1) = Gs(t,x,, V), and suppose that & = &(—Gy, Gx) € &> and 1/T € &>. Then
Condition 8 holds with Y = UI' — W and ¢° = ¢ — Up.

Remark 10. The first-order conditions for the case of no intermediate consumption
or the case of no terminal consumption are obtained by omitting the corresponding
consumption argument in the utility and supergradient dynamics. The optimality
verification argument in those cases remains essentially the same. In the translation-
invariant formulation, if there is no intermediate consumption we omit the
dependence of G(w, t,x,2) on x and let y, = 0 for t< T, and if there is no terminal
consumption we let Uy =y, = 0.
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6. Quasi-quadratic absolute aggregator

We have established that translation invariance reduces the FBSDE of the
first-order conditions to a single BSDE. To gain further insight into the
relationship between trading strategies and risk aversion, in this section we impose
a ‘“‘quasi-quadratic” absolute aggregator functional form. The formulation is
sufficiently flexible to model possibly source-dependent first or second-order
risk aversion, and includes all translation-invariant Duffie—Epstein utilities,
additive discounted exponential utility being a special case. Unlike additive
utility, the formulation allows the various types of risk aversion to be arbitrarily
selected given the agent’s preferences over deterministic plans. The first-
order conditions for a quasi-quadratic absolute aggregator are derived generally
in this section, while several more specific solutions are given in the final two
sections.

In the remainder of this paper we assume the following condition, using the
notation |x|" = (|xil,..., |xq]), x € R?.

Condition 11 (Standing assumption). The absolute aggregator G is quasi-quadratic,
meaning that it takes the form

G(w,1,x,2) = g(w,1,x) — g(w, 1) T — k(w, 1) | 2] — 12" O(w, 1)Z, (15)

for some (progressively measurable) functions ¢g:Q x[0,T]xR—-> R, g¢:
Qx[0,T] - R, k:Qx[0,7]— R%, and Q: Q x [0, T] - R, such that Q(w, 1)
is symmetric positive definite for all (w, 7). The processes k, ¢, and Q are assumed
bounded (for simplicity).

The interpretation of the various terms of Eq. (15) parallels that of the
proportional quasi-quadratic representation in SS, whose Section 5.1 applies in this
context with obvious modifications. Assuming it is state independent, the function g
entirely determines the agent’s preferences over deterministic consumption plans.
The linear term ¢'X can be thought of as reflecting the agent’s beliefs, in the sense of
a Girsanov change of measure (as explained in SS). The remaining coefficients, x and
0, measure, respectively, first and second-order absolute risk aversion that can be
time and state dependent, as well as dependent on the source of risk. The source-
dependence of risk aversion can be thought of as reflecting the ambiguity of the risk
source in the sense of Ellsberg [11] (see [20] for related ideas). Alternatively, the -
term can arise from the Chen and Epstein [2] notion of k-ignorance, while the Q-term
is related to robust control type criteria through the type of argument given in
Skiadas [37].

Under a quasi-quadratic absolute aggregator, we obtain the simpli-
fications

Z(w,t,y,2)=2%w,t,y), and
G*((D, Ly, 2) = q*(w, Z,J’) - q(CO, l)/z — (o, l)/ 2] — %Z/Q(wa Nz,
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where the functions 27, g* : Q x [0, T] x (0,00) — R are defined analogously to 2’
and G* by
gx(a)a Z, %g(wa tay)) =),
g*(@,1,y) = sup(g(o, 1, x) — yx)
xeR

=g(o, 1, 2%, 1,y)) — yZ (0,1, ).
The superdifferential 0xG is characterized as follows. For any X € RY, let 0| 2]
denote the set of all A € [—1, 117 whose ith coordinate, A, satisfies
A;=1if 2;>0, A;=-1 if X;<0,
and A4, e[-1,1] if Z;=0.
Moreover, for every x,y € R?, x® y € R? denotes element-by-element multiplica-

tion, that is, (x ® ), = x;y; for all i. One can easily show:

Lemma 12. Gx(¢) € (0:G)(t, x,, %) if and only if there exists A, € 0| %,| such that
Gs(t) = —(q; + 1, @ A + O, 2)).

Direct computation using the above lemma gives the constrained BSDE of the
first-order conditions as in the following proposition. The term k ® A in the first-
order conditions (which vanishes if the aggregator is smooth) is computed explicitly
in the following section assuming that Q is diagonal.

Proposition 13. For the quasi-quadratic absolute aggregator G, the constrained BSDE
of Condition 8 is equivalent to

2ozx - ?’af’Qtafqﬁ?) ds

Ve
dY, = Y,—e, =9 — I,
t (”z t— € o(&r) g (9 )+ o,

I

t

oR
+ th {dB, + (qt + Kk QA+ }—Q> dt] , Yr=er,

R Y

- g0+ Q2

¢/ = Lilo Q) l(uf—et—ﬂf’[qﬁkz@/lﬁi’ = D
t

P’ e d, Op(e) =9V, A, €d|Z) + R

Remark 14. (a) If @ = R™, corresponding to possibly incomplete markets (if m<d)
but no further trading constraints, the above first-order conditions simplify by letting
& =20 and dp(c) = 0.

(b) If the processes r,7, uX, o, «k,q, O, and e are all deterministic, and the function
g is state independent, then the first-order conditions simplify by letting ¥ = 0 and
0=0.

One can now restate Theorem 9 for the quasi-quadratic case by replacing
Condition 8 with the above constrained BSDE. Given a solution to the latter, the
complete solution is recovered using Eqs. (12)—(14).
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Example 15. Suppose that the quasi-quadratic absolute aggregator G is smooth (that
is, k = 0). A simple expression for the optimal trading strategy is obtained under a
single linear constraint. Suppose @ = {v € R":I<p'v<u}, where p € R" and
—oo</<u<oo. (For example, a short-selling constraint on asset i corresponds to
[ =0, u=o00, and p a vector with a one in the ith position and zeros elsewhere.)
Defining

R Y

e+02 , _

?*=A<“’_G {q’ T [D Ai=Ti(a Q)"
!

the pair (¢, ¢) in the first-order conditions of Proposition 13 is given by

¢ = ¢ — At & = —(p'Aip)” p(min{max{p'¢;*, 1}, u} — p'd7).
Note that the above expression for ¢ gives the optimal ¢° as a function of X7 in
the unconstrained case. The above claim follows easily from the first-order
conditions. The details, as well as the extension to multiple linear constraints, are
analogous to Example 34 in SS, and are therefore omitted.

The optimal consumption dynamics for a smooth quasi-quadratic absolute
aggregator are summarized in the following proposition, which is followed by an
application to equilibrium asset pricing.

Proposition 16. Suppose that Condition 11 holds with x = 0, the partial g, is state
independent, the process y follows the dynamics dy/y = @’ dt + 6" dB, and that the
first-order conditions of optimality are satisfied at the optimal plan (c,p, W), with
corresponding utility process U. Define
JZ/t - _ gxx(la X,) , Vz - _ gxt(ls Xt) , 9; — _ gxxx(ta X[) , — Cy
gx(la xl‘) gx(ta xl) gxx(t: xt) yt

and ¢!'" = ] — T'7'6Rg. Then de, = y¢ dt + £ dB,, where

y 1 y
5= (s eter (-0t o)

b ” 2, /
Hi = =05 ) + el = ol ) + 7o} + 5 s ol

Ve 1 / y/T
S+ + === + / .
3<f W — T Fgm, ola 0

Example 17 (Equilibrium asset pricing). In addition to the assumptions of the last
proposition, we assume that @ = R”, meaning that markets can be incomplete
(m<d), but there are no further trading constraints. The optimal consumption
dynamics can be inverted to obtain the following equilibrium pricing expressions
(shown in Appendix B):

1 Y Y 1
R R 4 1 Y t R
=—0 2 2t o th I - o
,u[ - 'Vt t |:Qt t (e 71 Lt) Qt t F; ( . 7[ Qt) t Q:| )
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b Y 1 v/ P v/t _y/T
Ty = [ +FZ_FIQ/(.“5+05/G/ )+5pt_274[,0/ O_t/

t

For example, if g(w,t,x) = f(w,) —exp(—ax), a € R,,, the above expressions
simplify since .7, = #;, = a and ¥, = 0. If markets are complete, or preferences are
Duffie-Epstein (that is, Q =bl, b e ¥£(R;y)), the risk-premium equilibrium
expression can be added-up across agents in an economy with agent-specific
parameters (a,b, ), to obtain an equilibrium expression for u® in terms of the
aggregate endowment and its volatility.

7. Solutions under quasi-quadratic aggregator

This section presents more detailed solutions under a quasi-quadratic absolute
aggregator, including an explicit expression for the term k ® A in the first-order
conditions given diagonal Q, clarifying the role of first-order risk aversion, as well as
some special solutions emphasizing the effect of undiversifiable income.

The following normalization of the return volatility process ¢® and the second-
order risk aversion parameter Q will be henceforth assumed. The restriction is
vacuous if m = d, which can be assumed without loss in generality by modeling
missing markets through @. In applications, however, it is often more convenient to
assume m<d.

Condition 18 (Standing assumption). For some ¥, O\, € L(R™™),

aRz[aﬁM} and Q:[QMM 0 }
0 0 Owwn

Remark 19. By Lemma 10 of SS, ¢® can always be put in the above form by passing
to a new Brownian motion that generates the same filtration as the original one.
Suppose Q = al for some a € R (where I denotes the identity matrix), as is the case
with Duffie-Epstein utility, including time-additive utility. Then the change of
Brownian motion does not affect Q, and therefore imposing Condition 18 entails no
loss in generality (even if m<d).

The notational scheme suggested in the above condition will be followed
throughout: M and N refer to the sets of marketed and nonmarketed securities,
respectively, and are also used as indices of corresponding matrix blocks. In
particular, given any d-dimensional process or vector x, we write X' =[x, x}y],
where x; is valued in R” and xy is valued in R?™. Given the new subscripts, we
often omit dummy time indices to simplify the notation. For example, the above
condition implies that dR = uRdz + ¢%/,, dB),. It is important to note that, unless
otherwise stated, the coefficients u® and ¢¥%,,, are not required to be adapted to the
filtration generated by Bj,.
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The following processes will be of repeated use:

1
N = (@)~ (" —2) and o =1y — gy — £ 0N (16)

Moreover, in the first-order conditions, we will often refer to the term
Oy =0y — Ky @ Ay (17)

For example, in this context, the optimal trading strategy is ¢ = ¢ + Up, where
¢° = (@)~ (T QajasBins — Z}y)- (18)

Example 20 (Fictitious completion). This example illustrates Corollary 4. Suppose
that m<d and @ = R™. The fictitious complete market of Corollary 4 is obtained by
introducing unrestricted trading in d — m fictitious securities with price dynamics
specified by uf = gy + 1y ® Ay + T 'QuyZY, Ry equal to the identity matrix,
and o%,, = o®, = 0. The agent’s endowment and the marketed asset price dynamics
are the same in the original and fictitious markets. The first-order conditions in the
fictitious market imply that ¢, = 0; and therefore the impossibility of trading in
fictitious assets is a nonbinding constraint. Direct computation shows that the BSDE
for Y is the same in the fictitious market and the original market.

The following result clarifies the role of x in the first-order conditions, given a
diagonal process Q.

Proposition 21. Suppose Condition 18 holds, Q is diagonal, and the process oy is
defined in (16). Then, in the first-order conditions of Proposition 13, the terms k ® A
and ¢° can equivalently be specified by

KKy ® Ay = max{min{on, K}, —Ky}, Ky ® Ay = Ky ® sign(2)),
and Eq. (18), where &y can be written (equivalently to (17)) as

oy = min{max{0, oy — Kpr}, 0 + Ky} = QMMZJL\]/I

Given the assumption that Q is diagonal, the last equation implies that, for any
ieM, ZI-U =0 whenever |o;|<k;; that is, the agent completely hedges the ith
dimension of risk, as a consequence of first-order risk aversion. Analogous results
for the scale-invariant case are presented in SS (see also [34,2,13]).

Example 22. Suppose further that the parameters (r,7,uR, oR x,q,0,e) are all
deterministic, and the function ¢ is state independent. Then Y is also deterministic,
and therefore ¥ =0 and ¢° = (o%,,,)7'TZY,. In this case, Y =0 can imply
complete nonparticipation in the market for asset i. For example, suppose that a%,,,
(as well as Q) is diagonal, and @ = R". Suppose also that the portfolio ¢ consists ofa
share in asset one, generating dividend stream y. Then, for any i>2, |[(uR/d%) —
<k; implies ¢, =0. That is, a sufficiently small belief-adjusted market prlce
of the risk traded by asset i>2 results in the agent’s nonparticipation in this
market.
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This section’s last main result focuses on the role of a nontradeable endowment
income stream. We assume that & = R™, which implies that markets can be
incomplete (m<d), but there are no further trading constraints. Assuming that all
parameters, except for the endowment e, depend only on uncertainty generated by
By, we derive a decomposition of Y into a subjective endowment value component
and a market component.

Proposition 23. Suppose that & = R", and the processes r, y, iR, o, ks, 4rrr Orrnes
and g*(y/T') are all adapted to the (augmented) filtration {F M} generated by Byy. Then,
in the first-order conditions of Proposition 13, the process Y and its volatility can be
decomposed as

Y=yM4vye, sh=s0"+50, and z}=3),
where (Y™ ,Z}(,,M) is adapted to {F f” } and solves the BSDE:
M wfV M I, 1 A
dY" = —(Iyg (f) —rY +§°‘MQMM°‘M dz
+ 20" (dBy + nydr),  YM =0,
while (Y¢,2Y") is adapted to the finer filtration {F ,} and solves the BSDE:
1 e e
dy’ = — <e —rY* —ﬁzﬁ/QNNzli > dr
+ 23/ (dBy + 1y d0) + 2By + (gy + 1y @ Ay)dl), Y4 = er.
To present integrated versions of the above BSDEs, we introduce some notation

with regard to Girsanov changes of measure. Given any b € Z(R?), we use the

notation B’ and &’ to denote the processes satisfying
_ _ &) _ b_
dB} =dB,+b,dr, Bj=0, and —l=-b/dB, & =1 (19)
t

If £* is a martingale (for example, if b satisfies the Novikov condition), then B’ is
Brownian motion under the probability P’ with density dP” /dP = ibT. The
expectation operator corresponding to the probability P is denoted E”.

Consider now the processes

0= [ Tt } and %, =exp(—/ 'y du)
gy +xy ® Ay p

and assume that & is a martingale. The above BSDEs can then be integrated,
provided the integrals below are well-defined, to obtain the following expressions for
the two components of Y:

r 3 1
v =8| [ aar (o (5 ) 4 3300 ) s 7],
t s

T 1 . .
Y¢=E’ [/ Bis (es — TZW(S)QNN(S)ZR/(S)> ds+ %, rer | ft:|~
t N
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Example 24 (Complete markets). Suppose that markets are complete, that is, m = d
and @ = R". Then n = (¢®)~'u® is the unique market price of risk process, and
Y =E]| ftT B, sesds + B, rer] is the time-r market value of the endowment.

Example 25. We consider two special cases of Proposition 23 in which the subjective
value of the endowment, Y*, is given by an expression of the form

T
exp (—If Yj) = Ef’ {exp <— / Fiex ds — IflTeTﬂ (20)
t t N

for properly defined ¢ and b, extending a more special result by Musiela and
Zariphopoulou [28]. The proofs of the following claims are given in Appendix B. In
addition to the assumptions of Proposition 23, we assume that there is no
intermediate consumption (meaning that for every ¢ € 4, ¢, =0 for t<T), and in
particular y, = 0 for all t< T (which presents no problems since the strict positivity
of vy implies that of I'). Even though we have not treated the case of no-intermediate
consumption separately, the results are essentially the same (see Remark 10). We
also assume that r and y, >0 are deterministic, and that xy = 0. Within this setting
we consider two special cases:

Case 1 (idiosyncratic endowment): Suppose that e is adapted to the filtration
generated by By, and Qyy(?) = al, where a>0 and [ is an identity matrix. Then
) ,’;, = 0 and Eq. (20) holds for any b such that by = g, provided isa martingale
and the stated integral exists.

Case 2 (nonidiosyncratic endowment): Suppose that Oy, is constant over time; 7,
and g, are deterministic; and the endowment process satisfies

de[ = ,ul d[ + ﬁtZ/ dBf,

where ~ € R, and y and f are real-valued and adapted to the filtration generated by
e. Then Eq. (20) holds with a = Xy QyyZn/2'2 and b" = 0’ = [, ¢/y]. The solution
of Musiela and Zariphopoulou [28] is the subcase obtained by assuming Q = 7 (time-
additive utility), ¢ = 0, Markovian dynamics for e and R, and a single lognormally
distributed risky asset.

8. Incomplete markets and quadratic BSDEs

In incomplete but otherwise unconstrained markets, and under a quasi-quadratic
smooth absolute aggregator, the BSDE of the first-order conditions characterizing Y
takes a quadratic form. A quadratic BSDE is also obtained in SS in a scale-invariant
setting with different preference restrictions. As in SS, we summarize below a set of
conditions under which the quadratic BSDE can be reduced to a system of ordinary
differential equations (ODEs), leading to some new tractable applications with
nontradeable income. The technique can be applied to BSDEs as well as the
corresponding PDEs in a Markovian setting. The PDE version of the approach is
familiar from the affine term-structure literature (see [7,29]), and has been utilized in
scale-invariant consumption/portfolio problems (subsumed by the formulation of
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SS) by Kim and Omberg [19], Chacko and Viceira [1], Schroder and Skiadas [30],
and Liu [24].
The following restrictions are imposed throughout this subsection:

Condition 26. Markets can be incomplete but there are no other constraints (¢ =
R™), the absolute aggregator is smooth (x = 0), and ¢ = 0.

The assumption ¢ = 0 is without loss of generality (via a Girsanov change-of-
measure argument). Under these assumptions, the BSDE characterizing Y in the
first-order conditions of Proposition 13 becomes

dY, = —(e;+p, — 1Y, + 2 h+12VH, 2 )dt + £} dB, Yr=er, (21)

where
—F*tﬁ I, R_i R R\ (R R R_ ' R _R
P; - tg ,Ft + 2 :ur F[ Gt Gt Q (Gt Qlo-t) :ut Jt Gt Q ’

ore Re Ry R-1( R_ 1 R R
htz—T—Q,a, (0,7°0,07) | 1 —7 0 oe and
t t

H, = %(Q;GR(Jf/QIGf)’IGR/Q, —0).

We now formulate a set of conditions that reduce BSDE (21) to an ODE system.
We introduce a state process Z € #(R¥) with dynamics

dZ, = p? dt+ 67 dB,, where u” e Z|(RF), 6% € Z5(RT),

Moreover, we split these state variables into two blocks, of dimensionality ¢ and b,
respectively, where a + b = k. We treat @ and b as integers denoting dimensionality,
as well as indices of corresponding matrix blocks, writing

Zu

Z= {Zb} and o” = [¢% o],

where Z¢ € Z(RY), Z" € #(R"), 6% € L(RV*), and 6% € L(RI*P).
We seek a solution of the form

Y, =Yot)+ Y\(0) Z, +3Z] Y (D Z] (22)

for some deterministic processes Yo € L(R), Y, =[Y{, Y’l”]/ e #(R¥), and Y, e
L(R™). A sufficient set of conditions for this type of solution is stated below
(omitting time indices). We assume, without loss of generality, that all matrices
appearing in quadratic forms, including Y,(¢) above, are symmetric.

Condition 27. (a) The processes r and ¢%* are deterministic.
(b) For some deterministic processes Jo, Ko € Z(R); J1,K,| € c?([R{k); and J,, K, €
2 (R,

1 1
e=Jo+ N Z+52"DZ" and p= Ko+ K\Z+3 2K 2"
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(c) For some deterministic processes Ly = [LY, LY] € Z(RY), LY € L(R™), L} €
L(R™¥), and Lj[]] € L(R™),

Z+ Z/h L + Laza
H o n=ALo /7 b -
LYZ + (29 L5221,

.....

(d) For some deterministic processes Dy’ € L(R*?), ng e LRV, ng €
Z(R™), Dli,jl € Z(RY), DY'li.j] € R and D5[i,j] € L (R™),

D Dub
O_Z/HO.Z — 0 0
ng/ ng

0 [Z9 DYl fTli=....ajmt.

(2Dl e, e, [Z' DY ,J]],,,l

0 0
+ .
0 [Za/Dbb[lJ] ]1,] 1,....b

We let Dy € Z(R¥%) denote the first term of the right-hand side.
Suppose Conditions 26 and 27 hold, £ € £(R**?) is defined to have ith row

Fie ZY D[, 1

J=1

=+

,,,,,

and the deterministic processes (Y, Y, Y3) solve the following ODE system (where
the left-hand sides denote time-derivatives):

Yo=rYo—Jo—Ko— YLy — 1Y Dy Y} — trace(Y,0%“ a7,

o oy b h__ b yb pybbr:
Yi=rY,—J, —Ly? —12 Y}, Y},DY i

_ (Ltlu Yi+ Z?:lzj':l Y(fi 1/D[11b[’aJ] + Y2(Df)m ng)Yl + Y2L8>
0

>

Yo=1rYs—Jr—Ky— YLL{ — LYY, — Y2D¥Y, — Y,E—E'Y,

b
- Z Z YYD 2 YR L,
i=1 j= i=1
with terminal conditions Y(T) = J«(T), i=0,1,2.
Direct computation using [t0’s lemma shows that then Eq. (22) defines a solution
to BSDE (21) (provided that the drift and diffusion terms of (21) are suitably
integrable so that the respective integrals are well-defined).

Example 28. We assume that Condition 26 is satisfied, that the processes Q, r, and y
are deterministic, that g* is state independent, and (without loss of generality) that
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dR = pRdt + o%,,dB)y. These assumptions imply that ¢ =0, and that I'; and
g*(t,7,/T;) are also deterministic. We also recall the price of marketed risk expression
Ny = (af/}M)_luR. The following two problem classes satisfy Condition 27.

Class 1: Z =2 (a=k, b =0), and

dZ, = (u— pZ)di + X' dB,
Nny=v+VzZ, e =Jo+J1Z, +%Z;JZZH

where e RY, X e R BeR™, veR", VeR"™ JyeR, J, €R% and J, €
Raxa'

Class 2: Z = Z" (a = 0, b = k), Q satisfies Condition 18 with Q. = yI for some
positive constant y, and

dZ, = (u— pZ,) dt + ='diag(r/v + VZ,)dB,
Ny = diag(\/our + VasZ)o, e =Jo+J\Z,,

where diag(x) denotes the diagonal matrix with x on the diagonal, \/x denotes the
vector with ith element ,/x;, and u e Rl, 2 e R0, pe RP*b, v = W), vy] € R,
V=V Vil € R ¢ e R", Jy € R, J, € R’ In this case, Y> = 0, and only the
first two Riccati equations are needed, the second unlinked to the first. This
formulation includes the square-root volatility specification of Heston [15].
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Appendix A. Translation-invariant recursive utility representation

In this appendix, we argue the necessity of the functional form of Condition 6 for
translation invariance relative to y. We consider the dynamic utility that assigns to
each consumption plan ¢ a utility process U(c) that is the unique process in % solving
BSDE (5). We fix a bounded process y € £ (R, ) throughout, and we assume that
for every U € % and time ¢, there exists a consumption plan ¢ such that ¢, = Uy, for
all s>=¢. We also recall that the dynamic utility ¢+ U(c) is translation-invariant
relative to y, or y-TI for short, if for any k € R, ¢!, € 4, and t € [0, T, U,(c") =
U,(c?) implies U,(c' + ky) = U(* + ky).

The dynamic utility ¢+ U(c) is in certainty equivalent form relative to vy, or y-CE
for short, if at any time-¢ information node, U,(c¢) represents the units of the cash
flow y that result in the same time-¢ utility as the consumption plan ¢. More formally,
given any time ¢, let the set %’ consist of all consumption plans ¢ such that ¢,/y, =
¢¢/y, for all s=1t. The dynamic utility U is defined to be y-CE if for any time ¢ and any
c €%, Uc)y, = ¢;. To interpret this, consider any ¢ € 4. By our earlier assumption,
there exists some ¢ € 4 such that ¢, = U,(c)y, for all s>1¢, and therefore ¢ € 4. If U
is y-CE, then U,(¢)y, = ¢; = U(c)y,, and therefore U,(c) = U(c). In this sense, the
cash flow y is the yardstick relative to which utility is cardinalized.
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Suppose now that ¢+ U(c) is both yp-CE and y-TI. Then the quasi-linearity
restriction (10) is satisfied. To see this, fix any ¢ € %, any time 7, and any scalar k.
Select a ¢ € € such that ¢, = U,(c)y, for s>1. Arguing as above, ¢ € 4 and U,(¢) =
U,(c). Since U is y-T1, it follows that U,(c + ky) = U,(c + ky). Since U is y-CE and
c+kye®l, Ulc+ky)y, =c, + ky,. Therefore, U, (c+ky)= U, (c+ky)=¢/y,+
k = U,(c) + k, proving Eq. (10).

Let UF = U(c + ky) and U = U® = U(c). Since U* = U + k, the volatility process
of U* is 2V for any scalar k. The definition of U(c + ky) implies

dU* = —F(t,¢, + ky,, U*, 2V)dt 4+ V" dB,.
On the other hand, since U* = U + k, the definition of U(c) gives
dU* = —F(t,c,, U, 2V)dt + 2V dB,,

implying F(t,¢; + ky,, U, + k, Z,U) =F(t,c, U, Z,U). The last equality holds almost
everywhere for any given value of k. Ignoring some uninteresting technicalities
regarding null events, we formally set k= —U, and define the function
G(w,t,x,y,z) = F(w, t,y(w, 1)x,0,z) to find

F(Z’CD UbZ[U): G(taﬁ_ UI’Z[U>

t

Noting that Ur = ¢7/y (U being y-CE), we obtain the BSDE of Condition 6:
Cy cr

dU, = —G(z,— — U,,Z,U> dt+xVdB,, Ur=—.
Ve ’r

The above conclusions are isomorphic to corresponding conclusions in SS with
regard to homotheticity, via the transformations ¢ = exp(—c¢;/y,) and U2 =
exp(—U,(c)), in which case Uis y-T1 if and only if U is homothetic, U is 1-CE if and
only if U is y-CE, and U is homogeneous of degree one if and only if U satisfies the
quasi-linearity property (10). The dynamics

dU,/U,:—G([,Z’,/ﬁ,,&,)dt-‘r&t[]/dB,, 0[257‘,

in SS can be mapped to the above dynamics for U by letting G(w,1,x,y) =
—G(w, t,exp(—x), —y) — y'y/2, and applying It6’s lemma.

Appendix B. Proofs

B.1. Proof of Theorem 3

(a) Sufficiency: Given any feasible plan (¢, $, W) and stopping time r, integration
by parts, the dynamics of 7, and the budget equation imply

~ T ~/ T
W, — mowy = / e dt — / 7,(C;, — e;)dt
0 0

+ / 7(oRp, — WY dB,, (23)
0
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and therefore

W, — mowo < / 7, 0¢(e;)dt — / (¢, — e;)dt + M[1
0 0

for a local martingale M'. Given condition (4), the same argument applied at
(c, 9, W) gives

W, — mowy = / ndp(e)dt — / (e, — e dt + M?
0 0

for another local martingale M. Letting x = & — ¢, and M = M' — M?, we conclude
that

T
TE‘EW‘L'_TE‘[W‘Eg_/ n[xtdt+MT.
0

Let {t, : n=1,2,...} be an increasing sequence of stopping times that converges to T’
and such that M stopped at 7, is a martingale. Taking expectations in the last
inequality, we find

0>E [ / " rxedt £ We — e W} . (24)
0

The idea is to let n — oo to conclude that (n|x)<0. There remains to justify
the interchange of limits and integration. For the integral of mx, we apply the
dominated convergence theorem, using the assumptions n,x € #. For the term,
involving 7, we use the assumptions 7 € %> and W~ € %5, and Fatou’s lemma to
conclude that

lim inf E[rn, W.]=E[nr Wrl.

=00

Finally, the assumption W € & implies that E[n, W] converges to E[nrWr].
Taking the limit inferior on both sides of inequality (24), we therefore reach the
conclusion (7| x)<0.

(b) Necessity: By taking the accumulated value of a unit invested at time zero in
the money market as the numeraire, we assume without loss in generality that r = 0.

We begin by showing that n is a martingale. Consider any time <7 and any event
F e 7, Given any h e (t,T — t), consider the feasible plans (¢ + x,0, W + z) and
(¢ — x,0, W — z), where x is equal to the indicator function of F x [¢, ¢ + ], while z is
given by dz; = —x, dz, zo = 0. Since = is a state-price density, it follows that (n | x) =
0, and therefore

1 t+h
E{IF(—/ n_yds—nr)] =0.
hJ;

Since 7 is continuous and 7 € &1, taking the limit implies that E[lzn,] = E[l1pnr].
Applying this condition over all ¢ and F e %, implies that n is a
martingale.
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Since 7 € & is a strictly positive It0 process and a martingale, there exists n €
#-(R?Y) such that
d
Tt
Defining & = uR — 6®'n,, we complete the proof by showing that ¢e, = dg(e,). We
first consider a lemma suggestive of the result:

Lemma A.1. Suppose that (c,p, W) and (c + x, ¢ + y, W + z) are feasible plans, y; =
0,yee #H and nz € &. Then (n|x) = (n])e).

Proof. As in the sufficiency proof, for any feasible plan (, ¢, W) and stopping time
7, Eq. (23) holds. Taking the difference of the equation applied at (¢ + x, ¢ +y, W +
z), and the equation applied at (¢, ¢, W), we find that

T T
/ X dt + oz = / e dt + M,
0 0

for some local martingale M. Consider now an increasing sequence of stopping times
{t, :n=1,2,...} that converges to T, such that M stopped at 7, is a martingale. It
then follows that

E[/ n,x,dt—i—nfllzrn]:E[/ nty;s,dt], n=12....
0 0

Feasibility of (¢ + x, ¢ + y, W + z) implies that x; = zy, and therefore the left-hand
side converges to (7 | x), given the assumptions that 7z € % and =, x € . The right-
hand side converges to (n|)¢) since n,y'e € #. [

Finally, we show that, for every process ¢ +y valued in @, y;&<0. Suppose
instead that there exists some process y such that ¢ = ¢ + y is valued in @ but
E[fOT 1{ye;>0} d#]>0. For each positive integer N, define

N =y, 1{0<yle <N, lly,II<N}.

Since 1{y"’e, >0} monotonically converges almost surely to 1{y,&, >0}, it follows that
E[fOT 1{y"e;> 0} d7]>0 for some N. We therefore assume, without loss in generality,
that y’¢ is nonnegative and bounded, and y is bounded, which in turn implies that ¢
is a trading plan. Similarly, for every positive integer N, define the stopping time

t
rN:inf{t:/ VidR;>N or T = T}
0

and the process yV = y,1{t <ty}. The same convergence argument used above shows
that E[fOT 1{yNe,>0} dr]>0 for some N. We therefore also assume, without loss in
generality, that the process z, defined by dz; = y,dR;, zo =0, is bounded, and
therefore W + z is a wealth process. Letting x, = 0 for < T, and x7 = z7, it follows
that (c+ x,¢ +y, W+ z) is a feasible plan. Applying Lemma A.1, it follows that
(m|x) = (n]y'e)>0, implying that = cannot be a state-price density.
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B.2. Proof of Theorem 9

(a) Sufficiency: We begin by confirming the budget equation and that U = U(c).
Given the construction of U and ¢ in (12), and Eq. (13), the wealth dynamics (14) are
easily confirmed to be equivalent to the budget equation (1). If dU,=...d¢r+
Y dB,, integration by parts applied to Y = UI' — W implies

ZY~I—JR¢0 ¢ Y
U=t 171 and =_-U=2(t,2L,2Y). 25
t F[ an xt yt t (arln t ( )

To verify that U = U(c), we use the above expression for XU, and the fact that

Y Y
G* <taﬁaz> = G(ta Xts Z‘) - Ft,xl‘a

to rewrite the dynamics of Y as
dY, = (Y, — ¢V uf — e, — I,G(t,x1, ZF) +y,x, + (cRe) £V) dt + 2] dB,.

Integration by parts applied to Y = UI' — W, simplified using the dynamics of Y, I,
and W, and identities (12) and (13), results in the utility dynamics (11), confirming
that U = U(c).

Recalling that ¢ = ¢° 4+ Ug € @ if and only if ¢° € @, we therefore have a feasible
plan (c, ¢, W), with U = U(c). We prove optimality of this plan by applying
Proposition 2, showing that the process = = &/I" is both a supergradient density of
Uy at ¢ and a state-price density at c.

Let 4, = F.(t,c,, Ut,ZtU). By Proposition 13 of Schroder and Skiadas [32],
we know that if (Fy,Fy) e Z1(R) x Z>(R?) is such that &(Fy,Fy) € &> and
(Fu(t), Fx(?) € (CusF)t, ¢, U,,Zf]) for all ¢, and n=&(Fy,Fs)A defines an
element of J#, then = is a supergradient density of U, at c¢. The aggregator
form implies A, = y;lGX(t, X;, Z[U), and therefore, by (25), A=1/I'. The
aggregator form also implies that (Fy(?),Fx(?) € (OusF)(t, ¢, Ut,ZtU) if
and only if Fy() = —Gy(t,x,,2Y) (= —y,/T,) and Fx(1) € 0sG(t,x,, V). Putting
the above observations together confirms that 7 is a supergradient density of
Uy at c.

Finally, we use part (a) of Theorem 3 to confirm that 7 is a state-price density at c.
If d4,/% = ! dt + ¢/ dB,, then, using the fact that 1 = 1/T,

v _on

R
ph=—r 4 +0”¢" and of =— Ly
t Fr Ft t 7t t Ft

Since trading in g is unrestricted, d¢(¢) < oo implies ¢’¢ = 0, and therefore ¢'u®/I" —
" = " Gy, resulting in u* = —r+7y/I' —¢”Gy. Using this fact and applying
integration by parts to = = &4, we obtain condition (4), where 5 = —(Gs — I'"'aRp).
We have therefore verified that n is a state-price density at ¢, completing the
optimality verification.

(b) Necessity: We begin by proving that A= 1/I'. Since G is smooth, by
Proposition 13 of Schroder and Skiadas [32], n € &4, where 4, = G.(t,x,,2,)/7,s
defines a utility gradient density. By Proposition 2, « is also a state-price density at c.
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Since trading the portfolio ¢ is unrestricted,

1 T
F,:n—E, {/ nsysds+nTyT}
t

t

This follows by a standard argument that we now outline. Suppose, without
loss of generality (by taking one unit invested initially in the money market
as the numeraire), that r =0. We have shown in the proof of part (b) of
Theorem 3 that = is a martingale. Suppose now that at time ¢ and event F € &,
the agent borrows from the money market to buy portfolio ¢, consuming
the ensuing dividend stream p, and paying back the loan I, by reducing
terminal consumption. The resulting feasible incremental cash flow x is given by
x; =0 for s<t, x;, = 1py, for s € (¢,T), and x7 = lp(y; — I';). Since —x is also
feasible, we have

T
0=(n|x) =E{1F</ nsysds—l—nr(yT—F,)ﬂ.

Since F € 7 is arbitrary, it follows that E,[ [,
claimed.
Taking the derivative of the function f(k) = U(c + ky) at zero, we obtain

! nyy,ds + nryr] = I Enr] = I'imy, as

T
6tf;(0) =E; {/ Ty, ds + ns“/T] =mnl,.
¢

Since U(c + ky) = k + U(¢), it also the case that /'(0) = 1, and therefore I' = & /n =
1/A.

Having shown the key fact that A = 1/T", we define the process Y = UI' — W, and
apply Itd’s lemma, using the dynamics of U and I, the definition of G* and %/, as well
as the budget equation, to obtain

dY,=U,dI,+ I, dU, + 2Y(cRg)dt — dW,
= <Ytrt - ¢?ﬂf +ZIU/GIRQ - FtG*<t,1y_‘_[,2[U) - e,) dt
t
+ (2] - a®¢)) dB.

The diffusion term confirms the expression for XU in (25), which when substituted
into the drift term results in the dynamics of Y in Condition 8. The rest of the
condition follows easily from the necessary conditions of Theorem 3 for = to be a
state-price density at c.

B.3. Proof of Proposition 13

Substituting Gy = —(¢+x @ A+ 0XY), A €0|2Y|, into the equation for ¢ in
Condition 8 gives

R R O-RQ U
e=u" —a q+K®A+T+QZ .
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The formula for ¢° is obtained after substituting XV = ' '(Z¥ 4 ¢®¢"). Computing
the inner product of ¢ and ¢° results in

iR = 60(e) + " (g + k@ A+ TR+ 02Y).

Letting dY = u¥ dz + XY dB, we substitute for G* in Condition 8 to find
p'=Yr—¢"uf —e—Tg*+ (@R 2Y + I(qZ¥ + | 2V + 12V 02Y).
Using the fact that ' | ZY| = XV (k ® A) and the above expression for ¢”uX, the

drift term of Y becomes u? = Yr — e — I'g* — S4(¢) + 2, where
2=T2" - ¢"e"Ng+r@ A+ T "oR) +irzVozV — ¢"c® 0z
=XVg+rkQ@A+T"'oRo)+ %Fﬁl(ZY’QZY — dV R 0cRp?).

B.4. Proof of Proposition 21

The expression for ¢0 in (18) implies
10" +6%¢%), = o — xi4;, i€ M.
Since A; € 8|27 + aR¢"|, there are three possibilities: (1) (27 + a%¢"),;>0, 4, =1,
> 155 (2) (XY + k%), = 0, oy = 1;4;; and (3) (2 + 6R¢%),; <0, 4; = —1, o5 < — K.
In all three cases, Ky ® Ay = max{min{oyy, k), —kp}. Since (ZV + oR¢%)y = 2V,
we have Ay € 0| 2)| and therefore X1/ (xy ® Ay) = 21 (ky @ sign(Z))). Finally,
from TU =Y + W, we get 2, =3V 4R " = I'(Quar) " bar.

B.5. Proof of Proposition 23

Substituting the expression for ¢ in (18) into the equation for Y in Proposition 13,
we find

N T 1
dy = (Yr —e—Tg* (%) — 58 Oy + —zﬁ’QNNzﬁ) dr

T
n
dB + M dr
gy + KN @ An

Suppose Y* satisfies the stated BSDE and X% = 0. Then direct computation shows
that Y = Y — Y? satisfies the claimed BSDE.

+ZY/

B.6. Proof of Example 25

Only the proof Case 2 is presented. The proof of Case 1 is similar. The
assumptions of the example imply that e is the only source of uncertainty driving Y7,
and therefore X}° = v,X for some scalar-valued process v. Therefore,

a

dys = —(et— Yfr,—zrt

v,22/2> dt+ v, 2 dB’.
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Defining z, = exp(—a¥;/I';), we have

d 1 :
Sro Ly s (L) vyrde- ved( =
Zt Ft 2 F[ Ft
e a / 0 e a
= F[(@t - Y,V;)dl —thZ dBl — Ytd(F[)
e 1 0
= —aYt<d(F> Ftdl) —e,dl—i—o dB
where ] = —av,2¢/I",. Since r and 7y are deterministic,

1\ (ri—=y/I
d(r) - ( 2 0
and therefore z solves the BSDE:
%
Zt

1
= —(ae, — y,log(z,)) dt + o7 dBf, zr = exp| — ier .
T, I'r

Under the assumption that y, =0, t<T, the equation for z in (20) is easily
confirmed.

B.7. Proof of Proposition 16 and Example 17

We derive the consumption dynamics under the more general absolute aggregator
form

G(a)) l) xﬂ Z‘) = g(wﬂ t’ x) —"_ H(a)7 t’ Z))

where ¢.(z, x) is assumed state independent. Letting x, = ¢;/y, — U,, and applying
It0’s lemma to g (¢, x,) = y,/T,, gives

1 3
G, X)) At + g, (8, X)) dxy + 5 (8, xt)(dx,)z =d </Z> . (26)

2 I,
Squaring this expression results in
do /TN U e,
(dxt)z — ( (Vt/ I)) — _26;/F O—i/r'
gxx(tr xl) &/[
Matching the diffusion terms in (26) and rearranging, we find that
1 1 ok ¢ 1 )
—20=—1—+(——— o +2V. 27
o T Ve Ay ' ! @7)

Substituting XV = I'"1(2Y + ¢R¢p — oRoU), and rearranging gives the formula for
<.

The formula for u¢ is obtained similarly by matching the drift terms in Eq. (26),
and the equilibrium short rate is obtained by inverting and solving for r as a
function of u¢. The risk premium expression is derived by solving (27) for XY, and
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substituting into

R
oo
uf =~k (Hz(t,zu) —;—),

t

which follows from the first-order conditions with ¢ = 0. The quasi-quadratic case
corresponds to Hyx(t,2Y) = —Q,zY.
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