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Abstract

We analyze the lifetime consumption-portfolio problem in a competitive securities market

with continuous price dynamics, possibly nontradeable income, and convex trading

constraints. We define a class of ‘‘translation-invariant’’ recursive preferences, which includes

additive exponential utility, but also nonadditive recursive and multiple-prior formulations,

and allows for first and second-order source-dependent risk aversion. For this class, we show

that the solution reduces to a single constrained backward stochastic differential equation,

which for an interesting class of incomplete-market problems simplifies to a system of ordinary

differential equations of the Riccati type.
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1. Introduction

In this paper, we analyze the lifetime consumption-portfolio problem for
an agent with a possibly nontradeable income stream who can trade in a
competitive securities market with essentially arbitrary continuous price dy-
namics, under the constraint that the vector of risky-asset position values must
lie in a given convex set at all times. Starting with the general first-order conditions
of optimality, we consider increasingly restrictive and increasingly tractable
formulations.

It is well known in economics that an easily solvable class of problems with
nontradeable income arises with additive exponential utility and Gaussian dynamics
(see, for example, [38]). Additivity of utility, however, is known to impose an ad hoc
relationship between intertemporal substitution and risk aversion (see, for example,
[12]). In particular, the risk aversion coefficient with expected discounted exponential
utility is entirely determined by an agent’s preferences over deterministic consump-
tion plans.

A main contribution of this paper is to define translation-invariant recursive
utility, a generalization of additive exponential utility that retains the tractability
advantages of the latter, but frees the specification of absolute risk aversion from
preferences over deterministic plans. Moreover, risk aversion can be different for
every source of risk, for example, reflecting the source’s ambiguity in the sense of
Ellsberg [11], and also risk aversion can be either first or second order, in a dynamic
version of the distinction made by Segal and Spivak [34]. For a special class of
translation-invariant recursive utilities and dynamic investment opportunity sets, the
Gaussian case included, the incomplete market problem reduces to a system of
Riccati-type ordinary differential equations. The result is a modeling framework
that, relative to the exponential-Gaussian benchmark, is significantly more flexible,
yet still highly tractable.

This paper’s analysis is a natural continuation of that in Schroder and Skiadas
[32], hereafter abbreviated to SS. In the latter there is no endowed income stream (or
if there is one, it is traded), portfolio constraints are imposed in terms of proportions
of wealth, and the focus is on simplifications achieved through the assumption of
scale invariance (or homotheticity), which is inconsistent with a nontradeable income
stream. In contrast, in this paper constraints are imposed on dollar amounts, a
nontradeable income is allowed, and the focus is on simplifications achieved by
translation invariance (or quasilinearity) relative to a fixed plan. In SS we defined
source-dependent relative risk aversion, while here we define source-dependent
absolute risk aversion.

The first-order conditions of optimality with recursive utility take the form of a
system of forward–backward stochastic differential equations (FBSDE), corre-
sponding to a PDE system in a Markovian setting. The forward and backward
components of the FBSDE system are shown to uncouple under a scale-invariance
assumption in SS, and under a translation-invariance assumption in this paper.
Methodologically, both papers follow the approach originating in Cox and Huang
[3] and Karatzas et al. [17] for the case of additive utility and complete markets, and
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extended in Skiadas [36], Duffie and Skiadas [9], Schroder and Skiadas [30], and El
Karoui et al. [10] to recursive utility settings. For a broader context of FBSDE
systems in control theory we refer to the books by Ma and Yong [26] and Yong and
Zhou [39].

A related literature on constrained portfolio selection with additive utilities
[14,18,35,5,22,16] focuses on dual formulations that involve the minimization of the
value function over all possible completions of the market. Cuoco [4] showed
existence of an optimum under nontradeable income and additive utility with primal
methods. We do not discuss duality or existence in this paper. Extensions of the
analysis in SS and this paper to nonBrownian settings are developed in Schroder and
Skiadas [33].

An alternative to the utility gradient approach, since Merton [27], is
dynamic programming. The working paper version of this paper (available at
www.kellogg.nwu.edu/faculty/skiadas/research.htm) gives a nonMarkovian dy-
namic programming optimality verification argument for translation-
invariant recursive utility, analogous to the one given in SS for the scale-invariant
case. Related Markovian dynamic programming treatments with non-
tradeable income, additive discounted power utility, and i.i.d. instantaneous returns
include Duffie et al. [8] and Koo [21]. The recent additive-exponential-utility solution
of Musiela and Zariphopoulou [28] is nested in the setting of this paper, and is
extended (in Example 25) by allowing recursive utility and a more general asset
structure.

The remainder of the paper is organized in seven sections and two appendices. In
Section 2, the market and optimality are defined. In Section 3, optimality is
characterized in terms of the relationship between a utility (super)gradient density
and a constrained notion of a state-price density. In Section 4, we apply the
characterization of optimality to generalized recursive utility, followed by the
translation-invariant case in Section 5. In Section 6, the important ‘‘quasi-quadratic’’
specification is introduced, used in applications in the final two sections. Appendix A
characterizes aggregators of translation-invariant generalized recursive utilities, and
Appendix B contains proofs.
2. Market and optimality

Given is an underlying probability space ðO;F;PÞ supporting a d-dimensional
standard Brownian motion B over the finite time horizon ½0;T �: All processes
appearing in this paper are assumed to be progressively measurable with respect to
the augmented filtration fFt : t 2 ½0;T �g generated by B. We also assume that FT ¼

F: The conditional expectation operator E½	 jFt� will be abbreviated to Et

throughout. The qualification ‘‘almost surely’’ (or a.s.) will be often omitted where
it is implied by the context.

Given any subset S of a Euclidean space, LðSÞ denotes the set of all S-valued
(progressively measurable) processes, andLpðSÞ denotes the set of all x 2 LðSÞ such
that

R T

0
kxtk

p dto1 a.s. (where k 	 k is Euclidean norm). We will make frequent use

http://www.kellogg.nwu.edu/faculty/skiadas/research.htm
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of the spaces:

Sp ¼ fx 2 LðRÞ : E½ðsupt2½0;T � jxtj
pÞ�o1g;

H ¼ x 2 LðRÞ : E

Z T

0

x2
t dt þ x2

T

� �
o1

� �
:

We consider H as a Hilbert space under the inner product

ðx j yÞ ¼ E

Z T

0

xtyt dt þ xT yT

� �
:

As usual, we identify any elements x and ~x in H such that ðx � ~x jx � ~xÞ ¼ 0:
There is a securities market that allows instantaneous default-free borrowing and

lending at a rate given by the stochastic process r 2 L1ðRÞ: We refer to trading at
this rate as the ‘‘money market.’’ The rest of the securities market consists of trading
in mpd risky assets, whose instantaneous excess returns (relative to r) are
represented by the m-dimensional Itô process R, with dynamics

dRt ¼ mR
t dt þ sR0

t dBt;

where mR 2 L1ðR
mÞ and sR 2 L2ðR

d�mÞ: We assume throughout that sR is
everywhere full-rank (and therefore everywhere invertible if m ¼ d).

A trading plan is any process f 2 LðRmÞ such thatZ t

0

ðjf0
sm

R
s j þ f0

ss
R0
s sR

s fsÞdso1 a.s. for all toT :

(All vectors are assumed to be column vectors, with a prime denoting transposition.)
We interpret the ith component of ft as the time-t market value of the agent’s
investment in security i 2 f1; . . . ;mg; the remaining wealth being invested in the
money market. A (financial) wealth process is any process W such that W� 2 S2;
where W�

t ¼ maxf0;�W tg: (This restriction is imposed to rule out doubling-type
strategies.) A plan ðc;f;W Þ is a triple of a consumption plan c, a trading plan f; and
a wealth process W.

We consider an agent characterized by the primitives ðC;U0;w0; e;FÞ: The set
C � H; whose elements are the consumption plans, is a convex set such that c þ b 2

C for any c 2 C and bounded b 2 LðRÞ:Given any c 2 C; we think of ct; toT ; as the
time-t consumption rate and cT as a terminal lump-sum consumption or bequest.
The function U0 : C ! R is a (strictly) increasing utility function over consumption
plans. The positive scalar w040 is an initial financial wealth, while e 2 H is an
endowed income stream, with et representing a time-t income rate, and eT

representing a terminal lump-sum payment. The set F; a nonempty convex closed
subset of Rm; is the agent’s constraint set, in which the vector of risky-asset
investment values is restricted to lie at all times. (The general analysis would also go
through if F were made state and time dependent, subject to some technical
measurability conditions.)
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Example 1. Missing market i is modeled by requiring that fi
¼ 0 for all f 2 F: A

minimum investment constraint in asset i is modeled by requiring that fi
Xl for all

f 2 F; for some lower limit l. If l ¼ 0; this becomes a short-sale constraint.
The plan ðc;f;W Þ is feasible if 1

ft 2 F; toT ;

and it satisfies the budget equation:

W 0 ¼ w; dW t ¼ ðW trt þ et � ctÞdt þ f0
t dRt; cT ¼ W T þ eT : (1)

A consumption plan c is feasible if ðc;f;W Þ is feasible for some trading plan f and
wealth process W. A consumption plan c is optimal if it is feasible and UðcÞXUð~cÞ
for any other feasible consumption plan ~c; while the plan ðc;f;W Þ is optimal if it is
feasible and c is optimal. A trading plan f is feasible (resp. optimal) if ðc;f;W Þ is
feasible (resp. optimal) for some ðc;W Þ:
3. Utility gradient and state pricing

Fixing a reference plan ðc;f;W Þ; we formulate conditions for its optimality in
terms of a utility (super)gradient density and a constrained notion of state pricing.
These conditions are applied in subsequent sections in increasingly restrictive
settings.

A process x 2 H is a feasible incremental cash flow at c if c þ x is a feasible
consumption plan. A process p 2 H is a state-price density at c if ðp jxÞp0 for every
feasible incremental cash flow x at c. A process p 2 H is a utility supergradient

density of U0 at c if for all x 2 H;

c þ x 2 C implies U0ðc þ xÞpU0ðcÞ þ ðp jxÞ: (2)

A process p 2 H is a utility gradient density of U0 at c if for all x 2 H;

c þ ax 2 C for some a40 implies ðp jxÞ ¼ lim
a#0

U0ðc þ axÞ � U0ðcÞ

a
:

If p is a supergradient density of U0 at c and the utility gradient of U0 at c exists,
then the utility gradient density equals p:

The supergradient and state-price properties combine to characterize optimality
in the following proposition, whose proof is essentially the same as that of
Proposition 3 in SS (short for Schroder and Skiadas [32]).

Proposition 2. Suppose ðc;f;W Þ is a feasible plan. If p 2 H is both a supergradient

density of U0 at c and a state-price density at c, then the plan ðc;f;W Þ is optimal.

Conversely, if the plan ðc;f;W Þ is optimal and p 2 H is a utility gradient density of U0

at c, then p is a state-price density at c.
1More precisely, this means that the process x defined by xt ¼ 1ffteFg; toT ; and xT ¼ 0; is the zero

process as an element of H: The analogous interpretation will always be implied for statements of the

form ‘‘xt 2 S’’ or ‘‘xt ¼ yt’’.
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To apply the last proposition at the reference plan ðc;f;W Þ; we need to compute
the dynamics of the utility gradient (or supergradient) density at c, and to develop a
criterion for recognizing these dynamics as the dynamics of a state-price density at c.
Examples of utility (super)gradient calculations appear in Duffie and Skiadas [9],
Schroder and Skiadas [30], Chen and Epstein [2], El Karoui et al. [10], as well as in
SS. The characterization of state-price dynamics in the current setting is provided in
the following result, stated in terms of the support function dF : Rm ! ð�1;1�

defined by

dFð�Þ ¼ supff0� : f 2 Fg: (3)

Theorem 3. Suppose that ðc;f;W Þ is a feasible plan.
(a) (Sufficiency) Suppose that p 2 S2; pW 2 S1; and for some Z 2 L2ðR

d Þ;

dpt

pt
¼ �rt dt � Z0t dBt for tpT ; and f0

t�t ¼ dFð�tÞ for toT ;

where � ¼ mR � sR0Z:
(4)

Then p is a state-price density at c.
(b) (Necessity) Suppose (for simplicity) that r is bounded, and p 2 S1 is a strictly

positive Itô process. If p is a state-price density at c, then (4) holds for some Z 2

L2ðR
dÞ:

By Proposition 2, if p is a utility (super)gradient, (4) states the first-order
conditions of optimality. In this case we can think of p as being the agent’s subjective
marginal pricing kernel at the optimum, which may not be consistent with the way
the market prices assets, due to the agent’s constraints. For example, in equilibrium,
an agent can regard a stock overvalued if the agent is constrained from short-selling
the stock. If p follows the dynamics of condition (4), the agent assesses a subjective
market-price-of-risk process Z: Given risky asset positions f 2 F; f0� can be thought
of as the instantaneous expected mispricing benefit to the agent, which condition (4)
states must be maximized along the optimal path.

The market is complete if m ¼ d and F ¼ Rd ; in which case there exists a unique,
up to positive scaling, state-price density, p; whose dynamics are given in (4) with
Z ¼ ðsR0Þ

�1mR; provided the process p so defined is in H: In the constrained case, the
utility gradient density, p; at the optimum, assuming it exists and is a strictly positive
Itô process, defines a market-price-of-risk process Z; which can be interpreted in
terms of a fictitious complete market as follows. (Note that the assumption m ¼ d is
without loss in generality, since nontradeability of an asset can be modeled
through F:)

Corollary 4. Suppose that ðc;f;W Þ is an optimal plan, m ¼ d; r is bounded, the strictly

positive Itô process p 2 S2 is the gradient density of U0 at c; and pW 2 S1: Then

there exists Z 2 LðRdÞ such that condition (4) holds. Moreover, the plan ðc;f;W Þ is

optimal for the same agent, but with endowed income e þ dFð�Þ instead of e; and no

constraints, in a fictitious complete market obtained from the original market by

assuming instantaneous expected excess returns m̂R
¼ sR0Z instead of mR:
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Proof. The necessity part of Theorem 3 gives the first-order conditions of optimality
in the original market. Feasibility of ðc;f;W Þ in the fictitious market is confirmed by
direct computation of the budget equation. Finally, optimality in the fictitious
market follows by the sufficiency part of Theorem 3. &
4. Recursive utility

In this section, we elaborate on the first-order conditions of optimality for the case
of generalized recursive utility, by which we mean a utility process that is defined as a
solution to a backward stochastic differential equation (BSDE), a continuous-time
version of a general backward recursion on an information tree. The specification
nests the continuous-time recursive utility of Duffie and Epstein [6], time-additive
utility being a special case, the multiple-prior formulation of Chen and Epstein [2], as
well as robust-control type criteria through the type of argument in Skiadas [37].
Further properties of generalized recursive utility are discussed in Lazrak and
Quenez [23], El Karoui et al. [10], as well as SS. In some cases,2 the equivalence in
Schroder and Skiadas [31] can be used to mechanically extend the analysis that
follows to include linear habit formation.

We define the utility in terms of an aggregator function F : O� ½0;T � � R�

R1þd ! R; and a set U � S2 of utility processes. The random variable F ðT ; c;U ;SÞ
does not depend on the arguments ðU ;SÞ; which are therefore notationally
suppressed. We henceforth assume that, given any consumption plan c, there is a
unique ðU ;SU Þ 2 U�L2ðR

dÞ that solves the BSDE

dUt ¼ �F ðt; ct;Ut;SU
t Þdt þ SU 0

t dBt; UT ¼ F ðT ; cT Þ; (5)

and we define the utility process of c by letting UðcÞ ¼ U : We also assume that
F ðo; t; 	Þ is a concave function for all ðo; tÞ; and the derivative, Fcðo; t; 	;U ;SÞ; of
F ðo; t; 	;U ;SÞ exists and maps R onto ð0;1Þ:

Example 5 (Duffie–Epstein utility). Duffie and Epstein [6] analyze the aggregator
form

F ðt; c;U ;SÞ ¼ f ðt; c;UÞ �
Aðt;UÞ

2
S0S; (6)

for some functions f : O� ½0;T � � ð0;1Þ � R ! R and A : O� ½0;T � � R ! R:
The coefficient A can always (under some technical regularity assumptions) be set to
zero after a suitable choice of an ordinally equivalent utility. Additive utility is
obtained if f ðt; c;UÞ ¼ uðt; cÞ � btU and A ¼ 0:

The aggregator F need not be smooth in ðU ;SÞ; a generality that is useful, for
example, in incorporating the Chen and Epstein [2] formulation. The super-

differential of F with respect to the variables ðU ;SÞ at ðo; t; c;U ;SÞ is defined as the
2For example, this is the case under conical trading constraints if the short rate process and the habit

parameters are all deterministic. The equivalence applies generally in the complete-markets case.
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set ð@U ;SF Þðo; t; c;U ;SÞ of all pairs ða; bÞ 2 R� Rd such that

F ðo; t; c þ x;U þ y;Sþ zÞpF ðo; t; c;U ;SÞ þ F cðo; t; c;U ;SÞx þ ay þ b0z:

We now fix a reference plan ðc;f;W Þ and characterize its optimality. Letting
ðU ;SU Þ be the solution to BSDE (5), we define the process

lt ¼ Fcðt; ct;Ut;SU
t Þ: (7)

In a time-t formulation of the agent’s problem, lt is the Lagrange multiplier for the
time-t wealth constraint, since it provides the first-order utility increment (per unit of
wealth) as a result of slightly changing time-t wealth. Consumption can be expressed
in terms of l by inverting the above equation: ct ¼ Iðt; lt;Ut;StÞ; where the function
I : O� ½0;T � � ð0;1Þ � R1þd ! C is defined implicitly by

Fcðt;Iðt; l;U ;SÞ;U ;SÞ ¼ l; l 2 ð0;1Þ:

The utility (super)gradient density can be expressed as a stochastically discounted
version of l as follows. Given any processes ða; bÞ 2 L1ðRÞ �L2ðR

d Þ; the stochastic
exponential process Eða; bÞ is defined by the SDE

dEtða; bÞ

Etða; bÞ
¼ at dt þ b0

t dBt; E0ða; bÞ ¼ 1: (8)

Suppose that the process p 2 H is given by

pt ¼ EtðFU ;FSÞlt; t 2 ½0;T �; (9)

for some ðFU ;FSÞ 2 L1ðRÞ �L2ðR
dÞ such that EðFU ;FSÞ 2 S2 and3

ðF U ðtÞ;FSðtÞÞ 2 ð@U ;SF Þðt; ct;Ut;SU
t Þ; t 2 ½0;T �:

Then, by Proposition 13 of SS, p is a utility supergradient density of U0 at c.
Applying Itô’s lemma to Eq. (9), condition (4), along with the wealth dynamics

and the utility specification results in the following first-order conditions of
optimality, to be solved jointly in ðU ;SU ; l;sl;W Þ:

dUt ¼ �F ðt;Iðt; lt;Ut;SU
t Þ;Ut;SU

t Þdt þ SU 0
t dBt; UT ¼ F ðT ;W T Þ;

dlt

lt

¼ �ðrt þ F U ðtÞ þ sl0t FSðtÞÞdt þ sl0t dBt; lT ¼ F cðT ;W T Þ;

dW t ¼ ðW trt þ f0
tm

R
t þ et �Iðt; lt;Ut;SU

t ÞÞdt þ f0
ts

R0
t dBt; W 0 ¼ w0;

�t ¼ mR
t þ sR0

t ðFSðtÞ þ slt Þ; ft 2 F; f0
t�t ¼ dFð�tÞ;

ðFU ðtÞ;FSðtÞÞ 2 ð@U ;SF Þðt;Iðt; lt;Ut;SU
t Þ;Ut;SU

t Þ:

The above is a constrained FBSDE. Using last section’s results the system is
sufficient and necessary for optimality, under suitable regularity assumptions (as
given in Proposition 2 and Theorem 3). In a Markovian setting, the above system
can be formulated as a PDE system, following the Ma et al. [25] approach. The basic
idea is illustrated in SS, and can be easily adapted to this paper’s setting.
3More precisely, we are assuming that the indicator function of ðFU ðtÞ;FSðtÞÞeð@U ;SF Þðt; ct;Ut;SU
t Þ is

equal to zero as an element of H:
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5. Translation-invariant formulation

Having characterized optimality for general recursive utility, in this section
we introduce translation invariance relative to a fixed cash flow g; a condition
that is this paper’s main focus. As noted in the Introduction, translation-
invariant utility retains the tractability of additive exponential utility without
imposing the ad hoc risk-aversion restrictions of additivity. Provided that
the cash flow g is traded without constraints, we will see that translation
invariance relative to g uncouples the forward and backward components
of the first-order conditions, thus reducing last section’s FBSDE system to a single
BSDE.

For each consumption plan c; let UðcÞ denote the corresponding utility process
solving BSDE (5). We fix throughout a bounded process g 2 LðRþþÞ; and we
assume that the dynamic utility c 7!UðcÞ is translation-invariant relative to g;meaning
that for any c1; c2 2 C and t 2 ½0;T �;

Utðc
1Þ ¼ Utðc

2Þ ) Utðc
1 þ kgÞ ¼ Utðc

2 þ kgÞ for all k 2 R:

Appendix A shows that if we further assume that U is in certainty-equivalent form
using g as the numeraire, then U is quasilinear with respect to g:

Utðc þ kgÞ ¼ UtðcÞ þ k for all k 2 R; c 2 C; t 2 ½0;T �: (10)

Appendix A also shows that quasilinearity with respect to g is essentially
characterized by the aggregator form in the following condition, which is assumed
for the remainder of this paper.

Condition 6 (Standing assumption). The following restrictions hold for a bounded
process g 2 LðRþþÞ and a function G : O� ½0;T � � R1þd ! R that we call an
absolute aggregator.

(a) For every c 2 C; U0ðcÞ ¼ U0; where ðU ;SU Þ solves, uniquely in U�L2ðR
d Þ;

the BSDE

dUt ¼ �G t;
ct

gt

� Ut;SU
t

� �
dt þ SU 0

t dBt; UT ¼
cT

gT

: (11)

(b) There exists R 2 Rm and a strictly positive process G such that

dGt ¼ ðrtGt � gtÞdt þ R0 dRt; GT ¼ gT

and v 2 F implies v þ kR 2 F for all k 2 R:

The notion of an absolute aggregator in a translation-invariant setting is
analogous to that of a proportional aggregator in a scale-invariant setting (as
explained in Appendix A and SS). Part (b) of the above condition states that the
agent can trade with no restrictions in a portfolio R that generates the dividend
stream g and has corresponding time-t value Gt: Since trading in R is unconstrained,
dFð�Þo1 implies R0� ¼ 0: The first-order conditions therefore imply that the agent
correctly prices the portfolio R:
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Example 7. If F is a Duffie and Epstein [6] aggregator, then the absolute aggregator
G must take the functional form

Gðo; t;x;SÞ ¼ gðo; t;xÞ �
Aðo; tÞ

2
S0S:

In the special case in which

Aðo; tÞ ¼ 1 and gðo; t;xÞ ¼ bðo; tÞ � expð�xÞ;

under suitable integrability restrictions, the ordinally equivalent utility

Vt ¼ � expð�UtÞ

is time-additive discounted exponential utility:

Vt ¼ Et

Z T

t

� exp �

Z s

t

bu du �
cs

gs

� �
ds � exp �

Z T

t

bu du �
cT

gT

� �� �
:

The key to simplifying the solution in the translation-invariant case is the
following informal argument. Given an optimal plan, suppose that, on some time-t
event, k units of account are added to the agent’s financial wealth. Because of
translation invariance with respect to g; the agent will find it optimal to invest all
additional k units of wealth in k=Gt shares of the portfolio R; and to consume all of
the ensuing dividend stream fkgs=Gt; s4tg: Given the quasi-linearity of the utility
function with respect to g; this suggests the following key relationships at the
optimum:

lt ¼
1

Gt

; Ut ¼
1

Gt

ðY t þ W tÞ; and ft ¼ f0
t þ UtR; (12)

where ðY ;SY ;f0
Þ solves a constrained BSDE, given below, that is independent of

financial wealth. The second equation states that, taking the market value of the
fund R as the unit of account, the value function is the sum of financial wealth and
the value of the endowed income stream.

To state the relevant constrained BSDE, we introduce some notation. The (partial)
derivative of Gðo; t; 	;SÞ at x is denoted Gxðo; t; x;SÞ; and the superdifferential of the
function G with respect to S (defined analogously to @u;SF Þ is denoted @SG: The
functions X;Gn : O� ½0;T � � ð0;1Þ � Rd ! R are defined by

Gxðo; t;Xðo; t; y;SÞ;SÞ ¼ y;

Gnðo; t; y;SÞ ¼ sup
x2R

fGðo; t;x;SÞ � yxg

¼ Gðo; t;Xðo; t; y;SÞ;SÞ � yXðo; t; y;SÞ:

Given the conjectured conditions (12), the first-order conditions reduce to a
constrained BSDE:
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Condition 8. ðY ;SY Þ 2 LðRÞ �LðRd Þ and f0
2 LðRmÞ solve

dY t ¼ Y trt � f00
t m

R
t � et � GtG

n t;
gt

Gt

;
SY

t þ sR
t f

0
t

Gt

� ��

þðsR
t RÞ

0 SY
t þ sR

t f
0
t

Gt

� ��
dt þ SY 0

t dB; Y T ¼ eT ;

�t ¼ mR
t þ sR0

t GSðtÞ �
1

Gt

sR
t R

� �
; f0

t 2 F; dFð�tÞ ¼ f00
t �t;

GSðtÞ 2 @SG t;X t;
gt

Gt

;
SY

t þ sR
t f

0
t

Gt

� �
;
SY

t þ sR
t f

0
t

Gt

� �
:

Given ðY ;SY ;f0
Þ and Eqs. (12), the optimal consumption plan is

ct ¼ gtðUt þ xtÞ; where xt ¼ X t;
gt

Gt

;
SY

t þ sR
t f

0
t

Gt

� �
: (13)

The wealth process dynamics are obtained by substituting the optimal consumption
and trading plan expressions in the budget equation:

dW t ¼ W trt þ
Y t þ W t

Gt

ðR0mR
t � gtÞ þ f00

t m
R
t þ et � gtxt

� �
dt

þ f0
t þ

Y t þ W t

Gt

R
� �0

sR0
t dBt; W 0 ¼ w0: ð14Þ

The optimality characterization for the translation-invariant formulation is
completed in the following result, proved in Appendix B.

Theorem 9. Suppose Condition 6 holds:
(a) (Sufficiency) Suppose Condition 8 is satisfied, the consumption plan c is defined

by Eq. (13), the wealth process W solves SDE (14), and the utility process U 2 U and

trading plan f are given by Eqs. (12). Finally, suppose E ¼ Eð�g=G;GSÞ 2 S2; as well

as E=G 2 S2 and EW=G 2 S1: Then the plan ðc;f;W Þ is optimal and U ¼ UðcÞ:
(b) (Necessity) Suppose the plan ðc;f;W Þ is optimal, Gðo; t;x;SÞ is differentiable in

ðx;SÞ; and r is bounded. Let U ¼ UðcÞ; x ¼ c=g� U ; GxðtÞ ¼ Gxðt;xt;SU
t Þ; and

GSðtÞ ¼ GSðt;xt;SU
t Þ; and suppose that E ¼ Eð�Gx;GSÞ 2 S2 and 1=G 2 S2: Then

Condition 8 holds with Y ¼ UG� W and f0
¼ f� UR:

Remark 10. The first-order conditions for the case of no intermediate consumption
or the case of no terminal consumption are obtained by omitting the corresponding
consumption argument in the utility and supergradient dynamics. The optimality
verification argument in those cases remains essentially the same. In the translation-
invariant formulation, if there is no intermediate consumption we omit the
dependence of Gðo; t;x;SÞ on x and let gt ¼ 0 for toT ; and if there is no terminal
consumption we let UT ¼ gT ¼ 0:
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6. Quasi-quadratic absolute aggregator

We have established that translation invariance reduces the FBSDE of the
first-order conditions to a single BSDE. To gain further insight into the
relationship between trading strategies and risk aversion, in this section we impose
a ‘‘quasi-quadratic’’ absolute aggregator functional form. The formulation is
sufficiently flexible to model possibly source-dependent first or second-order
risk aversion, and includes all translation-invariant Duffie–Epstein utilities,
additive discounted exponential utility being a special case. Unlike additive
utility, the formulation allows the various types of risk aversion to be arbitrarily
selected given the agent’s preferences over deterministic plans. The first-
order conditions for a quasi-quadratic absolute aggregator are derived generally
in this section, while several more specific solutions are given in the final two
sections.

In the remainder of this paper we assume the following condition, using the
notation jxj0 ¼ ðjx1j; . . . ; jxd jÞ; x 2 Rd :

Condition 11 (Standing assumption). The absolute aggregator G is quasi-quadratic,
meaning that it takes the form

Gðo; t;x;SÞ ¼ gðo; t;xÞ � qðo; tÞ0S� kðo; tÞ0 jSj � 1
2S

0Qðo; tÞS; (15)

for some (progressively measurable) functions g : O� ½0;T � � R ! R; q :
O� ½0;T � ! Rd ; k : O� ½0;T � ! Rd

þ; and Q : O� ½0;T � ! Rd�d ; such that Qðo; tÞ
is symmetric positive definite for all ðo; tÞ: The processes k; q; and Q are assumed
bounded (for simplicity).

The interpretation of the various terms of Eq. (15) parallels that of the
proportional quasi-quadratic representation in SS, whose Section 5.1 applies in this
context with obvious modifications. Assuming it is state independent, the function g

entirely determines the agent’s preferences over deterministic consumption plans.
The linear term q0S can be thought of as reflecting the agent’s beliefs, in the sense of
a Girsanov change of measure (as explained in SS). The remaining coefficients, k and
Q, measure, respectively, first and second-order absolute risk aversion that can be
time and state dependent, as well as dependent on the source of risk. The source-
dependence of risk aversion can be thought of as reflecting the ambiguity of the risk
source in the sense of Ellsberg [11] (see [20] for related ideas). Alternatively, the k-
term can arise from the Chen and Epstein [2] notion of k-ignorance, while the Q-term
is related to robust control type criteria through the type of argument given in
Skiadas [37].

Under a quasi-quadratic absolute aggregator, we obtain the simpli-
fications

Xðo; t; y;SÞ ¼ Xgðo; t; yÞ; and

Gnðo; t; y;SÞ ¼ gnðo; t; yÞ � qðo; tÞ0S� kðo; tÞ0 jS j � 1
2
S0Qðo; tÞS;
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where the functions Xg; gn : O� ½0;T � � ð0;1Þ ! R are defined analogously to X
and Gn by

gxðo; t;X
gðo; t; yÞÞ ¼ y;

gnðo; t; yÞ ¼ sup
x2R

ðgðo; t; xÞ � yxÞ

¼ gðo; t;Xgðo; t; yÞÞ � yXgðo; t; yÞ:

The superdifferential @SG is characterized as follows. For any S 2 Rd ; let @ jSj
denote the set of all L 2 ½�1; 1�d whose ith coordinate, Li; satisfies

Li ¼ 1 if Si40; Li ¼ �1 if Sio0;

and Li 2 ½�1; 1� if Si ¼ 0:

Moreover, for every x; y 2 Rd ; x � y 2 Rd denotes element-by-element multiplica-
tion, that is, ðx � yÞi ¼ xiyi for all i. One can easily show:

Lemma 12. GSðtÞ 2 ð@SGÞðt;xt;StÞ if and only if there exists Lt 2 @ jStj such that

GSðtÞ ¼ �ðqt þ kt � Lt þ QtStÞ:

Direct computation using the above lemma gives the constrained BSDE of the
first-order conditions as in the following proposition. The term k� L in the first-
order conditions (which vanishes if the aggregator is smooth) is computed explicitly
in the following section assuming that Q is diagonal.

Proposition 13. For the quasi-quadratic absolute aggregator G, the constrained BSDE

of Condition 8 is equivalent to

dY t ¼ rtY t � et � dFð�tÞ � Gtg
n t;

gt

Gt

� �
þ

SY 0
t QtS

Y
t � f00

t s
R0
t Qts

R
t f

0
t

2Gt

� �
dt

þ SY 0
t dBt þ qt þ kt � Lt þ

sR
t R
Gt

� �
dt

� �
; Y T ¼ eT ;

f0
t ¼ GtðsR0

t Qts
R
t Þ

�1 mR
t � �t � sR0

t qt þ kt � Lt þ
sR

t Rþ QtS
Y
t

Gt

� �� �
;

f0
t 2 F; dFð�tÞ ¼ f00

t �t; Lt 2 @ jSY
t þ sR

t f
0
t j:

Remark 14. (a) If F ¼ Rm; corresponding to possibly incomplete markets (if modÞ

but no further trading constraints, the above first-order conditions simplify by letting
� ¼ 0 and dFð�Þ ¼ 0:

(b) If the processes r; g; mR; sR;k; q;Q; and e are all deterministic, and the function
g is state independent, then the first-order conditions simplify by letting SY ¼ 0 and
R ¼ 0:

One can now restate Theorem 9 for the quasi-quadratic case by replacing
Condition 8 with the above constrained BSDE. Given a solution to the latter, the
complete solution is recovered using Eqs. (12)–(14).
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Example 15. Suppose that the quasi-quadratic absolute aggregator G is smooth (that
is, k ¼ 0). A simple expression for the optimal trading strategy is obtained under a
single linear constraint. Suppose F ¼ fv 2 Rm : lpp0vpug; where p 2 Rm and
�1plpup1: (For example, a short-selling constraint on asset i corresponds to
l ¼ 0; u ¼ 1; and p a vector with a one in the ith position and zeros elsewhere.)
Defining

f0n
t ¼ At mR

t � sR0
t qt þ

sR
t Rþ QtS

Y
t

Gt

� �� �
; At ¼ GtðsR0

t Qts
R
t Þ

�1;

the pair ðf0; �Þ in the first-order conditions of Proposition 13 is given by

f0
t ¼ f0n

t � At�t; �t ¼ �ðp0AtpÞ
�1pðminfmaxfp0f0n

t ; lg; ug � p0f0n
t Þ:

Note that the above expression for f0n gives the optimal f0 as a function of SY in
the unconstrained case. The above claim follows easily from the first-order
conditions. The details, as well as the extension to multiple linear constraints, are
analogous to Example 34 in SS, and are therefore omitted.

The optimal consumption dynamics for a smooth quasi-quadratic absolute
aggregator are summarized in the following proposition, which is followed by an
application to equilibrium asset pricing.

Proposition 16. Suppose that Condition 11 holds with k ¼ 0; the partial gx is state

independent, the process g follows the dynamics dg=g ¼ mg dt þ sg0 dB; and that the

first-order conditions of optimality are satisfied at the optimal plan ðc;f;W Þ; with

corresponding utility process U. Define

At ¼ �
gxxðt;xtÞ

gxðt;xtÞ
; St ¼ �

gxtðt;xtÞ

gxðt;xtÞ
; Pt ¼ �

gxxxðt;xtÞ

gxxðt;xtÞ
; xt ¼

ct

gt

� Ut

and sg=Gt ¼ sgt � G�1
t sR

t R: Then dct ¼ mc
t dt þ Sc0

t dBt; where

Sc
t ¼

gt

Gt

SY
t þ sR

t ft þ
1

At

� Ut

� �
sR

t R
� �

þ ct �
gt

At

� �
sgt ;

mc
t ¼ � gtGðt;xt;SU

t Þ þ ctðm
g
t � sg0t s

g
t Þ þ Sc0

t s
g
t þ

gt

2

Pt

A2
t

sg=G0t sg=Gt

�
gt

At

St þ mgt � rt þ
gt

Gt

�
1

Gt

R0ðmR
t þ sR0

t sg=Gt Þ

� �
:

Example 17 (Equilibrium asset pricing). In addition to the assumptions of the last
proposition, we assume that F ¼ Rm; meaning that markets can be incomplete
ðmodÞ; but there are no further trading constraints. The optimal consumption
dynamics can be inverted to obtain the following equilibrium pricing expressions
(shown in Appendix B):

mR
t ¼

1

gt

sR0
t QtS

c
t þ

gt

At

� ct

� �
Qts

g
t þ

gt

Gt

I �
1

At

Qt

� �
sR

t R
� �

;
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rt ¼ mgt þ
gt

Gt

�
1

Gt

R0ðmR
t þ sR0

t sg=Gt Þ þSt �
Pt

2At

sg=G0t sg=Gt

þAt Gðt; xt;SU
t Þ þ

1

gt

ðmc
t þ ctðs

g0
t s

g
t � mgt Þ � Sc0

t s
g
t Þ

� �
:

For example, if gðo; t;xÞ ¼ bðo; tÞ � expð�axÞ; a 2 Rþþ; the above expressions
simplify since At ¼ Pt ¼ a and St ¼ 0: If markets are complete, or preferences are
Duffie–Epstein (that is, Q ¼ bI ; b 2 LðRþþÞ), the risk-premium equilibrium
expression can be added-up across agents in an economy with agent-specific
parameters ða; b;bÞ; to obtain an equilibrium expression for mR in terms of the
aggregate endowment and its volatility.
7. Solutions under quasi-quadratic aggregator

This section presents more detailed solutions under a quasi-quadratic absolute
aggregator, including an explicit expression for the term k� L in the first-order
conditions given diagonal Q; clarifying the role of first-order risk aversion, as well as
some special solutions emphasizing the effect of undiversifiable income.

The following normalization of the return volatility process sR and the second-
order risk aversion parameter Q will be henceforth assumed. The restriction is
vacuous if m ¼ d; which can be assumed without loss in generality by modeling
missing markets through F: In applications, however, it is often more convenient to
assume mod:

Condition 18 (Standing assumption). For some sR
MM ; QMM 2 LðRm�mÞ;

sR ¼
sR

MM

0

� �
and Q ¼

QMM 0

0 QNN

� �
:

Remark 19. By Lemma 10 of SS, sR can always be put in the above form by passing
to a new Brownian motion that generates the same filtration as the original one.
Suppose Q ¼ aI for some a 2 R (where I denotes the identity matrix), as is the case
with Duffie–Epstein utility, including time-additive utility. Then the change of
Brownian motion does not affect Q, and therefore imposing Condition 18 entails no
loss in generality (even if mod).

The notational scheme suggested in the above condition will be followed
throughout: M and N refer to the sets of marketed and nonmarketed securities,
respectively, and are also used as indices of corresponding matrix blocks. In
particular, given any d-dimensional process or vector x, we write x0 ¼ ½x0

M ; x0
N �;

where xM is valued in Rm and xN is valued in Rd�m: Given the new subscripts, we
often omit dummy time indices to simplify the notation. For example, the above
condition implies that dR ¼ mR dt þ sR0

MM dBM : It is important to note that, unless
otherwise stated, the coefficients mR and sR

MM are not required to be adapted to the
filtration generated by BM :
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The following processes will be of repeated use:

ZM ¼ ðsR0
MM Þ

�1
ðmR � �Þ and aM ¼ ZM � qM �

1

G
sR

MMR: (16)

Moreover, in the first-order conditions, we will often refer to the term

âM ¼ aM � kM � LM : (17)

For example, in this context, the optimal trading strategy is f ¼ f0
þ UR; where

f0
¼ ðsR

MM Þ
�1
ðGQ�1

MM âM � SY
M Þ: (18)

Example 20 (Fictitious completion). This example illustrates Corollary 4. Suppose
that mod and F ¼ Rm: The fictitious complete market of Corollary 4 is obtained by
introducing unrestricted trading in d � m fictitious securities with price dynamics
specified by mR

N ¼ qN þ kN � LN þ G�1QNNS
Y
N ; s

R
NN equal to the identity matrix,

and sR
MN ¼ sR0

NM ¼ 0: The agent’s endowment and the marketed asset price dynamics
are the same in the original and fictitious markets. The first-order conditions in the
fictitious market imply that fN ¼ 0; and therefore the impossibility of trading in
fictitious assets is a nonbinding constraint. Direct computation shows that the BSDE
for Y is the same in the fictitious market and the original market.

The following result clarifies the role of k in the first-order conditions, given a
diagonal process Q.

Proposition 21. Suppose Condition 18 holds, Q is diagonal, and the process aM is

defined in (16). Then, in the first-order conditions of Proposition 13, the terms k� L
and f0 can equivalently be specified by

kM � LM ¼ maxfminfaM ;kMg;�kMg; kN � LN ¼ kN � signðSY
NÞ;

and Eq. (18), where âM can be written (equivalently to (17)) as

âM ¼ minfmaxf0; aM � kMg; aM þ kMg ¼ QMMSU
M :

Given the assumption that Q is diagonal, the last equation implies that, for any
i 2 M ; SU

i ¼ 0 whenever jaijpki; that is, the agent completely hedges the ith
dimension of risk, as a consequence of first-order risk aversion. Analogous results
for the scale-invariant case are presented in SS (see also [34,2,13]).

Example 22. Suppose further that the parameters ðr; g;mR; sR; k; q;Q; eÞ are all
deterministic, and the function g is state independent. Then Y is also deterministic,
and therefore SY ¼ 0 and f0

¼ ðsR
MM Þ

�1GSU
M : In this case, SU

i ¼ 0 can imply
complete nonparticipation in the market for asset i. For example, suppose that sR

MM

(as well as Q) is diagonal, and F ¼ Rm: Suppose also that the portfolio R consists of a
share in asset one, generating dividend stream g: Then, for any iX2; jðmR

i =s
R
ii Þ � qij

pki implies fi ¼ 0: That is, a sufficiently small belief-adjusted market price
of the risk traded by asset iX2 results in the agent’s nonparticipation in this
market.
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This section’s last main result focuses on the role of a nontradeable endowment
income stream. We assume that F ¼ Rm; which implies that markets can be
incomplete (mod), but there are no further trading constraints. Assuming that all
parameters, except for the endowment e; depend only on uncertainty generated by
BM ; we derive a decomposition of Y into a subjective endowment value component
and a market component.

Proposition 23. Suppose that F ¼ Rm; and the processes r; g; mR; sR; kM ; qM ; QMM ;
and gnðg=GÞ are all adapted to the (augmented) filtration fFM

t g generated by BM : Then,
in the first-order conditions of Proposition 13, the process Y and its volatility can be

decomposed as

Y ¼ Y M þ Y e; SY
M ¼ SY M

M þ SY e

M ; and SY
N ¼ SY e

N ;

where ðY M ;SY M

M Þ is adapted to fFM
t g and solves the BSDE:

dY M ¼ � Ggn g
G

	 

� rY M þ

G
2
â0MQ�1

MM âM

� �
dt

þ SY M 0
M ðdBM þ ZMdtÞ; Y M

T ¼ 0;

while ðY e;SY e

Þ is adapted to the finer filtration fFtg and solves the BSDE:

dY e ¼ � e � rY e �
1

2G
SY e0

N QNNS
Y e

N

� �
dt

þ SY e0
M ðdBM þ ZM dtÞ þ SY e0

N ðdBN þ ðqN þ kN � LN ÞdtÞ; Y e
T ¼ eT :
To present integrated versions of the above BSDEs, we introduce some notation
with regard to Girsanov changes of measure. Given any b 2 LðRdÞ; we use the
notation Bb and xb to denote the processes satisfying

dBb
t ¼ dBt þ bt dt; Bb

0 ¼ 0; and
dxb

t

xb
t

¼ �b0
t dBt; xb

0 ¼ 1: (19)

If xb is a martingale (for example, if b satisfies the Novikov condition), then Bb is
Brownian motion under the probability Pb with density dPb=dP ¼ xb

T : The
expectation operator corresponding to the probability Pb is denoted Eb:

Consider now the processes

y ¼
ZM

qN þ kN � LN

� �
and Bt;s ¼ exp �

Z s

t

ru du

� �

and assume that xy is a martingale. The above BSDEs can then be integrated,
provided the integrals below are well-defined, to obtain the following expressions for
the two components of Y:

Y M
t ¼ Ey

Z T

t

Bt;sGs gn s;
gs

Gs

� �
þ

1

2
â0MðsÞQ�1

MM ðsÞâMðsÞ

� �
ds j FM

t

� �
;

Y e
t ¼ Ey

Z T

t

Bt;s es �
1

2Gs

Se0
N ðsÞQNNðsÞS

e
NðsÞ

� �
ds þBt;T eT j Ft

� �
:
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Example 24 (Complete markets). Suppose that markets are complete, that is, m ¼ d

and F ¼ Rm: Then Z ¼ ðsR0Þ
�1mR is the unique market price of risk process, and

Y e
t ¼ E

Z
t ½
R T

t
Bt;ses ds þBt;T eT � is the time-t market value of the endowment.

Example 25. We consider two special cases of Proposition 23 in which the subjective
value of the endowment, Y e; is given by an expression of the form

exp �
a

Gt

Y e
t

� �
¼ Eb

t exp �

Z T

t

a

Gs

es ds �
a

GT

eT

� �� �
(20)

for properly defined a and b, extending a more special result by Musiela and
Zariphopoulou [28]. The proofs of the following claims are given in Appendix B. In
addition to the assumptions of Proposition 23, we assume that there is no
intermediate consumption (meaning that for every c 2 C; ct ¼ 0 for toT), and in
particular gt ¼ 0 for all toT (which presents no problems since the strict positivity
of gT implies that of G). Even though we have not treated the case of no-intermediate
consumption separately, the results are essentially the same (see Remark 10). We
also assume that r and gT40 are deterministic, and that kN ¼ 0: Within this setting
we consider two special cases:

Case 1 (idiosyncratic endowment): Suppose that e is adapted to the filtration
generated by BN ; and QNNðtÞ ¼ aI ; where a40 and I is an identity matrix. Then
SY e

M ¼ 0 and Eq. (20) holds for any b such that bN ¼ qN ; provided xb is a martingale
and the stated integral exists.

Case 2 (nonidiosyncratic endowment): Suppose that QNN is constant over time; ZM

and qN are deterministic; and the endowment process satisfies

det ¼ mt dt þ btS
0 dBt;

where S 2 Rd ; and m and b are real-valued and adapted to the filtration generated by
e. Then Eq. (20) holds with a ¼ S0

NQNNSN=S0S and b0
¼ y0 ¼ ½Z0M ; q0

N �: The solution
of Musiela and Zariphopoulou [28] is the subcase obtained by assuming Q ¼ I (time-
additive utility), q ¼ 0; Markovian dynamics for e and R, and a single lognormally
distributed risky asset.
8. Incomplete markets and quadratic BSDEs

In incomplete but otherwise unconstrained markets, and under a quasi-quadratic
smooth absolute aggregator, the BSDE of the first-order conditions characterizing Y

takes a quadratic form. A quadratic BSDE is also obtained in SS in a scale-invariant
setting with different preference restrictions. As in SS, we summarize below a set of
conditions under which the quadratic BSDE can be reduced to a system of ordinary
differential equations (ODEs), leading to some new tractable applications with
nontradeable income. The technique can be applied to BSDEs as well as the
corresponding PDEs in a Markovian setting. The PDE version of the approach is
familiar from the affine term-structure literature (see [7,29]), and has been utilized in
scale-invariant consumption/portfolio problems (subsumed by the formulation of
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SS) by Kim and Omberg [19], Chacko and Viceira [1], Schroder and Skiadas [30],
and Liu [24].

The following restrictions are imposed throughout this subsection:

Condition 26. Markets can be incomplete but there are no other constraints ðF ¼

RmÞ; the absolute aggregator is smooth ðk ¼ 0Þ; and q ¼ 0:

The assumption q ¼ 0 is without loss of generality (via a Girsanov change-of-
measure argument). Under these assumptions, the BSDE characterizing Y in the
first-order conditions of Proposition 13 becomes

dY t ¼ �ðet þ pt � rtY t þ SY 0
t ht þ

1
2
SY 0

t HtSY
t Þdt þ SY 0

t dBt; Y T ¼ eT ; (21)

where

pt ¼ Gtg
n t;

gt

Gt

� �
þ

Gt

2
mR

t �
1

Gt

sR0
t sR

t R
� �0

ðsR0
t Qts

R
t Þ

�1 mR
t �

1

Gt

sR0
t sR

t R
� �

;

ht ¼ �
sR

t R
Gt

� Qts
R
t ðs

R0
t Qts

R
t Þ

�1 mR
t �

1

Gt

sR0
t sR

t R
� �

; and

Ht ¼
1

Gt

ðQts
RðsR0

t Qts
R
t Þ

�1sR0Qt � QtÞ:

We now formulate a set of conditions that reduce BSDE (21) to an ODE system.
We introduce a state process Z 2 LðRkÞ with dynamics

dZt ¼ mZ
t dt þ sZ0

t dBt; where mZ 2 L1ðR
kÞ; sZ 2 L2ðR

d�kÞ:

Moreover, we split these state variables into two blocks, of dimensionality a and b;
respectively, where a þ b ¼ k: We treat a and b as integers denoting dimensionality,
as well as indices of corresponding matrix blocks, writing

Z ¼
Za

Zb

� �
and sZ ¼ sZa sZb

� �
;

where Za 2 LðRaÞ; Zb 2 LðRbÞ; sZa 2 LðRd�aÞ; and sZb 2 LðRd�bÞ:
We seek a solution of the form

Y t ¼ Y 0ðtÞ þ Y 1ðtÞ
0Zt þ

1
2
Za0

t Y 2ðtÞZ
a
t (22)

for some deterministic processes Y 0 2 LðRÞ; Y 1 ¼ ½Y a0
1 ;Y

b0
1 �

0 2 LðRkÞ; and Y 2 2

LðRa�aÞ: A sufficient set of conditions for this type of solution is stated below
(omitting time indices). We assume, without loss of generality, that all matrices
appearing in quadratic forms, including Y 2ðtÞ above, are symmetric.

Condition 27. (a) The processes r and sZa are deterministic.
(b) For some deterministic processes J0;K0 2 LðRÞ; J1;K1 2 LðRkÞ; and J2;K2 2

LðRa�aÞ;

e ¼ J0 þ J 0
1Z þ

1

2
Za0J2Z

a and p ¼ K0 þ K 0
1Z þ

1

2
Za0K2Z

a:
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(c) For some deterministic processes L0 ¼ ½La0
0 ;L

b0
0 �

0 2 LðRkÞ; La
1 2 LðRa�aÞ; Lb

1 2

LðRb�kÞ; and Lb
2½i� 2 LðRa�aÞ;

mZ þ sZ0h ¼ L0 þ
La
1Za

Lb
1Z þ ½Za0Lb

2½i�Z
a�i¼1;...;b

 !
:

(d) For some deterministic processes Daa
0 2 LðRa�aÞ; Dab

0 2 LðRa�bÞ; Dbb
0 2

LðRb�bÞ; Dab
1 ½i; j� 2 LðRaÞ; Dbb

1 ½i; j� 2 Rk and Dbb
2 ½i; j� 2 LðRa�aÞ;

sZ0HsZ ¼
Daa

0 Dab
0

Dab0
0 Dbb

0

 !

þ
0 ½Za0Dab

1 ½i; j��i¼1;...;a;j¼1;...;b

½Za0Dab
1 ½i; j��0i¼1;...;a;j¼1;...;b ½Z0Dbb

1 ½i; j��i;j¼1;...;b

0
@

1
A

þ
0 0

0 ½Za0Dbb
2 ½i; j�Za�i;j¼1;...;b

 !
:

We let D0 2 LðRk�kÞ denote the first term of the right-hand side.

Suppose Conditions 26 and 27 hold, X 2 LðRa�aÞ is defined to have ith row

Xin ¼
Xb

j¼1

Y b
1jD

ab
1 ½i; j�0

and the deterministic processes ðY 0;Y 1;Y 2Þ solve the following ODE system (where
the left-hand sides denote time-derivatives):

_Y 0 ¼ rY 0 � J0 � K0 � Y 0
1L0 �

1
2
Y 0

1D0Y 1 �
1
2
traceðY 2sZa0sZaÞ;

_Y 1 ¼ rY 1 � J1 � K1 � Lb0
1 Y b

1 �
1

2

Xb

i¼1

Xb

j¼1
Y b

1iY
b
1jD

bb
1 ½i; j�

�
La0
1 Y a

1 þ
Pa

i¼1

Pb
j¼1Y

a
1iY

b
1jD

ab
1 ½i; j� þ Y 2 Daa

0 Dab
0

� �
Y 1 þ Y 2L

a
0

0

 !
;

_Y 2 ¼ rY 2 � J2 � K2 � Y 2La
1 � La0

1 Y 2 � Y 2Daa
0 Y 2 � Y 2X� X0Y 2

�
Xb

i¼1

Xb

j¼1

Y b
1iY

b
1jD

bb
2 ½i; j� � 2

Xb

i¼1

Y b
1iL

b
2½i�;

with terminal conditions Y iðTÞ ¼ JiðTÞ; i ¼ 0; 1; 2:
Direct computation using Itô’s lemma shows that then Eq. (22) defines a solution

to BSDE (21) (provided that the drift and diffusion terms of (21) are suitably
integrable so that the respective integrals are well-defined).

Example 28. We assume that Condition 26 is satisfied, that the processes Q; r; and g
are deterministic, that gn is state independent, and (without loss of generality) that
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dR ¼ mR dt þ sR0
MM dBM : These assumptions imply that R ¼ 0; and that Gt and

gnðt; gt=GtÞ are also deterministic. We also recall the price of marketed risk expression
ZM ¼ ðsR0

MM Þ
�1mR: The following two problem classes satisfy Condition 27.

Class 1: Z ¼ Za ða ¼ k; b ¼ 0Þ; and

dZt ¼ ðm� bZtÞdt þ S0 dBt;

ZM ¼ uþ VZt; et ¼ J0 þ J1Zt þ
1
2
Z0

tJ2Zt;

where m 2 Ra; S 2 Rd�a; b 2 Ra�a; u 2 Rm; V 2 Rm�a; J0 2 R; J1 2 Ra; and J2 2

Ra�a:
Class 2: Z ¼ Zb (a ¼ 0; b ¼ k), Q satisfies Condition 18 with QNN ¼ gI for some

positive constant g; and

dZt ¼ ðm� bZtÞdt þ S0diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ VZt

p
ÞdBt;

ZM ¼ diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uM þ VMnZt

p
Þj; et ¼ J0 þ J 0

1Zt;

where diagðxÞ denotes the diagonal matrix with x on the diagonal,
ffiffiffi
x

p
denotes the

vector with ith element
ffiffiffiffi
xi

p
; and m 2 Rb; S 2 Rd�b; b 2 Rb�b; u ¼ ½u0M ; u0N �

0 2 Rd ;
V ¼ ½V 0

Mn
;V 0

Nn
�0 2 Rd�b; j 2 Rm; J0 2 R; J1 2 Rb: In this case, Y 2 ¼ 0; and only the

first two Riccati equations are needed, the second unlinked to the first. This
formulation includes the square-root volatility specification of Heston [15].
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Appendix A. Translation-invariant recursive utility representation

In this appendix, we argue the necessity of the functional form of Condition 6 for
translation invariance relative to g: We consider the dynamic utility that assigns to
each consumption plan c a utility process UðcÞ that is the unique process inU solving
BSDE (5). We fix a bounded process g 2 LðRþþÞ throughout, and we assume that
for every U 2 U and time t; there exists a consumption plan c such that cs ¼ Utgs for
all sXt: We also recall that the dynamic utility c 7!UðcÞ is translation-invariant

relative to g; or g-TI for short, if for any k 2 R; c1; c2 2 C; and t 2 ½0;T �; Utðc
1Þ ¼

Utðc
2Þ implies Utðc

1 þ kgÞ ¼ Utðc
2 þ kgÞ:

The dynamic utility c 7!UðcÞ is in certainty equivalent form relative to g; or g-CE

for short, if at any time-t information node, UtðcÞ represents the units of the cash
flow g that result in the same time-t utility as the consumption plan c. More formally,
given any time t; let the set Cg

t consist of all consumption plans c such that cs=gs ¼

ct=gt for all sXt: The dynamic utility U is defined to be g-CE if for any time t and any
c 2 Cg

t ; UtðcÞgt ¼ ct: To interpret this, consider any c 2 C: By our earlier assumption,
there exists some �c 2 C such that �cs ¼ UtðcÞgs for all sXt; and therefore �c 2 Cg

t : If U

is g-CE, then Utð�cÞgt ¼ �ct ¼ UtðcÞgt; and therefore Utð�cÞ ¼ UtðcÞ: In this sense, the
cash flow g is the yardstick relative to which utility is cardinalized.
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Suppose now that c 7!UðcÞ is both g-CE and g-TI. Then the quasi-linearity
restriction (10) is satisfied. To see this, fix any c 2 C; any time t; and any scalar k.
Select a �c 2 C such that �cs ¼ UtðcÞgs for sXt: Arguing as above, �c 2 Cg

t and Utð�cÞ ¼
UtðcÞ: Since U is g-TI, it follows that Utð�c þ kgÞ ¼ Utðc þ kgÞ: Since U is g-CE and
�c þ kg 2 Cg

t ; Utð�c þ kgÞgt ¼ �ct þ kgt: Therefore, Utðc þ kgÞ ¼ Utð�c þ kgÞ ¼ �ct=gt þ

k ¼ UtðcÞ þ k; proving Eq. (10).
Let Uk ¼ Uðc þ kgÞ and U ¼ U0 ¼ UðcÞ: Since Uk ¼ U þ k; the volatility process

of Uk is SU for any scalar k. The definition of Uðc þ kgÞ implies

dUk
t ¼ �F ðt; ct þ kgt;U

k
t ;S

U
t Þdt þ SU 0

t dBt:

On the other hand, since Uk ¼ U þ k; the definition of UðcÞ gives

dUk
t ¼ �F ðt; ct;Ut;SU

t Þdt þ SU 0
t dBt;

implying F ðt; ct þ kgt;Ut þ k;SU
t Þ ¼ F ðt; ct;Ut;SU

t Þ: The last equality holds almost
everywhere for any given value of k. Ignoring some uninteresting technicalities
regarding null events, we formally set k ¼ �Ut and define the function
Gðo; t;x; y; zÞ ¼ F ðo; t; gðo; tÞx; 0; zÞ to find

F ðt; ct;Ut;SU
t Þ ¼ G t;

ct

gt

� Ut;SU
t

� �
:

Noting that UT ¼ cT=gT (U being g-CE), we obtain the BSDE of Condition 6:

dUt ¼ �G t;
ct

gt

� Ut;SU
t

� �
dt þ SU 0

t dBt; UT ¼
cT

gT

:

The above conclusions are isomorphic to corresponding conclusions in SS with
regard to homotheticity, via the transformations ~ct ¼ expð�ct=gtÞ and ~Utð~cÞ ¼
expð�UtðcÞÞ; in which case U is g-TI if and only if ~U is homothetic, ~U is 1-CE if and
only if U is g-CE, and ~U is homogeneous of degree one if and only if U satisfies the
quasi-linearity property (10). The dynamics

d ~Ut= ~Ut ¼ � ~Gðt; ~ct= ~Ut; ~stÞdt þ ~sU 0
t dBt; ~Ut ¼ ~cT ;

in SS can be mapped to the above dynamics for U by letting Gðo; t; x; yÞ ¼
� ~Gðo; t; expð�xÞ;�yÞ � y0y=2; and applying Itô’s lemma.
Appendix B. Proofs

B.1. Proof of Theorem 3

(a) Sufficiency: Given any feasible plan ð~c; ~f; ~W Þ and stopping time t; integration
by parts, the dynamics of p; and the budget equation imply

pt ~W t � p0w0 ¼

Z t

0

pt
~f
0

t�t dt �

Z t

0

ptð~ct � etÞdt

þ

Z t

0

ptðsR
t
~ft �

~W tZtÞ
0 dBt; ð23Þ
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and therefore

pt ~W t � p0w0p
Z t

0

ptdFð�tÞdt �

Z t

0

ptð~ct � etÞdt þ M1
t

for a local martingale M1: Given condition (4), the same argument applied at
ðc;f;W Þ gives

ptW t � p0w0 ¼

Z t

0

ptdFð�tÞdt �

Z t

0

ptðct � etÞdt þ M2
t

for another local martingale M2: Letting x ¼ ~c � c; and M ¼ M1 � M2; we conclude
that

pt ~W t � ptW tp�

Z t

0

ptxt dt þ Mt:

Let ftn : n ¼ 1; 2; . . .g be an increasing sequence of stopping times that converges to T

and such that M stopped at tn is a martingale. Taking expectations in the last
inequality, we find

0XE

Z tn

0

ptxt dt þ ptn
~W tn

� ptn
W tn

� �
: (24)

The idea is to let n ! 1 to conclude that ðp jxÞp0: There remains to justify
the interchange of limits and integration. For the integral of px; we apply the
dominated convergence theorem, using the assumptions p;x 2 H: For the term,
involving p ~W ; we use the assumptions p 2 S2 and ~W

�
2 S2; and Fatou’s lemma to

conclude that

lim inf
t!1

E½ptn
~W tn

�XE½pT
~W T �:

Finally, the assumption pW 2 S1 implies that E½ptn
W tn

� converges to E½pT W T �:
Taking the limit inferior on both sides of inequality (24), we therefore reach the
conclusion ðp jxÞp0:

(b) Necessity: By taking the accumulated value of a unit invested at time zero in
the money market as the numeraire, we assume without loss in generality that r ¼ 0:

We begin by showing that p is a martingale. Consider any time toT and any event
F 2 Ft: Given any h 2 ðt;T � tÞ; consider the feasible plans ðc þ x; y;W þ zÞ and
ðc � x; y;W � zÞ; where x is equal to the indicator function of F � ½t; t þ h�; while z is
given by dzs ¼ �xs dt; z0 ¼ 0: Since p is a state-price density, it follows that ðp jxÞ ¼

0; and therefore

E 1F

1

h

Z tþh

t

ps ds � pT

� �� �
¼ 0:

Since p is continuous and p 2 S1; taking the limit implies that E½1Fpt� ¼ E½1FpT �:
Applying this condition over all t and F 2 Ft implies that p is a
martingale.
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Since p 2 S1 is a strictly positive Itô process and a martingale, there exists Z 2

L2ðR
dÞ such that

dpt

pt

¼ �Z0t dBt:

Defining �t ¼ mR
t � sR0

t Zt; we complete the proof by showing that f0
t�t ¼ dFð�tÞ: We

first consider a lemma suggestive of the result:

Lemma A.1. Suppose that ðc;f;W Þ and ðc þ x;fþ y;W þ zÞ are feasible plans, yT ¼

0; y0� 2 H and pz 2 S1: Then ðp jxÞ ¼ ðp j y0�Þ:

Proof. As in the sufficiency proof, for any feasible plan ð~c; ~f; ~W Þ and stopping time
t; Eq. (23) holds. Taking the difference of the equation applied at ðc þ x;fþ y;W þ

zÞ; and the equation applied at ðc;f;W Þ; we find thatZ t

0

ptxt dt þ ptzt ¼
Z t

0

pty
0
t�t dt þ Mt

for some local martingale M. Consider now an increasing sequence of stopping times
tn : n ¼ 1; 2; . . .f g that converges to T ; such that M stopped at tn is a martingale. It
then follows that

E

Z tn

0

ptxt dt þ ptn
ztn

� �
¼ E

Z tn

0

pty
0
t�t dt

� �
; n ¼ 1; 2 . . . :

Feasibility of ðc þ x;fþ y;W þ zÞ implies that xT ¼ zT ; and therefore the left-hand
side converges to ðp jxÞ; given the assumptions that pz 2 S1 and p;x 2 H: The right-
hand side converges to ðp j y0�Þ since p; y0� 2 H: &

Finally, we show that, for every process fþ y valued in F; y0
t�tp0: Suppose

instead that there exists some process y such that ~f ¼ fþ y is valued in F but
E½
R T

0 1fy0
t�t40gdt�40: For each positive integer N, define

yN
t ¼ yt1f0py0

t�tpN; kytkoNg:

Since 1fyN0
t �t40gmonotonically converges almost surely to 1fy0

t�t40g; it follows that
E½
R T

0 1fyN0
t �t40gdt�40 for some N. We therefore assume, without loss in generality,

that y0� is nonnegative and bounded, and y is bounded, which in turn implies that ~f
is a trading plan. Similarly, for every positive integer N, define the stopping time

tN ¼ inf t :

Z t

0

y0
s dRs4N or T ¼ T

� �

and the process yN
t ¼ yt1ftotNg: The same convergence argument used above shows

that E½
R T

0 1fyN0
t �t40gdt�40 for some N. We therefore also assume, without loss in

generality, that the process z, defined by dzt ¼ y0
t dRt; z0 ¼ 0; is bounded, and

therefore W þ z is a wealth process. Letting xt ¼ 0 for toT ; and xT ¼ zT ; it follows
that ðc þ x;fþ y;W þ zÞ is a feasible plan. Applying Lemma A.1, it follows that
ðp jxÞ ¼ ðp j y0�Þ40; implying that p cannot be a state-price density.
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B.2. Proof of Theorem 9

(a) Sufficiency: We begin by confirming the budget equation and that U ¼ UðcÞ:
Given the construction of U and f in (12), and Eq. (13), the wealth dynamics (14) are
easily confirmed to be equivalent to the budget equation (1). If dUt ¼ . . . dt þ

SU 0
t dBt; integration by parts applied to Y ¼ UG� W implies

SU
t ¼

SY
t þ sR

t f
0
t

Gt

and xt ¼
ct

gt

� Ut ¼ X t;
gt

Gt

;SU
t

� �
: (25)

To verify that U ¼ UðcÞ; we use the above expression for SU ; and the fact that

Gn t;
gt

Gt

;S
� �

¼ Gðt;xt;SÞ �
gt

Gt

xt;

to rewrite the dynamics of Y as

dY t ¼ ðY trt � f00
t m

R
t � et � GtGðt;xt;SU

t Þ þ gtxt þ ðsR
t RÞ

0SU
t Þdt þ SY 0

t dBt:

Integration by parts applied to Y ¼ UG� W ; simplified using the dynamics of Y ;G;
and W ; and identities (12) and (13), results in the utility dynamics (11), confirming
that U ¼ UðcÞ:

Recalling that f ¼ f0
þ UR 2 F if and only if f0

2 F; we therefore have a feasible
plan ðc;f;W Þ; with U ¼ UðcÞ: We prove optimality of this plan by applying
Proposition 2, showing that the process p ¼ E=G is both a supergradient density of
U0 at c and a state-price density at c.

Let lt ¼ Fcðt; ct;Ut;SU
t Þ: By Proposition 13 of Schroder and Skiadas [32],

we know that if ðFU ;FSÞ 2 L1ðRÞ �L2ðR
dÞ is such that EðF U ;FSÞ 2 S2 and

ðFU ðtÞ;FSðtÞÞ 2 ð@U ;SF Þðt; ct;Ut;SU
t Þ for all t, and p ¼ EðFU ;FSÞl defines an

element of H; then p is a supergradient density of U0 at c. The aggregator
form implies lt ¼ g�1

t Gxðt;xt;SU
t Þ; and therefore, by (25), l ¼ 1=G: The

aggregator form also implies that ðFU ðtÞ;FSðtÞÞ 2 ð@U ;SF Þðt; ct;Ut;SU
t Þ if

and only if FU ðtÞ ¼ �Gxðt; xt;SU
t Þ ð¼ �gt=GtÞ and FSðtÞ 2 @SGðt;xt;SU

t Þ: Putting
the above observations together confirms that p is a supergradient density of
U0 at c.

Finally, we use part (a) of Theorem 3 to confirm that p is a state-price density at c.
If dlt=lt ¼ mlt dt þ sl0t dBt; then, using the fact that l ¼ 1=G;

mlt ¼ �rt þ
gt

Gt

�
R0mR

t

Gt

þ sl0t s
l
t and slt ¼ �

sR
t R
Gt

:

Since trading in R is unrestricted, dFð�Þo1 implies R0� ¼ 0; and therefore R0mR=G�

sl0sl ¼ sl0GS; resulting in ml ¼ �r þ g=G� sl0GS: Using this fact and applying
integration by parts to p ¼ El; we obtain condition (4), where Z ¼ �ðGS � G�1sRRÞ:
We have therefore verified that p is a state-price density at c; completing the
optimality verification.

(b) Necessity: We begin by proving that l ¼ 1=G: Since G is smooth, by
Proposition 13 of Schroder and Skiadas [32], p 2 El; where lt ¼ Gxðt;xt;StÞ=gt;
defines a utility gradient density. By Proposition 2, p is also a state-price density at c.
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Since trading the portfolio R is unrestricted,

Gt ¼
1

pt

Et

Z T

t

psgs ds þ pTgT

� �
:

This follows by a standard argument that we now outline. Suppose, without
loss of generality (by taking one unit invested initially in the money market
as the numeraire), that r ¼ 0: We have shown in the proof of part (b) of
Theorem 3 that p is a martingale. Suppose now that at time t and event F 2 Ft

the agent borrows from the money market to buy portfolio R; consuming
the ensuing dividend stream g; and paying back the loan Gt by reducing
terminal consumption. The resulting feasible incremental cash flow x is given by
xs ¼ 0 for sot; xs ¼ 1Fgs for s 2 ðt;TÞ; and xT ¼ 1F ðgT � GtÞ: Since �x is also
feasible, we have

0 ¼ ðp jxÞ ¼ E 1F

Z T

t

psgs ds þ pT ðgT � GtÞ

� �� �
:

Since F 2 Ft is arbitrary, it follows that Et½
R T

t
psgs ds þ pTgT � ¼ GtEt½pT � ¼ Gtpt; as

claimed.
Taking the derivative of the function f ðkÞ ¼ Uðc þ kgÞ at zero, we obtain

Et f 0
tð0Þ ¼ Et

Z T

t

psgs ds þ psgT

� �
¼ ptGt:

Since Uðc þ kgÞ ¼ k þ UðcÞ; it also the case that f 0
ð0Þ ¼ 1; and therefore G ¼ E=p ¼

1=l:
Having shown the key fact that l ¼ 1=G; we define the process Y ¼ UG� W ; and

apply Itô’s lemma, using the dynamics of U and G; the definition of Gn andX; as well
as the budget equation, to obtain

dY t ¼ Ut dGt þ Gt dUt þ SU 0ðsRRÞdt � dW t

¼ Y trt � f0
tm

R
t þ SU 0

t sR
t R� GtG

n t;
gt

Gt

;SU
t

� �
� et

� �
dt

þ ðGtSU
t � sRf0

t Þ
0 dBt:

The diffusion term confirms the expression for SU in (25), which when substituted
into the drift term results in the dynamics of Y in Condition 8. The rest of the
condition follows easily from the necessary conditions of Theorem 3 for p to be a
state-price density at c.

B.3. Proof of Proposition 13

Substituting GS ¼ �ðq þ k� Lþ QSU Þ; L 2 @ jSU j; into the equation for � in
Condition 8 gives

� ¼ mR � sR0 q þ k� Lþ
sRR
G

þ QSU

� �
:
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The formula for f0 is obtained after substituting SU ¼ G�1ðSY þ sRf0
Þ: Computing

the inner product of � and f0 results in

f00mR ¼ dFð�Þ þ f00sR0ðq þ k� Lþ G�1sRRþ QSU Þ:

Letting dY ¼ mY dt þ SY 0 dB; we substitute for Gn in Condition 8 to find

mY ¼ Yr � f00mR � e � Ggn þ ðsRRÞ0SU þ Gðq0SU þ k0 jSU j þ 1
2
SU 0QSU Þ:

Using the fact that k0 jSU j ¼ SU 0ðk� LÞ and the above expression for f00mR; the
drift term of Y becomes mY ¼ Yr � e � Ggn � dFð�Þ þ Q; where

Q ¼ ðGSU 0 � f00sR0Þðq þ k� Lþ G�1sRRÞ þ 1
2
GSU 0QSU � f00sR0QSU

¼ SY 0ðq þ k� Lþ G�1sRRÞ þ 1
2
G�1ðSY 0QSY � f00sR0QsRf0

Þ:

B.4. Proof of Proposition 21

The expression for f0 in (18) implies

G�1QiiðS
Y þ sRf0

Þi ¼ ai � kiLi; i 2 M:

Since Li 2 @ jSY þ sRf0
j; there are three possibilities: (1) ðSY þ sRf0

Þi40; Li ¼ 1;
ai4ki; (2) ðSY þ sRf0

Þi ¼ 0; ai ¼ kiLi; and (3) ðSY þ sRf0
Þio0; Li ¼ �1; aio� ki:

In all three cases, kM � LM ¼ maxfminfaM ;kMg;�kMg: Since ðSY þ sRf0
ÞN ¼ SY

N ;
we have LN 2 @ jSY

N j and therefore SY 0
N ðkN � LNÞ ¼ SY 0

N ðkN � signðSY
NÞÞ: Finally,

from GU ¼ Y þ W ; we get GSU
M ¼ SY

M þ sR
MMf0

¼ GðQMM Þ
�1âM :

B.5. Proof of Proposition 23

Substituting the expression for f0 in (18) into the equation for Y in Proposition 13,
we find

dY ¼ Yr � e � Ggn g
G

	 

�

G
2
â0Q�1

MM âþ
1

2G
SY 0

N QNNS
Y
N

� �
dt

þ SY 0 dB þ
ZM

qN þ kN � LN

 !
dt

" #
:

Suppose Y e
t satisfies the stated BSDE and SM

N ¼ 0: Then direct computation shows
that Y M

t ¼ Y � Y e
t satisfies the claimed BSDE.

B.6. Proof of Example 25

Only the proof Case 2 is presented. The proof of Case 1 is similar. The
assumptions of the example imply that e is the only source of uncertainty driving Y e

t ;
and therefore SY e

t ¼ ntS for some scalar-valued process n: Therefore,

dY e
t ¼ � et � Y e

t rt �
a

2Gt

n2tS
0S

� �
dt þ ntS0 dBy

t :
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Defining zt ¼ expð�aY e
t=GtÞ; we have

dzt

zt

¼ �
a

Gt

dY e
t þ

1

2

a

Gt

� �2

n2t S
0Sdt � Y e

t d
a

Gt

� �

¼
a

Gt

ðet � Y e
t rtÞdt �

a

Gt

ntS0 dBy
t � Y e

t d
a

Gt

� �

¼ � aY e
t d

1

Gt

� �
þ

rt

Gt

dt

� �
þ

a

Gt

et dt þ sz0
t dBy

t ;

where sz
t ¼ �antSe=Gt: Since r and g are deterministic,

d
1

Gt

� �
¼ �

rt � gt=Gt

Gt

� �
dt

and therefore z solves the BSDE:

dzt

zt

¼
1

Gt

ðaet � gt logðztÞÞdt þ sz0
t dBy

t ; zT ¼ exp �
a

GT

eT

� �
:

Under the assumption that gt ¼ 0; toT ; the equation for z in (20) is easily
confirmed.

B.7. Proof of Proposition 16 and Example 17

We derive the consumption dynamics under the more general absolute aggregator
form

Gðo; t;x;SÞ ¼ gðo; t;xÞ þ Hðo; t;SÞ;

where gxðt;xÞ is assumed state independent. Letting xt ¼ ct=gt � Ut; and applying
Itô’s lemma to gxðt;xtÞ ¼ gt=Gt; gives

gxtðt;xtÞdt þ gxxðt;xtÞdxt þ
1

2
gxxxðt;xtÞðdxtÞ

2
¼ d

gt

Gt

� �
: (26)

Squaring this expression results in

ðdxtÞ
2
¼

dðgt=GtÞ

gxxðt;xtÞ

� �2

¼
1

A2
t

sg=G0t sg=Gt :

Matching the diffusion terms in (26) and rearranging, we find that

1

gt

Sc
t ¼

1

At

sR
t R
Gt

þ
ct

gt

�
1

At

� �
sgt þ SU

t : (27)

Substituting SU ¼ G�1ðSY þ sRf� sRRUÞ; and rearranging gives the formula for
Sc:

The formula for mc
t is obtained similarly by matching the drift terms in Eq. (26),

and the equilibrium short rate is obtained by inverting and solving for r as a
function of mc

t : The risk premium expression is derived by solving (27) for SU ; and
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substituting into

mR
t ¼ �sR0

t HSðt;SU Þ �
sR

t R
Gt

� �
;

which follows from the first-order conditions with � ¼ 0: The quasi-quadratic case
corresponds to HSðt;SU Þ ¼ �QtS

U :
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[5] J. Cvitanić, I. Karatzas, Convex duality in constrained portfolio optimization, Ann. Appl. Probab. 2

(1992) 767–818.

[6] D. Duffie, L. Epstein, Stochastic differential utility, Econometrica 60 (1992) 353–394.

[7] D. Duffie, D. Filipovic, W. Schachermayer, Affine processes and applications in finance, Ann. Appl.

Probab. 13 (2003) 984–1053.

[8] D. Duffie, V. Fleming, M. Soner, T. Zariphopoulou, Hedging in incomplete markets with HARA

utility, J. Econ. Dynam. Control 21 (1997) 753–782.

[9] D. Duffie, C. Skiadas, Continuous-time security pricing: a utility gradient approach, J. Math. Econ.

23 (1994) 107–131.

[10] N. El Karoui, S. Peng, M.-C. Quenez, A dynamic maximum principle for the optimization of

recursive utilities under constraints, Ann. Appl. Probab. 2001, 664–693.

[11] D. Ellsberg, Risk, ambiguity, and the savage axioms, Q. J. Econ. 75 (1961) 643–669.

[12] L. Epstein, Behavior under risk: recent developments in theory and applications, in: J.-J. Laffont

(Ed.), Advances in Economic Theory, Cambridge University Press, Cambridge, UK, 1992.

[13] L. Epstein, J. Miao, A two-person dynamic equilibrium under ambiguity, Working Paper,

Department of Economics, University of Rochester, Rochester, NY, 2000.

[14] H. He, N. Pearson, Consumption and portfolio policies with incomplete markets and short-sale

constrains: the infinite dimensional case, J. Econ. Theory 54 (1991) 259–304.

[15] S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and

currency options, Rev. Financial Stud. 6 (1993) 327–344.

[16] J. Hugonnier, D. Kramkov, Optimal investment with random endowments in incomplete markets,

Working Paper, HEC Montreal and Carnegie Mellon University, 2002.

[17] I. Karatzas, J. Lehoczky, S. Shreve, Optimal portfolio and consumption decisions for a ‘small

investor’ on a finite horizon, SIAM J. Control Optim. 25 (1987) 1557–1586.

[18] I. Karatzas, J. Lehoczky, S. Shreve, G. Xu, Martingale and duality methods for utility maximization

in an incomplete market, SIAM J. Control Optim. 29 (1991) 702–730.

[19] T. Kim, E. Omberg, Dynamic nonmyopic portfolio behavior, Rev. Financial Stud. 9 (1996) 141–162.

[20] P. Klibanoff, M. Marinacci, S. Mukerji, A smooth model of decision making under ambiguity,

Working Paper, MEDS, Kellogg School of Management, Northwestern University, 2002.

[21] H. Koo, Nontraded assets in incomplete markets, Math. Finance 8 (1998) 49–65.

[22] D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal

investment in incomplete markets, Ann. Appl. Probab. 9 (1999) 904–950.

[23] A. Lazrak, M.C. Quenez, A generalized stochastic differential utility, Math. Oper. Res. 28 (2003)

154–180.



ARTICLE IN PRESS

M. Schroder, C. Skiadas / Stochastic Processes and their Applications 115 (2005) 1–3030
[24] J. Liu, Portfolio selection in stochastic environments, Working Paper, UCLA, 2001.

[25] J. Ma, P. Protter, J. Yong, Solving forward-backward stochastic differential explicitly—a four step

scheme, Probab. Theory Related Fields 98 (1994) 339–359.

[26] J. Ma, J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications,

Springer, Berlin, 1999.

[27] R. Merton, Optimum consumption and portfolio rules in a continuous-time model, J. Econ. Theory 3

(1971) 373–413.

[28] M. Musiela, T. Zariphopoulou, An example of indifference prices under exponential preferences,

Finance Stochastics 8 (2004) 229–239.

[29] M. Piazzes, Affine term structure models, in: Handbook of Financial Econometrics, Elsevier, North-

Holland, Amsterdam, in press.

[30] M. Schroder, C. Skiadas, Optimal consumption and portfolio selection with stochastic differential

utility, J. Econ. Theory 89 (1999) 68–126.

[31] M. Schroder, C. Skiadas, An isomorphism between asset pricing models with and without linear habit

formation, Rev. Financial Stud. 15 (2002) 1189–1221.

[32] M. Schroder, C. Skiadas, Optimal lifetime consumption-portfolio strategies under trading constraints

and generalized recursive preferences, Stochastic Process. Appl. 108 (2003) 155–202.

[33] M. Schroder, C. Skiadas, Quasiarbitrage, optimality, state pricing and duality in constrained financial

markets with continuous and discontinuous information, Working Paper 327, Department of

Finance, Kellogg School of Management, Northwestern University, 2004.

[34] U. Segal, A. Spivak, First-order versus second-order risk aversion, J. Econ. Theory 51 (1990)

111–125.

[35] S. Shreve, G. Xu, A duality method for optimal consumption and investment under short-selling

prohibition: I, general market coefficients; and II, constant market coefficients, Ann. Appl. Probab. 2

(1992) 87–112 and 314–328.

[36] C. Skiadas, Advances in the theory of choice and asset pricing, Ph.D. Thesis, Stanford University,

1992.

[37] C. Skiadas, Robust control and recursive utility, Finance Stochastics 7 (2003) 475–489.

[38] L. Svensson, I. Werner, Nontraded assets in incomplete markets: pricing and portfolio choice,

European Econ. Rev. 37 (1993) 1149–1168.

[39] J. Yong, X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer,

New York, 1999.


	Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income
	Introduction
	Market and optimality
	Utility gradient and state pricing
	Recursive utility
	Translation-invariant formulation
	Quasi-quadratic absolute aggregator
	Solutions under quasi-quadratic aggregator
	Incomplete markets and quadratic BSDEs
	Acknowledgement
	Translation-invariant recursive utility representation
	Proofs
	Proof of Theorem 3
	Proof of Theorem 9
	Proof of Proposition 13
	Proof of Proposition 21
	Proof of Proposition 23
	Proof of Example 25
	Proof of Proposition 16 and Example 17

	References


