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Abstract

The symmetric exclusion process and the voter model are two interacting particle systems

for which a dual finite particle system allows one to characterize its invariant measures.

Adding spontaneous births and deaths to the two processes still allows one to use the dual

process to obtain information concerning the original process. This paper introduces the noisy

voter-exclusion process which generalizes these processes by allowing for all of these

interactions to take place. The dual process is used to characterize its invariant measures under

various circumstances. Finally, an ergodic theorem for a related process is proved using the

coupling method.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The voter model is an interacting particle system introduced independently by
Clifford and Sudbury [2] and Holley and Liggett [7]. In particular it is a spin system
(see [12]) with rates given by

cðx; ZÞ ¼

P
y qvðx; yÞZðyÞ if ZðxÞ ¼ 0;P
y qvðx; yÞ½1� ZðyÞ� if ZðxÞ ¼ 1;

(

where qvðx; yÞX0 and supx

P
y qvðx; yÞo1 for x; y 2 S.
see front matter r 2005 Elsevier B.V. All rights reserved.
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To describe the voter model in a more intuitive manner let S be a countable set
for which a voter resides at each site in the set. The voter at site x waits an
exponential time with mean ½

P
y qvðx; yÞ�

�1 at which point it chooses one of its
neighbors with probability qvðx; yÞ=

P
z qvðx; zÞ and subsequently takes the opinion

(either 1 or 0) of y.
Schwartz [15] introduced the b–d process, a particle system which modifies the

well-known symmetric exclusion process with transition rates qeðx; yÞ, by allowing a
birth with exponential rate bðxÞ when there is a 0 at site x, and a death with rate dðxÞ
when there is a 1 at site x.

Define the transition rates qðx; yÞ ¼ qeðx; yÞ þ qvðx; yÞ, and let qx ¼
P

y qðx; yÞ.
We combine the voter model and the b–d process to obtain a new process which
much satisfy the following: (a) S is irreducible with respect to qðx; yÞ, (b)
qeðx; yÞ ¼ qeðy; xÞ, (c) supxqxo1, and (d) infxqx40. Add to this the transition
rates bðxÞ and dðxÞ where supxðbðxÞ þ dðxÞÞo1. Condition (d) is not necessary,
but it is convenient for the purposes of our discussion. We will call such a process a
noisy voter-exclusion process (NVE process). The NVE process is a particular
example of a spin system with stirring, also known as a reaction–diffusion process. In
the physics literature these processes are known as having Glauber–Kawasaki
dynamics.

In the setting of the NVE process, the voter at x waits an exponential
time with mean qx at which point it again chooses a neighbor with probability
qðx; yÞ=qx, but now the voter decides to either switch places with y with
probability qeðx; yÞ=½qeðx; yÞ þ qvðx; yÞ� or, as before, take the opinion of y with
probability qvðx; yÞ=½qeðx; yÞ þ qvðx; yÞ�. In addition to this, a voter at x with opinion
0 decides to spontaneously change its opinion to 1 with exponential rate bðxÞ,
and a voter at x with opinion 1 spontaneously changes its opinion to 0 with
rate dðxÞ.

Let

ZxðuÞ ¼
ZðuÞ if uax;

1� ZðuÞ if u ¼ x;

(

and

ZxyðuÞ ¼

ZðyÞ if u ¼ x;

ZðxÞ if u ¼ y;

ZðuÞ if uax; y:

8><
>:

Using the results of [12, Chapter I], the generator for an NVE process is given by the
closure of the following operator on D, the set of all functions on f0; 1gS that depend
on finitely many coordinates:

Of ðZÞ ¼
X

ZðxÞ¼1;ZðyÞ¼0

qeðx; yÞ½f ðZxyÞ � f ðZÞ� þ
X

x

cðx; ZÞ½f ðZxÞ � f ðZÞ�,
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where

cðx; ZÞ ¼
bðxÞ þ

P
y qvðx; yÞZðyÞ if ZðxÞ ¼ 0;

dðxÞ þ
P

y qvðx; yÞ½1� ZðyÞ� if ZðxÞ ¼ 1:

(

We will call the corresponding semigroup SðtÞ.
If bðxÞ ¼ dðxÞ � 0 then we will say that we have a voter-exclusion process. One

may also refer to this as the voter model with stirring. A previous study [1] has been
done concerning the ergodic theory of the voter-exclusion process in the case where
S ¼ Z and qeðx; yÞ is not necessarily symmetric, but there is no overlap with the
results of this paper.

If qeðx; yÞ � 0 then we just get the noisy voter model. Granovsky and Madras [6]
study some important equilibrium functionals and critical values of the noisy voter
model, but only for the case where b and d are constant. We, on the other hand, will
study the invariant measures of the NVE process where bðxÞ and dðxÞ are in general
not constant.

In Chapters V and VIII of [12], one can find a complete characterization of the
extremal invariant measures and their domains of attraction for the voter model [7]
and the symmetric exclusion process [9,17], respectively. Schwartz [15] does the same
for the b–d process. These results are all based upon the existence of a certain dual
finite particle process [16] and a certain monotonicity concerning this dual process.
In particular, SðtÞn̂aðAÞ defined below is nondecreasing in t for the voter model and
nonincreasing in t for the symmetric exclusion process. For the NVE process, a dual
still exists, however, there is no monotonicity concerning the dual so we will have to
use other techniques in order to classify the invariant measures under various
conditions. Assume throughout that qvðx; yÞ40 for some x; y 2 S since all other
cases have been studied by [15].

We start with some definitions. Let P denote the set of probability measures on
X ¼ f0; 1gS. The set I will denote the invariant measures for a given NVE process,
and Ie will be its extreme points.

If we denote the set of nonnegative harmonic functions bounded by 1 on S as

H ¼ a : S ! ½0; 1� such that
X

y

qðx; yÞaðyÞ ¼ qxaðxÞ for all x

( )
,

then we can define na to be the product measure on X with marginals
nafZ : ZðxÞ ¼ 1g ¼ aðxÞ. Let ma ¼ limt!1 naSðtÞ. Theorem 1.4 below will show that
these limits exist.

Let Sn ¼ Snnf~x : xi ¼ xj for some iojg. If Et ¼ ðxt; ytÞ 2 S2 is the finite,
two particle exclusion process with transition rates qðx; yÞ then define the
functions qv and qe on S2 by qvðEtÞ ¼ qvðxt; ytÞ þ qvðyt;xtÞ and qeðEtÞ ¼ qeðxt; ytÞþ

qeðyt; xtÞ ¼ 2qeðxt; ytÞ.
Suppose X ðtÞ and Y ðtÞ are independent continuous time Markov chains on S with

transition rates qðx; yÞ and denote ptðx; yÞ ¼ PxðX ðtÞ ¼ yÞ. Let L ¼ foj
R1
0 bðX ðtÞÞþ

dðX ðtÞÞdto1g. For a 2 H, aðX ðtÞÞ is a bounded martingale so limt!1 aðX ðtÞÞ exists
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with probability one. We can define an equivalence relation R on H by

a1Ra2 if lim
t!1

½a1ðX ðtÞÞ � a2ðX ðtÞÞ� ¼ 0 almost surely on L.

HR is any set of representatives of the equivalence classes determined by R.
Let E be the following event:

fthere exists tn ! 1 such that X ðtnÞ ¼ Y ðtnÞg.

Then we will say that H� is the set of all a 2 H such that

Pfx;yg lim
t!1

aðX ðtÞÞ ¼ 0 or 1 on E

 �

¼ 1 for all x; y 2 S,

and H�
R is again the set of equivalence classes on H�.

Define the following function on S2,

gðx; yÞ ¼ Pðx;yÞ½X ðtÞ ¼ Y ðtÞ for some t40�.

Note that if gðx; yÞ ¼ 1 for some ðx; yÞ 2 S2 then by irreducibility gðx; yÞ � 1
(For more detail concerning this see [12, Lemma VIII.1.18]).

We are now in a position to state the theorems:

Theorem 1.1. An NVE process is ergodic if and only if

Px

Z 1

0

bðX ðtÞÞ þ dðX ðtÞÞdt ¼ 1


 �
¼ 1 for all x 2 S. (1)

Theorem 1.2. Suppose m 2 P and d0; d1 are the point masses on all 0’s and all 1’s.

Assume that (1) does not hold and that

PE

Z 1

0

qvðEtÞdt ¼ 1


 �
¼ 1 for all E 2 S2. (2)

Then
(a)
 limt!1 d0SðtÞ ¼ m0 and limt!1 d1SðtÞ ¼ m1 exist,

(b)
 Ie ¼ fm0; m1g, and
(c)
 limt!1 mSðtÞ ¼ lm1 þ ð1� lÞm0 if and only if
lim
t!1

X
y

ptðx; yÞmfZ : ZðyÞ ¼ 1g ¼ l for all x 2 S. (3)

We will say that the transition rates qðx; yÞ on Zd have finite range N if qðx; yÞ ¼ 0
when jx � yj4N. In order to show that (2) is not an unreasonable condition the
following corollary gives circumstances under which (2) holds.

Corollary 1.3. Let S ¼ Zd , qeðx; yÞ ¼ qeð0; y � xÞ, and qvðx; yÞ ¼ qvð0; y � xÞ. Sup-

pose X ðtÞ � Y ðtÞ is recurrent and qeðx; yÞ has finite range N. Then Ie ¼ fm0;m1g and

for m 2 P, limt!1 mSðtÞ ¼ lm1 þ ð1� lÞm0 if and only if (3) holds.
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Theorem 1.4. (a) ma exists for all a 2 H, and ma1 ¼ ma2 if and only if a1Ra2.
(b) If gðx; yÞo1 for some x; y 2 S and

PE

Z 1

0

qeðEtÞdt ¼ 1


 �
¼ 0 for some E 2 S2 (4)

then Ie ¼ fma : a 2 H�
Rg.

(c) If qðx; yÞ ¼ qðy;xÞ for all x; y 2 S and

PE

Z 1

0

qvðEtÞdt ¼ 1


 �
¼ 0 for some E 2 S2 (5)

then Ie ¼ fma : a 2 HRg.

The condition that gðx; yÞo1 for some x; y 2 S is not needed in part (a), but we
put it there because if g � 1 then we are left with the situation in Theorem 1.2. It
should also be remarked that if qðx; yÞ ¼ qðy;xÞ and gðx; yÞo1 for some ðx; yÞ 2 S2

then Lemma VIII.1.23 in [12] implies that (4) and (5) are satisfied. On the other hand
when qðx; yÞ ¼ qðy;xÞ, we claim that g � 1 implies that X ðtÞ is recurrent so that
bðxÞ þ dðxÞ40 for some x gives us (1). To prove the claim use the Chapman–Kol-
mogorov equation to get

p2tðx; xÞ ¼
X

y

ptðx; yÞptðy;xÞ

¼
X

y

½ptðx; yÞ�
2 ¼ Pðx;xÞ½X 1ðtÞ ¼ X 2ðtÞ�.

So if X ðtÞ is transient then gðx; yÞo1 for some x; y 2 S sinceZ 1

0

Pðx;xÞ½X 1ðtÞ ¼ X 2ðtÞ�dto1

(This argument will be made more explicit by Lemma 3.1).

Theorem 1.5. Suppose m 2 P and that Eðx;yÞgðX ðtÞ;Y ðtÞÞ ! 0 for some x; y 2 S. If

lim
t!1

X
y

ptðx; yÞmfZ : ZðyÞ ¼ 1g ¼ aðxÞ and (6)

lim
t!1

X
u;v

ptðx; uÞptðx; vÞmfZ : ZðuÞ ¼ ZðvÞ ¼ 1g ¼ a2ðxÞ for all x 2 S (7)

then limt!1 mSðtÞ ¼ ma. A necessary and sufficient condition for limt!1 mSðtÞ ¼ ma is

that

lim
s!1

lim sup
t!1

Z
X

X
x

psðw;xÞP
x½L�

X
y

ptðx; yÞ½ZðyÞ � aðyÞ�

( )2

dmðZÞ ¼ 0 (8)

We should mention two instances for which gðx; yÞo1 for some x; y 2 S implies

Eðx;yÞgðX ðtÞ;Y ðtÞÞ ! 0 for some x; y 2 S. (9)
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Firstly, if qðx; yÞ is symmetric then as stated in the comments following Theorem 1.4,
Lemma VIII.1.18 in [12] gives (9). Secondly, if the only bounded harmonic functions
are constants then Corollary II.7.3 in [12] together with Proposition 5.19 in [8] give
(9). We also note here that condition (8) is equivalent to (6) and (7) when Px½L� ¼ 1
for all x 2 S.

Corollary 1.6. If gðx; yÞo1 for some x; y 2 S and H ¼ fa : a 2 ½0; 1�g, then

Ie ¼ fma : a 2 Hg.

The proofs of the above theorems appear in Section 4. The above theorems give
partial results concerning the invariant measures and their respective domains of
attraction for certain NVE processes. Clearly there are NVE processes which are not
covered by these theorems. Examples of these situations include the process on Z2

where qeðx; yÞ is translation invariant, bðxÞ ¼ dðxÞ � 0, qvðx; yÞ ¼ 0 outside of a finite
set, and qvðx; yÞ is not symmetric. A more interesting example is provided in V.1.6 of
[12]; in fact using Liggett’s example we can create similar examples to show that there
exist NVE processes which do not satisfy (4) yet have gðx; yÞo1 for some x; y 2 S.
Section 5 discusses how one might go about proving a general result that would
include the exceptions we have just mentioned.

We now turn to a discussion of a slightly more general process. In particular,
modify the NVE process by allowing for exclusion rates where qeðx; yÞaqeðy; xÞ. Call
such a process a generalized NVE process. It should be noted that not requiring the
symmetry of qeðx; yÞ really does change the nature of the process. We will state two
main reasons for this. Firstly, the properties of the dual finite particle system that
allow us to prove the above theorems no longer exist. Secondly, the results for the
asymmetric case are completely different; in fact it is known that Theorems 1.4 and
1.5 and Corollary 1.6 do not hold in general when qeðx; yÞ is not symmetric. We can,
however, prove certain things about the generalized NVE process in specific cases
using methods other than duality.

In Section 6 we prove an ergodic theorem for the case where qvðx; yÞ � 0 using the
coupling method. When qvðx; yÞ � 0 we will call the process a noisy exclusion
process. We will also show in this final section that Theorem 1.1 does not hold in
general when qeðx; yÞ is not symmetric.

The main result of Section 6 is an extension, in the case where S ¼ Zd and the
transition rates have finite range, of [15] ergodic theorem which is exactly Theorem
1.1 when qvðx; yÞ � 0. Before we state the theorem we need the following definitions:

Tn ¼ fx 2 Zd : jxijpn for all ig.

TN
n ¼ TnþNnTn.

Theorem 1.7. Suppose Zt is a noisy exclusion process with transition rates qeðx; yÞ
irreducible with respect to Zd and having finite range N. Let fblg be a nonnegative

sequence satisfying (a)
P

bl ¼ 1 if d ¼ 1 and (b) liml!1 lbl ¼ 1 if dX2. If pðlÞ is a

nonnegative function on N satisfying pðl þ 1ÞXpðlÞ þ N and is bounded by klk for some

k40, and if b; d satisfy bðxÞ þ dðxÞXbl for all x 2 TN
pðlÞ and bðxÞ ¼ dðxÞ ¼ 0 otherwise,

then Zt is ergodic.
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For some simple examples to see the applicability of Theorem 1.7 set N ¼ 1
and let pðlÞ be an arithmetic sequence e.g. k; 2k; 3k; . . . Suppose bðxÞ ¼ dðxÞ ¼ 1
for all kxk ¼ nk; n 2 N with k � k being the l1 norm and bðxÞ ¼ dðxÞ ¼ 0
otherwise. Then the theorem tells us that the noisy exclusion process is ergodic.
Note that if k ¼ 1 and bðxÞ ¼ dðxÞ ¼ 1þ d for d40 then the Mo� Theorem in
Section I.4 of [12] also gives us ergodicity for doubly stochastic transition kernels.
If k41 then the Mo� Theorem in general gives us no information. Also, Theorem
1.7 allows us to let bðxÞ þ dðxÞ ! 0 whereas the Mo� Theorem again gives
no information in such a circumstance. We should however mention here that if
qeðx; yÞ is symmetric and k ¼ 1, a version of the Mo� Theorem proven in [5] allows
for bðxÞ þ dðxÞ ! 0, but once again, Ferarri’s theorem gives no information in the
case where k41.
2. The dual process: a finite particle system

In order to prove the theorems we will need many lemmas. The lemma in this
section which concerns the dual process is the most important and is in fact the
reason that we are able to prove anything about these processes. Its proof follows
that of Theorem VIII.1.1 in [12]. Before stating and proving Lemma 2.1 we will need
some more definitions.

Let Y be the class of all finite subsets of S excluding the empty set. The semi-dual
process At is a continuous time Markov chain on Y such that the particles in At move
independently on S according to the motions of the independent X iðtÞ processes
except that transitions to sites that are already occupied are handled in the following
way: If a particle at x attempts to move to y which is already occupied then
the transition is either suppressed with probability qeðx; yÞ=½qeðx; yÞ þ qvðx; yÞ�
or the two particles coalesce and move together thereafter with probability
qvðx; yÞ=½qeðx; yÞ þ qvðx; yÞ�. In particular jAtjpjAtþsj for all sX0.

Now let Y � be defined by adding to Y a cemetery state, D, and the empty set, ;.
We define the process A�

t starting in a state A 2 Y to move just as At does except that
in addition A�

t goes to A�
t nfxg at rate bðxÞ if x 2 A�

t and A�
t goes to the cemetery state

D at rate
P

x2A�
t
dðxÞ. We will call A�

t the dual process. Define D to be the event that
A�

t is never in the state D.
If m 2 P and A 2 Y , then define

m̂ðAÞ ¼ mfZ : ZðxÞ ¼ 1 for all x 2 Ag.

Extend this function to Y � by letting m̂ðDÞ ¼ 0 and m̂ð;Þ ¼ 1.

Lemma 2.1. Extend the domain of Z 2 X by letting ZðDÞ ¼ 0. If A 2 Y then for all

tX0

PZ½fZt ¼ 1 on Ag� ¼ PA½fZ ¼ 1 on A�
t g [ fA�

t ¼ ;g�.

Proof. Let

uZðt;AÞ ¼ PZ½fZt ¼ 1 on Ag [ fA ¼ ;g� ¼ SðtÞHð�;AÞðZÞ,
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where for Aa;

HðZ;AÞ ¼
Y
x2A

ZðxÞ ¼
1 if ZðxÞ ¼ 1 for all x 2 A�;

0 otherwise;

(

and HðZ;;Þ ¼ 1.
For each A 2 Y , Hð�;AÞ 2 D so we have

OHð�;AÞðZÞ ¼
X

ZðxÞ¼1;ZðyÞ¼0

qeðx; yÞ½HðZxy;AÞ � HðZ;AÞ�

þ
X

x;y:ZðxÞaZðyÞ

qvðx; yÞ½HðZx;AÞ � HðZ;AÞ�

þ
X

x

½bðxÞð1� ZðxÞÞ þ dðxÞZðxÞ�½HðZx;AÞ � HðZ;AÞ�

¼
1

2

X
x;y

qeðx; yÞ½HðZxy;AÞ � HðZ;AÞ�

þ
X

x2A;y2S

qvðx; yÞHðZ;AnfxgÞ½1� 2ZðxÞ�

� fZðxÞ½1� ZðyÞ� þ ZðyÞ½1� ZðxÞ�g

þ
X
x2A

bðxÞ½HðZ;AnfxgÞ � HðZ;AÞ� þ
X
x2A

dðxÞ½HðZ;DÞ � HðZ;AÞ�

¼
1

2

X
x;y

qeðx; yÞ½HðZ;AxyÞ � HðZ;AÞ�

þ
X

x2A;y2S

qvðx; yÞHðZ;AnfxgÞ½ZðyÞ � ZðxÞ�

þ
X
x2A

bðxÞ½HðZ;AnfxgÞ � HðZ;AÞ� þ
X
x2A

dðxÞ½HðZ;DÞ � HðZ;AÞ�

¼
X

x2A;yeA

qeðx; yÞ½HðZ;AxyÞ � HðZ;AÞ�

þ
X

x2A;y2S

qvðx; yÞ½HðZ; ðAnfxgÞ [ fygÞ � HðZ;AÞ�

þ
X
x2A

bðxÞ½HðZ;AnfxgÞ � HðZ;AÞ� þ
X
x2A

dðxÞ½HðZ;DÞ � HðZ;AÞ�.

Here Axy is obtained from A in the same way that Zxy is obtained from Z. The
symmetry of qeðx; yÞ is used in second and fourth steps above.

By Theorem I.2.9 in [12]

d

dt
uZðt;AÞ ¼ OSðtÞHð�;AÞðZÞ

¼
X

x2A;yeA

qeðx; yÞ½SðtÞHð�;AxyÞðZÞ � SðtÞHð�;AÞðZÞ�
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þ
X

x2A;y2S

qvðx; yÞ½SðtÞHð�; ðAnfxgÞ [ fygÞðZÞ � SðtÞHð�;AÞðZÞ�

þ
X
x2A

bðxÞ½SðtÞHð�;AnfxgÞðZÞ � SðtÞHð�;AÞðZÞ�

þ
X
x2A

dðxÞ½SðtÞHð�;DÞðZÞ � SðtÞHð�;AÞðZÞ�

¼
X

x2A;yeA

qeðx; yÞ½uZðt;AxyÞ � uZðt;AÞ�

þ
X

x2A;y2S

qvðx; yÞ½uZðt; ðAnfxgÞ [ fygÞ � uZðt;AÞ�

þ
X
x2A

bðxÞ½uZðt;AnfxgÞ � uZðt;AÞ� þ
X
x2A

dðxÞ½uZðt;DÞ � uZðt;AÞ�.

For each A 2 Y , the unique solution to this system of differential equations with
initial condition HðZ;AÞ is

EAHðZ;A�
t Þ ¼ PA½fZ ¼ 1 on A�

t g [ fA�
t ¼ ;g�

(See [4, Theorem 1.3]). &
3. Preliminary lemmas

The first five lemmas are adaptations of lemmas proved by Schwartz [15]. We omit
the proofs of Lemmas 3.1, 3.2, and 3.5 since they are the same as found in Schwartz
[15] except for perhaps a change in notation.

Suppose Et is a continuous time nonexplosive jump process on a countable set N
and let Ek be the imbedded discrete-time Markov chain. The transition rates of Et

are given by Qxy. For L � N define

QLðxÞ ¼
X

y2L;yax

Qxy.

Lemma 3.1. Assume there exist constants 0oa1oa2o1 such that for each x 2 N,
a1pQNðxÞpa2. Then almost surely

o
Z 1

0

QLðEtÞdt ¼ 1

����
� �

¼ fojEk 2 L infinitely ofteng

� fojEt 2 L for some tg.

Lemma 3.2. Assume 0osupxðbðxÞ þ dðxÞÞo1. Then (1) holds if and only if

PA½A�
t ¼ ; or A�

t ¼ D eventually� ¼ 1

for all A 2 Y .
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For the next lemma define the function

hðAÞ ¼ PAðjAtjojAj for some t40Þ for A 2 Y

which is in some sense a voter model analog of the function gðx; yÞ.

Lemma 3.3. If (2) holds then PAðjAtj ¼ 1 eventuallyÞ ¼ 1 for all A 2 Y .

Proof. We first prove the case for which At starts in a two particle state jAj ¼ 2.
Take Et in Lemma 3.1 to be At, and let L be the set of states such that jAtj ¼ 1.

We then interpret QLðAtÞ as the rate at which At jumps to a one particle state. If
At ¼ fxg then QLðAtÞ is just qx. Now suppose that jAtj ¼ 2 for all t. Then At is
exactly Et defined above to be the two particle exclusion process with respect to
qðx; yÞ. ThereforeZ 1

0

qvðEtÞdt ¼

Z 1

0

QLðAtÞdt ¼ 1

and by Lemma 3.1, jAtj ¼ 1 eventually, a contradiction. We have thus proved the
case where jAj ¼ 2.

For the general case suppose jAjX2. Couple Bt, a semi-dual process starting from
a two particle state jBj ¼ 2, with At so that Bt � At. In order to do this let At and Bt

move as usual except when a particle tries to move with rate qeðx; yÞ to an occupied
site, instead of the motion being ‘‘excluded’’, let the two particles switch places. Of
course this is the same motion as before, just a different way of thinking of it.

Using the coupling we have now that hðAÞ ¼ 1 for all jAjX2. Thus with
probability one, jAj decreases for all jAjX2 which proves the lemma. &

Recall that D is the event where A�
t is never in the state D.

Lemma 3.4. If bðxÞ � 0 then

lim
t!1

EfxgPAt ½Dc;L� ¼ 0 for all x 2 S.

Proof. Let Et ¼ ðX ðtÞ; zðtÞÞ be a Markov jump process on N ¼ S� f0; 1; 2; . . .g with
jump rates Qðx;nÞ;ðy;0Þ ¼ qðx; yÞ and Qðx;nÞ;ðx;nþ1Þ ¼ dðxÞ. Let L ¼ S� f1; 2; . . .g so that
QLððx; nÞÞ ¼ dðxÞ. We then have that

lim
t!1

EfxgPAt ½Dc;L� ¼ lim
t!1

Px½Es jumps toL after time t;L�

¼ Px½Ek 2 L infinitely often;L�.

But the right-hand side is equal to 0 by Lemma 3.1 completing the proof. &

We will need three definitions in stating the next lemma and in proving Theorem
3.9. Before stating the definitions we ask the reader to think of mfZ : ZðX ðtÞÞ ¼ 0g as a
family of random variables (indexed by t) on the space of paths. We then have

P0 ¼ fm 2 P : lim
t!1

mfZ : ZðX ðtÞÞ ¼ 0g ¼ 1 almost surely on Lcg.

H0 ¼ fa 2 H : lim
t!1

aðX ðtÞÞ ¼ 0 almost surely on Lcg.
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If SðtÞ is the semigroup for an NVE process then let S0ðtÞ be the semigroup for the
same process except that bðxÞ ¼ dðxÞ � 0.

For part (b) of the following lemma we couple At and A�
t so that they move

together until the first time that A�
t ¼ D or jA�

t jojAtj.

Lemma 3.5. (a) H0 is a set of class representatives for the equivalence relation R

on H.
(b) If we extend the state space of At to include D and ; as absorbing states then

limt!1 PA�
t ½A�

saAs for some sX0� ¼ 0 almost surely.

(c) Suppose that bðxÞ � 0. If m 2 I or if m ¼ limt!1 nS0ðtÞ exists for n 2 I,
then m 2 P0.

Define En
t to be the finite exclusion process on n particles starting in the state A

where jAj ¼ n. To be consistent with our previous definition of Et we will leave the
superscript off if n ¼ 2 so that Et ¼ E2

t and jEj ¼ 2.

Lemma 3.6. If (5) holds and qðx; yÞ ¼ qðy;xÞ then

PA

Z 1

0

X
E�En

t

qvðEÞdt ¼ 1

2
4

3
5 ¼ 0 for all A 2 Y .

Proof. Suppose A ¼ fx1; . . . ;xng. Let E
fi;jg
t be the two particle exclusion process

starting from fxi;xjg. We will show there exists a multiple coupling of the processes
En

t and E
fi;jg
t for 0piojpn such that

fEn
t g �

[
0piojpn

fE
fi;jg
t g. (10)

Let X iðtÞ be a process equal in distribution to X ðtÞ. The key to seeing why (10) is
true is noticing that there exists a way to couple X iðtÞ and X jðtÞ so that whenever one
tries to coalesce with the other, they simply switch places. This can be done since
qðx; yÞ ¼ qðy;xÞ. With that said, it is clear that we can couple the X iðtÞ’s with En

t so
that

fEn
t g ¼ fX 1ðtÞ; . . . ;X nðtÞg.

Here the processes X iðtÞ start at xi and are clearly not independent of each other.
For each E

fi;jg
t we can label one particle first class and the other particle second

class. We can now think of the evolution of E
fi;jg
t in the following way. If a second

class particle tries to go to a site occupied by a first class particle, it is not allowed to
do so. However, if a first class particle attempts to move to a site occupied by a
second class particle, the two particles switch places. With this evolution a first class
particle is equal in distribution to X ðtÞ. By choosing the first class particles to have
the paths of the X iðtÞ processes above it is clear that (10) holds.

Suppose now that

PA

Z 1

0

X
E�En

t

qvðEÞdt ¼ 1

2
4

3
540 for some A 2 Y .
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In light of (10), it must be that

PE

Z 1

0

qvðEtÞdt ¼ 1


 �
40 for some E 2 S2.

By irreducibility

PE

Z 1

0

qvðEtÞdt ¼ 1


 �
40 for all E 2 S2: &

Lemma 3.7. If qðx; yÞ ¼ qðy;xÞ and (5) holds then hðEn
t Þ ! 0 almost surely for all

initial states A 2 Sn.

Proof. By Lemma 3.6,

PA

Z 1

0

X
E�En

t

qvðEÞdt ¼ 1

2
4

3
5 ¼ 0 for all A 2 Y . (11)

Let En
k be the imbedded Markov chain for the process En

t starting with initial state
A. Let O be the path space for En

k and let M be the probability measure on O for our
process. Choose �40. If there exists a set F � O such that MðF Þ40 and hðEn

kÞ4�
infinitely often on F then it must be that

X1
k¼0

X
E�En

k

qvðEÞ ¼ 1

almost surely on F since whenever
P1

k¼0

P
E�En

k
qvðEÞo1 it must be that hðEn

kÞ4�
finitely many times.

We claim that

o
Z 1

0

X
E�En

t

qvðEÞdt ¼ 1

������
8<
:

9=
; ¼ o

X1
k¼0

X
E�En

k

qvðEÞ ¼ 1

������
8<
:

9=
; (12)

almost surely. To see this define tk to be the kth jump time of En
t . Now note thatZ 1

0

X
E�En

t

qvðEÞdt ¼
X1
k¼0

X
E�En

k

qvðEÞ½tkþ1 � tk�.

By our assumptions E½tkþ1 � tk� and Var½tkþ1 � tk� are bounded above and below
uniformly in k. Since ½tkþ1 � tkjE

n
1;E

n
2; . . .� are independent, Kolmogorov’s three

series theorem proves the claim.
Since (12) contradicts (11) we have shown that hðEn

kÞ ! 0 almost surely. This
however implies that hðEn

t Þ ! 0 almost surely. &

Suppose V t is the dual process for the voter model with rates qðx; yÞ starting from
the set A. If we couple At and V t so that they move together as much as possible then
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we can define the function

f ðAÞ ¼ PA½AtaVt for some t40�.

Again, f ðAÞ plays much the same role as hðAÞ and gðx; yÞ.

Lemma 3.8. If (4) holds then EAf ðAtÞ ! 0 for all A 2 Y .

Proof. We prove first the case where jAjp2. Let Et ¼ ðAt; zðtÞÞ be a Markov jump
process on N ¼ ðS2 [SÞ � f0; 1; 2; . . .g with jump rates (i) QðA;nÞ;ðB;0Þ equal to the
jump rate from A to B of the semi-dual process and (ii) QðA;nÞ;ðA;nþ1Þ ¼ qeðAÞ if
jAj ¼ 2. Let L ¼ S2 � f1; 2; . . .g so when jAj ¼ 2, QLððA; nÞÞ ¼ qeðAÞ and when
jAj ¼ 1, QLððA; nÞÞ ¼ 0. We then have that

lim
t!1

EAf ðAtÞ ¼ lim
t!1

PA½Es jumps to L after time t�

¼ PA½Ek 2 L infinitely often�.

Since (4) holds, Lemma 3.1 implies that the right-hand side is 0.
Now suppose jAj42. Change the coupling of the X iðtÞ processes that we used in

Lemma 3.6 by letting X iðtÞ and X jðtÞ switch places at rate qeðX iðtÞ;X jðtÞÞ and
coalesce and move together thereafter at rate qvðX iðtÞ;X jðtÞÞ. Again, we are allowed
to do this since qeðx; yÞ ¼ qeðy;xÞ. With this new coupling we can couple the X iðtÞ’s
with At so that

fAtg ¼ fX 1ðtÞ; . . . ;X nðtÞg.

As in Lemma 3.6, we use the idea of first class particles along with the fact that X iðtÞ

can be coupled with E
fi;jg
t so that fX iðtÞg � fE

fi;jg
t g, we have that the proof for jAjp2

implies the proof for all A 2 Y . &

The next theorem is actually a special case of Theorem 1.4. We prove this special
case right now in order make the proof of the general case easier to read.

Theorem 3.9. Suppose qeðx; yÞ � 0.
ðaÞ ma exists for all a 2 H, and ma1 ¼ ma2 if and only if a1Ra2.
ðbÞ Ie ¼ fma : a 2 H�

Rg.

Proof. The proof is virtually the same as that of Theorem 1.3 in [15], but it is
included here for completeness. We will, however, leave out some repetitive details.

Let J represent the set of invariant measures for the case where bðxÞ ¼ dðxÞ � 0,
in other words the voter model. In Chapter V of [12], it is shown that
Je ¼ fma : a 2 H�g. Consider a certain subset of J, namely

J0 ¼ m 2 J : lim
t!1

mfZ : ZðX ðtÞÞ ¼ 0g ¼ 1 almost surely on Lc
n o

.

The main part of the proof is showing that there exists a bijective affine map between
J0 and I. To avoid confusion, we will put a bar over the extremal invariant
measures of the pure voter model so that we have Je ¼ fm̄a : a 2 H�g.

In order to do this we will first consider the case where bðxÞ � 0, but dðxÞX0.
We start by coupling the semi-dual process At with n independent processes
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X 1ðtÞ; . . . ;X nðtÞ which start from A ¼ fx1; . . . ;xng and are equal in distribution to
X ðtÞ. In particular, couple the processes so that At � fX 1ðtÞ; . . . ;X nðtÞg. Let X �

i ðtÞ be
the dual process starting from fxig and henceforth define TðtÞ to be the semigroup for
the voter model.

By coupling the processes A�
t and At so that they move together as much as

possible, it is clear that for any measure m 2 P and any A 2 Y , SðtÞm̂ðAÞpTðtÞm̂ðAÞ.
Thus if m 2 I and n 2 J0 then m̂ðAÞpTðtÞm̂ðAÞ and SðtÞn̂ðAÞpn̂ðAÞ. Applying the
respective semigroups once more to both these inequalities gives TðsÞm̂ðAÞpTðt þ

sÞm̂ðAÞ and Sðt þ sÞn̂ðAÞpSðsÞn̂ðAÞ so that limt!1 mTðtÞ and limt!1 nSðtÞ exist by
monotonicity and duality.

Now take m1 2 J0. Let limt!1 m1SðtÞ ¼ m2 and define the map sðm1Þ ¼ m2. We will
show that s is an affine bijection from J0 to I.

Since m1 2 P0, it follows that

lim
t!1

jTðtÞm̂1ðAÞ � SðtÞm̂1ðAÞjpPA
[

1pipn

fX �
i ðtÞ ¼ D eventually;Lg

" #

p
Xn

i¼1

Pfxig½Dc;L�.

By the definition of m2 and by the fact that m1 2 J

jm̂1ðAÞ � m̂2ðAÞjp
Xn

i¼1

Pfxig½Dc;L�.

Applying TðtÞ to both sides of this last inequality and passing to the limit gives

lim
t!1

jm̂1ðAÞ � TðtÞm̂2ðAÞjp lim
t!1

Xn

i¼1

EfxigPAt ½Dc;L�.

Lemma 3.4 says that the right-hand side above is equal to 0 so that
limt!1 m2TðtÞ ¼ m1.This proves that s is injective. If we think of X �ðtÞ ¼ D as an
absorbing state where X �ðtÞ continually jumps to D at exponential rate one then a
similar argument using Lemma 3.5 (c) shows s to be surjective. To see that s is affine
note simply that if m1; n1 2 J0 then

lim
t!1

ðlm2 þ ð1� lÞn2ÞSðtÞ ¼ lm1 þ ð1� lÞn1.

We have thus far shown that there exists an affine bijection between J0 and I for
the case b � 0. For the general case we compare the process Zt with birth rates bðxÞ
and death rates dðxÞ to a similar process ~Zt having the same transition rates except
that the death rates are now ~dðxÞ ¼ bðxÞ þ dðxÞ and the birth rates are identically 0.
Let the associated dual process, semigroup, and set of invariant measures for ~Zt be
~A
�

t ,
~SðtÞ, and ~I.

Couple the two dual processes so that they make the same transitions except when
a particle in A�

t dies off due to a bðxÞ jump, then ~A
�

t goes to the state D. Since
~SðtÞm̂ðAÞpSðtÞm̂ðAÞ, we can repeat the monotonicity arguments used above to show
that for n1 2 I and n2 2 ~I, the limits limt!1 n1 ~SðtÞ ¼ n2 and limt!1 n2SðtÞ ¼ n1
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exist. If we can show that

lim
t!1

EAPA�
t ½A�

sa ~A
�

s for some sX0� ¼ 0 for all A 2 Y (13)

and similarly that

lim
t!1

EAP
~A
�

t ½A�
sa ~A

�

s for some sX0� ¼ 0 for all A 2 Y (14)

then we can also show that the map limt!1 n2SðtÞ ¼ n1 ¼ ~sðn2Þ is an affine bijection
between ~I and I. If we extend the state space of At as in Lemma 3.5 (b) then the
following inequalities combined with Lemma 3.5 (b) prove (13) and (14):

P
~A
�

t ½A�
sa ~A

�

s for some sX0�pPA�
t ½A�

sa ~A
�

s for some sX0�

pPA�
t ½A�

saAs for some sX0�.

Our desired affine bijection from J0 to I is just ~s � s. We are now ready to prove
the two parts of the theorem. We start with part (a).

To prove ma exists we need only show

lim
t!1

naSðtÞ ¼ lim
t!1

lim
s!1

lim
r!1

naTðrÞ ~SðsÞSðtÞ. (15)

Let m̄a ¼ limr!1 naTðrÞ and let ~̄m ¼ lims!1 m̄ ~SðsÞ. We have already argued that
these limits exist. Applying SðtÞ and passing to the limit in the following inequalities
proves (15).

lim
t!1

jSðtÞn̂aðAÞ � SðtÞ ~̄̂maðAÞj

p lim
t!1

jSðtÞn̂aðAÞ � ~SðtÞ ^̄maðAÞj þ lim
t!1

j ~̄̂maðAÞ � SðtÞ ~̄̂maðAÞj

p lim
t!1

jSðtÞn̂aðAÞ � TðtÞn̂aðAÞj þ lim
t!1

j ^̄maðAÞ � ~SðtÞ ^̄maðAÞj

þ lim
t!1

j ~̄̂maðAÞ � SðtÞ ~̄̂maðAÞj

p3PA½A�
saAs for some sX0�.

Suppose now that limt!1 na1SðtÞ ¼ limt!1 na2SðtÞ. We have

n̂ai
ðfX ðsÞgÞ ¼ lim

t!1
EX ðsÞn̂ai

ðfX �ðtÞgÞ

¼ PX ðsÞ½X �ðtÞ ¼ ; eventually�

þ EX ðsÞ lim
t!1

n̂ai
ðfX �ðtÞgÞ1fX�ðtÞa; 8 t;Dg


 �
.

But since PX ðsÞðfX �ðtÞa;8 t;DgÞ ! 1 on Lx by the arguments given for Lemma 3.4
and since EX ðsÞðlimt!1 n̂ai

ðfX ðtÞgÞÞ ¼ aiðX ðsÞÞ, then it follows that a1Ra2.
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For the opposite direction if we assume that a1Ra2, then

lim
t!1

ðna1SðtÞ � na2SðtÞÞðAÞ ¼ lim
t!1

EAðn̂a1 ðA
�
t ÞÞ � lim

t!1
EAðn̂a2 ðA

�
t ÞÞ

¼ lim
t!1

EA
Y

x2A�
t

a1ðxÞ

0
@

1
A

� lim
t!1

EA
Y

x2A�
t

a2ðxÞ

0
@

1
A ¼ 0.

For part (b) it is enough to show that the extreme points of J0 are
fm̄a 2 J : a 2 H� \H0g. Then applying (15) along with Lemma 3.5 (a) completes
the proof. To prove J0

e ¼ fm̄a 2 J : a 2 H� \H0g note that if lp1 þ ð1� lÞp2 ¼

m 2 J0
e for p1;p2 2 J then p1; p2 2 J0 and hence p1 ¼ p2 ¼ m. Therefore

m 2 Je \J0 ¼ fm̄a : a 2 H� \H0g. On the other hand if a 2 H� and m̄a 2 J0, then
m̄a is an extreme point of J0. &
4. Proofs of the theorems
Proof of Theorem 1.1. Suppose condition (1) holds. By Lemma 2.1 we need only
show that for any two measures m1;m2 2 P, the limits limt!1 SðtÞm̂iðAÞ exist and are
equal for all A 2 Y . But Lemma 3.2 implies that

lim
t!1

SðtÞm̂iðAÞ ¼ PA½A�
t ¼ ; eventually�

which is independent of mi proving one direction of the theorem.
For the opposite direction suppose that (1) does not hold. Lemma 3.2 implies that

PA½A�
t ¼ ; or A�

t ¼ D eventually�o1 for some A 2 Y . Therefore

lim
t!1

SðtÞd̂1ðAÞ ¼ PA½A�
t ¼ ; eventually� þ PA½A�

t a;8 t;D�

is not equal to

lim
t!1

SðtÞd̂0ðAÞ ¼ PA½A�
t ¼ ; eventually�

for some A 2 Y showing that the process is not ergodic. &

Proof of Theorem 1.2. By Lemma 2.1, limt!1 d1SðtÞ exists since

lim
t!1

SðtÞd̂1ðAÞ ¼ 1� PA½Dc�.

Similarly, limt!1 d0SðtÞ exists since

lim
t!1

SðtÞd̂0ðAÞ ¼ PA½At ¼ ; eventually�

completing the proof of part (a).
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Consider now part (b). By Lemma 3.3 and a coupling argument it can be seen that
if limt!1 Exm̂ðfX ðtÞgÞ exists, it is independent of our choice of x. So now using
Lemmas 2.1 and 3.3 together with the strong Markov property, we have that if the
following limits then

lim
t!1

SðtÞm̂ðAÞ ¼ lim
t!1

EAm̂ðA�
t Þ

¼ PA½A�
t ¼ ; eventually� þ PA lim

t!1
jA�

t j ¼ 1;D
h i

� lim
t!1

Exm̂ðfX ðtÞgÞ. ð16Þ

If m 2 I then the limits on the left exist. Since we have assumed that (1) does not
hold then PA½limt!1jA�

t j ¼ 1;D�40 so that the last limit on the right-hand side
exists.

Let l ¼ limt!1 Exm̂ðfX ðtÞgÞ and consider the invariant measure ml ¼ lm1þ

ð1� lÞm0. We have that for all A 2 Y ,

m̂lðAÞ ¼ EAm̂lðA�
t Þ ¼ PA½A�

t ¼ ; eventually� þ lPA lim
t!1

jA�
t j ¼ 1;D

h i
.

Since PA½A�
t ¼ ; eventually� and PA½limt!1jA�

t j ¼ 1;D� do not depend on m or ml,
comparing the above equation with (16) gives us m ¼ ml showing that every invariant
measure is a mixture of m1 and m0. This proves part (b).

Part (c) follows from the above arguments together with the fact that
limt!1 Exm̂ðfX ðtÞgÞ is independent of our choice of x. &

Proof of Corollary 1.3. We need only show that the recurrence of ZðtÞ ¼ X ðtÞ � Y ðtÞ

implies (2).
Let R be the set of all y 2 Zd such that jyjpN. By our assumptions we can choose

z 2 S so that qvð0; zÞ40. If Et ¼ fxt; ytg is the two particle exclusion process then we
will say that Et ¼ z if xt � yt ¼ z and Et 2 R if jxt � ytjpN.

Since ZðtÞ is recurrent, ZðtÞ jumps to 0 infinitely often and therefore X ðtÞ and Y ðtÞ

meet infinitely often. If there are infinitely many jumps of ZðtÞ to 0 caused by
the qvðx; yÞ rates then (2) automatically holds by arguments similar to those of
Lemma 3.1. Thus we will henceforth assume that there are infinitely many jumps
of ZðtÞ to 0 caused by the qeðx; yÞ rates giving us

Pfx;ygðZðtÞ 2 R for some t40Þ ¼ 1 for all x; y 2 S.

By coupling ZðtÞ and Et together until the first time that X ðtÞ and Y ðtÞ meet, we have
in fact that

Pfx;ygðEt 2 R for some t40Þ ¼ 1 for all fx; yg 2 S2.

If Ek is the embedded discrete-time Markov Chain for Et then the above equation
implies that

Pfx;ygðEk 2 R infinitely oftenÞ ¼ 1 for all fx; yg 2 S2.
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For a fixed t̄40 let m ¼ minx2RfP
xðEt̄ ¼ zÞg. Since our process is irreducible m40

therefore

Pfx;ygðEk ¼ z infinitely oftenÞ ¼ 1 for all fx; yg 2 S2. (17)

Now by the same argument given to show (12) in the proof of Lemma 3.7,

o
Z 1

0

qvðEtÞdt ¼ 1

����
�

¼ o
X1
k¼0

qvðEkÞ ¼ 1

�����
)((

almost surely. By (17) we get that (2) holds as desired. &

Proof of Theorem 1.4. For part (a) we prove only the case where b � 0; the
general case follows the proof of Theorem 3.9. Again let TðtÞ be the semigroup
for the voter model with rates qðx; yÞ. Chapter V in [12] tells us limt!1 naTðtÞ ¼ m̄a
exists for all a 2 H. By coupling the dual of our process together with the
dual of the voter model so that they move together as much as possible, it is
clear that SðtÞ ^̄maðAÞpTðtÞ ^̄maðAÞ ¼ ^̄maðAÞ. Applying SðsÞ to both sides gives
Sðt þ sÞ ^̄maðAÞpSðsÞ ^̄maðAÞ. This monotonicity shows that limt!1 m̄aSðtÞexists. By
previous arguments we also have that

lim
t!1

naSðtÞ ¼ lim
t!1

lim
s!1

naTðsÞSðtÞ.

Concerning the rest of the proof we will only prove part (b) since the proof
of part (c) is basically the same as that of (b) except for replacing the use of
Lemma 3.8 with Lemma 3.7. Just as in the proof of Theorem 3.9 the general idea
is to show that there exists a bijective, affine map s between I and J where
Je ¼ flimt!1 naTðtÞ : a 2 H�g.

For part (b) we will prove only the case where bðxÞ ¼ dðxÞ � 0 so that A�
t ¼ At.

The general result follows from the arguments laid out in the proof of Theorem 3.9
except for a slight change in the independent processes X 1ðtÞ; . . . ;X nðtÞ starting from
A ¼ fx1; . . . ;xng. For the proof here we must use the coupling of the X iðtÞ processes
that we used in the proof of Lemma 3.8 instead of letting them be independent. We
now prove the case bðxÞ ¼ dðxÞ � 0.

Take m 2 I and suppose that both At and Vt start with initial set A. By coupling
the two processes so that At contains V t, we see that

jSðtÞm̂ðAÞ � TðtÞm̂ðAÞjpf ðAÞ ¼ PA½AtaVt for some t40�.

By the invariance of m

jm̂ðAÞ � TðtÞm̂ðAÞjpf ðAÞ (18)

so that

jTðsÞm̂ðAÞ � Tðt þ sÞm̂ðAÞjpTðsÞf ðAÞ.

By Lemma 3.8 and the fact that SðsÞf ðAÞ ! 0 implies that TðsÞf ðAÞ ! 0, the
right-hand side goes to 0. This in turn shows that limt!1 TðtÞm̂ðAÞ exists. The duality
of the voter model which is a special case of Lemma 2.1, implies that limt!1 mTðtÞ ¼

n exists and is invariant for the voter model with rates qðx; yÞ.
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By passing to the limit in (18)

jm̂ðAÞ � n̂ðAÞjpf ðAÞ.

Hence Lemma 3.8 tells us limt!1 nSðtÞ ¼ m.
For m 2 I, if we define sðmÞ ¼ limt!1 mTðtÞ ¼ n, then the above arguments have

shown that s is injective. A similar arguments proves s maps onto J. To see that it is
affine note that

lim
t!1

ðlm1 þ ð1� lÞm2ÞTðtÞ ¼ ln1 þ ð1� lÞn2.

We now conclude the proof of the case bðxÞ ¼ dðxÞ � 0 by showing that for
m̄a ¼ limt!1 naTðtÞ,

lim
t!1

naSðtÞ ¼ lim
t!1

m̄aSðtÞ.

Applying SðsÞ to the following inequality and passing to the limit proves the above
equation.

lim
t!1

jSðtÞn̂aðAÞ � SðtÞ ^̄maðAÞj

p lim
t!1

jSðtÞn̂aðAÞ � TðtÞn̂aðAÞj þ lim
t!1

j ^̄maðAÞ � SðtÞ ^̄maðAÞjp2f ðAÞ: &

Proof of Theorem 1.5. Putting A ¼ fx1; . . . ;xng let W nðtÞm̂ðAÞ ¼ EAm̂ðfX 1ðtÞ; . . . ;
X nðtÞgÞ be the semigroup for n independent processes. Then the assumptions of the
theorem tell us W 2ðtÞgðx; yÞ ! 0 so that

Pfx;yg½X ðtÞ ¼ Y ðtÞ infinitely often� ¼ 0. (19)

The proof that (8) is necessary and sufficient for limt! mSðtÞ ¼ ma is proven in
Theorem 8.7 in [15]. The only thing to note is that the assumption that X ðtÞ is
transient is needed only to show that when qðx; yÞ ¼ qðy; xÞ, (19) holds.

The rest of the proof is similar to the proof of Theorems V.1.9 in [12]. Assume that
m satisfies (6) and (7). By Lemma 2.1 and the definition of ma, it suffices to show that
for each A 2 Y ,

lim
t!1

EAm̂ðA�
t Þ ¼ lim

t!1
EA

Y
x2A�

t

aðxÞ, (20)

where we make the convention that aðDÞ ¼ 0 and
Q

x2; aðxÞ ¼ 1.
Conditions (6) and (7) are equivalent to the assertion that for each x 2 SX

y

ptðx; yÞZðyÞ

converges in probability to aðxÞ with respect to m. This in turn is equivalent to

lim
t!1

Efx1;...;xngm̂ðfX 1ðtÞ; . . . ;X nðtÞgÞ ¼
Yn

i¼1

aðxiÞ, (21)

where the X iðtÞ are all independent.
Let t1 be the first time that either X iðtÞ ¼ X jðtÞ for some 1piojpn, A�

t ¼ D, or
jA�

t j decreases. Still putting A ¼ fx1; . . . ;xng, let t2 be the first time starting from A�
t1
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that any of the three events described above occur unless A�
t ¼ D in which case we

will let t2 ¼ 1. Continuing in this way we can define tk for all kX1.
By (21) and the strong Markov property, if the limits below exist then

lim
t!1

EA½m̂ðA�
t Þ; t1 ¼ 1� ¼ lim

t!1
EA½m̂ðfX 1ðtÞ; . . . ;X nðtÞgÞ; t1 ¼ 1�

¼
Yn

i¼1

aðxiÞ � lim
t!1

EA½m̂ðfX 1ðtÞ; . . . ;X nðtÞgÞ; t1o1�

¼
Yn

i¼1

aðxiÞ � EA lim
t!1

EðX 1ðt1Þ;...;X nðt1ÞÞ

� ½m̂ðfX 1ðtÞ; . . . ;X nðtÞgÞ; t1o1�

¼ lim
t!1

EA
Y

x2A�
t

aðxÞ; t1 ¼ 1

2
4

3
5

¼ lim
t!1

EA
Y
x2At

aðxÞ; t1 ¼ 1

" #
. ð22Þ

By the convergence theorem for bounded submartingales limt!1

Q
x2At

aðxÞ
exists almost surely so by the dominated convergence theorem the above limits
exist.

Using the strong Markov property once more we can get

lim
t!1

EA½m̂ðA�
t Þ; t1o1� ¼ EA lim

t!1
ðEA�

t1 ½m̂ðA�
t Þ; t1o1; t2 ¼ 1�Þ

þ EA lim
t!1

ðEA�
t1 ½m̂ðA�

t Þ; t2o1�Þ. ð23Þ

But by the argument given for (22) the first term on the right-hand side above
equals

EA lim
t!1

EA�
t1

Y
x2A�

t

aðxÞ; t1o1; t2 ¼ 1

2
4

3
5

¼ lim
t!1

EA
Y
x2At

aðxÞ; t1o1; t2 ¼ 1

" #
P½A�

t1a;aD� þ P½A�
t1 ¼ ;�.

The second term on the right-hand side of (23) equals

EA lim
t!1

ðEA�
t2 ½m̂ðA�

t Þ; t2o1; t3 ¼ 1�Þ þ EA lim
t!1

ðEA�
t2 ½m̂ðA�

t Þ; t3o1�Þ.

Since (19) holds we have that P½tk ¼ 1 for some k� ¼ 1. By repeated use of the
arguments above it follows that (20) holds. &

Proof of Corollary 1.6. Again, we prove only the case bðxÞ ¼ dðxÞ � 0 so that
A�

t ¼ At. The general case follows from above arguments.
Take m 2 I and again let W nðtÞ be the semigroup for n independent random walks

~X ðtÞ ¼ ðX 1ðtÞ; . . . ;X nðtÞÞ. Couple At and ~X ðtÞ so that they move together until the
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first time that two coordinates of ~X ðtÞ meet. We then have that

jSðtÞm̂ðAÞ � W nðtÞm̂ðAÞjpgðAÞ. (24)

Since SðtÞm̂ðAÞ ¼ m̂ðAÞ then

jW nðsÞm̂ðAÞ � W nðt þ sÞm̂ðAÞjpW nðsÞgðAÞ.

Corollary II.7.3 in [12] tells us that ~X ðtÞ has no nonconstant bounded harmonic
functions. By Proposition 5.19 in [8] W nðtÞgðAÞ ! 0 so that limt!1 W nðtÞm̂ðAÞ exists
and is harmonic for the random walk ~X ðtÞ on Sn. Such harmonic functions are
constant so we can write

lim
t!1

W nðtÞm̂ðAÞ ¼ an for jAj ¼ n.

The proof of Theorem 2.6 in [14] shows that there exists a random variable G

taking values in ½0; 1� with moment sequence an. Since anp1 we can use Carleman’s
condition to show that the random variables

P
y ptðx; yÞZðyÞ with respect to the

measure m converge in distribution to G.
If g is the probability measure on ½0; 1� for G, let mg ¼

R 1

0
ma gðdaÞ. Using the

arguments presented in Theorem 1.5 we can show that for each A 2 Y ,

lim
t!1

EAm̂ðAtÞ ¼ lim
t!1

EGjAtj ¼ lim
t!1

EAm̂gðAtÞ.

Thus m ¼ mg and is hence a mixture of the measures fma : a 2 ½0; 1�g. By Theorem 1.5,
each measure ma has a different domain of attraction proving that Ie ¼

fma : a 2 ½0; 1�g. &
5. Further results

The brief discussion below shows how one might adapt [15] and Chapter V in [12]
in order to obtain a general result. Let

Ê ¼ o :

Z 1

0

qvðEtÞdt ¼ 1

� �
.

In the introduction we argued that limt!1 aðX ðtÞÞ exists almost surely so we can
define Ĥ to be the set of all a 2 H such that

lim
t!1

aðX ðtÞÞ ¼ 0 or 1 a.s. on Ê,

where X ðtÞ starts from x if E0 ¼ fx; yg. For those that are keeping track, Ê and Ĥ
are analogous to E and H�.

Following [15] and Chapter V in [12], we conjecture that Ie ¼ fma : a 2 ĤRg. In
order to prove this one would have to generalize Theorem 1.5 and show that for
m 2 Ie

m̂ðfX ðtÞ;Y ðtÞgÞ ! m̂ðfX ðtÞgÞm̂ðfY ðtÞgÞ. (25)

As mentioned in the introduction, it is the monotonicity of SðtÞn̂aðAÞ that allows us
to do this for the pure voter model or the pure symmetric exclusion process.
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If one were to prove (25) and Theorem 1.5 in general, new techniques would be
needed.
6. An ergodic theorem for a related process

The proof of Theorem 1.7 requires the following lemma:

Lemma 6.1. Suppose fang is bounded above by k1nk2�1 for some k1; k240 and that

an40 for all n. Then there exists a sequence fwng such that

ðiÞ lim inf
n!1

an

wn

¼ 1 and ðiiÞ lim sup
n!1

nwnPn�1
l¼0 wl

o1.

Proof. If for some sequence fwng we have that wl=lk2
Xwn=nk2 for lpn then

Xn�1

l¼0

wlX

Xn�1

l¼0

wn

nk2
lk2

X
wn

nk2

ðn � 1Þk2þ1

k2 þ 1

so that condition (ii) holds. So it remains to find a sequence fwng satisfying condition
(i) and the inequality wl=lk2

Xwn=nk2 for lpn. Let w0 ¼ a0 and let wn ¼ wn�1 unless
an=nk2 ¼ minlpnal=lk2 in which case we let wn ¼ an. Then wl=lk2

Xwn=nk2 for lpn.
Now since fang is bounded above by k1nk2�1 it follows that an=nk2 ! 0 and hence
an=nk2 ¼ minlpnal=lk2 infinitely often so that wn ¼ an infinitely often. Therefore (i) is
also satisfied by this choice of fwng. &

Using the basic coupling for the exclusion process combined with the basic
coupling for spin systems, we have that the basic coupling for a noisy exclusion
process has generator

Ōf ðZ; xÞ ¼
X

ZðxÞ¼xðxÞ¼1
ZðyÞ¼xðyÞ¼0

qeðx; yÞ½f ðZxy; xxyÞ � f ðZ; xÞ�

þ
X

ZðxÞ¼1;ZðyÞ¼0 and
xðyÞ¼1 or xðxÞ¼0

qeðx; yÞ½f ðZxy; xÞ � f ðZ; xÞ�

þ
X

xðxÞ¼1;xðyÞ¼0 and
ZðyÞ¼1 or ZðxÞ¼0

qeðx; yÞ½f ðZ; xxyÞ � f ðZ; xÞ�

þ
X

x:ZðxÞaxðxÞ

c1ðx; ZÞ½f ðZx; xÞ � f ðZ; xÞ�

þ
X

x:ZðxÞaxðxÞ

c2ðx; xÞ½f ðZ; xxÞ � f ðZ; xÞ�

þ
X

x:ZðxÞ¼xðxÞ

cðx; Z; xÞ½f ðZx; xxÞ � f ðZ; xÞ�,
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where

c1ðx; ZÞ ¼
bðxÞ when ZðxÞ ¼ 0;

dðxÞ when ZðxÞ ¼ 1:

(
c2ðx; xÞ ¼

bðxÞ when xðxÞ ¼ 0;

dðxÞ when xðxÞ ¼ 1:

(

and cðx; Z; xÞ ¼
bðxÞ when ZðxÞ ¼ xðxÞ ¼ 0;

dðxÞ when ZðxÞ ¼ xðxÞ ¼ 1:

(

Let Ī be the set of invariant measures for this coupling.
In order to simplify the notation we define the functions

f xðZ; xÞ ¼ ½1� ZðxÞ�xðxÞ; hyxðZ; xÞ ¼ ½1� ZðyÞ�½1� xðyÞ�f xðZ; xÞ,

gyxðZ; xÞ ¼ ZðyÞxðyÞf xðZ; xÞ; and f yxðZ; xÞ ¼ ZðyÞ½1� xðyÞ�f xðZ; xÞ.

In particular, for T a finite subset of S we have

~O
X
x2T

f xðZ; xÞ

 !
¼ �

X
x2T ;y2S

ðqeðx; yÞ þ qeðy;xÞÞf yxðZ; xÞ

�
X
x2T

ðbðxÞ þ dðxÞÞf xðZ; xÞ

þ
X

x2T ;yeT

½qeðx; yÞgxy � qeðy;xÞgyx�

þ
X

x2T ;yeT

½qeðy;xÞhxy � qeðx; yÞhyx�. ð26Þ

Proof. Proof of Theorem 1.7 recall that Tn ¼ fx 2 Zd : jxijpng. Couple two noisy
exclusion processes, Zt and xt, with n 2 Ī so that

Z
Ō

X
x2Tn

f xðZt; xtÞ

 !
dn ¼ 0.

If we let
R

f xðZt; xtÞdn ¼ aðxÞ then since f yxðZt; xtÞX0, Eq. (26) gives usX
x2Tn

bðxÞ þ dðxÞð ÞaðxÞ

p
X

x2Tn;yeTn

qeðx; yÞ

Z
ðgxy � hyxÞdnþ

X
x2Tn;yeTn

qeðy;xÞ

Z
ðhxy � gyxÞdn

p
X

x2Tn;yeTn

qeðx; yÞaðyÞ þ
X

x2Tn;yeTn

qeðy;xÞaðyÞ

p
ð2N þ 1Þd

2

X
y2TN

n

aðyÞ þ
X

y2TN
n

aðyÞpC1

X
y2TN

n

aðyÞ ð27Þ
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for some constant C1. If we define

al ¼
X

y2TN
pðlÞ

aðyÞ

then by the inequality bðxÞ þ dðxÞXbl for x 2 TN
pðlÞ we can rewrite (27) as

Xn�1

l¼0

blalpC1an. (28)

Now suppose d ¼ 1 and condition (a) in the theorem holds. Then since
aðxÞp1, we have anp2N for all n. In light of Eq. (28) we then have thatP

lX0 blalo1. On the other hand, if we multiply both sides of (28) by bn and then
sum over n we get

X
nX0

bn

Xn

l¼0

blalpC1

X
nX0

bnano1.

Rewriting the left hand side we get

X
nX0

bn

Xn

l¼0

blal ¼
X
lX0

blal

X
nXl

bno1.

This implies that blal ¼ 0 for all l since condition (a) gives us
P

bl ¼ 1. So we have
aðxÞ ¼

R
f x dn ¼ 0 for all x so that the marginals of n are exactly the same.

Suppose now that dX2 and that condition (b) of the theorem holds. Since
pðlÞpklk we have that an is bounded above by k1nk2�1 for some k1; k2. If we assume
that for all n, an40 then by Lemma 6.1, there exists a sequence wn such that
lim inf an=wn ¼ 1 and lim sup nwn=

Pn�1
l¼0 wlo1. By condition (b), we have then that

lim inf nbnan=wn ¼ 1 (29)

However, we also have that there exists a subsequence fnjg for which

Xnj�1

l¼0

blalpC1anj
pC2wnj

pC3

Pnj�1

l¼1 wl

nj

pC3

Xnj�1

l¼1

wl

l
. (30)

Notice now that if the limit of the right hand side is infinite, (29) and (30) contradict
each other so that we must have an ¼ 0 for some n and consequently aðxÞ ¼R

f x dn ¼ 0 for all x by irreducibility. If the right hand side is bounded then we can
use the argument given above for the case d ¼ 1 to show that aðxÞ ¼

R
f x dn ¼ 0 for

all x. In either case we have that the marginals of n are the same, and we thus have
ergodicity of the process. &

We now restrict ourselves to the case where d ¼ 1 and the transition rates are
qeðx;x þ 1Þ ¼ p41=2 and qeðx; x � 1Þ ¼ 1� p ¼ qo1=2 for all x. In order to show
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the importance of the condition that there exist a sequence bl satisfying blpbðxÞ þ
dðxÞ for all x 2 TN

pðlÞ, we will find examples of processes on Z that are not ergodic but
satisfy

P
x bðxÞ ¼ 1.

To start off, consider the case where we have b40 and d40 for a single
fixed z and no births and deaths at any other site. Choose c so that cpðzÞ=ð1þ
cpðzÞÞ ¼ b=ðbþ dÞ for a reversible measure pðxÞ on Z. The product measure nc

with marginals ncfZ : ZðxÞ ¼ 1g ¼ cpðzÞ=ð1þ cpðzÞÞ is reversible with respect to
the exclusion process, and its marginal measure at the site z is reversible with
respect to the birth and death process so that nc is reversible with respect to
the noisy exclusion process. The product measure nr with marginals nrfZ : ZðxÞ ¼
1g ¼ r where r ¼

b
bþd, is also invariant with respect to the exclusion process,

and again, its marginal measure at the site z is reversible with respect to the
birth and death process. So nr is also invariant with respect to the noisy exclusion
process.

We have two more invariant measures by starting the process off with initial
states d0 and d1. This is because some subsequence of limn!1

1
Tn

R Tn

0 d1SðtÞdt for
Tn ! 1 must lie above both of the invariant measures we have constructed above.
Similarly some subsequence of limn!1

1
Tn

R Tn

0 d0SðtÞdt lies below the two invariant
measures.

In order to show that the noisy exclusion process with bðziÞ40 if and only if
dðziÞ40 for a finite number of sites fz1; . . . ; zkg is not ergodic (this is a special
case of Proposition 6.2 below) we will need the following coupling for two noisy
exclusion processes with the same transition and death rates, but different birth
rates. If b1ðxÞ for the process Zt is greater than b2ðxÞ for the process xt for all x then
we can couple the two processes in such a way that ZtXxt. Formally, we have the
coupling given by

Ōf ðZ; xÞ ¼
X

ZðxÞ¼xðxÞ¼1
ZðyÞ¼xðyÞ¼0

qeðx; yÞ½f ðZxy; xxyÞ � f ðZ; xÞ�

þ
X

ZðxÞ¼1;ZðyÞ¼0 and
xðyÞ¼1 or xðxÞ¼0

qeðx; yÞ½f ðZxy; xÞ � f ðZ; xÞ�

þ
X

xðxÞ¼1;xðyÞ¼0 and
ZðyÞ¼1 or ZðxÞ¼0

qeðx; yÞ½f ðZ; xxyÞ � f ðZ; xÞ�

þ
X

x:ZðxÞaxðxÞ

c1ðx; ZÞ½f ðZx; xÞ � f ðZ; xÞ�

þ
X

x:ZðxÞaxðxÞ

c2ðx; xÞ½f ðZ; xxÞ � f ðZ; xÞ�

þ
X

x:ZðxÞ¼xðxÞ

cðx; Z; xÞ½f ðZx; xxÞ � f ðZ; xÞ�

þ
X

x:ZðxÞ¼xðxÞ¼0

ðb1ðxÞ � b2ðxÞÞ½f ðZx; xÞ � f ðZ; xÞ�,
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where

c1ðx; ZÞ ¼
b1ðxÞ when ZðxÞ ¼ 0;

dðxÞ when ZðxÞ ¼ 1:

(
c2ðx; xÞ ¼

b2ðxÞ when xðxÞ ¼ 0;

dðxÞ when xðxÞ ¼ 1:

(

and cðx; Z; xÞ ¼
b2ðxÞ when ZðxÞ ¼ xðxÞ ¼ 0;

dðxÞ when ZðxÞ ¼ xðxÞ ¼ 1:

(

Similarly, we can couple two processes together so that Ztpxt when Zt and xt have
the same transition and birth rates, but death rates such that d1ðxÞXd2ðxÞ for all x.

Proposition 6.2. Suppose that qeðx;x þ 1Þ ¼ p41
2

and qeðx; x � 1Þ ¼ 1� p ¼ q for all

x and that bðxÞ40 if and only if dðxÞ40. If there exists a z such that bðxÞ ¼ 0
for either all xpz or for all xXz and if there exist a1 and a2 such that

a1pðxÞ
1þa1pðxÞ

p bðxÞ
bðxÞþdðxÞp

a2pðxÞ
1þa2pðxÞ

for all x where bðxÞ40, then the process is not ergodic.

Proof. Without loss of generality suppose that bðxÞ ¼ 0 for all positive x and let fzig

denote the set of points where bðxÞ40. If Zt is the process described in the hypothesis
of the proposition, let the process xt be the same as Zt except that we change the

death rates ofxt so that bðziÞ

bðziÞþdðziÞ
¼

a1pðziÞ

1þa1pðziÞ
for all fzig. Let the process zt be the same as

Zt except that we change the birth rates of zt so that bðziÞ

bðziÞþdðziÞ
¼

a2pðziÞ

1þa2pðziÞ
for all fzig. We

can triple couple xt; Zt; and zt so that xtpZtpzt. Since the measure na1 is invariant for
xt and na2 is invariant for zt, then Zt has an invariant measure m1 with na1pm1pna2 .

Let M ¼ maxi
bðziÞ

bðziÞþdðziÞ
. Note that this maximum is achieved since we assumed

earlier that bðxÞ ¼ 0 for all positive x and consequently if there exist an infinite

number of zi’s then limi!1
bðziÞ

bðziÞþdðziÞ
¼ 0. Now let the process zt be the same as Zt

except that we change the birth rates of zt so that bðziÞ

bðziÞþdðziÞ
¼ M for all fzig. Again, we

can couple Zt and zt so that Ztpzt. The measure nM is invariant for zt. So Zt has an
invariant measure m2 such that m2pnM . Since m2 is different from m1, the process is
not ergodic. &

Note that using the above proposition, we can construct examples of nonergodic
processes that satisfy all of the hypotheses for Schwartz’s ergodic theorem except for
qeðx; yÞ ¼ qeðy; xÞ.
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