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b SAMOS-MATISSE, Université Paris I, 90 rue de Tolbiac, 75013 Paris, France

c Friedrich-Schiller-Universität Jena, Institut für Stochastik, Ernst-Abbe-Platz 2, 07743 Jena, Germany

Received 8 December 2005; received in revised form 3 July 2006; accepted 24 October 2006
Available online 16 November 2006

Abstract

Doukhan and Louhichi [P. Doukhan, S. Louhichi, A new weak dependence condition and application
to moment inequalities, Stochastic Process. Appl. 84 (1999) 313–342] introduced a new concept of weak
dependence which is more general than mixing. Such conditions are particularly well suited for deriving
estimates for the cumulants of sums of random variables. We employ such cumulant estimates to derive
inequalities of Bernstein and Rosenthal type which both improve on previous results. Furthermore, we
consider several classes of processes and show that they fulfill appropriate weak dependence conditions.
We also sketch applications of our inequalities in probability and statistics.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For a long time mixing conditions have been the dominating type of conditions for imposing
a restriction on the dependence between time series data. They are considered to be useful
since they are fulfilled for many classes of processes and since they allow us to derive tools
similar to those in the independent case. On the other hand, it turns out that certain classes of
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processes which are of interest in statistics are not mixing although a successive forgetting of
past states takes place. Typical examples are processes driven by discrete observations as they
appear, for example, with model-based time series bootstrap methods. In 1999, Doukhan and
Louhichi proposed a new concept of restricting dependence which focuses on covariances rather
than the total variation distance between joint distributions and the product of corresponding
marginals. It has been shown that this concept is more general than mixing and includes, under
natural conditions on the process parameters, essentially all classes of processes of interest in
statistics; see for example Ango Nze, Bühlmann and Doukhan [1] for an overview. It became
readily apparent that the concept of weak dependence allows in many instances similar tools to
be used as in the independent or mixing case. For example, versions of a central limit theorem are
derived in Doukhan and Louhichi [11] for sequences of random variables, in Coulon-Prieur and
Doukhan [6] for situations as they appear with nonparametric curve estimators, and in Neumann
and Paparoditis [22] for general triangular schemes. A first exponential inequality was obtained
in Doukhan and Louhichi [11], a Bennett-type inequality in Dedecker and Prieur [8], and a
Bernstein-type inequality in Kallabis and Neumann [19].

The concept of weak dependence is particularly suitable for deriving upper estimates for the
cumulants of sums of random variables. Such cumulant estimates can serve as a starting point
for deriving rather precise approximations of distributions as well as rather tight probability
inequalities. The main contributions in this paper are inequalities of Bernstein and Rosenthal
type for sums of weakly dependent random variables. In the case of mixing, Bernstein-type
inequalities can be easily derived from the well-known Bernstein inequality in the independent
case by using coupling arguments; see for example Doukhan [10] and Rio [24]. In the case
of weakly dependent random variables, Doukhan and Louhichi [11] proved a first exponential
inequality via a combinatorial technique. Unfortunately, rather than the rate of t2 in the exponent
as in the independent case, only a rate of

√
t was obtained by this approach. Using a new

coupling result, Dedecker and Prieur [8] proved a Bennett-type inequality which possibly implies
a Bernstein-type inequality with t2 in the exponent. Using cumulant techniques Kallabis and
Neumann [19] derived a Bernstein-type inequality with a leading term of −t2/(2var(X1 + · · · +

Xn)) in the exponent, under weak dependence conditions tailor-made for causal processes and
with an exponential decay of the coefficients of weak dependence. In this paper, we extend this
result to more general conditions of weak dependence, including also noncausal processes and
allowing a subexponential decay of the weak dependence coefficients. In Section 4, we discuss
several statistical applications of this result. It turns out that certain purposes such as a law of
iterated logarithm and a precise asymptotics for nonparametric curve estimators do actually
require an exponential inequality with a tight leading term in the exponent.

A second major result is a Rosenthal-type inequality which in particular improves a previous
inequality given in Doukhan and Louhichi [11]. Using again cumulant techniques we derive
such an inequality with an asymptotically dominating term equal to p!/(2p/2(p/2)!)(var(X1 +

· · · + Xn))
p/2. Such an inequality allows us for example to derive a central limit theorem via the

method of moments; see again Section 4.
We present the main results, a Bernstein-type and a Rosenthal-type inequality in the next

section. In Section 3, Doukhan and Louhichi’s [11] concept of weak dependence is recalled and
it is shown that the particular conditions used for our inequalities do actually follow from the
usual conditions of weak dependence in many instances. Section 4 contains typical applications
of our probability inequalities in probability and statistics. A long list of examples of processes
satisfying weak dependence conditions is presented in Section 5. Finally, the proofs of the main
theorems and of some auxiliary results of general interest are given in Section 6.
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2. A Bernstein-type and a Rosenthal-type inequality for sums of weakly dependent random
variables

In this section we will be concerned with probability and moment inequalities for Sn =

X1 + · · · + Xn , where X1, . . . , Xn are zero mean random variables which fulfill appropriate
weak dependence conditions. Throughout the paper, we denote by σ 2

n the variance of Sn .
Our first result is a Bernstein-type inequality which generalizes and improves previous

inequalities of Doukhan and Louhichi [11] and Kallabis and Neumann [19].

Theorem 1. Suppose that X1, . . . , Xn are real-valued random variables with zero mean, defined
on a probability space (Ω ,A,P). Let Ψ : N2

→ N be one of the following functions:

(a) Ψ(u, v) = 2v,
(b) Ψ(u, v) = u + v,
(c) Ψ(u, v) = uv,
(d) Ψ(u, v) = α(u + v)+ (1 − α)uv, for some α ∈ (0, 1).

We assume that there exist constants K ,M, L1, L2 < ∞, µ, ν ≥ 0, and a nonincreasing
sequence of real coefficients (ρ(n))n≥0 such that, for all u-tuples (s1, . . . , su) and all v-tuples
(t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n the following inequalities are fulfilled:

|cov(Xs1 · · · Xsu , X t1 · · · X tv )| ≤ K 2 Mu+v−2((u + v)!)νΨ(u, v)ρ(t1 − su), (1)

where
∞∑

s=0

(s + 1)kρ(s) ≤ L1Lk
2(k!)µ ∀k ≥ 0, (2)

and

E|X t |
k

≤ (k!)νMk
∀k ≥ 0. (3)

Then, for all t ≥ 0,

P(Sn ≥ t) ≤ exp

(
−

t2/2

An + B1/(µ+ν+2)
n t (2µ+2ν+3)/(µ+ν+2)

)
, (4)

where An can be chosen as any number greater than or equal to σ 2
n and

Bn = 2(K ∨ M)L2

((
24+µ+νnK 2L1

An

)
∨ 1

)
.

Remark 2. (i) Inequality (4) resembles the classical Bernstein inequality for independent
random variables. Asymptotically, σ 2

n is usually of order O(n) and An can be chosen equal
to σ 2

n while Bn is usually O(1) and hence negligible. In cases where σ 2
n is very small or

where knowledge of the value of An is required for some statistical procedure, it might,
however, be better to choose An larger than σ 2

n . It follows from (1) and (2) that a rough
bound for σ 2

n is given by

σ 2
n ≤ 21+νnK 2Ψ(1, 1)L1. (5)
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Hence, taking An = 21+νnK 2Ψ(1, 1)L1 we obtain from (4) that

P(Sn ≥ t) ≤ exp
(

−
t2

C1n + C2t (2µ+2ν+3)/(µ+ν+2)

)
, (6)

where C1 = 22+νK 2Ψ(1, 1)L1 and C2 = 2B1/(µ+ν+2)
n with

Bn = 2(K ∨ M)L2

(
23+µ

Ψ(1, 1)
∨ 1

)
.

Inequality (6) is then more of a Hoeffding-type.
(ii) Based on a Rosenthal-type inequality, Doukhan and Louhichi [11] also proved an

exponential inequality for Sn , however, with
√

t instead of t2 in the exponent.
(iii) Dedecker and Prieur [8] proved a Bennett-type inequality for weakly dependent random

variables. This also implies a Bernstein-type inequality, however, with different constants.
In particular, the leading term in the denominator of the exponent differs from σ 2

n . This is a
consequence of their method of proof which consists of replacing weakly dependent blocks
of random variables by independent ones according to some coupling device (an analogous
argument is used in Doukhan [10] for the case of absolute regularity).

(iv) LetM denote a sub-σ -algebra of A and X ∈ Rd be any random variable on the probability
space (Ω ,A,P). We recall from Dedecker and Prieur [9] that

ϕ(M, X) = sup{‖E(g(X)|M)− Eg(X)‖∞,Lip g ≤ 1}.

Set ϕk(r) = maxl≤k
1
l supi+r≤ j1< j2<···< jl ϕ(σ({X j , j ≤ i}), (X j1 , . . . , X jl )). The process

(X t )t∈Z is called ϕ-dependent if ϕ(r) = supk>0 ϕk(r) tends to 0 as r → ∞. For an
integrable function h and a Lipschitz function k this entails, for s1 ≤ · · · ≤ su ≤ t1 ≤

· · · ≤ tv , that

|Cov(h(Xs1 , . . . , Xsu ), k(X t1 , . . . , X tv ))| ≤ vE|h(Xs1 , . . . , Xsu )| Lip kϕ(t1 − su).

Let us consider n ϕ-weakly dependent observations X1, . . . , Xn . We assume here only that
E|X t |

2
≤ 1 and P(|X t | ≤

√
n) = 1 for all 1 ≤ t ≤ n. If ϕ(r) ≤ exp(−arb) for any

a > 0, b ∈ (0, 1), then the assumptions of Theorem 1 hold with µ = 1/b and it is easy to
check that there exists a constant C such that the parameter Bn is smaller than C

√
n. The

notion of ϕ-weak dependence is adapted to expanding dynamical systems; see Dedecker
and Prieur [9] for more details.

(v) A Bernstein-type inequality with σ 2
n as a possible leading term in the denominator of

the exponent has been derived in Kallabis and Neumann [19] under a weak dependence
condition which is tailor-made for causal processes with an exponential decay of the
coefficients of weak dependence. The result above is more general and is also applicable
to interesting classes of processes where Kallabis and Neumann’s [19] inequality does not
apply; see Section 5 for a thorough discussion of examples.

(vi) Condition (1) in conjunction with (2) may be interpreted as a weak dependence condition
in the sense that the covariances on the left-hand side tend to zero as the time gap between
the two blocks of observations increases. Note that the supremum of expression (1) for all
u-tuples (s1, . . . , su) and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv <
∞ such that t1 −su = r is denoted by Cu+v(r) in Doukhan and Louhichi’s [11] initial paper.
Conditions (1) and (2) are typically fulfilled for truncated versions of random variables from
many time series models; see also Proposition 8 below. The constant K in (1) is included
to possibly take advantage of a sparsity of data as it appears, for example, in nonparametric
curve estimation.
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(vii) For unbounded random variables, the coefficients C p(r)may still be bounded by an explicit
function of the index p under a weak dependence assumption; see Lemma 10 below. For
example, assume that E exp(A|X t |

a) ≤ L holds for some constants A, a > 0, L < ∞.
Since the inequality u p

≤ p!eu (p ∈ N, u ≥ 0) implies that

um
= (Aa)−m/a(Aaua)m/a ≤ (Aa)−m/a(m!)1/aeAua

∀m ∈ N

we obtain that E|X t |
m

≤ L(m!)1/a(Aa)−m/a holds for all m ∈ N. Lemma 10 below provides
then appropriate estimates for C p(r). With these bounds we can apply our Theorem 1 to get
an exponential inequality of Bernstein-type; see for example Theorem 4.24 on page 102 in
Saulis and Statulevicius [27] for a similar result in the case of α-mixing random variables.

A first Rosenthal-type inequality for weakly dependent random variables was derived
by Doukhan and Louhichi [11] via direct expansions of the moments of even order.
Unfortunately, the variance of the sum did not explicitly show up in their bound. Instead, a
rough bound for this expression based on upper estimates was used. Using cumulant bounds
in conjunction with Leonov and Shiryaev’s formula we are able to obtain a tighter moment
inequality which resembles the Rosenthal inequality in the independent case (see Rosenthal [25]
and Johnson, Schechtman and Zinn [18] in the independent case, and Theorem 2.12 in Hall and
Heyde [17] in the case of martingales).

Theorem 3. Suppose that X1, . . . , Xn are real-valued random variables with zero mean, defined
on a probability space (Ω ,A,P). Let p be a positive integer. We assume that there exist constants
K ,M < ∞, and a nonincreasing sequence of real coefficients (ρ(n))n≥0 such that, for all u-
tuples (s1, . . . , su) and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n and
u + v ≤ p,

|cov(Xs1 · · · Xsu , X t1 · · · X tv )| ≤ K 2 Mu+v−2Ψ(u, v)ρ(t1 − su). (7)

Furthermore, we assume that

E|X i |
p−2

≤ M p−2.

Then, with Z ∼ N (0, 1),

|ES p
n − σ

p
n EZ p

| ≤ Bp,n
∑

1≤u<p/2

Au,p K 2u(M ∨ K )p−2unu,

where Bp,n = (p!)22p max2≤k≤p{ρ
p/k
k,n }, ρk,n =

∑n−1
s=0 (s + 1)k−2ρ(s) and

Au,p =
1
u!

∑
k1+···+ku=p,ki ≥2 ∀i

p!

k1! · · · ku !
.

Remark 4. (i) For even p, the above result implies that

ES p
n ≤ (p − 1)(p − 3) · · · 1σ p

n + Bp,n
∑

1≤u<p/2

Au,p K 2u(M ∨ K )p−2unu,

which resembles the classical Rosenthal inequality from the independent case. If
supn Bp,n < ∞ and σ 2

n � n, then the first term on the right-hand side is asymptotically
dominating, as n → ∞. This term is equal to the p-th moment of a Gaussian random variable
with mean 0 and variance σ 2

n .
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(ii) Doukhan and Louhichi [11] also obtained a Rosenthal-type inequality, however, essentially
with n ·

∑
∞

k=−∞
|EX0 Xk | instead of var(Sn) in the first term.

Remark 5. The inequality from Theorem 3 is well suited for proving a central limit theorem
via the method of moments. Assume first that the random variables X t are uniformly bounded,
centered and satisfy condition (7) with lims→∞ ρ(s)/s p

= 0, for all p > 0. Then

lim
n→∞

σ 2
n

n
= σ 2

=

∞∑
k=−∞

EX0 Xk

is a convergent series, and thus the method of moments implies the central limit theorem,

1
√

n
Sn

d
−→n→∞ σ Z .

The next section introduces the suitable frame of weak dependence in order to apply those
results.

3. Weak dependence

A large class of examples for the assumptions in Theorem 1 to hold is provided by Doukhan
and Louhichi [11] with weakly dependent processes. Consider a stationary process (X t )t∈Z with
values in Rd . Then any real-valued, Lipschitz and bounded function Yt = f (X t ) will be proved
to satisfy the assumptions in the previous theorems if it is weakly dependent. We first recall this
notion. Consider a process with values in Rd endowed with some norm ‖ · ‖. Let h : (Rd)u → R
be an arbitrary function. We set

Lip h = sup
{

|h(x1, . . . , xu)− h(y1, . . . , yu)|

‖x1 − y1‖ + · · · + ‖xu − yu‖
: (x1, . . . , xu) 6= (y1, . . . , yu)

}
.

Moreover, Λ denotes the set of functions h : Ru
→ R, for some u ∈ N, such that Lip h < ∞,

and Λ(1) = {h ∈ Λ : ‖h‖∞ ≤ 1}. For each u ≥ 1, we identify the sets (Rd)u and Rdu .

Definition 6 (Doukhan and Louhichi [11]). The sequence (X t )t∈Z is called (Λ(1), ψ, ε)-weakly
dependent if there exists a function ψ : R2

+ × N2
→ R+ and a sequence ε = (εr )r∈N decreasing

to zero at infinity such that, for any g1, g2 ∈ Λ(1) with g1 : Rdu
→ R, g2 : Rdv

→ R (u, v ∈ N)
and for any u-tuple (s1, . . . , su) and any v-tuple (t1, . . . , tv) with s1 ≤ · · · ≤ su ≤ su + r ≤ t1 ≤

· · · ≤ tv , the following inequality is fulfilled:

|cov(g1(Xs1 , . . . , Xsu ), g2(X t1 , . . . , X tv ))| ≤ ψ(Lip g1,Lip g2, u, v)εr .

Important examples of processes correspond to the following choices of the function ψ :

(a) If ψ(Lip g1,Lip g2, u, v) = vLip g2, then the sequence is called θ -dependent (see [11,7])
and we shall always denote εr = θr .

(b) If ψ(Lip g1,Lip g2, u, v) = uLip g1 + vLip g2, then the sequence is called η-dependent and
we shall always denote εr = ηr .

(c) If ψ(Lip g1,Lip g2, u, v) = uvLip g1Lip g2, then the sequence is called κ-dependent and we
shall always denote εr = κr .

(d) If ψ(Lip g1,Lip g2, u, v) = uLip g1 + vLip g2 + uvLip g1Lip g2, then the sequence is called
λ-dependent and we shall always denote εr = λr , as in Doukhan and Wintenberger [14]. This
case includes the two previous ones.
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Remark 7. (i) Assume that (X t )t∈Z is an Rd -valued and stationary process which is
(Λ(1), ψ, ε)-weakly dependent. Then, for any Lipschitz-continuous function F : Rd

→ R
with ‖F‖∞ = M < ∞ and Lip F ≤ 1, the process Yt = F(X t ) is real valued, stationary,
and ‖Yt‖∞ ≤ M . Moreover, it is also (Λ(1), ψ, ε)-weakly dependent.

(ii) In the more general case when Lip F possibly exceeds 1 (e.g., if the function F depends
on the sample size in a statistical context), then weak dependence still holds where only
ψ(a, b, u, v) has to be replaced byψY (a, b, u, v) = ψ(aLip F, bLip F, u, v). For the special
cases of η, κ and λ weak dependence conditions, one may re-formulate this as (Yt )t∈Z is
still an η, κ or λ-weakly dependent sequence but now we have to respectively consider the
coefficients

ηY
r = Lip Fηr , κY

r = Lip 2 Fκr , λY
r = max{Lip F,Lip 2 F}λr .

Now we relate the condition in Definition 6 to condition (1) which was also considered
in Doukhan and Louhichi [11]. Suppose that (X t )t∈Z is a stationary sequence of real-valued
random variables with ‖X t‖∞ ≤ M which satisfies the condition in Definition 6. To see
the connection to condition (1), we consider functions g1 and g2 with g1(x1, . . . , xu) =∏u

i=1 f (xi/M) and g2(x1, . . . , xv) =
∏v

i=1 f (xi/M), where f (u) = u ∨ (−1) ∧ 1. (These
functions satisfy Lip gi ≤ 1/M and ‖gi‖∞ ≤ 1.) The covariance in Definition 6 can be
expressed as in inequality (1), up to a factor Mu+v since g1(Xs1 , . . . , Xsu ) = Xs1 · · · Xsu/Mu

and g2(X t1 , . . . , X tv ) = X t1 · · · X tv/Mv .

Proposition 8. Assume that ‖X t‖∞ ≤ M and that the real-valued sequence (X t )t∈Z is
(Λ(1), ψ, ε)-weakly dependent. Then

|cov(Xs1 · · · Xsu , X t1 · · · X tv )| ≤ Mu+vψ(M−1,M−1, u, v)εt1−su . (8)

Moreover, if εr = exp(−ar), for some a > 0, then we may choose in inequality (2) µ = 1 and
L1 = L2 = 1/(1 − e−a).
If εr = exp(−arb), for some a > 0, b ∈ (0, 1), then we may choose µ = 1/b and L1, L2
appropriately as only depending on a and b.

Remark 9. (i) According to Proposition 8, (Λ(1), ψ, ε)-dependence implies condition (1) to be
fulfilled with
(a) Ψ(u, v) = 2v, K 2

= M and ρ(r) = θr/2, under θ -dependence,
(b) Ψ(u, v) = u + v, K 2

= M and ρ(r) = ηr , under η-dependence,
(c) Ψ(u, v) = uv, K = 1 and ρ(r) = κr , under κ-dependence,
(d) Ψ(u, v) = (u + v + uv)/2, K 2

= M ∨ 1 and ρ(r) = 2λr , under λ-dependence.

(ii) If a vector-valued process (X t )t∈Z is an η, κ or λ-weakly dependent sequence and F : Rd
→

R is a Lipschitz function with ‖F‖∞ = M < ∞, then the process Yt = F(X t ) is real-valued
and the relation (1) holds with
(a) Ψ(u, v) = 2v, K 2

= MLip F and ρ(r) = θr/2, under θ -dependence,
(b) Ψ(u, v) = u + v, K 2

= MLip F and ρ(r) = ηr , under η-dependence,
(c) Ψ(u, v) = uv, K = Lip F and ρ(r) = κr , under κ-dependence,
(d) Ψ(u, v) = (u + v + uv)/2, K 2

= (M ∨ 1)(Lip 2 F ∨ Lip F) and ρ(r) = 2λr , under
λ-dependence.
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Inequality (8) together with the specifications of Ψ(u, v) given in Remark 9 allow us to
use the Bernstein-type inequality in Theorem 1 for sums of functions of weakly dependent
sequences. Finally, we intend to determine sharp bounds for the coefficients C p(r) in the case of
not necessarily bounded random variables.

Lemma 10. Assume that the real-valued sequence (X t )t∈Z is η, κ or λ-weakly dependent and
that E|X t |

m
≤ Mm , for some m ∈ N. Then, for all p < m and according to the type of the weak

dependence condition:

C p(r) ≤ 2p+3 p2 M
p−1
m−1

m η
1−

p−1
m−1

r , (9)

≤ 2p+3 p4 M
p−2
m−2

m κ
1−

p−2
m−2

r , (10)

≤ 2p+3 p4 M
p−1
m−1

m λ
1−

p−1
m−1

r . (11)

Remark 11. This lemma is the essential tool to provide a version of Theorem 3 which yields
both a Rosenthal-type moment inequality and a rate of convergence for moments in the central
limit theorem. We also note that this result does not require the assumption that the involved
random variables are a.s. bounded. In fact, also the use of Theorem 1 does not require such a
boundedness; see Remark 2-(vii) above.

4. Applications

In this section we present various applications of the previous results in probability and
statistics. A first subsection addresses the basic case of the bounded LIL, while the others, specific
to statistics, are concerned with empirical processes and nonparametric curve estimation.

4.1. Bounded LIL

Suppose that (X t )t∈Z is a stationary process satisfying the assumptions of Theorem 1 and that
σ 2

= limn→∞ σ 2
n /n > 0. Then

lim sup
n→∞

1

σ
√

2n log log n
|Sn| ≤ 1 a.s. (12)

To prove (12), we select a subsequence (nk)k∈Z as nk = [ak
], for any a > 1. We obtain from

Theorem 1 that, for nk ≤ n < nk+1 and any fixed c,

P
(

|Sn|
√

2nσ 2
> c

√
log log nk

)
≤ 2 exp

(
−c2 log log nk

σ 2n
σ 2

n
(1 + o(1))

)
= 2 exp(−c2 log log nk(1 + o(1)))

= O(k−c2(1+o(1))).

This implies by the maximal inequality given in Theorem 2.2 in Móricz, Serfling and Stout [21]
that

P
(

max
nk≤n<nk+1

|Sn|
√

2nσ 2
> c

√
log log nk

)
≤ C k−c′

, (13)
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where c′ < c2 can be chosen arbitrarily close to c2 and C is an appropriate finite constant;
see the remark following the proof of Theorem 2.2 in Móricz, Serfling and Stout [21]. Since
limk→∞ maxnk≤n<nk+1

log log n
log log nk

= 1 we conclude from (13) by the Borel–Cantelli lemma that

lim sup
n→∞

1

σ
√

2n log log n
|Sn| ≤ c a.s.,

for any c > 1, which in turn implies (12).

4.2. Kernel type density estimation in the supremum norm

Let (X t )t∈Z be a stationary η or λ-weakly dependent Rd -valued process. We denote K :

Rd
→ R a Lipschitz function, compactly supported with∫
Rd

K (x)dx = 1.

Then, if hn → 0,

f̂n(x) =
1

nhd
n

n∑
t=1

K
(

X t − x
hn

)
is an estimator of the marginal density f of X0, provided this function exists. This section is
devoted to derive asymptotic properties of

Dn = sup
x∈Rd

| f̂n(x)− f (x)|.

In the independent case, Giné and Guillou [15, Theorem 2.3] proved the following tight
asymptotic bound for the supremum deviation of f̂n from its expectation:

sup
x∈Rd

| f̂n(x)− E f̂n(x)| = O
(√

log n/(nhd
n)

)
(a.s.). (14)

We note that their conditions on the sequence of bandwidths, hn ↘ 0, nhd
n/| log hn| → ∞,

| log hn|/ log log n → ∞ and hd
n ≤ chd

2n (c > 0), include our less general condition below.
We first analyze the bias. A Hölder class of β-regular probability densities is given by

F∞ (β, L) = { f : f is a density, | f (b)(x + y)− f (b)(x)| ≤ L|y|
β−bβc,

∀x, y, ∀b = (b1, . . . , bd) with b1 + · · · + bd = bβc},

where bβc denotes the greatest integer strictly less than β (β > 0) and f (b) =

∂bβc f/∂b1 x1 · · · ∂bd xd is a partial derivative. Assume that the density f belongs to F∞(β, L)
and that K is a kernel of order bβc, i.e.,

∫
P(x)K (x)dx = P(0) for each polynomial of degree

less than or equal to bβc. Then it follows from Taylor’s formula that, for each x ∈ Rd ,

|E f̂n(x)− f (x)| ≤ L
∫
Rd

‖u‖
β
|K (u)|du ·

hβn
bβc!

.

Furthermore, it is easy to prove that if the joint densities fk of (X0, Xk) are bounded, uniformly
with respect to k > 0, if in addition nhd

n → ∞ and ηr = O(r−a) for some a > 3 or if
λr = O(r−a) for a > 4 are fulfilled, then (see [12])
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var( f̂n(x)) ∼ f (x)
∫

K 2(u)du/(nhd).

This section has a double purpose: we first precise a uniform and almost sure convergence rate
under weak dependence assumptions in the first subsection, while the second subsection provides
precise constants in this asymptotics in the univariate case (d = 1). For this, we describe the
necessary modifications of the arguments in Butucea and Neumann [5], who stated such a result
under an absolute regularity assumption (β-mixing).

4.2.1. Multivariate case, rate of convergence
Using Remark 9 we obtain by Theorem 1 that the result (14) still holds if hn ≥ Cn−c for a

constant C > 0 and for some c = c(d). We set

Xn,t =
1

nhd
n

(
K
(

X t − x
hn

)
− EK

(
X t − x

hn

))
.

Then f̂n(x) − E f̂n(x) = Xn,1 + · · · + Xn,n . We write Xn,t = Fn(X t ), for a function Fn
which satisfies ‖Fn‖∞ ≤ 2‖K‖∞/(nhd

n) and Lip Fn ≤ Lip K/(nhd+1
n ). As mentioned above,

mild conditions on the weak dependence coefficients imply that σ 2
n = var(Xn,1 + · · · + Xn,n)

satisfies nhd
nσ

2
n →n→∞ f (x)

∫
K 2(u)du. Now the Bernstein-type inequality from Theorem 1

writes here,

• in the case of η-dependent sequences with M = ‖Fn‖∞ ∼ 1/(nhd
n), K 2

∼ 1/(n2h2d+1) and
Bn ∼ 1/(nh2d+2

n ). Now, with t = C
√

log n/(nhd
n), Theorem 1 implies | f̂n(x) − E f̂n(x)| =

O(
√

log n/nhd
n), (a.s.) for each x of Rd if hn ≥ n−c, for a c < 1/(3d + 4). Note that an

optimal uniform window width hn ∼ (log n/n)1/(2β+d) yields the tight uniform a.s. rate in
the case of β > d + 2.

• in the case of λ-dependence, with M = ‖Fn‖∞ ∼ 1/(nhd
n), K ∼ 1/(nhd+1

n ) and Bn ∼

1/(nh2d+3
n ). Now, again with t = C

√
log n/(nhd

n), Theorem 1 implies the same as before
if hn ≥ n−c, for a c < 1/(3d + 6). The choice of hn ∼ (log n/n)1/(2β+d) yields the tight
uniform a.s. rate if β > d + 3.

Now we assume that the kernel K is compactly supported, i.e., K (x) = 0 if ‖x‖ ≥ C , for
some C < ∞. Note that the exponential inequality used here allows us to extend the above
convergence rates to hold uniformly with respect to ‖x‖ ≤ n A, for an arbitrary norm on Rd and
any A > 0. To this end, we consider f̂n(x)−E f̂n(x) first on a sequence of increasingly fine grids
Xn for the set {x : ‖x‖ ≤ n A

} with a cardinality of order nγ , for some γ < ∞. It follows from
our Bernstein-type inequality that

P
(

max
x∈Xn

| f̂n(x)− E f̂n(x)| > Cλ
√

log n/(nhd
n)

)
= O(n−λ)

holds for arbitrary λ < ∞ and some finite Cλ. Moreover, it follows from the Lipschitz continuity
of the kernel function K that

| f̂n(x)− f̂n(y)| ≤ Ch−d
n ‖x − y‖,

for some C < ∞. Hence, with Xn sufficiently dense, we can conclude that

P

(
sup

x :‖x‖≤n A
| f̂n(x)− E f̂n(x)| > Cλ

√
log n/(nhd

n)

)
= O(n−λ),
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which implies by the Borel–Cantelli lemma that

sup
x :‖x‖≤n A

| f̂n(x)− E f̂n(x)| = O
(√

log n/(nhd
n)

)
(a.s.).

In order to prove that convergence holds uniformly over Rd , and then deduce (14) for the case
of weak dependence, assume that E‖X0‖

a < ∞ for some a > 0. Then, if A is large enough,
sup‖x‖≥n A f (x)→n→∞ 0 as fast as needed; indeed, the existence of a moment together with an
Hölder assumption entail some Riemannian decay of f . The same occurs a.s. for f̂n . We have that

∞∑
n=1

P
(

max
1≤t≤n

‖X t‖ > n A
− Chn

)
≤

∞∑
n=1

1 ∧
E(‖X1‖

a
+ · · · + ‖Xn‖

a)

(n A − Chn)a
< ∞,

for A sufficiently large. This implies by the Borel–Cantelli Lemma that supx :‖x‖≥n A | f̂n(x)|
→n→∞ 0 a.s. as fast as needed if A is large enough.

Note that for lower order regularities our result does not apply but the Bernstein inequality
from Ragache and Wintenberger [23], following Doukhan and Louhichi [11], is still working and
the a.s. convergence rate is now obtained only with the log n term replaced by log2+2/µ n under
our previous assumptions.

4.2.2. Univariate case, exact asymptotics
In Butucea and Neumann [5], it was shown that asymptotically exact minimax results can

be obtained by appropriately tuned kernel density estimators in the case that the real-valued
observations (d = 1) X1, . . . , Xn are mixing, all joint densities pX0,Xk are uniformly (in k)
bounded, the error is measured in the supremum norm and the density is assumed to belong to
some Hölder class. Armed with the new Bernstein-type inequality, we can easily generalize these
results to the case of weakly dependent observations.

Based on observations X1, . . . , Xn , we consider the previous kernel estimator f̂n , where
hn = C(log n/n)1/(2β+1) for f ∈ F∞ (β, L). Here the expectations are taken relatively to the
parameter L which is the distribution of the process (X t )t∈Z, where the marginal distributions of
L have the density f and the process is associated with a certain decay rate of the dependence
coefficients. The supremum risk of f̂n can be decomposed in a bias and a stochastic term as

E[‖ f̂n − f ‖∞] ≤ ‖E f̂n − f ‖∞ + E[‖ f̂n − E f̂n‖∞].

Now it follows, for all f ∈ F∞(β, L), that

‖E f̂n − f ‖∞ ≤ sup
x

∫
1

hn
K
(

u − x
hn

)
( f (u)− f (x))du

≤ sup
x

∫
K (u)( f (x + hnu)− f (x))du

≤ Lhβn B(β), (15)

where B(β) = supg∈F∞(β,L) |
∫

K (u)(g(u)− g(0))du|.
To analyze the stochastic term, we choose an arbitrary ε > 0 and some appropriate ε′ < ∞.

Then, with σn =
√

A(β, L)/(nhn)‖K‖2
√

2 log(1/hn), A(β, L) = max{g(0) : g ∈ F∞(β, L)},

E[‖ f̂n − E f̂n‖∞] ≤ (1 + ε)σn

+ (1 + ε′)σn P(‖ f̂n − E f̂n‖∞ > (1 + ε)σn)
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+ h−1
n ‖K‖∞ P(‖ f̂n − E f̂n‖∞ > (1 + ε′)σn)

= T1 + T2 + T3, (16)

say. The term T1 can be made arbitrarily close to the desired σn . Since var( f̂n(x)) ≤

A(β, L)/(nhn)‖K‖
2
2(1 + o(1)) we can show, using chaining techniques in conjunction with the

Bernstein-type inequality from Theorem 1, that

P
(
‖ f̂n − E f̂n‖∞ > (1 + ε)σn

)
= o(1) (17)

and

P(‖ f̂n − E f̂n‖∞ > (1 + ε′)σn) = O(n−λ), (18)

for arbitrary λ < ∞, provided ε′ is sufficiently large. Actually, Butucea and Neumann [5] used a
Bernstein-type inequality for mixing random variables in the course of deriving results analogous
to (17) and (18), in particular to derive their equations (5.43), (5.45) and (5.52). It can be seen
that we can apply our Bernstein-type inequality in the same way which finally leads to (17) and
(18); for details see the proof of Theorem 4.2 in Butucea and Neumann [5].

From (15)–(18) we can conclude that

lim sup
n→∞

sup
f ∈F∞(β,L)

{(n/ log n)β/(2β+1)E‖ f̂n − f ‖∞}

≤

(
n

log n

)β/(2β+1)
{√

A(β, L)
nhn

‖K‖2
√

2 log(1/hn)+ Lhβn B(β)

}
. (19)

Choosing now the kernel function K and the constant C in the definition of hn in an optimum
manner we can show that the right-hand side of (19) matches the known asymptotic minimax
bound in the case of independent data (see [20]) which is also the minimax bound under mixing
(see again [5]) and, hence, also the asymptotic risk bound in the more general framework of weak
dependence.

4.3. Further applications

Exponential inequalities are quite useful when a large number of random sums has to
be simultaneously bounded. Further possible applications in statistics include nonparametric
estimation in Barron’s classes (see [19]). A possible adaptation of the generic chaining arguments
in Talagrand [29] appears very attractive but the use of classes of Lipschitz functions makes it
difficult to use our results directly. We think that such applications deserve a detailed study which
is, however, well beyond the scope of this paper.

5. Examples

Following Doukhan and Louhichi [11] and Doukhan and Wintenberger [14] we describe here
some models which satisfy the previous weak dependence conditions.

• Gaussian and associated processes are κ-dependent with

κr = max
t≥r

|cov(X0, X t )|,

if they are stationary. Note that such covariances are nonnegative under association.
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• Bernoulli shifts. Let H : RZ → R be a measurable function. If the sequence (ξt )t∈Z is
independent and identically distributed on the real line, a Bernoulli shift with innovation
process (ξt )t∈Z is defined as

X t = H((ξt−i )i∈Z), t ∈ Z.
This sequence is stationary. The simplest case of an infinitely dependent Bernoulli shift is a
moving average process

X t =

∞∑
i=−∞

aiξt−i . (20)

Bernoulli shifts are η-weakly dependent with ηr ≤ 2δ[r/2], where

δs ≥ max
0≤t≤s

E‖X0 − X̃ (t)0 ‖, X̃ (t)0 = H((ξ (t)i )i∈Z),

with ξ (t)i = ξi if |i | < t and ξ (t)i = 0 if |i | ≥ t .
• Chaotic Volterra models. A Volterra process is a stationary process defined through a

convergent Volterra expansion

X t = v0 +

∞∑
k=1

Vk;t , where Vk;t =

∑
i1<···<ik

ak;i1,...,ik ξt−i1 · · · ξt−ik .

Here v0 is a constant and (ak;i1,...,ik )(i1,...,ik )∈Zk are real numbers for each k ≥ 1. Let p ≥ 1.
Then this expression converges in L p, provided that E|ξ0|

p < ∞ and the weights satisfy∑
∞

k=1
∑

i1<···<ik
|ak;i1,...,ik |

p < ∞. Those processes are η-dependent since δs from above is
now the tail of the previous series. The forthcoming examples contain some particular models
of this type.

• LARCH(∞) models. A vast literature is devoted to the study of conditionally heteroscedastic
models; see Giraitis, Leipus and Surgailis [16]. It was shown in Doukhan, Teyssière and
Winant [13] that a simple equation in terms of a vector-valued process allows a unified
treatment of those models. Let (ξt )t∈Z be an iid sequence of random d × m matrices, (a j ) j∈N
be a sequence of m×d matrices, and a be a vector in Rm . A vector valued LARCH(∞)model
is a solution of the recurrence equation

X t = ξt

(
a +

∞∑
j=1

a j X t− j

)
. (21)

Below we provide sufficient conditions for the following chaotic expansion

X t = ξt

(
a +

∞∑
k=1

∑
j1,..., jk≥1

a j1ξt− j1a j2ξt− j1− j2 · · · a jk ξt− j1−···− jk a

)
. (22)

Such vector-valued LARCH(∞) models include a large variety of models, for example
. Bilinear models, X t = ζt (α +

∑
∞

j=1 α j X t− j ) + β +
∑

∞

j=1 β j X t− j , where the variables
are real-valued and ζt is the innovation. Expansion (22) coincides then with the chaotic
expansion in Giraitis, Leipus and Surgailis [16].

. GARCH (p, q) models,
rt = σtεt

σ 2
t =

p∑
j=1

β jσ
2
t− j + γ0 +

q∑
j=1

γ jr2
t− j
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where βi ≥ 0, γ => 0 and γ j ≥ 0 ( j ≥ 1), and the variables εt are centered at expectation;
see Giraitis, Leipus and Surgailis [16].

. ARCH(∞) processes, given by
{

rt = σt εt
σ2

t = β0 +

∑
∞

j=1 β jσ
2
t− j

.

Now we turn to the general case given by Eq. (21). Assume that λ =
∑

j≥1 ‖a j‖E‖ξ0‖ < 1.
Then a stationary solution of Eq. (21) in L1 is given as (22). With A(x) =

∑
j≥x ‖a j‖, this

solution is θ -weakly dependent with

θr = E‖ξ0‖

(
E‖ξ0‖

r−1∑
k=1

kλk−1 A
(r

k

)
+

λr

1 − λ

)
‖a‖.

There exist some constants K > 0 and b,C > 0 such that

θr ≤

K
(log(r))b∨1

rb , under Riemannian decay, A(x) ≤ Cx−b,

K (q ∨ λ)
√

r , under geometric decay, A(x) ≤ Cqx , q < 1.

• Noncausal LARCH(∞) models (now a j is defined for j 6= 0) allow the same results of
existence (only replace summation for j > 0 by summation for j 6= 0) and dependence is
now of the η type with

ηr = E‖ξ0‖

(
E‖ξ0‖

∑
0≤2k<r

kλk−1 A
( r

2k

)
+

λr/2

1 − λ

)
‖a‖, A(x) =

∑
| j |≥x

‖a j‖.

• Stable Markov processes are even θ -weakly dependent.
We consider a stationary sequence satisfying a recurrence equation

X t = F(X t−1, . . . , X t−d , ξt ),

where the sequence (ξt )t∈Z is iid. In this case, Yt = (X t , . . . , X t−d+1)
′ is a Markov chain

such that Yt = M(Yt−1, ξt ) with

M(x1, . . . , xd , ξ) = (F(x1, . . . , xd , ξ), x1, . . . , xd−1).

Then E‖F(x, ξ) − F(y, ξ)‖ ≤ a‖x − y‖ if a = (
∑d

i=1 ai )
1/d < 1, where ai ≥ 0 are such

that E|M(x, ξ0) − M(y, ξ0)| ≤
∑d

i=1 ai |xi − yi |, and ‖(x1, . . . , xd)
′
‖ = max1≤i≤d ai−1

|xi |

denotes a norm on Rd .
In this setting, it is simple to derive that θ -dependence holds with θr = O(ar ) for:

. Functional AR models, X t = r(X t−1, . . . , X t−d)+ ξt , if E|ξ0| < ∞ and |r(u1, . . . , ud)−

r(v1, . . . , vd)| ≤
∑d

i=1 ai |ui − vi |, for some a1, . . . , ad ≥ 0 with a = (
∑d

i=1 ai )
1/d < 1.

. ARCH-type processes. With d = 1, let M(u, z) = A(u) + B(u)z, for suitable Lipschitz
functions A, B. The corresponding iterative model satisfies the previous relation with

a = Lip (A)+ E|ξ0|Lip (B) < 1.

Examples of such Markov processes are nonlinear AR(1) processes (case B ≡ 1), stochastic
volatility models (case A ≡ 0), or classic ARCH(1) models (case A(u) = αu, B(u) =√
β + γ u2 with α, β, γ ≥ 0, but here we also need Eξ0 = 0 and Eξ2

0 < ∞).
. Branching type models. Set ξt = (ξ

(1)
t , . . . , ξ

(D)
t )′, d = 1, and D ≥ 2. Let now A1, . . . , AD

be Lipschitz functions R → R, and:

M(u, (z(1), . . . , z(D))) =

D∑
j=1

A j (u)z( j), (u, z(1), . . . , z(D)) ∈ RD+1.
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For such kernels, we also require a =
∑D

j=1 Lip (A j )E|ξ
( j)
0 | < 1.

• Compound processes may be λ-dependent. Instead of independence, assume that the sequence
(ξt )t∈Z is stationary and η-dependent with coefficients (ρξ,r )r≥0. Then, for example, linear
processes (20) are then η-weakly dependent with ηr = ηξ,r/2 + δr/2 and δr/2 according to
the definition after Eq. (20). Such hereditary properties of weak dependence are unknown
under mixing. We present here the results from Doukhan and Wintenberger [14] who sharpen
analogous results from Borovkova, Burton and Dehling [4].

We now focus on specific examples of two sided linear sequences

X t =

∑
i∈Z

bi Yt−i

with dependent inputs (Yt )t∈Z. Let us denote by (Yt )t∈Z a weakly dependent innovation
process. The coefficient λ is proved to be very useful to study Bernoulli shifts with such
stationary innovations as in Lemma 12 below. Let H : R(Z) → R be a measurable function
on the space of finitely supported real valued sequences. We define X t = H(Yt−i , i ∈ Z).
Such models are proved to exhibit either λ or η-weak dependence properties. We set here
‖x‖ = supi∈Z |xi |. In order to study weak dependence properties of (X t )t∈Z, we assume that
H : R(Z) → R is such that for each s ∈ Z, if x, y ∈ R(Z) satisfy xi = yi for each index i 6= s,

|H(x)− H(y)| ≤ bs |xs − ys |. (23)

The following lemma proves both the existence and the weak dependence properties of
such models.

Lemma 12 (Doukhan and Wintenberger [14]). Let (Yt )t∈Z be a strictly stationary process
with a finite moment of order m > 2 and let H satisfy the condition (23) for l = 0 and some
nonnegative sequence (bs)s∈Z such that

∑
j b j < ∞. Then,

. the process Xn = H(Yn− j , j ∈ Z) := limI→∞ H
(
Yn− j 1{| j |≤I }, j ∈ Z

)
is a strongly

stationary process with finite moments of order m.
. if the input process (Yt )t∈Z is λ-weakly dependent (the weak dependence coefficients are

denoted λY,r ), then (X t )t∈Z is λ-weakly dependent with

λk ≤ inf
2r≤k

[
2
∑
|i |≥r

bi‖Y0‖1 + (2r + 1)2L2λY,k−2r

]
.

. if the input process (Yt )t∈Z is η-weakly dependent (the weak dependence coefficients are
denoted ηY,r ) then (X t )t∈Z is η-weakly dependent and

ηk ≤ inf
2r≤k

[
2
∑
|i |≥r

bi‖Y0‖1 + (2r + 1)LηY,k−2r

]
.

Beyond linear functions one may think to noncausal ARCH(∞) inputs (with bounded
inputs) and Doukhan and Wintenberger [14] consider more general examples for which H
does not satisfy Eq. (23) as polynomial Volterra models.

6. Proofs

6.1. Proofs of the main theorems

First, note that it is not possible to adapt the classic method of proving the Bernstein inequality
in the independent case since it makes heavy use of the independence; see Bennett [2, pp. 33–45].
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One possible approach to proving an exponential inequality involves replacing blocks of weakly
dependent random variables by independent ones and then applying an available inequality from
the independent case. This was recently done by Dedecker and Prieur [8] who derived a Bennett
inequality which then possibly implies a Bernstein-type inequality, however, with constants in
the exponent different to ours. In particular, the leading term (asymptotically, as n → ∞) in
the denominator of the exponent will then differ from var(Sn) which is possible in our case. We
also note here that an abstract presentation of cumulant techniques involving Umbral Calculus is
presented in Rota and Chen [26].

Our proofs of Theorems 1 and 3 are based on a result of Bentkus and Rudzkis [3] which we
quote here for the reader’s convenience. Let ξ be an arbitrary real-valued random variable with
Eξ = 0 and finite moments of all orders. The k-th cumulant of ξ is defined as

Γk(ξ) =
1
ik

dk

dtk log Eeitξ
∣∣∣∣
t=0
.

If there exist γ ≥ 1, σ 2 > 0 and B ≥ 0 such that

|Γk(ξ)| ≤

(
k!

2

)γ
σ 2 Bk−2 for all k = 2, 3, . . . ,

then, for all t ≥ 0,

P (ξ ≥ t) ≤ exp
(

−
t2/2

σ 2 + B1/γ t (2γ−1)/γ

)
. (24)

Note that the quotation of this result in Lemma 2.4 in the monograph by Saulis and Statulevicius
[27, p. 19] contains a typo; it was correctly stated and proved in the initial paper, by Bentkus and
Rudzkis [3, Lemma 2.1].

Before we proceed with the calculations, we recall some notions needed in the course of the
proof. It follows from the definition of the cumulants that

Γk(Sn) =

∑
1≤t1,...,tk≤n

Γ (X t1 , . . . , X tk ), (25)

where

Γ (X t1 , . . . , X tk ) =
1
ik

∂k

∂ut1 . . . ∂utk
log Eei(u1 X1+···+un Xn)

∣∣∣∣
u1=···=un=0

are mixed cumulants. For any random variable Y with finite expectation, we define Y = Y −EY .
For 1 ≤ t1 ≤ · · · ≤ tk ≤ n, define so-called centred moments as E(X t1 , . . . , X tk ) =

E[X t1 X t2 · · · X tk−1 X tk ] (E(X t1) = EX t1 ). Statulevicius [28, Lemma 3] has shown that, for
1 ≤ t1 ≤ · · · ≤ tk ≤ n, the mixed cumulants can be expressed in terms of centred moments as

Γ (X t1 , . . . , X tk ) =

k∑
ν=1

(−1)ν−1
∑

⋃ν
p=1 Ip=I

Nν(I1, . . . , Iν)
ν∏

p=1

EX Ip , (26)

where
∑⋃ν

p=1 Ip=I denotes the summation over all unordered partitions in disjoint subsets
I1, . . . , Iν of the set I = {1, . . . , k}; see also Eq. (1.63) in Saulis and Statulevicius [27], as a
more easily available reference. Given such a partition, EX Ip stands for E(X t

i(p)1

, . . . , X t
i(p)k p

) if
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Ip = {i (p)1 , . . . , i (p)kp
} with i (p)1 < · · · < i (p)kp

. We arrange the subsets in the partitions such that

i (1)1 < · · · < i (ν)1 . Nν(I1, . . . , Iν) are certain nonnegative integers defined as follows. Let, for
i ∈ I , ni (I1, . . . , Iν) = #{p : i (p)1 < i < i (p)kp

}. Then

N1(I ) = 1

and, for ν ≥ 2,

Nν(I1, . . . , Iν) =

ν∏
p=2

ni (p)1
(I1, . . . , Iν);

see Eqs. (4.36) and (4.37) in Saulis and Statulevicius [27, p. 80]. According to this, it follows
that Nν(I1, . . . , Iν) 6= 0 if and only if {I1, . . . , Iν} is connected, that is, ni (p)1

(I1, . . . , Iν) > 0 for
all p = 2, . . . , ν. Furthermore, we have that

k∑
ν=1

∑
⋃ν

p=1 Ip=I

Nν(I1, . . . , Iν) = (k − 1)!; (27)

see [27, Eq. (4.43)].
As a first step to deriving estimates for the cumulants of Sn = X1 + · · · + Xn , we derive

estimates for the centred moments.

Lemma 13. Suppose that X1, . . . , Xn are zero mean random variables satisfying condition (1)
from Theorem 1, for u + v ≤ k. Furthermore, assume that E|X i |

k−2
≤ ((k − 2)!)νMk−2. Then,

for i ∈ {1, . . . , k − 1},

|E(X t1 , . . . , X tk )| ≤ 2k(k!)νK 2 Mk−2ρ(ti+1 − ti ).

Proof. For the four cases (a)–(d), most parts of this proof are the same. Accordingly, we
distinguish between them only when we apply condition (1), and at the end of this proof when
certain upper estimates are summed up.

For t1 ≤ · · · ≤ tk , k ∈ N, we define the short-hand notation Yk = X tk and, for 1 ≤ j < k,

Y j = X t j X t j+1 · · · X tk−1 X tk .
Elementary calculations show, for 1 ≤ j ≤ i < k, that

Y j = X t j Y j+1 − X t j E[Y j+1]

= · · ·

= X t j · · · X ti Yi+1 −

i∑
l= j

X t j · · · X tl E[Yl+1]

= X t j · · · X ti Y i+1 −

i−1∑
l= j

X t j · · · X tl E[Yl+1]. (28)

Since EX tk = 0, in the special case of i = k − 1 this becomes

Y j = X t j · · · X tk −

k−2∑
l= j

X t j · · · X tl E[Yl+1]. (29)
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Without making use of the weak dependence assumption, we conclude recursively, for 3 ≤ j <
k, that

E|Y j | ≤ 2k− j ((k − j + 1)!)νMk− j+1. (30)

Hence, we obtain again in conjunction with (29) that

C j,i := |cov(X t j · · · X ti , Yi+1)|

≤ |cov(X t j · · · X ti , X ti+1 · · · X tk )|

+

k−2∑
l=i+1

|cov(X t j · · · X ti , X ti+1 · · · X tl E[Yl+1])|

≤ K 2((k − j + 1)!)νMk− j−1Ψ(i − j + 1, k − i)ρ(ti+1 − ti )

+

k−2∑
l=i+1

K 2((l − j + 1)!)νM l− j−1Ψ(i − j + 1, l − i)ρ(ti+1 − ti )

· 2k−l−1((k − l)!)νMk−l

≤ K 2((k − j + 1)!)νMk− j−1

{
Ψ(i − j + 1, k − i)

+

k−2∑
l=i+1

Ψ(i − j + 1, l − i)2k−l−1

}
ρ(ti+1 − ti ). (31)

Before we turn to estimating |E(X t1 , . . . , X tk )|, we estimate the term in curly braces on the
right-hand side of (31) in the four cases (a)–(d).

(a) If Ψ(u, v) = 2v, then{
Ψ(i − j + 1, k − i)+

k−2∑
l=i+1

Ψ(i − j + 1, l − i)2k−l−1

}

= 2(k − i)+ 2
k−2∑

l=i+1

(l − i)2k−l−1

≤ 2k−i−1
∞∑

l ′=1

l ′21−l ′
= 2k−i−1 d

dp

(
1

1 − p

)∣∣∣∣
p=1/2

= 2k−i+1
=: λ

(a)
j,i . (32)

(b) If Ψ(u, v) = u + v, then{
Ψ(i − j + 1, k − i)+

k−2∑
l=i+1

Ψ(i − j + 1, l − i)2k−l−1

}

= (k − j + 1)+

k−2∑
l=i+1

(l − j + 1)2k−l−1

= (k − j + 1)
∞∑

l=1

2−l
+

k−2∑
l=i+1

(l − j + 1)2k−l−1
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≤

∞∑
l ′=k− j+1

l ′2−l ′+(k− j)
+

k− j−1∑
l ′=i− j+2

l ′2−l ′+(k− j)

≤ 2k− j−1
∞∑

l ′=i− j+2

l ′21−l ′

= (i − j + 3)2k−i−1
=: λ

(b)
j,i . (33)

Here the last equation follows from

∞∑
l ′=i− j+2

l ′21−l ′
=

d
dp

 ∞∑
l ′=i− j+2

pl ′

∣∣∣∣∣∣
p=1/2

=
d

dp

(
pi− j+2

1 − p

)∣∣∣∣
p=1/2

= (i − j + 3)2 j−i .

(c) If Ψ(u, v) = uv, then we obtain by (32) that{
Ψ(i − j + 1, k − i)+

k−2∑
l=i+1

Ψ(i − j + 1, l − i)2k−l−1

}

= (i − j + 1)

(
(k − i)+

k−2∑
l=i+1

(l − i)2k−l−1

)
≤ (i − j + 1)2k−i

=: λ
(c)
j,i . (34)

(d) If Ψ(u, v) = α(u + v)+ (1 − α)uv, then we obtain immediately by (33) and (34) that{
Ψ(i − j + 1, k − i)+

k−2∑
l=i+1

Ψ(i − j + 1, l − i)2k−l−1

}
≤ αλ

(b)
j,i + (1 − α)λ

(c)
j,i =: λ

(d)
j,i . (35)

Now we obtain from (28) that

|E[Y j ]| ≤ C j,i +

i−1∑
l= j

|E[X t j · · · X tl ]| · |E[Yl+1]|.

Therefore, we obtain recursively that

|E(X t1 , . . . , X tk )| = |E[Y1]|

≤ C1,i +

i−1∑
l=1

(l!)νM l
|E[Yl+1]|

≤ · · · ≤ C1,i +

∑
1≤l1≤i−1

(l1!)νM l1Cl1+1,i

+

∑
1≤l1<l2≤i−1

(l2!)νM l2Cl2+1,i

+ · · · +

∑
1≤l1<···<li−1≤i−1

((i − 1!))νM i−1Ci,i . (36)
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At this point we have to distinguish again between the four cases (a)–(d). From (36), (31) and
(32)–(35) we obtain the common upper estimate

|E(X t1 , . . . , X tk )| ≤ K 2(k!)νMk−2ρ(ti+1 − ti )

×

λ(δ)1,i +

∑
1≤l1≤i−1

λ
(δ)
l1+1,i +

∑
1≤l1<l2≤i−1

λ
(δ)
l2+1,i

+ · · · +

∑
1≤l1<···<li−1≤i−1

λ
(δ)
li−1+1,i

 , (37)

where δ = a, b, c, d refers to the four different cases. Now it remains to estimate the term in
curly braces on the right-hand side of (37).

(a) If Ψ(u, v) = 2v, then

{. . .} = 2k−i+1
i−1∑
l=0

(
i − 1

l

)
= 2k . (38)

(c) If Ψ(u, v) = uv, then we obtain

{. . .} =

λ(c)1,i +

∑
1≤l1≤i−1

λ
(c)
l1+1,i +

∑
1≤l1<l2≤i−1

λ
(c)
l2+1,i

+ · · · +

∑
1≤l1<···<li−1≤i−1

λ
(c)
li−1+1,i


= 2k−i

i +

∑
1≤l1≤i−1

(i − l1)+

∑
1≤l1<l2≤i−1

(i − l2)

+ · · · +

∑
1≤l1<···<li−1≤i−1

(i − li−1)

 .
Since ∑

1≤l1<···<lm≤i−1

(i − lm) = i
(

i − 1
m

)
−

i−1∑
l=m

l
(

l − 1
m − 1

)
= (m + 1)

(
i

m + 1

)
− m

(
i

m + 1

)
=

(
i

m + 1

)
we get

{. . .} = 2k−i

(
i +

i−1∑
m=1

(
i

m + 1

))
= 2k−i

i∑
m=1

(
i
m

)
< 2k . (39)

(b) If Ψ(u, v) = u + v, then we obtain analogously to (39) that

{. . .} = 2k−i−1

(i + 2)+

∑
1≤l1≤i−1

(i − l1 + 2)
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+

∑
1≤l1<l2≤i−1

(i − l2 + 2)+ · · · +

∑
1≤l1<···<li−1≤i−1

(i − li−1 + 2)


< 2k−i−1

(
i∑

m=1

(
i
m

)
+ 2

i−1∑
m=0

(
i − 1

m

))
< 2k . (40)

(d) If Ψ(u, v) = α(u + v)+ (1 − α)uv, then we easily obtain from λ
(d)
j,i = αλ

(b)
j,i + (1 − α)λ

(c)
j,i ,

(40) and (39) that

{. . .} < 2k . (41)

The assertion of the lemma follows now from (37) and (38)–(41). �

Eqs. (25) and (26) and the result of Lemma 13 can now be used to derive estimates for the
cumulants of Sn .

Lemma 14. Suppose that the assertions of Lemma 13 are fulfilled. Then, for k ≥ 2,

|Γk(Sn)| ≤ n(k!)2+ν2k K 2(K ∨ M)k−2
n−1∑
s=0

(s + 1)k−2ρ(s).

Proof. We deviate from the proof of similar results in Saulis and Statulevicius [27] since we
are not able to follow all of their arguments. In particular, we cannot verify their Eq. (4.55) on
page 94 which is crucial for their approach.

From (25) we obtain that

|Γk(Sn)| ≤ k!

∑
1≤t1≤···≤tk≤n

|Γ (X t1 , . . . , X tk )|. (42)

According to (26) and Lemma 13, we have, for 1 ≤ t1 ≤ · · · ≤ tk ≤ n, that

|Γ (X t1 , . . . , X tk )|

≤

k∑
ν=1

∑
⋃ν

p=1 Ip=I

Nν(I1, . . . , Iν)
ν∏

p=1

|E(X Ip )|

≤

k∑
ν=1

∑
⋃ν

p=1 Ip=I

Nν(I1, . . . , Iν)
ν∏

p=1

2kp (kp!)
νK 2 Mkp−2 min

1< j≤kp
ρ(ti (p)j

− ti (p)j−1
).

Note that we have, for any connected partition,

max
1≤p≤ν

max
1< j≤kp

{ti (p)j
− ti (p)j−1

} ≥ max
1<i≤k

{ti − ti−1}.

Since Nν(I1, . . . , Iν) = 0 if {I1, . . . , Iν} is not connected we therefore obtain, in conjunction
with (27), that

|Γ (X t1 , . . . , X tk )|

≤

k∑
ν=1

∑
⋃ν

p=1 Ip=I

Nν(I1, . . . , Iν)2k(k!)νK 2(K ∨ M)k−2 min
1<i≤k

ρ(ti − ti−1)
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≤ (k − 1)!2k(k!)νK 2(K ∨ M)k−2 min
1<i≤k

ρ(ti − ti−1).

This implies that∑
1≤t1≤···≤tk≤n

|Γ (X t1 , . . . , X tk )|

≤ n(k − 1)!2k(k!)νK 2(K ∨ M)k−2
∞∑

s2,...,sk=0

min
2≤i≤k

ρ(si ). (43)

Since #{(s2, . . . , sk) : 0 ≤ si ≤ s,max{s2, . . . , sk} = s} ≤ (k − 1)(s + 1)k−2 we obtain that
∞∑

s2,...,sk=0

min
2≤i≤k

ρ(si ) ≤ (k − 1)
∞∑

s=0

(s + 1)k−2ρ(s),

this, with (42) and (43), yields the assertion of the lemma. �

Proof of Theorem 1. From Lemma 14 we obtain, for k ≥ 3, that

|Γk(Sn)| ≤ n(k!)2+µ+ν2k K 2L1((K ∨ M)L2)
k−2

≤

(
k!

2

)2+µ+ν

24+µ+νnK 2L1 (2(K ∨ M)L2)
k−2 ,

which implies that

|Γk(Sn)| ≤

(
k!

2

)2+µ+ν

An Bk−2
n

holds for all k ≥ 2. The assertion of the theorem follows now from (24). �

Proof of Theorem 3. Recall that we have Γ1(Sn) = 0 and Γ2(Sn) = σ 2
n . Therefore, Leonov and

Shiryaev’s formula (see [27], formula (1.53) on page 11) is written as

ES p
n =

[p/2]∑
u=1

1
u!

∑
k1+···+ku=p

p!

k1! · · · ku !
Γk1(Sn) · · ·Γku (Sn). (44)

Note that Γ1(Sn) = 0 implies that the inner sums can be reduced to indices such that ki ≥ 2 for
all i . If p is an even number, then the summand with u = p/2 on the right-hand side of (44) is
equal to

p!

2p/2(p/2)!
(Γ2(Sn))

p/2
= EZ pσ

p
n .

According to Lemma 14, we have, for 2 ≤ k ≤ p, that

|Γk(Sn)| ≤ n(k!)22kρk,n K 2L1((M ∨ K )L2)
k−2.

Applying Hölder’s inequality to the Gamma function Γ we see that (k!)p/k
≤ p!. Hence, we

obtain that∑
1≤u<p/2

1
u!

∑
k1+···+ku=p,ki ≥2 ∀i

p!

k1! · · · ku !
Γk1(Sn) · · ·Γku (Sn)

≤ Bp,n
∑

1≤u<p/2

Au,p K 2u(M ∨ K )p−2unu . (45)
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The assertion follows now from (44) and (45). �

6.2. Proofs of some auxiliary results

Proof of Proposition 8. Inequality (8) is obvious.
If ρ(s) = exp(−as), then

∞∑
s=0

(s + 1)ke−as
≤

∞∑
s=0

(s + 1) · · · (s + k)e−as

=
dk

dpk

(
1

1 − p

)∣∣∣∣
p=e−a

= k!
1

(1 − e−a)k+1 .

If ρ(s) = exp(−asb), we have, for k = 0,
∞∑

s=0

exp(−asb) ≤ 1 +

∫
∞

0
exp(−aub)du = 1 +

1
ba1/b Γ

(
1
b

)
and, for k ≥ 1,

∞∑
s=0

(s + 1)k exp(−asb) ≤ 1 + 2ke−a
+

∞∑
s=2

(s + 1)k exp(−asb).

The last term on the right-hand side can be further estimated by∫
∞

1
(u + 2)k exp(−aub)du ≤ 3k

∫
∞

0
uk exp(−aub)du

≤ 3k 1
ba(k+1)/b Γ

(
k + 1

b

)
.

Furthermore, it follows from Stirling’s formula that

Γ
(

k + 1
b

)
≤

√
2π exp

(
1

12( k+1
b − 1)

)(
k + 1

b
− 1

) k+1
b −

1
2

exp
(

−

(
k + 1

b
− 1

))

≤ exp

(
1 −

1

12( k+1
b − 1)

)(
1
b

) k+1
b −

1
2
(
√

2π(k + 1)k+3/2e−(k+1))1/b

≤ Ck((k + 1)!)1/b ≤ C ′k(k!)1/b,

for some appropriate C,C ′ < ∞. Putting these bounds together we obtain the assertion. �

Proof of Lemma 10. Set gT (x) = x ∨T ∧(−T ) and X i = gT (X i )−EgT (X i ), for some T > 0.
Then

|cov(Xs1 · · · Xsu , Xsu+1 · · · Xsp )| ≤

p∑
j=0

|A j |,

where A0 = cov(X s1 · · · X su , X su+1 · · · X sp ), and for 1 ≤ j ≤ u,
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A j = cov(Xs1 · · · Xs j−1(Xs j − X s j )X s j+1 · · · X su , X su+1 · · · X sp ), and if u < j ≤ p,
A j = cov(Xs1 · · · Xsu , Xsu+1 · · · Xs j−1(Xs j − X s j )X s j+1 · · · X sp ). First we bound |A j |, for
1 ≤ j ≤ p. We obtain by Hölder’s inequality, with p−1

m +
1

m′ = 1, that

|A j | ≤ 2
∏
i< j

‖Xsi ‖m‖Xs j − X s j ‖m′

∏
i> j

‖X si ‖m .

From Jensen’s inequality we get ‖X si ‖m ≤ 2‖gT (Xsi )‖m ≤ 2‖Xsi ‖m ≤ 2M1/m
m . Furthermore,

we have E|Xs j − gT (Xs j )|
m′

≤ E[|Xs j |
m′

I (|Xs j | > T )] ≤ T m′
−m Mm and |EgT (Xs j )| =

|E(Xs j − gT (Xs j ))| ≤ ‖Xs j − gT (Xs j )‖m′ . This implies ‖Xs j − X s j ‖m′ ≤ ‖Xs j − gT (Xs j )‖m′ +

|EgT (Xs j )| ≤ 2T 1−m/m′

M1/m′

m . Therefore, we obtain that

|A j | = 2p− j+1 M
p−1
m

m ‖Xsi − X si ‖m′

≤ 2p− j+2 M
p−1
m +

1
m′

m T 1−
m
m′ = 2p− j+2 Mm T p−m,

which implies

p∑
j=1

|A j | ≤ 2p+2 Mm T p−m . (46)

Now we bound |A0|. Coming back to the definition of weak dependence, we write it as
cov(h(Xs1 , . . . Xsu ), k(Xsu+1 , . . . Xsp )) where h(x1, . . . , xu) =

∏u
i=1(gT (xi ) − EgT (Xsi )), and

k(xu+1, . . . , x p) =
∏p

i=u+1(gT (xi ) − EgT (Xsi )). Hence ‖h‖∞ ≤ 2u T u , ‖k‖∞ ≤ 2p−u T p−u ,
Lip h ≤ u2u−1T u−1 and Lip k ≤ (p −u)2p−u−1T p−u−1 and, according to the weak dependence
in use, we get

|cov(X s1 · · · X su , X su+1 · · · X sp )| ≤ (u2(2T )u−1(2T )p−u

+ (p − u)2(2T )p−u−1(2T )u)ηr

≤ p22p−1T p−1ηr ,

|cov(X s1 · · · X su , X su+1 · · · X sp )| ≤ (u(p − u))2(2T )p−2κr

≤
p4

4
2p−2T p−2κr = p42p−4T p−2κr

or

|cov(X s1 · · · X su , X su+1 · · · X sp )| ≤ p2
(

p2

8
∨ 1

)
2p−1T p−2(T ∨ 1)λr .

To conclude, we equilibrate the bounds for the term |A0| with that of the other terms |A j |.

• Under η-dependence, set T = (Mm
ηr
)

1
m−1 . Then we obtain

C p(r) ≤ 2p+3 p2 M
p−1
m−1

m η
1−

p−1
m−1

r .

• Under κ-dependence, set T = (Mm
κr
)

1
m−2 . Then we obtain

C p(r) ≤ 2p+3 p4 M
p−2
m−2

m κ
1−

p−2
m−2

r .
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• Under λ-dependence, set T = (Mm
ηr
)

1
m−1 . Then we obtain

C p(r) ≤ 2p+3 p4 M
p−1
m−1

m λ
1−

p−1
m−1

r . �
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