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Abstract

We study tail probabilities of the suprema of Lévy processes with subexponential or exponential
marginal distributions over compact intervals. Several of the processes for which the asymptotics are studied
here for the first time have recently become important to model financial time series. Hence our results
should be important, for example, in the assessment of financial risk.
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1. Introduction

In the past decade there has been a great interest to use Lévy processes in mathematical
finance, see, e.g., Schoutens [34] for a review. Most of the classes of Lévy processes that
feature here, such as generalized z processes (GZ), CGMY processes and generalized hyperbolic
processes (GH) have univariate marginal distributions with semi-heavy tails.

Recall that a probability distribution is said to have a semi-heavy (upper) tail if it has a
probability density function (PDF) f such that

f (u) ∼ Cuρe−αu as u →∞ for some constants C, α > 0 and ρ ∈ R. (1.1)
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Owing to the exponential in (1.1) Lévy processes with semi-heavy tails could also be called
exponential processes. This is a custom that we will adopt later.

We study the (upper) tail behaviour of suprema over compact intervals of Lévy processes
{ξ(t)}t≥0 with semi-heavy tails and other related behaviours of the tails of their marginal
distributions. More specifically, given a constant h > 0 we prove that

sup
t∈[0,h]

ξ(t) ∈ C ⇔ ξ(h) ∈ C (1.2)

for different classes of distributions (tail behaviours) C together with the implication

ξ(h) ∈ C ⇒ lim
u→∞

1
P{ξ(h) > u}

P

{
sup

0≤t≤h
ξ(t) > u

}
= H exists. (1.3)

The classes of distributions C we are most interested in for (1.2) and (1.3) are the exponential
classes L(α) and S(α)which are well-known from the literature, see Definition 2.5. In particular,
L(α) includes all distributions with semi-heavy tails.

The implication (1.3) is known from Braverman and Samorodnitsky [14] for C = S(α).
We prove (1.2) and (1.3) for C = L(α) under an additional technical condition that always
seems to be met in practice. In particular, as L(α) includes S(α) and distributions in S(α) satisfy
our technical condition, we complete the result of Braverman and Samorodnitsky [14] with the
equivalency (1.2) for C = S(α).

It turns out that semi-heavy-tailed Lévy processes with ρ < −1 belong to S(α) while
processes with ρ ≥ −1 belong to L(α) \ S(α). Many of the above-mentioned specific Lévy
processes have ρ ≥ −1, so that (1.2) and (1.3) are established here for them for the first time. We
also show that H > 1 when ρ < −1 unless ξ is a subordinator (a result which does not follow
from Braverman and Samorodnitsky [14]) and that H = 1 for ρ ≥ −1.

Distributions in the class L ≡ L(0) are called long-tailed. As these distributions have tails
that decay slower than any exponential they can also be called subexponential. The relations (1.2)
and (1.3) are known from Willekens [39] for C = L, see Theorem 4.1. We complete his results
by establishing a partial converse to (1.3) for C = L.

As there is no converse to (1.3) for C = L(α) when α > 0 we consider the larger O-
exponential class O L of Bengtsson [8] and Shimura and Watanabe [37], see Definition 2.5. For
C = O L we prove (1.2) together with the following version of (1.3):

ξ(h) ∈ O L ⇒ lim sup
u→∞

1
P{ξ(h) > u}

P

{
sup

0≤t≤h
ξ(t) > u

}
<∞. (1.4)

In addition, we establish a partial converse to (1.4).
From a practical point of view the implication (1.3) for C = L(α) should be the most

interesting of our results. For example, an asset price process {S(t)}0≤t≤h such as a stock price
is often modelled by an exponential Lévy model S(t) = eξ(t) where ξ is a Lévy process. Then
the risk that S falls below a low level ε is given by

P
{

inf
0≤t≤h

S(t) < ε

}
= P

{
sup

0≤t≤h
−ξ(t) > − ln(ε)

}
∼ H P{−ξ(h) > ln(1/ε)}

as ε ↓ 0 provided that −ξ ∈ C for a class C such that (1.3) holds.
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To establish (1.3) for the class L(α) we develop Tauberian results for infinitely divisible
distributions which should be of substantial interest in their own.

The paper is organized as follows: In Section 2 we review various classes of subexponential
and exponential distributions that feature in the paper.

In Section 3 we develop the mentioned Tauberian results. In particular, they show that
ξ(h) ∈ L(α)\S(α) when ξ has a semi-heavy-tailed Lévy measure such that ρ ≥ −1 in (1.1). We
also express the tail behaviour of ξ(h) in terms of the Lévy characteristic triple of the process.
Note that on a less precise level than our Tauberian results, it is well-known that a Lévy measure
with an exponential tail more or less corresponds to an infinitely divisible distribution with an
exponential tail with the same exponent, see, e.g., Sato [33], Theorem 25.3.

In Section 4 we prove a partial converse to (1.3) for C = L. This converse is crucial for our
proof that H > 1 in (1.3) for C = S(α).

In Section 5 we prove (1.2) for C = O L as well as the implication (1.4) together with a partial
converse to that implication. The equivalency (1.2) for C = O L is crucial for our proof of (1.2)
for C = L(α) in Section 6.

In Section 6 we prove (1.2) and (1.3) for C = L(α). The results from Section 3 are crucial to
verify the hypothesis of these results.

In Section 7 we give applications to the process classes GZ, CGMY and GH.
In the companion article Albin and Sundén [2] we study the tail behaviour of superexponential

Lévy processes with lighter than exponential tails. This rich class of processes includes many
processes for which the limit H in (1.3) does not exist.

2. Subexponential and exponential distributions

In this section we review classes of probability distributions that feature in our work.

2.1. Subexponential distributions

Here we discuss distributions with tails that are heavier than exponential ones.
The following classes of distributions L and S are well-known from the literature:

Definition 2.1. A cumulative distribution function (CDF) F belongs to the class of long-tailed
distributions L if

lim
u→∞

1− F(u + x)

1− F(u)
= 1 for x ∈ R.

A CDF F belongs to the class of subexponential distributions S if

lim
u→∞

1− F ? F(u)

1− F(u)
= 2.

In Definition 2.1 ? means convolution, that is, F ? F(u) =
∫
R F(u − x)dF(x).

It turns out that S ( L (see Embrechts and Goldie [16], Section 3). It is easy to see that F ∈ S
if 1− F is regularly varying at infinity with a non-positive index:

Definition 2.2. A measurable function g > 0 is regularly varying at infinity with index % ∈ R,
g ∈ R(%), if

lim
u→∞

g(ux)

g(u)
= x% for x ∈ (0,∞).
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A measurable function g > 0 is O-regularly varying at infinity, g ∈ O R, if

0 < lim inf
u→∞

g(ux)

g(u)
≤ lim sup

u→∞

g(ux)

g(u)
<∞ for x ∈ (0,∞).

Example 2.3. Given constants (parameters) x0, % > 0, the Pareto distribution F(x) = 1 −
(x/x0)

−% for x ≥ x0 satisfies 1− F ∈ R(−%), so that F ∈ S ⊆ L.

For the class L we will need the following lemma, the proof of which is elementary:

Lemma 2.4. A CDF F belongs to the class L if and only if

lim inf
u→∞

1− F(u + x)

1− F(u)
≥ 1 for some x > 0.

2.2. Exponential distributions

Here we discuss distributions with exponential tails.
The following classes L(α) and S(α) are well-known from the literature. The class O L of

Bengtsson [8] and Shimura and Watanabe [37] is an exponential analogue of O R.

Definition 2.5. Given a constant α ≥ 0, a CDF F belongs to the class L(α) if

lim
u→∞

1− F(u + x)

1− F(u)
= e−αx for x ∈ R. (2.1)

A CDF F belongs to the exponential class S(α) if F ∈ L(α) and

lim
u→∞

1− F ? F(u)

1− F(u)
exists (and is finite). (2.2)

A CDF F belongs to the class of O-exponential distributions O L if

0 < lim inf
u→∞

1− F(u + x)

1− F(u)
≤ lim sup

u→∞

1− F(u + x)

1− F(u)
<∞ for x ∈ R.

Pitman [31], p. 338, argued that the class L should be called subexponential rather than S .
By his logic the class L(α) should be called exponential instead of S(α). In fact, the exponential
distribution itself belongs to L(α) \ S(α) by Example 2.11. This is the reason that we talk about
exponential distributions when dealing with L(α).

Note that L(0) = L, S(0) = S [as the limit (2.2) is 2 for S(0), see Embrechts and Goldie [17],
Section 2], and S(α) ⊆ L(α) ⊆ O L. To illustrate how O L differs from ∪α≥0 L(α) we give the
following simple result which is proved in Appendix A.1:

Proposition 2.6. An absolutely continuous CDF F belongs to L(α) if and only if

F(u) = 1− exp
{
−

∫ u

−∞

(a(x)+ b(x))dx

}
for u ∈ R, (2.3)

for some measurable functions a and b with a + b ≥ 0 such that

lim
x→∞

a(x) = α, lim
u→∞

∫ u

−∞

a(x)dx = ∞ and lim
u→∞

∫ u

−∞

b(x)dx exists. (2.4)
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An absolutely continuous CDF F belongs to O L if and only if (2.3) holds for some
measurable functions a and b with a + b ≥ 0 such that

lim sup
x→∞

|a(x)| <∞, lim inf
u→∞

∫ u

−∞

a(x)dx = ∞ and

lim sup
u→∞

∣∣∣∣∫ u

−∞

b(x)dx

∣∣∣∣ <∞. (2.5)

Example 2.7. Let a(x) = α 1[0,∞)(x) and b(x) = β cos(ex
−1)1[0,∞)(x) in (2.3) where |β| ≤ α

and α > 0 are constants. Then we have F ∈ L(α) since limu→∞
∫ u

0 cos(ex
−1)dx exists. Instead,

if we take b(x) = β cos(x) 1[0,∞)(x), then (2.5) holds but (2.4) does not unless β = 0, so that
F ∈ O L \ L(α) for β 6= 0.

The following elementary result for the class O L corresponds to Lemma 2.4 for L:

Lemma 2.8. A CDF F belongs to the class O L if and only if

lim inf
u→∞

1− F(u + x)

1− F(u)
> 0 for some x > 0.

2.3. Distributions with semi-heavy tails

In mathematical finance log increments of asset prices are often modelled to have semi-heavy
tails, see, e.g., Barndorff-Nielsen [6] and Schoutens [34].

The following simple corollary to Proposition 2.6 is proved in Appendix A.2:

Corollary 2.9. A CDF F is semi-heavy tailed satisfying (1.1) if and only if

F(u) = 1− exp
{
−

∫ u

−∞

c(x)dx

}
for u ∈ R, (2.6)

for some measurable function c ≥ 0 that satisfies

lim
x→∞

c(x) = α and

lim
u→∞

∫ u

−∞

(
c(x)− α 1[0,∞)(x)+

ρ

x
1[1,∞)(x)

)
dx = ln

(
C

α

)
. (2.7)

If any of these equivalent conditions hold so that both of them hold, then F ∈ L(α).
Corollary 2.9 shows which distributions in Example 2.7 are semi-heavy:

Example 2.10. The distributions in Example 2.7 are semi-heavy only if β = 0 as they have
c(x) = α + β cos(ex

− 1) and c(x) = α + β cos(x) for x ≥ 0 in (2.6).

By Corollary 2.9 semi-heavy-tailed CDF’s belong to L(α). However, by the following
example a semi-heavy-tailed CDF belongs to S(α) only if ρ < −1 in (1.1).

Example 2.11. For a semi-heavy-tailed CDF F with ρ < −1, Pakes [29], Corollary 2.1 ii and
Lemma 2.3 (see also [30]), show that the limit (2.2) exists with value 2

∫
R eαx dF(x) < ∞, so

that F ∈ S(α). For a semi-heavy-tailed CDF F with ρ ≥ −1 we have
∫
∞

1 eαx dF(x) = ∞.
Hence Pakes [29], p. 411 (see also [30]), shows that the ratio in (2.2) goes to infinity as u →∞,
so that F ∈ L(α) \ S(α).
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3. Tauberian theorems for L(α) \ S(α)

In this section we first introduce some standard notation for Lévy processes that will be
used repeatedly from here on. Then we state and prove the Tauberian results mentioned in the
Introduction that are of fundamental importance in Sections 6 and 7.

An infinitely divisible CDF F is characterized by a characteristic triple (ν,m, s2) as∫
R

eiθx dF(x) = exp
{

iθm +
∫
R

(
eiθx
− 1− iθ1(−1,1)(x) x

)
dν(x)−

θ2s2

2

}
for θ ∈ R. (3.1)

Here ν is the Lévy (Borel) measure on R that satisfies ν({0}) = 0 and
∫
R(1 ∧ |x |

2)dν(x) < ∞
while m ∈ R and s2

≥ 0 are constants. This triple is unique.
A Lévy process is a continuous in probability and càdlàg stochastic process {ξ(t)}t≥0 with

ξ(0) = 0 that has stationary and independent increments. As the marginal distribution of ξ(t)
is infinitely divisible with characteristic triple (νt,mt, s2t) where (ν,m, s2) is the characteristic
triple of ξ(1), the latter triple is called the characteristic triple of ξ .

The Tauberian results Theorem 3.3, Corollary 3.5 and Theorem 3.6 establish that if ξ is a Lévy
process with Lévy measure ν that satisfies the condition (3.3), possibly together with additional
conditions, then we have the behaviour (3.4) the tails of the Lévy process. The claim (3.4) is a
key condition in Sections 6 and 7.

Our first Tauberian result is derived from Braverman [12], Lemma 5, together with the
following two results from the literature that are stated here for easy reference:

Theorem 3.1 (Embrechts, Goldie and Veraverbeke [18], Sgibnev [36]). Given a constant α ≥ 0
and a Lévy process ξ with Lévy measure ν, we have

ν([1,∞) ∩ ·)
ν([1,∞))

∈ S(α)⇔ ξ(t) ∈ S(α) for some t > 0⇔ ξ(t) ∈ S(α) for t > 0.

Moreover, if any of these conditions holds so that all of them hold, then we have

lim
u→∞

P{ξ(t) > u}

ν((u,∞))
= t E{eαξ(t)} for t > 0.

Theorem 3.2 (Albin [1], Pakes [29,30]). Let α ≥ 0 be a constant and ξ a Lévy process with
characteristic triple (ν,m, s2). Write ξ = ξ1+ξ2 where ξ1 and ξ2 are independent Lévy processes
with characteristic triples (ν(·∩[1,∞)), 0, 0) and (ν(·∩(−∞, 1)),m, s2), respectively. We have

ν([1,∞) ∩ ·)
ν([1,∞))

∈ L(α)⇒ ξ1(t) ∈ L(α) for t > 0⇒ ξ(t) ∈ L(α) for t > 0.

Moreover, if ξ1(t) ∈ L(α) for t > 0, then we have

P{ξ(t) > u} ∼ P{ξ1(t) > u}
∫
R

eαx dFξ2(t)(x) as u →∞ for t > 0. (3.2)

Here is our first Tauberian result. This result is due to Braverman [13], Theorem 1, but our
proof is very much shorter. See also Section 8 on priority:
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Theorem 3.3 (Braverman [13]). Let ξ be a Lévy process that satisfies

F(·) ≡
ν([1 ∨ ·,∞))
ν([1,∞))

∈ L(α) for some α > 0 and lim
u→∞

1− F(u)

1− F ? F(u)
= 0. (3.3)

Then it holds that

ξ(t) ∈ L(α) \ S(α) for t > 0 and lim
u→∞

P{ξ(s) > u}

P{ξ(t) > u}
= 0 for 0 < s < t. (3.4)

Proof. Let ξ have triple (ν,m, s2) and write ξ = ξ1 + ξ2 where ξ1 and ξ2 are independent
Lévy processes with triples (ν(·∩ [1,∞)), 0, 0) and (ν(·∩ (−∞, 1)),m, s2), respectively. From
Theorem 3.2 we have ξ1(t), ξ(t) ∈ L(α). As ξ1 is a compound Poisson process with jump
CDF F , and as the second requirement of (3.3) means that F is light-tailed in the sense of
Braverman [12], Definition 1, it follows from Braverman [12], Lemma 5, that ξ1 satisfies the
second requirement of (3.4). As tail probabilities for ξ1 are proportional to those of ξ by (3.2) we
see that the second requirement of (3.4) holds also for ξ . Hence ξ(t) 6∈ S(α) by Theorem 3.1,
which finishes the proof of all claims of the theorem. �

In Corollary 3.5 and Theorem 3.6 below we specialize Theorem 3.3 to semi-heavy-tailed Lévy
measures with ρ > −1 and ρ = −1, respectively (see Example 2.11). We also express the tail
probability P{ξ(t) > u} as u → ∞ in terms of the characteristic triple, which makes possibly
more explicit results in our applications in Section 7.

For the statement of Corollary 3.5 and Theorem 3.6, consider the moment generating function
(MGF) of a Lévy process ξ given by

φ(t, λ) = E{e−λξ(t)} =
(

E{e−λξ(1)}
)t
= φ(1, λ)t ≡ φ(λ)t for t > 0 and λ ∈ R. (3.5)

Writing (ν,m, s2) for the characteristic triple of ξ , Sato [33], Theorem 25.17, shows that

φ(t, λ) <∞ for some t > 0⇔ φ(t, λ) <∞ for t > 0

⇔

∫
R\(−1,1)

e−λx dν(x) <∞. (3.6)

We will need the following functions µ and V given by [cf. (3.1)]
µ(λ) = −

φ′(λ)

φ(λ)
=

∫
R

(
x e−λx

− x 1(−1,1)(x)
)

dν(x)+ m − λs2

V (λ) = −µ′(λ) =
∫
R

x2e−λx dν(x)+ s2
(3.7)

for λ ∈ R such that the definition makes sense. We will also need the inverse function µ←(u)
of µ which will be well-defined in all cases we encounter for u ∈ R sufficiently large as we will
have limλ↓−α µ(λ) = ∞ with µ′(λ) = −V (λ) < 0 (see below).

We will need the following well-known Tauberian result for compound Poisson processes
with semi-heavy Lévy measures. Our version of the result is stated slightly differently than in the
literature to better suit our purposes, but it is easy to see that it is equivalent to the results in the
literature.
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Theorem 3.4 (Embrechts, Jensen, Maejima and Teugels [19], Homble and McCormick [23,
24], Jensen [25]). For a compound Poisson process ξ with Lévy measure ν that is absolutely
continuous sufficiently far out to the right with

dν(u)
du
∼ C uρe−αu as u →∞ for some constants C, α > 0 and ρ > −1, (3.8)

we have, with the notation (3.5) and (3.7),

P{ξ(t) > u} ∼
euµ←(u/t)φ(µ←(u/t))t

α
√

2π t V (µ←(u/t))
as u →∞ for t > 0.

The following corollary to Theorems 3.3 and 3.4 addresses processes which have semi-heavy-
tailed Lévy measures with ρ > −1:

Corollary 3.5. Let ξ be a Lévy process with characteristic triple (ν,m, s2) such that ν is
absolutely continuous sufficiently far out to the right and satisfies (3.8). Write ξ = ξ1 + ξ2
where ξ1 and ξ2 are independent Lévy processes with triplets (ν(· ∩ [1,∞)), 0, 0) and (ν(· ∩
(−∞, 1)),m, s2), respectively, and let φ1, µ1, µ←1 and V1 denote the quantities φ, µ, µ← and
V in (3.5) and (3.7) calculated for the process ξ1 instead of ξ . Eq. (3.4) holds and

P{ξ(t) > u} ∼ E{eαξ2(t)}
euµ←1 (u/t)φ1(µ

←

1 (u/t))t

α
√

2π t V1(µ
←

1 (u/t))
as u →∞ for t > 0. (3.9)

Proof. As (3.3) holds by (3.8) and Example 2.11 we get (3.4) from Theorem 3.3. As ξ1 is a
compound Poisson process that satisfies (3.8) Theorem 3.4 shows that

P{ξ1(t) > u} ∼
euµ←1 (u/t)φ1(µ

←

1 (u/t))t

α
√

2π t V1(µ
←

1 (u/t))
as u →∞ for t > 0.

Hence (3.9) follows from (3.2) [as ξ1(t) ∈ L(α) by the proof of Theorem 3.3]. �

By further calculations one can phrase (3.9) in terms of φ, µ, µ← and V instead of φ1, µ1,
µ←1 and V1 in special cases: See the proof of (7.8) below for an example on this!

In Theorem 3.6 we address processes which have semi-heavy-tailed Lévy measures with
ρ = −1. Now the Tauberian arguments have to be developed in detail from scratch as there
are no suitable results in the literature to take off from. However, the idea of the proof to use
Esscher transforms to find tail probabilities is well-known and is also used in the companion
paper Albin and Sundén [2], where we give a bibliography.

Theorem 3.6. If ξ is a Lévy process with Lévy measure ν that is absolutely continuous
sufficiently far out to the right and satisfies (3.8) with ρ = −1, then (3.4) holds. If in addition
Ct > 1 and

lim inf
x↓0

x

ln(1/x)

dν(x)
dx
= ∞, (3.10)

then we have

P{ξ(t) > u} ∼

√
C(Ct)Ct e−Ct

α Γ (Ct + 1)
euµ←(u/t)φ(µ←(u/t))t

σ(µ←(u/t))
as u →∞. (3.11)
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Proof. We get (3.4) from Theorem 3.3 as (3.3) holds by Example 2.11.
To prove (3.11) consider the Esscher transform of ξ(t), which with the notation (3.5) and (3.7)

is a random variable Z t,λ with CDF defined by the change of measure

dFZt,λ(x) =
e−λx dFξ(t)(x)

φ(λ)t
for t > 0 and λ ∈ R such that φ(λ) <∞. (3.12)

By elementary calculations we have E{Z t,λ} = tµ(λ) and Var{Z t,λ} = tV (λ) ≡ t σ(λ)2.
Further, (3.1) and (3.7) show that (Z t,λ − tµ(λ))/σ (λ) has CHF gt,λ given by

gt,λ(θ) =
φ(λ− iθ/σ(λ))t

φ(λ)t
e−itµ(λ)θ/σ(λ)

= exp
{

t
∫
R

(
cos

(
θx

σ(λ)

)
− 1

)
e−λx dν(x)

+ it
∫
R

(
sin
(
θx

σ(λ)

)
−

θx

σ(λ)

)
e−λx dν(x)−

θ2s2t

2V (λ)

}
. (3.13)

By (3.7), (3.8) and elementary calculations we have

µ(λ) ∼
C

α + λ
and V (λ) ∼

C

(α + λ)2
as λ ↓ −α. (3.14)

Let ΓCt denote a gamma distributed random variable with PDF fΓCt (x) = xCt−1e−x/Γ (Ct) for
x > 0. By (3.8), (3.14) and the change of variable x = σ(λ) y in (3.13) we have

gt,λ(θ) → exp
{

Ct
∫
∞

0

cos(θy)− 1
y

e−
√

C ydy + iCt
∫
∞

0

sin(θy)− θy

y
e−
√

C ydy

}
= exp

{
−

Ct ln(1+ θ2/C)

2
+ iCt

(
arctan

(
θ
√

C

)
−

θ
√

C

)}
=

1

(1− iθ/
√

C)Ct
e−i
√

C tθ

= E
{

exp
[
iθ(ΓCt − Ct)/

√
C
]}
≡ gt (θ) as λ ↓ −α, (3.15)

cf. Erdélyi, Magnus, Oberhettinger and Tricomi [21], Equations 4.2.1, 4.7.59 and 4.7.82.
A key step in the proof is to prove that

lim sup
λ↓−α

∫
|θ |>K

∣∣gt,λ(θ)
∣∣ dθ → 0 as K →∞, (3.16)

as this shows that gt,λ is integrable for λ > −α small enough (since gt,λ is bounded by 1), so
that (Z t,λ − tµ(λ))/σ (λ) has a continuous PDF f(Zt,λ−tµ(λ))/σ (λ), which by (3.15) and (3.16)
satisfies (using bounded convergence)

lim sup
λ↓−α

sup
x∈R

∣∣∣ f(Zt,λ−tµ(λ))/σ (λ)(x)− f(ΓCt−Ct)/
√

C (x)
∣∣∣

≤ lim sup
K→∞

lim sup
λ↓−α

(∫
|θ |≤K

∣∣gt,λ(θ)− gt (θ)
∣∣ dθ +

∫
|θ |>K

(
|gt,λ(θ)| + |gt (θ)|

)
dθ
)

= 0. (3.17)
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From (3.12) and (3.17) together with (3.14), we get

fξ(t)(tµ(λ)− x/λ) =
etλµ(λ)−xφ(λ)t

σ(λ)
f(Zt,λ−tµ(λ))/σ (λ)

(
−

x

λ σ(λ)

)
∼

etλµ(λ)−xφ(λ)t

σ(λ)
f(ΓCt−Ct)/

√
C (0)

=

√
C(Ct)Ct e−Ct

Γ (Ct + 1)
etλµ(λ)−xφ(λ)t

σ(λ)
as λ ↓ −α. (3.18)

Note that supx∈R f(Zt,λ−tµ(λ))/σ (λ)(x) is bounded for λ > −α small enough by (3.17) [as
Ct > 1], so that we may integrate (3.18) using bounded convergence to obtain

P{ξ(t) > tµ(λ)} =
∫
∞

0

fξ(t)(tµ(λ)− x/λ)

−λ
dx

∼

∫
∞

0

√
C(Ct)Ct e−Ct

(−λ)Γ (Ct + 1)
etλµ(λ)−xφ(λ)t

σ(λ)
dx

∼

√
C(Ct)Ct e−Ct

α Γ (Ct + 1)
etλµ(λ)φ(λ)t

σ(λ)
as λ ↓ −α.

From this in turn we get (3.11) by a change of variable in the limit.
In order to finish the proof of the theorem it remains to prove (3.16). To that end pick constants

ε ∈ (0, 1) and A ≥ 1 such that (1−ε)5Ct ≥ 1 and ε tdν(x)/dx ≥ 16 ln(1/x)/x for x ∈ (0, 1/A),
cf. (3.10). As 1− cos(x) ≥ 1

4 x2 for |x | ≤ 1 we have [as e−λx
≥ 1 for x ≥ 0]

ε t
∫
R

(
1− cos

(
θx

σ(λ)

))
e−λx dν(x) ≥ ε t

∫ σ(λ)/|θ |

0

x2θ2

4 V (λ)
dν(x)

≥

∫ σ(λ)/|θ |

0

4 θ2

V (λ)
x ln(1/x)dx

= 1+ ln
(
θ2

V (λ)

)
for |θ | ≥ Aσ(λ)

and λ > −α small enough. As (3.8) shows that dν(x)/dx ≥ (1 − ε)C e−αx/x for x ≥ B, for
some constant B > 0 large enough to make B + 2π/A ≤ B/(1− ε), we further have

(1− ε) t
∫
R

(
1− cos

(
θx

σ(λ)

))
e−λx dν(x)

≥ (1− ε)2Ct
∞∑

k=0

∫ B/σ(λ)+2π(k+1)/|θ |

B/σ(λ)+2πk/|θ |
(1− cos(θx))

e−(α+λ)σ(λ)x

x
dx

≥ (1− ε)2Ct
∞∑

k=0

2π
|θ |

e−(α+λ)σ(λ)(B/σ(λ)+2π(k+1)/|θ |)

B/σ(λ)+ 2π(k + 1)/|θ |

≥ (1− ε)2Ct
∫
∞

B/σ(λ)

e−(α+λ)σ(λ)(x+2π/(Aσ(λ)))

x + 2π/(Aσ(λ))
dx

≥ (1− ε)2Ct e−2π(α+λ)/A B

B + 2π/A

∫
∞

B/σ(λ)

e−(α+λ)σ(λ)x

x
dx
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≥ (1− ε)4Ct
∫
∞

B(α+λ)

e−x

x
dx

≥ (1− ε)5Ct ln
(

1
B(α + λ)

)
for |θ | ≥ Aσ(λ)

and λ > −α small enough, where the last inequality is an elementary calculation.
By the estimates of the previous paragraph together with (3.13) and (3.14) we obtain∫

|θ |≥Aσ(λ)
|gt,λ(θ)|dθ =

∫
|θ |≥Aσ(λ)

exp
{
−t
∫
R

(
1− cos

(
θx

σ(λ)

))
e−λx dν(x)

}
dθ

≤

∫
|θ |≥Aσ(λ)

e(1−ε)
5Ctγ (B(α + λ))(1−ε)

5Ct V (λ)

θ2 dθ

= e(1−ε)
5Ctγ 2(B(α + λ))(1−ε)

5Ctσ(λ)

A
→ 0 as λ ↓ −α. (3.19)

Moreover, we have, using Erdélyi, Magnus, Oberhettinger and Tricomi [21], Eq. 4.7.59, together
with the inequality 1− cos(x) ≤ x2/2 and (3.14),

t
∫
R

(
1− cos

(
θx

σ(λ)

))
e−λx dν(x)

≥ (1− ε)Ct
∫
∞

B

(
1− cos

(
θx

σ(λ)

))
e−(α+λ)x

x
dx

≥ (1− ε)Ct
∫
∞

0

(
1− cos

(
θx

σ(λ)

))
e−(α+λ)x

x
dx − Ct

∫ B

0

(
1− cos

(
θx

σ(λ)

))
1
x

dx

≥
(1− ε)Ct

2
ln
(

1+
θ2

(α + λ)2V (λ)

)
− Ct

∫ B

0

θ2x

2 V (λ)
dx

≥
(1− ε)Ct

2
ln
(
θ2

2C

)
− Ct

A2 B2

4
for |θ | ≤ Aσ(λ) and λ > −α small enough.

Hence we have (for λ > −α small enough)∫
K≤|θ |≤Aσ(λ)

|gt,λ(θ)|dθ ≤ 2
∫
∞

K
exp

{
Ct

A2 B2

4
−
(1− ε)Ct

2
ln
(
θ2

2C

)}
dθ

= 2 exp
{

Ct
A2 B2

4

}
(2C)(1−ε)Ct/2

(1− ε)Ct − 1
K 1−(1−ε)Ct ,

which goes to 0 as K →∞ since (1− ε)Ct > 1. Recalling (3.19) this gives (3.16). �

4. Subexponential Lévy processes

The following result we will later extend from long-tailed processes to exponential ones.

Theorem 4.1 (Berman [9], Marcus [28], Willekens [39]). For a Lévy process ξ we have

ξ(h) ∈ L ⇔ sup
t∈[0,h]

ξ(t) ∈ L.
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Moreover, if any of these memberships holds so that both of them hold, then

lim
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}
= 1. (4.1)

The following simple converse to Theorem 4.1 is new and will be used in Section 6 to prove
that H > 1 in (1.3) for C = S(α).

Theorem 4.2. For a Lévy process ξ that satisfies (4.1), but is not a subordinator, one of the
following two conditions holds:

1. ξ(h) ∈ L;
2.

lim inf
u→∞

P{ξ(t) > u}

P{ξ(h) > u}
= 0 for all t ∈ (0, h).

Proof. Let (4.1) hold and assume that the liminf in Condition 2 takes a value `(t) > 0 for some
t ∈ (0, h). To show that Condition 1 holds note that

0 = lim
u→∞

1
P{ξ(h) > u}

(
P

{
sup

s∈[0,h]
ξ(s) > u

}
− P{ξ(h) > u}

)

≥ lim sup
u→∞

P{ξ(h) ≤ u, ξ(t) > u}

P{ξ(h) > u}

≥ P{ξ(h − t) ≤ −ε} lim sup
u→∞

P{u < ξ(t) ≤ u + ε}

P{ξ(h) > u}

= `(t)P{ξ(h − t) ≤ −ε} lim sup
u→∞

P{u < ξ(t) ≤ u + ε}

P{ξ(t) > u}
for ε > 0. (4.2)

As ξ is not a subordinator we have P{ξ(h− t) ≤ −ε} > 0 for ε small enough, see, e.g., Sato [33],
Theorem 24.7. Therefore (4.2) shows that

lim inf
u→∞

P{ξ(t) > u + ε}

P{ξ(t) > u}
= 1.

Hence ξ(t) ∈ L by Lemma 2.4, so that ξ(h) ∈ L by the existence of the limit `(t). �

While subordination of ξ implies (4.1), as does Condition 1 of Theorem 4.2 by Theorem 4.1,
Condition 2 does not imply (4.1) as is exemplified by Brownian motion.

5. O-exponential Lévy processes

In this section we extend Theorems 4.1 and 4.2 from the class L to O L. The extension of
Theorem 4.1 will be used in Section 6 in the proof of (1.2) and (1.3) for C = L(α).

Theorem 5.1. For a Lévy process ξ we have

ξ(h) ∈ O L ⇔ sup
t∈[0,h]

ξ(t) ∈ O L.
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Moreover, if any of these memberships holds so that both of them hold, then

lim sup
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}
<∞. (5.1)

Proof. The fact that ξ(h) ∈ O L implies supt∈[0,h] ξ(t) ∈ O L and (5.1) follows as

P{ξ(h) > x} ≤ P

{
sup

t∈[0,h]
ξ(t) > x

}
≤

P{ξ(h) > x − 1}
P{ inf

t∈[0,h]
ξ(t) > −1}

≤
C P{ξ(h) > x}

P{ inf
t∈[0,h]

ξ(t) > −1}

for x large enough for some constant C > 0, where the middle inequality follows from Sato [33],
Remark 45.9. Conversely, if supt∈[0,h] ξ(t) ∈ O L, then by the same inequality

lim inf
u→∞

P{ξ(h) > u + x}

P{ξ(h) > u}

≥ lim inf
u→∞

P
{

inf
t∈[0,h]

ξ(t) > −1
}

P

{
sup

t∈[0,h]
ξ(t) > u + x + 1

}
/P

{
sup

t∈[0,h]
ξ(t) > u

}
> 0

for x > 0, so that ξ(h) ∈ O L by Lemma 2.8. �

Theorem 5.2. For a Lévy process ξ such that −ξ is not a subordinator and (5.1) holds one of
the following two conditions holds:

1. ξ(h) ∈ O L;
2.

lim inf
u→∞

P{ξ(t) > u}

P{ξ(h) > u}
= 0 for t ∈ (0, h).

Proof. If (5.1) holds and the liminf in Condition 2 equals `(t) > 0 for a t ∈ (0, h), then

∞ > lim sup
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}

≥ P{ξ(h − t) ≥ ε} lim sup
u→∞

P{ξ(t) > u − ε}

P{ξ(h) > u}

≥ `(t)P{ξ(h − t) ≥ ε} lim sup
u→∞

P{ξ(h) > u − ε}

P{ξ(h) > u}
for ε > 0.

As −ξ is not a subordinator we get P{ξ(h − t) ≥ ε} > 0 for ε > 0 small enough as in the proof
of Theorem 4.2. Hence we see that ξ(h) ∈ O L using Lemma 2.8. �

6. Exponential Lévy processes

For Lévy processes in S(α) Braverman and Samorodnitsky [14], Theorem 3.1, proved that

lim
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}
= H exists with value H ∈ [1,∞). (6.1)

Although Braverman [11], Theorem 2.1, expresses H in terms of the characteristic triple, he also
notes that the expression typically cannot be evaluated except for subordinators.
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The next theorem extends Theorem 4.1 from L to L(α) as well as (6.1) from S(α) to L(α)
assuming (6.2) given below. It seems that specific processes in L(α) always satisfy (6.2) (see
Sections 3 and 7), making our result very useful in practice, while we are unsure of the real
theoretical significance of (6.2). Our proof is quite short and transparent while in the literature
already proofs of (6.1) for S(α) are long and difficult.

Theorem 6.1. For a constant α ≥ 0 and a Lévy process ξ such that

L(t) = lim
u→∞

P{ξ(t) > u}

P{ξ(h) > u}
exists for t ∈ (0, h) (6.2)

we have

ξ(h) ∈ L(α)⇔ sup
t∈[0,h]

ξ(t) ∈ L(α) for α ≥ 0.

Moreover, if any of these memberships holds so that both of them hold, then (6.1) holds. In that
case we have H = 1 if L(t) = 0 for t ∈ (0, h).

Proof. Assume that ξ(h) ∈ L(α). Note that for each t ∈ (0, h) with L(t) > 0 we have
ξ(t) ∈ L(α) by (6.2). This in turn by inspection of (2.1) means that

lim
u→∞

P{ξ(t)− u > x | ξ(t) > u} = e−αx for x ≥ 0. (6.3)

Letting η be an exp(α) distributed random variable that is independent of ξ (6.3) gives

lim inf
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}

≥ lim sup
a↓0

lim inf
u→∞

1
P{ξ(h) > u}

P
{

max
k=0,...,bh/ac

ξ(h − ka) > u

}

= lim sup
a↓0

lim inf
u→∞

bh/ac∑
k=0

P{ξ(h − ka) > u}

P{ξ(h) > u}
P

{
k−1⋂
`=0

{ξ(h − `a) ≤ u}

∣∣∣∣∣ ξ(h − ka) > u

}

= lim sup
a↓0

bh/ac∑
k=0

L(h − ka)P

{
k−1⋂
`=0

{ξ((k − `)a)+ η ≤ 0}

}
(6.4)

(where
⋂
−1
`=0 is the empty intersection, that is, the whole sample space). For a matching upper

bound, note that the strong Markov property gives

P

{
sup

t∈[0,h]
ξ(t) > u + x

}

≤ P
{

max
k=0,...,bh/ac

ξ(h − ka) > u

}
+ P

{
sup

t∈[0,h]
ξ(t) > u + x

}
P
{

inf
t∈[0,a]

ξ(t) < −x

}
for x > 0.

From this together with (6.4) and the fact that ξ(h) ∈ L(α) we get

lim sup
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}
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= lim sup
x↓0

lim sup
u→∞

1
P{ξ(h) > u + x}

P

{
sup

t∈[0,h]
ξ(t) > u + x

}

≤ lim sup
x↓0

lim inf
a↓0

lim sup
u→∞

eαx

P{ξ(h) > u}

×P
{

max
k=0,...,bh/ac

ξ(h − ka) > u

}/
P
{

inf
t∈[0,a]

ξ(t) ≥ −x

}

≤ lim inf
a↓0

bh/ac∑
k=0

L(h − ka)P

{
k−1⋂
`=0

{ξ((k − `)a)+ η ≤ 0}

}
. (6.5)

From (6.4) together with (6.5) we conclude that (6.1) holds with

H = lim
a↓0

bh/ac∑
k=0

L(h − ka)P

{
k−1⋂
`=0

{ξ((k − `)a)+ η ≤ 0}

}
. (6.6)

Here H ≥ 1 by (6.1) with H = 1 if L(t) = 0 for t ∈ (0, h) by (6.6), while H < ∞ by
Theorem 5.1.

Conversely, assume that supt∈[0,h] ξ(t) ∈ L(α). To finish the proof we have to show that
ξ(h) ∈ L(α). Assume that α > 0 as we are done otherwise by Theorem 4.1. Observe that it is
enough to show that given any x ≥ 0 we have

lim
n→∞

P{ξ(h) > un + x}

P{ξ(h) > un}
= e−αx (6.7)

for any sequence un → ∞ as n → ∞ such that the limit (6.7) really exists. This is so because
the ratio in (6.7) is bounded so that every subsequence of that ratio has a further subsequence
that converges to the limit e−αx . It follows that (2.1) holds for x ≥ 0, which in turn gives (2.1) in
general by an elementary argument.

Consider the distributions supported on [0,∞) with CDF given by

Fn(x) = P{ξ(h) ≤ un + x | ξ(h) > un} = 1−
P{ξ(h) > un + x}

P{ξ(h) > un}
for x ≥ 0.

For suitable constants N ∈ N and C, ε > 0, Theorem 5.1 gives [use (5.1) in the first step]

lim sup
x→∞

sup
n≥N

(1− Fn(x))

≤ lim sup
x→∞

C sup
n≥N

P

{
sup

t∈[0,h]
ξ(t) > un + x

}/
P

{
sup

t∈[0,h]
ξ(t) > un

}

≤ lim sup
x→∞

C sup
n≥N

bxc∏
k=1

P

{
sup

t∈[0,h]
ξ(t) > un + k

}

P

{
sup

t∈[0,h]
ξ(t) > un + k − 1

}

≤ lim sup
x→∞

C sup
n≥N

bxc∏
k=1

(1+ ε) e−α = 0.
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Hence the sequence {Fn}
∞

n=1 is tight in the sense of weak convergence. Therefore Prohorov’s

theorem shows that there exists a weakly convergent subsequence Fnk

d
→ F .

Letting η be a random variable with CDF F that is independent of ξ (6.4) gives

lim inf
k→∞

1
P{ξ(h) > unk }

P

{
sup

t∈[0,h]
ξ(t) > unk

}

≥ lim sup
a↓0

bh/ac∑
k=0

L(h − ka)P

{
k−1⋂
`=0

{ξ((k − `)a)+ η ≤ 0}

}
.

Using that supt∈[0,h] ξ(t) ∈ L(α) we further get the following version of (6.5):

lim sup
k→∞

1
P{ξ(h) > unk }

P

{
sup

t∈[0,h]
ξ(t) > unk

}

= lim sup
x↓0

lim sup
k→∞

eαx

P{ξ(h) > unk }
P

{
sup

t∈[0,h]
ξ(t) > unk + x

}

≤ lim inf
a↓0

bh/ac∑
k=0

L(h − ka)P

{
k−1⋂
`=0

{ξ((k − `)a)+ η ≤ 0}

}
.

With the notation (6.6) we thus obtain the following version of (6.1):

P

{
sup

t∈[0,h]
ξ(t) > unk

}
∼ H P{ξ(h) > unk } as k →∞

with H ∈ [1,∞) as before. This gives the required (6.7) since supt∈[0,h] ξ(t) ∈ L(α). �

We immediately get the following powerful corollary to Theorem 6.1. See also Braverman
[13], Theorem 2, and Section 8 below on priority issues:

Corollary 6.2. For a Lévy process ξ satisfying (3.4) we have (6.1) with H = 1.

We now complete the result (6.1) of Braverman [11] and Braverman and Samorodnitsky [14]
for S(α) to a result in the fashion of Theorem 4.1. We also show that H > 1 unless ξ is a
subordinator which does not follow from the mentioned literature.

Corollary 6.3. For a constant α ≥ 0 and a Lévy process ξ we have

ν([1,∞) ∩ ·)
ν([1,∞))

∈ S(α)⇔ ξ(h) ∈ S(α)⇔ sup
t∈[0,h]

ξ(t) ∈ S(α) and (6.2).

Moreover, if any of these memberships holds so that all of them hold, then (6.1) holds. In that
case we have H > 1 unless α = 0 or ξ is a subordinator.

Proof. The left equivalency in the corollary follows from Theorem 3.1, as does the fact
that ξ(h) ∈ S(α) implies (6.2). Hence Theorem 6.1 shows that ξ(h) ∈ S(α) also implies
supt∈[0,h] ξ(t) ∈ S(α) as (6.1) holds. Conversely, the fact that supt∈[0,h] ξ(t) ∈ S(α) and (6.2)
imply ξ(h) ∈ S(α) follows from Theorem 6.1 alone, again as (6.1) holds.

As any of the equivalent statements in the corollary implies that (6.2) holds with ξ(h) ∈ L(α),
Theorem 6.1 shows that they also imply (6.1).
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If α > 0, then Condition 1 of Theorem 4.2 fails. As ξ(h) ∈ S(α) implies that the limit in
(6.2) is strictly positive, by Theorem 3.1, also Condition 2 of Theorem 4.2 fails. Since ξ is not a
subordinator Theorem 4.2 thus shows that

lim sup
u→∞

1
P{ξ(h) > u}

P

{
sup

t∈[0,h]
ξ(t) > u

}
> 1,

which combines with (6.1) to show that H > 1. �

7. Applications

We now consider applications of our results to GZ, CGMY and GH processes.

7.1. GZ processes

The GZ process was introduced by Grigelionis [22], thereby generalizing the z processes of
Prentice [32]. The GZ process is a Lévy process with characteristic triple(

dν(x)
dx

,m, s2
)

=

(
2δ

|x |(1− e−2π |x |/ζ )

(
e2πβ1x 1(−∞,0)(x)+ e−2πβ2x 1(0,∞)(x)

)
,m, 0

)
, (7.1)

where β1, β2, δ, ζ > 0 and m ∈ R are parameters.

Theorem 7.1. For a GZ Lévy process (6.1) holds with H = 1. If in addition h > 1/(2δ), then
we have

P{ξ(h) > u} ∼
e(A−2δγ ) h

2πβ2Γ (2δh)
u2δh−1e−2πβ2u as u →∞, (7.2)

where γ is Euler’s constant and

A = 2πβ2m +
∫
R

(
e2πβ2x 1(−∞,1)(x)− 1− 2πβ21(−1,1)(x) x

)
dν(x)

+

∫
∞

1

(
e2πβ2x dν(x)

dx
−

2δ
x

)
dx .

Proof. By inspection of (7.1) we see that (3.8) holds with C = 2δ, ρ = −1 and α = 2πβ2.
Hence (3.4) holds by Theorem 3.6, so that Corollary 6.2 gives (6.1) with H = 1.

If h > 1/(2δ), then the hypothesis of the second part of Theorem 3.6 holds, as (3.10)
holds by inspection of (7.1). Hence (3.11) applies. By (3.14) we have µ←(u) + 2πβ2 ∼ 2δ/u
as u → ∞, so that by dominated convergence [note that µ←(u/h) + 2πβ2 ≥ 0 and
(µ←(u/h)+ 2πβ2) u/(2hδ) ≥ 1/2 for u large enough] and a change of variable∫

∞

1
e−µ

←(u/h) x dν(x)

=

∫
∞

1
e−(µ

←(u/h)+2πβ2) x
(

e2πβ2x dν(x)
dx
−

2δ
x

)
dx + 2δ

∫
∞

1
e−(µ

←(u/h)+2πβ2) x dx

x

=

∫
∞

1

(
e2πβ2x dν(x)

dx
−

2δ
x

)
dx + 2δ

∫
∞

2hδ/u

e−x

x
dx + o(1) as u →∞. (7.3)
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Using (3.1) together with (3.11), (3.14) and (7.3), elementary calculations give

P{ξ(h) > u} ∼
(2δh)2δheAh

2πβ2Γ (2δh)
e−2πβ2u

u
exp

{
2δh

∫
∞

2δh/u

e−x

x
dx

}
∼
(2δh)2δheAh

2πβ2Γ (2δh)
e−2πβ2u

u

(
e−γ u

2δh

)2δh

as u →∞,

which establishes (7.2): Here the last asymptotic relation follows from, e.g., Erdélyi, Magnus,
Oberhettinger and Tricomi [20], Equations 6.9.25 and 6.7.13. �

Example 7.2. The Meixner process of Schoutens and Teugels [35] is a GZ process with β1, β2 >

0 and β1 + β2 = 1. Thus it satisfies (6.1) with H = 1. Further, (7.2) holds when h > 1/(2δ).

Remark 7.3. According to Barndorff-Nielsen, Kent and Sørensen [7], Theorem 5.2, if for a
constant α > 0 and a PDF f the function

Fk(x) =
∫ x

0
ykeαy f (y)dy, x > 0,

has an ultimately monotone derivative with a Laplace transform that satisfies∫
∞

0
xke(α+s)x f (x)dx ∼ C Γ (k − ρ)(−s)−(k+ρ+1) as s ↑ 0, (7.4)

for some constants C > 0, k ∈ N and ρ > −k−1, then f satisfies (1.1). However, in general one
cannot tell whether Fk has an ultimately monotone derivative just by inspection of the Laplace
transform. And should such additional information on f be available the Tauberian result should
typically not be needed anyway.

For example, Grigelionis [22], Corollary 1, deduces that

fξ(t)(u) ∼

(
2π Γ (β1 + β2)

ζ Γ (β1)Γ (β2)

)2δt u2δt−1

Γ (2δt)
exp

{
−

2πβ2(u − mt)

ζ

}
as u →∞

for GZ processes from information like (7.4) only, with the property that Fk has a monotone
derivative waived as “standard calculations”: We find this argument incomplete!

7.2. CGMY processes

The CGMY Lévy process of Carr, Geman, Madan and Yor [15] has characteristic triple(
dν(x)

dx
,m, s2

)
=

(
C−(−x)−1−Y−eGx 1(−∞,0)(x)+ C+x−1−Y+e−Mx 1(0,∞)(x),m, 0

)
, (7.5)

where C−,C+,G,M > 0, Y−, Y+ < 2 and m ∈ R are parameters.

Theorem 7.4. For a CGMY process (6.1) holds. Further, we have H > 1 and

P{ξ(h) > u} ∼
C+h

M
exp

{
hMm + h

∫
R

(
eMx
− 1− M1(−1,1)(x) x

)
dν(x)

}
e−Mu

u1+Y+
(7.6)
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as u →∞ for Y+ > 0, while H = 1 and

P{ξ(h) > u} ∼
MC+h−1eBh

Γ (C+h)
uC+h−1e−Mu (7.7)

as u →∞ for Y+ = 0, where γ is Euler’s constant and

B = Mm +
∫
R

(
eMx 1(−∞,0)(x)− 1− M1(−1,1)(x) x

)
dν(x),

and H = 1 and

P{ξ(h) > u} ∼
(C+hΓ (1− Y+))−1/(2(1−Y+))

M
√

2π(1− Y+) u(1−Y+/2)/(1−Y+)

× exp

{
−Mu +

(1+ 1/Γ (1− Y+)) u−Y+/(1−Y+)

(C+hΓ (1− Y+))−1/(1−Y+)
+ Bh

}
(7.8)

as u →∞ for Y+ < 0.

Proof. For Y+ > 0, (7.5) and Example 2.11 show that ν([1,∞)∩ ·)/ν([1,∞)) ∈ S(M), so that
Corollary 6.3 gives ξ(h) ∈ S(M) and (6.1) with H > 1 (as ξ is not a subordinator). Further, we
get (7.6) by insertion of (7.5) in the second part of Theorem 3.1.

For Y+ = 0, (7.5) shows that (3.8) holds with ρ = −1, so that Theorem 3.6 gives (3.4).
Hence (6.1) holds with H = 1 by Corollary 6.2. To prove (7.7), write ξ = ξ1 + ξ2 where ξ1
and ξ2 are independent Lévy processes with triplets (ν((0,∞) ∩ ·),C+(1 − e−M )/M, 0) and
(ν((−∞, 0) ∩ ·),m − C+(1− e−M )/M, 0), respectively. Then ξ1 is a gamma subordinator, see,
e.g., Schoutens [34], Section 5.3.3, and satisfies

P{ξ1(h) > u} ∼
MC+h−1

Γ (C+h)
uC+h−1e−Mu as u →∞, (7.9)

so that ξ1(h) ∈ L(M). As E{eβξ2(h)} < ∞ for β ≥ 0 [recall (3.6)] it follows from Pakes [29],
Lemma 2.1 (see also [30]), that [cf. (3.2)]

P{ξ(h) > u} ∼ P{ξ1(h) > u}E{eMξ2(h)} as u →∞. (7.10)

Inserting (7.9) and calculating the MGF in (7.10) using (3.1) and (7.5) we get (7.7).
For Y+ < 0, (7.5) shows that (3.8) holds with ρ = −1 − Y+ > −1, α = M and C = C+,

so that Corollary 3.5 gives (3.4). Hence (6.1) holds with H = 1 by Corollary 6.2, with the
asymptotic behaviour of P{ξ(h) > u} as u → ∞ in (6.1) given by (3.9), by Corollary 3.5. To
evaluate (3.9) we note that (3.7) and (7.5) give

µ1(λ) = C+

∫
∞

1
x−Y+e−(M+λ)x dx = C+Γ (1− Y+)(M + λ)

Y+−1
−

C+
1− Y+

+ o(1)

V1(λ) = C+

∫
∞

1
x1−Y+e−(M+λ)x dx ∼ C+Γ (2− Y+)(M + λ)

Y+−2

as λ ↓ −M . It follows that

µ←1 (u) = −M +

(
u − C+/(1− Y+)

C+Γ (1− Y+)

)1/(Y+−1)

+ o
(

u1/(Y+−1)−1
)

as u →∞,
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so that

uµ←1 (u/h) ∼ −Mu + (C+h Γ (1− Y+))
1/(1−Y+)uY+/(Y+−1)

V1(µ
←

1 (u/h)) ∼ C+Γ (2− Y+)(C+h Γ (1− Y+))
(Y+−2)/(1−Y+)u(Y+−2)/(Y+−1)

= (1− Y+) h−1(C+h Γ (1− Y+))
−1/(1−Y+)u(Y+−2)/(Y+−1)

as u →∞. Moreover, we have

ln
(

E{eMξ2(h)}φ1(λ)
h
)
∼ h

∫
∞

0
x−1−Y+e−(M+λ)x dx + Bh

= C+h Γ (−Y+)(M + λ)
Y+ + Bh

as λ ↓ −M , so that

ln
(

E{eMξ2(h)}φ1(µ
←

1 (u/h))h
)
∼ C+h(C+h Γ (1− Y+))

Y+/(1−Y+)uY+/(Y+−1)
+ Bh

∼ (C+h Γ (1− Y+))
1/(1−Y+)Γ (1− Y+)

−1uY+/(Y+−1)
+ Bh

as u →∞. Inserting the above findings into (3.9) we readily obtain (7.8). �

Braverman [11] and Braverman and Samorodnitsky [14] apply to CGMY for Y+ > 0.
CGMY processes with Y−, Y+ < 0 are compound Poisson and light tailed in the sense of

Braverman [12], Definition 1, by Example 2.11. Hence Braverman’s Theorem 1 applies if the
process has non-negative drift while his Theorem 3 applies if 0 < M < 1 and the drift is
negative, in both cases to yield (6.1) with H = 1.

Example 7.5. As the variance gamma processes of Madan and Seneta [27] are CGMY processes
with C− = C+ and Y− = Y+ = 0 they satisfy (6.1) with H = 1 and the asymptotic behaviour
of P{ξ(h) > u} as u →∞ in (6.1) given by (7.7).

Example 7.6. The Kou [26] jump-diffusion Lévy process has characteristic triple(
dν(x)

dx
,m, s2

)
=

(
(1− p)λeλ−x 1(−∞,0)(x)+ pλe−λ+x 1(0,∞)(x),m, s2

)
, (7.11)

where p ∈ (0, 1), m ∈ R and λ, λ−, λ+, s2 > 0 are parameters.
Besides the Gaussian component s2, (7.11) is (7.5) with Y− = Y+ = −1. Hence the proof

of Theorem 7.4 carries over to show that (6.1) holds with H = 1 and the asymptotic behaviour
of P{ξ(h) > u} as u → ∞ in (6.1) given by (3.9). The evaluation of (3.9) in the proof of
Theorem 7.4 can be modified in a straightforward manner to include the Gaussian component,
but we omit the details.

7.3. GH processes

The GH Lévy process introduced by Barndorff-Nielsen [3,4] has characteristic triple(
dν(x)

dx
,m, s2

)

=

(
eβx

|x |

(∫
∞

0

exp{−|x |
√

2y + %2}

π2 y
(
J|ζ |(δ
√

2y)2 + Y|ζ |(δ
√

2y)2
)dy + ζ+e−%|x |

)
,m, 0

)
, (7.12)
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where β, ζ,m ∈ R, δ > 0 and % > |β| are parameters. Here Jζ denotes the Bessel function and
Yζ the Bessel function of the second kind, respectively.

Theorem 7.7. For a GH process (6.1) holds where H = 1 if ζ ≥ 0 while H > 1 if ζ < 0.

Proof. Using the facts from Watson [38], Equations 3.1.8, 3.51.1, 3.52.3 and 3.54.1-2, about the
asymptotic behaviour of Jζ (y) and Yζ (y) as y ↓ 0 we readily obtain∫

∞

0

exp{−|x |
√

2y + %2}

π2 y
(
Jζ (δ
√

2y)2 + Yζ (δ
√

2y)2
)dy ∼

∫
∞

0

exp{−x(% + y/%)}

π2 yYζ (δ
√

2y)2
dy

∼



∫
∞

0

δ2ζ
[sin(πζ )Γ (1− ζ )]2 yζ−1 exp{−x(% + y/%)}

π22ζ
dy for ζ ∈ [0,∞) \ N∫

∞

0

δ2ζ yζ−1 exp{−x(% + y/%)}

2ζΓ (ζ )2
dy for ζ ∈ N \ {0}∫

∞

0

exp{−x(% + y/%)}

y ln(y/%)2
dy for ζ = 0

as x →∞, so that by insertion in (7.12)

dν(x)
dx
∼



2ζ [sin(πζ )Γ (1+ ζ )]2 exp{−(% − β)x}

π2δ2ζ%ζ x1−ζ for ζ ∈ (−∞, 0] \ N

2ζ exp{−(% − β)x}

δ2ζ%ζΓ (−ζ )2x1−ζ for ζ ∈ (−N) \ {0}

exp{−(% − β)x}
ln(2)x

for ζ = 0

ζe−(%−β)x

x
for ζ > 0.

(7.13)

For ζ ≥ 0, (7.13) shows that (3.8) holds with ρ = −1, so that Theorem 3.6 gives (3.4). Hence
Corollary 6.2 shows that (6.1) holds with H = 1. For ζ < 0, (7.13) and Example 2.11 show that
ν([1,∞) ∩ ·)/ν([1,∞)) ∈ S(% − β), so that Corollary 6.3 gives (6.1) with H > 1 (as ξ is not a
subordinator). �

Braverman [11] and Braverman and Samorodnitsky [14] apply to GH for ζ < 0.

Example 7.8. The normal inverse Gaussian process introduced by Barndorff-Nielsen [4,5] is a
GH processes with ζ = − 1

2 . Thus it satisfies (6.1) with H > 1.

Example 7.9. The hyperbolic process introduced by Barndorff-Nielsen [3] is a GH process with
ζ = 1. Thus is satisfies (6.1) with H = 1.

Remark 7.10. When ζ < 0 the asymptotic behaviour of P{ξ(h) > u} as u → ∞ in (6.1) for
GH processes is given by the second part of Theorem 3.1 together with integration of (7.13).
When ζ ≥ 0 the asymptotic behaviour of P{ξ(h) > u} can be calculated from (3.11) in the
fashion of Theorem 7.1 for h large enough. We have omitted these calculations to avoid additional
technicalities.
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8. Two priority issues

Theorem 3.3 is due to Braverman [13], Theorem 1.
Braverman showed us his result during Fall 2004, so we were aware of his finding when

submitting our paper (although, frankly, we had forgotten about it for the final version of our
article, so we had to be reminded about it).

Braverman [13], Theorem 2, states that the conclusion of Corollary 6.2 holds under the
hypothesis of Theorem 3.3. Thus our Corollary 6.2 is more general than Braverman [13],
Theorem 2. However, from a practical point of view, one may argue the importance of the added
generality.

Our version of Corollary 6.2 is implicit in Chapter 5 of the thesis of Bengtsson [8] (now named
Sundén) that already appeared during Fall 2004, which is also acknowledged by Braverman [13],
Remark 1.

It should be noted that there is a more or less complete difference between the approach and
methods of proof of Theorem 3.3 and Corollary 6.2 and those of the corresponding results of
Braveman.
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Appendix. Technical details of Section 2

Here we prove Proposition 2.6 and Corollary 2.9. We remark that these results are not very
far from some standard results on regular variation that can be found in e.g., Bingham, Goldie
and Teugels [10], as is indeed indicated by their proofs: The results and proofs are just supplied
as a service to the reader not very expert in regular variation.

A.1. Proof of Proposition 2.6

We have F ∈ L(α) if and only if 1 − F(ln(·)) ∈ R(−α) and F ∈ O L if and only if
1−F(ln(·)) ∈ O R, see, e.g., Shimura and Watanabe [37], p. 451. By the representation theorems
for R(−α) and O R (see e.g., Bingham, Goldie and Teugels [10], Theorems 1.3.1 and 2.2.7) a
function 1− F(ln(·)) belongs to R(−α) [O R] if and only if

1− F(ln(u)) = ĉ(u) exp
{
−

∫ u

0

â(x)

x
dx

}
for u ∈ R large enough, (A.1)

for some measurable functions â and ĉ such that limx→∞ â(x) = α and limx→∞ ĉ(x) > 0 exists
[lim supx→∞ |â(x)| < ∞ and 0 < lim infx→∞ ĉ(x) ≤ lim supx→∞ ĉ(x) < ∞]. Since F is
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absolutely continuous with limu→−∞ F(u) = 0 and limu→∞ F(u) = 1 we can rewrite (A.1) as

1− F(u) = exp

{
−

∫ eu

0

â(x)+ b̂(x)

x
dx

}

= exp
{
−

∫ u

−∞

(
â(ex )+ b̂(ex )

)
dx

}
for u ∈ R,

where a(x) ≡ â(ex ) and b(x) ≡ b̂(ex ) satisfies (2.4) and (2.5), respectively, depending on
whether F ∈ L(α) or F ∈ O L. Finally, as F is non-decreasing we have a + b ≥ 0. �

A.2. Proof of Corollary 2.9

Integrating (1.1) we readily obtain

1− F(u) =
∫
∞

u
f (x)dx ∼

C

α
uρe−αu

∼
f (u)

α
as u →∞. (A.2)

In particular we see that F ∈ L(α), so that (2.3) holds with a + b ≥ 0 as in (2.4), where

lim
u→∞

∫ u

−∞

(
a(x)+ b(x)− α 1[0,∞)(x)+

ρ

x
1[1,∞)(x)

)
dx = ln

(
C

α

)
by (A.2). Writing c = a + b, we thus have (2.6) with c ≥ 0 as well as the second part of (2.7).
Differentiating both sides of (2.6) and using (A.2) we get

f (u) = c(u) exp
{
−

∫ u

−∞

c(x)dx

}
= c(u) (1− F(u)) ∼ c(u)

f (u)

α
as u →∞, (A.3)

which gives the first part of (2.7).
Conversely, if (2.6) and (2.7) hold, then it is immediate that (A.2) holds so that F ∈ L(α),

while (1.1) follows from (A.3). �
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